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Abstract
Monotonic Linear Interpolation (MLI) refers to
the peculiar phenomenon that the error between
the initial and converged model monotonically
decreases along the linear interpolation, i.e., (1−
α)θ0 + αθF . Previous works focus on paired
initial and converged points, relating MLI to the
smoothness of the optimization trajectory. In this
paper, we find a shocking fact that the error curves
still exhibit a monotonic decrease when θ0 is
replaced with noise or even zero values, imply-
ing that the decreasing curve may be primarily
related to the property of the converged model
rather than the optimization trajectory. We fur-
ther explore the relationship between αθF and
θF and propose scale invariance properties in var-
ious cases, including Generalized Scale Invari-
ance (GSI), Rectified Scale Invariance (RSI), and
Normalized Scale Invariance (NSI). From an in-
verse perspective, the MLI formula is essentially
an equation that adds varying levels of noise (i.e.,
(1−α)ϵ) to a nearly scale-invariant network (i.e.,
αθF ), resulting in a monotonically increasing er-
ror as the noise level rises. MLI is a special case
where ϵ is equal to θ0.

1. Introduction
Deep neural networks (DNNs) are generally considered
non-convex models known for their challenging optimiza-
tion. The stochastic gradient descent (SGD) optimizer is
widely utilized in training complex networks (Tao et al.,
2023; Li et al., 2022a;b). Typically, the loss values or
test errors exhibit oscillations during training, indicating
a rugged loss landscape and a winding optimization trajec-
tory. However, Goodfellow & Vinyals (2015) observes a
phenomenon called Monotonic Linear Interpolation (MLI),
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Figure 1. The illustration of the MLI formula. The left shows sev-
eral types of scale invariance property for various DNN cases.
The right explains the MLI formula from a novel perspective,
i.e., adding diverse levels of noise perturbation to a nearly scale-
invariant network. The MLI phenomenon emerges from the com-
bined influence of scale invariance and noise robustness.

suggesting that DNNs may not be as complex as previously
thought. Specifically, Goodfellow & Vinyals (2015) intro-
duces the linear interpolation between the parameters θ0

at initialization and the parameters θF at the local minima
found after training with SGD. The interpolation, denoted
as (1− α)θ0 + αθF , demonstrates a monotonic decrease
in loss or error as α ranges from 0 to 1. Goodfellow &
Vinyals (2015) attributes MLI to the relative ease of these
tasks from an optimization perspective. However, Frankle
(2020) observes the MLI for DNNs on more complicated
tasks, despite the presence of long plateaus in the loss and
error curves. Wang et al. (2023) concludes that the plateau
is caused by the bias term and network depth, rather than
the difficulty of optimization. These studies excessively fo-
cus on investigating the correlation between MLI and the
training trajectory, ignoring the formula of MLI itself.

In this paper, we extend the experiments in Goodfellow &
Vinyals (2015) to modern settings, including VGG-style net-
works (Simonyan & Zisserman, 2015), ResNets (He et al.,
2016) and Batch Normalization (BN) (Ioffe & Szegedy,
2015). We discover that substituting the original initializa-
tion θ0 with an unrelated random initialization θ′

0 still leads
to monotonic decreasing loss curves. Surprisingly, when
we replace θ0 with zero values, the test error curve along
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Figure 2. Test error over the linear interpolation between initialization and final parameters. The left endpoint represents various initialized
parameters and the right endpoint corresponds to the same converged parameters for each curve in a sub-figure. The monotonic decreasing
property is observed not only for original initialization but also for an unrelated random initialization and even for zero initialization.

αθF also exhibits the monotonic decreasing phenomenon,
as depicted in Figure 2. Notably, the test error of αθF de-
creases rapidly and converges to the performance of final
solution θF , which inspires us that this observation may
be a manifestation of scale invariance. Consequently, we
propose various types of scale invariance that take the bias
parameters and batch normalization into account, includ-
ing Generalized Scale Invariance (GSI), Rectified Scale
Invariance (RSI), and Normalized Scale Invariance (NSI),
as illustrated in Figure 1.

Based on these types of scale invariance, αθ approximates
the behavior of an invariantly scaled network, while with
varying levels of noise robustness across different α. Hence,
we interpret the MLI formula as introducing noise to a nearly
scale-invariant network. Subsequently, we propose the fol-
lowing hypothesis: for an arbitrary model θF and a specific
noise ϵ, αθF exhibits similar performance to θF , and as
α decreases, the error of αθF + (1 − α)ϵ monotonically
increases. If the hypothesis holds for ϵ = θ0, it leads to the
MLI phenomenon, where the loss monotonically increases
as α decreases from 1 to 0. In contrast to previous works,
our proposed explanation of MLI decouples the paired ini-
tialization and converged models, solely focusing on the
properties of θF . To validate our interpretation, we provide
empirical analyses on multiple datasets and perform exper-
iments to explain the phenomenon of violating the MLI
property under specific mechanisms.

In summary, our contributions are as follows: (1) We ob-
serve that substituting the initialization with unrelated ini-
tialization or zero values in the MLI formula still leads to the
monotonic decreasing phenomenon. (2) We propose several
types of scale invariance for cases of network architectures,
including GSI, RSI, and NSI. (3) We provide an explanation
for the MLI formula as a nearly scale-invariant solution
that adds varying levels of noise. (4) We offer an alternative
perspective to comprehend the MLI phenomenon, reveal-
ing that θF is nearly scale-invariant and perturbing it with
(1− α)θ0 results in a monotonic increase in the loss curve
as α decreases from 1 to 0. (5) We provide explanations
for the violation of MLI under specific settings, addressing

cases that are previously reported without comprehensive
explanations.

2. Related Works
The formula of MLI is essentially a parameter interpolation
that reflects the loss landscape properties of DNNs. Hence,
our work is closely related to parameter interpolation and
the loss landscape of DNNs.

2.1. Parameter Interpolation of DNNs

Goodfellow & Vinyals (2015) proposes the MLI phe-
nomenon and points out that the MLI persists on various net-
work architectures, activation functions and loss functions.
Subsequently, Frankle (2020) studies MLI on contemporary
networks and discovers the plateau phenomenon, wherein
the loss and error curve remains high until close to the con-
verged model. Notably, this work reveals that substituting
the initialization with intermediate checkpoints can disrupt
the MLI property. Wang et al. (2023) attributes the plateau
to the bias term. Vlaar & Frankle (2022) investigates the
effects of initialization, data, optimizer and architectures on
MLI, while Lucas et al. (2021) identifies specific cases that
violate the MLI property. Different from these studies, our
work originates from the MLI formula and presents a novel
comprehension of MLI. We also provide an explanation for
the scenarios that violate the MLI property.

Similar to MLI, studies on Linear Mode Connectivity
(LMC) focus on the interpolation between two final so-
lutions (modes). Prior works reveal insights into loss bar-
rier (Goodfellow & Vinyals, 2015), simple non-linear curves
with low loss (Draxler et al., 2018; Garipov et al., 2018),
aligned interpolation with permutation invariance (Entezari
et al., 2022; Ainsworth et al., 2023), and the improvement
of model soups based on pre-trained models (Neyshabur
et al., 2020; Wortsman et al., 2022), which contribute to a
deeper understanding of DNNs’ properties. We focus on
comprehending MLI and anticipate the proposed methods
can be effectively applied to LMC research in the future.
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2.2. Loss Landscape of DNNs

Visualizing the loss landscape of DNNs can provide in-
sights into their properties, such as generalization (Im et al.,
2016), optimization trajectory (Lorch, 2016), architectural
choices (Li et al., 2018; Fort & Jastrzebski, 2019), and the
sharpness/flatness of different minima (Keskar et al., 2017).
Due to the high dimension of parameter space, conventional
visualization methods can only portray the loss landscape in
one or two-dimensional subspace. We also employ 1d and
2d visualization method to present our findings.

Among the properties of DNNs, the sharpness/flatness is
highly relevant to our work. The concept of flat minima
is first proposed by Hochreiter & Schmidhuber (1997).
Keskar et al. (2017) finds that using large or small batch
size can lead to minima with varying degrees of flatness.
Neyshabur et al. (2017); Jiang et al. (2020) establish a
positive correlation between flatness and generalization of
DNNs, while Dinh et al. (2017); Andriushchenko et al.
(2023) argue that sharp minima can also exhibit good gen-
eralization. Furthermore, several optimization algorithms
are developed to enhance generalization ability by seeking
flatter minima (Pittorino et al., 2021; Chaudhari et al., 2017;
Foret et al., 2021; Zhao et al., 2022; Kwon et al., 2021).

In all of these studies, sharpness/flatness can be interpreted
as a measure of noise robustness, denoted as θF + ϵ. The
most common trend is that as the magnitude of ϵ increases,
the loss and error also increases (Keskar et al., 2017; Pit-
torino et al., 2021; Foret et al., 2021). We connect the MLI
formula with this equation, allowing us to understand MLI
from an alternative perspective.

3. Preliminaries
In this section, we introduce the concept of monotonic linear
interpolation (MLI) and subsequently present our findings
and inspirations.

3.1. The Monotonic Linear Interpolation Property

The MLI property signifies that the linear interpolation path
between initialized parameters and converged parameters
monotonically decreases in loss and error. Thereby, we
assert that a network has the MLI property if for any α1,
α2 ∈ [0, 1] and α1 < α2:

J (θα1) ≥ J (θα2),where θαi = (1−αi)θ0+αiθF . (1)

Here, θ0, θF denote the parameters at initialization and
convergence respectively. J (θ) is an evaluation function
that reflects the performance (e.g., loss and error) of the
model with parameters θ.

Prior to the discovery of MLI, the loss landscape of DNNs
is perceived as rugged and the optimization trajectory is

considered to be convoluted. However, the presence of MLI
in both simple and complex tasks suggests that the landscape
may be smoother than previously thought. Previous studies
overly emphasize the association between MLI and task
hardness or the optimization trajectory, whereas our work
begins with elucidating the MLI formula and subsequently
provides a novel understanding of MLI by integrating scale
invariance and noise perturbation.

3.2. Findings and Inspirations

We study four image classification settings including a 4-
layer fully-connected network (FCN4) for MNIST (Le-
Cun & Cortes, 2010), VGG8 without Batch Normaliza-
tion (Ioffe & Szegedy, 2015) for SVHN (Netzer et al., 2011),
VGG16 with Batch Normalization (Ioffe & Szegedy, 2015)
for CIFAR10 (Krizhevsky, 2009), and ResNet20 for CI-
FAR100 (Krizhevsky, 2009). To further understand the
MLI property, we devise two variants of interpolation path
in Equation (1). The first is defined as:

θαi
= (1− αi)θ

′
0 + αiθF , (2)

where θ′
0 represents an unrelated random initialization. Fig-

ure 2 reveals that the linear interpolation between θ′
0 and

θF also displays a monotonic decrease in error, which has
also been shown in Lucas et al. (2021). Notably, we sam-
ple multiple groups of θ′

0, and all of them conform to the
monotonic decreasing result. Moreover, the test error curves
of networks with BN along the interpolation path exhibit
significantly similar shapes (i.e., the last two subplots). Fur-
thermore, we provide a demonstration using “scikit-learn” 1

to showcase the monotonic decreasing property. The code
is listed in Appendix C.

Next, we simplify the MLI formula by omitting the term
(1−α)θF and introduce the second variant of interpolation:

θαi = αiθF . (3)

The simplified equation also shows monotonic decreasing
results, as shown in Figure 2. Notably, the networks with
BN exhibit a test error similar to that of networks θF when
α is relatively small (i.e., the last two subplots in Figure 2).

Based on the results presented in Figure 2, we summarize
our findings as follows: (1) Changing the initialization pa-
rameter in MLI formula does not alter the monotonic de-
creasing tendency of error curves, particularly for networks
with BN. (2) The network αθF performs similarly to θF

even when α is relatively small, especially for networks
with BN, suggesting a nearly scale-invariant property of
the network. (3) In all three interpolation ways, networks
with BN show a shorter plateau in the test error curve com-
pared to networks without BN, indicating the crucial role

1https://scikit-learn.org/stable/index.
html
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of BN in preserving the function of the network. We fur-
ther validate these findings on pre-trained models, including
ResNet50 (He et al., 2016) on CUB (Wah et al., 2011) and
RoBERTa (Liu et al., 2019) on AG News (Zhang et al.,
2015), which are provided in Appendix A.1.

Inspired by the aforementioned findings, we propose a hy-
pothesis that the network with parameters αθF can achieve
a similar test error to networks with parameters θF when
α reaches a certain threshold, exhibiting a scale invariance
property of DNNs. Additionally, we consider (1 − α)θ0

in Equation (1) and (1 − α)θ′
0 in Equation (2) as forms

of noise perturbation on the scaled converged parameters
αθF due to the common phenomenon of monotonic de-
creasing. Therefore, we propose a novel conjecture that the
MLI formula reflects a property of DNNs, which is jointly
determined by scale invariance and noise robustness.

4. Explanations of MLI Formula
In this section, we first generalize and decompose the MLI
formula into two parts as follows:

αθF︸︷︷︸
Nearly Scale-Invariant

+ (1− α)ϵ︸ ︷︷ ︸
Varying Levels of Noise

. (4)

Here we substitute the initialization θ0 with a noise ϵ. The
former part αθF is related to the scale invariance property,
while the latter part is associated with noise robustness.

4.1. Scale Invariance Property

We explore the scale invariance property across diverse
network architectures and introduce several variants of this
property for specific networks.

4.1.1. VANILLA SCALE INVARIANCE

Consider a neural network consisting of L layers. For the
l-th layer, we denote Wl ∈ Rdl×dl−1 as the weight matrix
and bl ∈ Rdl as the bias vector, where dl is the number of
neurons in the l-th layer for l ∈ {1, 2, . . . , L}. Given an
input x ∈ Rd0 , the output of the l-th layer is:

hl(x) := σ (Wlhl−1(x) + bl) , (5)

where the activation function σ(·) can be identity or ReLU
function. Notably, due to the property σ(αx) = ασ(x)
for any α > 0, the network is invariant to the scaling of
parameters in each layer by a positive factor (Pittorino et al.,
2022). For the l-th layer, we scale its weight and bias by
αl. To eliminate the impact of αl, we scale the weight
parameters of its subsequent layer by multiplying 1

αl
. Hence,

we define the Vanilla Scale Invariance (VSI) property as:

h′
l = σ (αlWlhl−1 + αlbl) = αlhl, (6)

h′
l+1 = σ

(
1

αl
Wl+1h

′
l + bl+1

)
= hl+1. (7)

We use hl to denote hl(x) for simplicity. αl is the scaling
factor of the l-th layer and h′

l denotes the output of the
scaled l-th layer. Since h′

l+1 = hl+1, the output of the
(l + 1)-th layer remains unchanged. Therefore, the function
implemented by the network and the associated loss remains
unaffected. The VSI property is shown in Figure 1.

4.1.2. GENERALIZED SCALE INVARIANCE

For DNNs without bias parameters and BN layers, we
extend VSI to Generalized Scale Invariance (GSI) property
for multiple layers. We denote r as the number of layers in-
volved in the multiple-layer scale transformation. From the
l-th layer to the (l+ r)-th layer, we scale the weights by cor-
responding positive scaling factors {αi}l+r

i=l and accumulate
the scaling effect value

∏l+r
i=l αi at the (l + r)-th layer. We

introduce a scaling factor 1∏l+r
i=l αi

in the subsequent layer
to eliminate the scaling effect. GSI is defined as:

h′
l+i =

 i∏
j=0

αl+j

hl+i, i ∈ [0, r], (8)

h′
l+r+1 = σ

(
1∏l+r

i=l αi

Wl+r+1

(
l+r∏
i=l

αi

)
hl+r

)
= hl+r+1,

(9)
where the outputs from the l-th layer to the (l + r)-th layer
are scaled, while the output of the (l + r + 1)-th layer is
consistent with the original network, denoted as h′

l+r+1 =
hl+r+1. GSI extends beyond VSI to multiple layers and
applies exclusively to networks without bias and BN layers.

We can also apply GSI to all layers, where l = 1 and
l + r = L. According to GSI, the output logits should be
re-scaled by 1∏L

i=1 αi
, which is illustrated as the GSI figure

in Figure 1. Notably, for classification tasks, we can main-
tain the network’s function without re-scaling its weights
and output. The output of network scaled by α1, . . . , αL is:

h′
L =

(
L∏

i=1

αi

)
σ(WLhL−1) =

(
L∏

i=1

αi

)
hL. (10)

We find that even when we do not re-scale the weights to
maintain consistent outputs, the error of the network remains
unchanged, as

∏L
i=1 αi does not affect the class index of the

highest probability among the output categories. However,
a significant difference rises in the value of loss function L
(e.g., cross-entropy), which can be mitigated by adjusting
the temperature t:

L = − log
exp

((∏L
i=1 αi

)
hc
L/t
)

∑C
j=1 exp

((∏L
i=1 αi

)
hj
L/t
) , (11)
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where c, hj
L denote the correct label and the output of the

j-th class respectively. C is the number of classes. The
value of the loss function aligns with that of the network
prior to applying the scale transformation when t equals∏L

i=1 αi.

4.1.3. RECTIFIED SCALE INVARIANCE

For networks with bias parameters but without BN layers,
the GSI property is disrupted due to the bias terms. When
we scale the network from the l-th layer, we can obtain
h′
l = αlhl. However, for the subsequent layer,

h′
l+1 = σ (αl+1Wl+1h

′
l + αl+1bl+1)

= σ (αl+1αlWl+1hl + αl+1bl+1) ̸= αl+1αlhl+1.
(12)

It is evident that the weight and bias parameters are scaled
by different scaling factors, making it impossible to extract
these factors simultaneously from the activation function.
Considering the influence of the bias term in Equation (12),
we modify the factor of the bias in the (l + 1)-th layer to
αl+1αl instead of αl:

h′
l+1 = σ(αl+1αlWl+1hl + αl+1αlbl+1) = αl+1αlhl+1,

(13)
where the bias term bl+1 is scaled by the product of scaling
factors from the l-th layer to the current (l + 1)-th layer.
Building upon Equation (13), we propose a variant of GSI
called Rectified Scale Invariance (RSI) property:

h′
l+i = σ

αl+iWl+ih
′
l+i−1 +

 i∏
j=0

αl+j

 bl+i


=

 i∏
j=0

αl+j

hl+i, i ∈ [0, r],

(14)

h′
l+r+1 = σ

 1∏l+r
i=l αi

Wl+r+1

 r∏
j=0

αl+j

hl+r + bl+r


= hl+r+1.

(15)
Here, we scale the weight parameters by αl+i from the l-th
layer to the (l + r)-th layer. Correspondingly, we apply∏i

j=0 αl+j to scale the bias parameters, as shown in Fig-
ure 1. The primary distinction between RSI and GSI lies
in the scaling factor applied to the bias term. Unlike GSI,
RSI does not alter the function of the network but adjusts
the scaling factor of the bias term.

Therefore, GSI is suitable for networks with only weight
parameters, while RSI is applicable to networks with both
bias and weight parameters.

4.1.4. NORMALIZED SCALE INVARIANCE

For networks with BN layers, BN demonstrates the Nor-
malized Scale Invariance (NSI) property, a variant of the
scale invariance property. BN operates in two distinct steps:
a normalization step and a subsequent re-scaling step. The
normalization step is defined as follows:

ĥl =
hl − E[hl]√
Var[hl] + η

, (16)

where the mean E[hl] and variance Var[hl] are computed
channel-wise over the mini-batch. η is a small value in-
troduced for numerical stability. The normalization step is
followed by the re-scaling step:

hl+1 = γ ∗ ĥl + β, (17)

where scaling parameter γ and shifting parameter β are
learnable and enable the network to learn a proper scale
and bias for each feature. A network equipped with BN
demonstrates scale invariance property, caused by the nor-
malization step in BN, as illustrated by:

h′
l =σ (αlWlhl−1 + αlbl) = αlhl,

ĥ′
l =

αlhl − αlE[hl]√
α2
lVar[hl] + η

= ĥl,
(18)

where the second equality holds due to E[ax] = aE[x] and
Var[ax] = a2Var[x]. We omit the influence of η. The NSI
property is illustrated in Figure 1. Therefore, the updating
of running statistics significantly contributes to the NSI
property, which explains the short plateau in test error curves
of scaled networks following Equation (3) in Figure 2.

In modern network architectures like ResNet (He et al.,
2016), the BN layer is commonly employed after convolu-
tional layers, thereby adhering to the NSI property. However,
in certain instances, fully connected layers following convo-
lution may be not accompanied by BN layers, causing the
scale effects of these subsequent layers to deviate from the
NSI property but still conform to the RSI property.

Based on the above analysis, we observe that networks θ
without bias parameters or incorporating BN tend to exhibit
closely aligned performance between αθ and θ. Conversely,
networks θ with bias parameters and without BN manifest a
performance disparity between αθ and θ, with the extent of
distinction determined by the magnitude of bias parameters.
A summarized analysis and empirical verification of the
differences in output between a scaled network and a scale-
invariant network are provided in Appendix A.2.

4.2. Noise Robustness

Considering the insight discussed in Section 3.2 that the
monotonic decreasing property is independent of initializa-
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tion, we can generalize θ0 in Equation (1) and θ′
0 in Equa-

tion (2) as a noise perturbation ϵ applied to the parameters
αθF , formally expressed as:

θα = αθF + (1− α)ϵ. (19)

For αθF , the magnitude of its parameters diminishes as α
decreases, while the performance remains relatively stable
owing to the scale invariance property of DNNs, especially
for networks with BN or without bias parameters. Concur-
rently, the magnitude of noise (1− α)ϵ increases, making
the network αθF more susceptible to noise perturbation.

In terms of the noise robustness, Li et al. (2018) demon-
strates that the loss and error of networks progressively
increase with higher intensity of noise perturbation. It is log-
ical to deduce that the noise (1−α)ϵ added to αθF amplifies
as α decreases, leading to a decline in performance. Conse-
quently, we propose that for a given specific noise ϵ, as α
decreases from 1 to 0, although αθF performs similarly to
θF , the higher magnitude noise causes the scaled network
to experience a monotonic increase in error. When ϵ = θ0,
this proposal explains the MLI property from an inverse
perspective. We assert that the MLI property is influenced
by both the scale invariance property and noise robustness
of DNNs, irrespective of the optimization trajectory.

Notably, our proposal may not apply to arbitrary ϵ. For in-
stance, if ϵ = −∇θF

L(θF ), the loss of θα in Equation (19)
may either decrease or remain unchanged as α decreases
from 1 to 0. However, it is challenging to prove which
noise ϵ satisfies our proposal, thus we can only empirically
verify the effects of noise by several experimental studies
(Section 5.1 and Appendix A.3). The results consistently
demonstrate monotonic increasing error curves when α de-
creases from 1 to 0.

5. Experimental Results
In this section, we perform experiments aimed at compre-
hensively understanding the MLI formula and validating
our hypotheses.

5.1. The Effect of Noise ϵ

In Section 3.2, our findings reveal that the monotonic de-
creasing property holds for different initialization. Subse-
quently, we extend the original initialization to ϵ in Sec-
tion 4.2 and study its effects in this section. Figure 2 shows
that different random initialization consistently exhibit the
monotonic decreasing phenomenon. Additionally, we in-
vestigate the impact of noise magnitudes. To provide a
clear depiction of differences in error and loss curves, we
introduce a simple measure to evaluate the descent inter-
val of a curve. Specifically, the interpolation curves that
conform to the MLI phenomenon decrease rapidly within a

range of α. For instance, in the first subplot of Figure 2, the
curve of αθF shows a rapid decline when α is in the range
of [0.1, 0.3]. Hence, we employ the two endpoints within
which the error decreases rapidly to represent the curve.

Definition 5.1. Consider an evaluation function J (θ) along
the linear interpolation path defined in Equation (1). The
set A contains the values of α corresponding to the rapid
descent interval of the curve:

A :=

{
αi|

J (θαi
)− J (θαi+1

)

J (θα0
)− J (θα1

)
≥ τ

}
. (20)

In order to analyze the impact of the initialization scale, we
propose a metric that quantifies the relative scale between
initialized parameters and converged parameters.

Definition 5.2. Consider the initialized parameters θ0 and
converged parameters θF , the relative scale of θ0 and θF is
denoted as:

δ =
M(θ0)

M(θF )
, (21)

where M(θ) = 1
N

∑N
i=1 |θi| and N is the number of pa-

rameters in θ.

We denote the starting and ending points of the descent
interval of the curve as αS , αE respectively. Therefore,
the interval [αS , αE ] characterizes a monotonic decreasing
curve and αS indicates the length of the plateau in the curve.
We set τ to 0.01 in our experiments.

5.1.1. SCALED INITIALIZED PARAMETERS

In contrast to training networks with varying initialization
scales (Wang et al., 2023), we multiply the initialized pa-
rameters θ0 by different scaling factors while keeping the
converged parameters θF unchanged. We present the values
of αS and αE under various δ in Figure 3, demonstrating
the monotonic decreasing error curve persists for initialized
parameters across various scales. As δ increases, the plateau
in error interpolation lengthens and the noise robustness
gradually diminishes, as evident from Figure 3. For large
values of δ, the noise (1− α)θ0 plays a prominent role in
the interpolation, exerting a significant influence on the per-
formance of interpolated networks. Conversely, αθF takes
precedence in determining the performance of interpolated
networks when δ is small. Nevertheless, the length of the
rapid descent interval remains almost unchanged irrespec-
tive of the variation of δ.

5.1.2. CONSTANT INITIALIZED PARAMETERS

Common initialization methods typically sample parame-
ters from either a uniform or Gaussian distribution (Glorot
& Bengio, 2010; He et al., 2015). To explore the impact
of parameter distribution in initialization, we replace the
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Figure 3. The αS and αE of test error curve along the interpolation path from initialization across various δ to the same final solution.
The left two columns correspond to the scaled initialization, while the right two columns refer to the initialization with constant value.
The purple, pink and orange regions respectively represent the plateau in the initial stage, the rapid descent interval and the stable phase
where the performance approaches converged network.
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Figure 4. Test error of interpolated network where the running
statistics are treated with three approaches: freeze running statis-
tics, interpolate running statistics and reset running statistics before
warming up.

initialization with a constant value, ensuring a desired δ.
We find all the results consistently exhibit the monotonic
decreasing phenomenon. Figure 3 displays αS and αE of
the test error curve along the interpolation path between
constant initialized parameters and converged parameters,
which indicates our proposal about the MLI formula holds
for initialized parameters across various scales and distri-
butions. Furthermore, the plateau of test error curves is
affected by the relative scale of noise and converged model.

5.2. The Effect of Updating BN Running Statistics

As discussed in Section 4.1.4, the updating of running statis-
tics in BN (i.e., E[hl] and Var[hl] in Equation (16)) plays a
crucial role in both the NSI and MLI property.

To study the effect of updating running statistics, we ex-
plore three approaches in handling these statistics in BN: (1)
freezing them during interpolation; (2) interpolating them
between initialized and final statistics; (3) warming up and
recalculating them over the training data after resetting.

In all three methods, the learned parameters β and γ in BN
are interpolated as usual. While the MLI property holds for
all three ways, test error curves along the interpolation path
exhibit varying lengths of plateaus, as shown in Figure 4.
The plateaus of test error curves in the first two methods
are longer due to the misalignment between the running
statistics and activation statistics in interpolated networks.
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Figure 5. Test error when linearly interpolating from the state of the
networks at the specified iteration to the state of the network after
training. The left column corresponds to the way of interpolating
the running statistics in BN, while the right column opts to reset
and warm up the running statistics over an epoch of training data.

Frankle (2020) observes that linear interpolation encoun-
ters error barriers when interpolating between networks at
different training iterations and the network at the end of
training. However, by resetting and warming up the running
statistics for each set of interpolated parameters, the test er-
ror curves along the same interpolation path satisfy the MLI
property, as illustrated in Figure 5. These results highlight
the importance of handling running statistics to ensure the
MLI property for networks with BN.

5.3. Exploring the Scale Invariance Property

In our exploration of the GSI, RSI, and NSI properties,
we conduct experiments using VGG16 on CIFAR10. We
refer to these experiments as GSI(θF , α), RSI(θF , α) and
NSI(θF , α) respectively. To evaluate noise robustness of
θF , we apply noise perturbations using (1− α)θ0 and θ0.
The former noise can be regarded as the MLI formula, which
applies scaled noise under different α. In contrast, the latter
employs a common noise across various α. As depicted
in Figure 6, the test error curves corroborate our analysis of
GSI and RSI properties in Section 4.1. Notably, networks
with both bias and BN display a shorter plateau in the test
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Figure 6. Test error curves of scaled networks (αθF ) and scale-invariant networks (GSI, RSI, NSI). The noise is parameterized by
(1− α)θ0 and θ0. The four groups correspond to networks wo/w BN and wo/w bias, and NSI(θF , α) is equivalent to αθF with BN.
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Figure 7. Train loss over linear interpolation using different learn-
ing rates and optimizers. The left column corresponds to the
training configuration using SGD and the right column sets the
learning rate to 0.01.

error curve for αθF compared to networks with bias, which
arises from the NSI property.

Figure 6 illustrates the noise robustness of the scaled net-
work αθF , showing that the test error of αθF +θ0 improves
as α increases, indicating improved noise robustness. Si-
multaneously, as α increases, the magnitude of perturbation
(1−α)θ0 decreases. Hence, the performance of the network
αθF + (1 − α)θ0 improves, exhibiting the MLI property.
These results confirm our hypothesis that the MLI property
is determined jointly by the scale invariance property and
noise robustness.

5.4. Previously Unexplained MLI Violation

Lucas et al. (2021) discovers that the MLI property can be
consistently broken by mechanisms that encourage the pa-
rameters to move far from initialization. Networks trained
with large learning rates or with Adam optimizer (Kingma
& Ba, 2014) frequently violate the MLI property. Follow-
ing Lucas et al. (2021), we train ResNet20 on CIFAR100
and observe instances of MLI property violations, as shown
in Figure 7. We attribute the violation of MLI property to a
wider distribution of bias values centered around zero in net-
works trained with large learning rates or Adam compared
to the distribution of bias parameters in networks that com-
ply with the MLI property, as evident from Figure 8. The
broader distribution magnifies the impact of scaled biases
on the output, which can not be disregarded.
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Bias Distribution
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-1.0 -0.5 0.0 0.5 1.0
 

Bias Distribution
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Figure 8. Comparison of bias distribution under different hyperpa-
rameters. The left column corresponds to different learning rates
using SGD, while the right column corresponds to different opti-
mizers with the same learning rate.
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Figure 9. Test error of ResNet20 network θF scaled by a range of
α and perturbed by a range of β on CIFAR100.

5.5. Visualization of the Loss Landscape

We extend the one-dimensional formula of the MLI property
in Equation (1) to a two-dimensional scenario: αθF + βθ0,
where α, β represents the scaling factor and intensity of
noise respectively. Figure 9 displays the test error of θF at
different α ∈ [0, 1] and under various β ∈ [−1, 1].

Setting β to 0, we observe that αθF gradually achieves
competitive performance with θF , indicating the scale in-
variance property, as depicted by the red rectangle. When α
is set to 1, the test error of θF + βθ0 reveals the noise ro-
bustness of θF , as shown in the orange rectangle. Notably,
networks on opposite sides of α = 0 exhibit substantial
asymmetry in test error, suggesting the presence of an asym-
metry local minima (He et al., 2019). The purple diagonal
extending from α = 0, β = 1 to α = 1, β = 0 represents
the test error along the interpolation path between initial-
ized parameters θ0 and converged parameters θF , which
demonstrates the network satisfies the MLI property.
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6. Conclusion
We begin with the MLI formula and propose an inverse
perspective to explain the MLI phenomenon. Firstly, we
introduce three variants of scale invariance including GSI,
RSI, and NSI, which helps explain the low error of αθF

even with small α. Next, we analyze the noise robustness
of αθF . Specifically, as α decreases from 1 to 0 in a nearly
scale-invariant network αθF , the noise robustness decreases,
resulting in an increasing error when adding the noise of
(1 − α)ϵ. Additionally, we explain the MLI phenomenon
as a special case when ϵ = θ0, which reveals that the MLI
property is independent of initialization and is exclusively
related to the scale invariance and noise robustness of DNNs.
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A. Additional Experiment Results
In our explanation of the MLI formula, we perform various additional experiments. Generally, we find that these results
align well with our explanation and confirm our hypothesis that the MLI formula inherently adds various levels of noise
perturbation to a nearly scale-invariant network, and MLI property is jointly determined by scale invariance property and
noise robustness. In this section, we present a few additional experiments.

A.1. Findings on pre-trained models

We are interested in whether these findings in Section 3.2 hold true for the pre-trained model. To better validate our
conclusion, we fine-tune ResNet50 (He et al., 2016) on CUB200 (Wah et al., 2011) and RoBERTa (Liu et al., 2019) on AG’s
News (Zhang et al., 2015) respectively.
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Figure 10. Test error over the linear interpolation path from pre-trained parameters or initialized parameters to fine-tuned parameters.
The left endpoint corresponds to different initialization parameters and parameters in the pre-trained model, while the right endpoint
corresponds to the same fine-tuned parameters in each curve.

Figure 10 plots the test error of the interpolated network following the interpolation approach in Equations (1) to (3). The
pre-trained models satisfy the MLI property in the downstream task. We find that for pre-trained models, the discovery that
the MLI property is independent of initialization still holds. However, RoBERTa does not exhibit significant scale invariance
properties like ResNet50. We suspect that the reason lies in the fact that Layer Normalization (LN) (Ba et al., 2016) does
not possess the similar scale invariance property with BN, which remains for our future work.

A.2. The differences in the outputs of RSI(θF , α) and αθF

This paper explores several types of scale invariance of deep neural networks. We summarize them as follows. The scale
invariance property is a kind of property that deep neural networks (DNNs) have. Specifically, it refers to the property that
the function of DNNs remains unchanged when definite transformations are applied to parameter weights. Several scenarios
are considered:

• For networks without bias and BN layers, αθF performs equally to θF (GSI in Fig. 1, Sect. 4.1.2).

• For networks with BN layers, αθF performs equally to θF (NSI in Fig. 1, Sect. 4.1.4).

• For networks with bias parameters but without BN layers, αθF performs nearly equally to θF and the discrepancy is
determined by the bias parameters (Eq. 12). In this case, we can apply a suitable transformation to the networks to
achieve the scale invariance property (RSI in Fig. 1, Section 4.1.3).

In summary, αθF performs equally to θF in most cases. However, in the case of networks with bias parameters but without
BN layers, αθF performs not equally but nearly to θF . To address this, we propose RSI(θF , α) to ensure that the scaled
network performs equally to θF . Additionally, we provide empirical analysis on the differences in output between a scaled
network αθF and a scale-invariant network RSI(θF , α) in the following.

In Section 4.1.3, we indicate that the network αθ lacks strict scale invariance property due to the scaled bias terms. Hence,
we explore the difference between αθF and RSI(θF , α). We use simple networks with ReLU activation function and
Mean Square Error (MSE) to measure the difference in the outputs. Our architecture consists of 128 → 512 → 128 units.
Figure 11 illustrates the variation of MSE with respect to α and bias. We replace the bias parameters in the last layer with
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Figure 11. MSE of the outputs from αθF and RSI(θF , α)

a constant value and find that MSE increases as the bias increases, which reveals that a larger value of bias has a greater
impact on the output when the parameters are scaled. Additionally, the MSE between outputs decreases as α increases,
which explains the test error curve of αθF converges to the performance of θF gradually.

A.3. The noise robustness of networks

To validate the conclusion in Section 4.2, we adopt parameters obtained from different initialization methods including
binary initialization, kaiming unifom, kaiming normal and orthogonal initialization as noise, and apply them to the converged
parameters according to to Equation (19). The left subplot in Figure 12 contains 100 test error curves along the interpolation
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Figure 12. Test error over the interpolation path between different noise and final solution.

path between unrelated initialized parameters and the same converged parameters, 95 of which exhibit a monotonic
decreasing trend. These results confirm that for a given noise, as α increases from 0 to 1, the test error of the interpolated
network decreases monotonically. However, when ϵ is set to −∇θF

L(θF ), the test error of αθF + (1− α)θ0 increases
slightly at the end of interpolation, as evident from the right subplot in Figure 12.

A.4. The effect of noise

We perform additional experiments on more networks and more datasets to explore the effect of initialization and confirm
our conclusion in Section 5.1 that the scale and distribution of initialization parameters do not affect the MLI property but
only impact the length of the plateau in the test error curve.
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Figure 14. Test error of various scaled networks, scale-invariant networks, and perturbed networks.
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Figure 13. The αS and αE of test error curve along the interpolation path from initialization across various δ to the same final solution.
The purple, pink, and orange regions respectively represent the plateau in the initial stage, the rapid descent interval, and the stable phase
where the performance approaches converged network.

A.4.1. SCALED INITIALIZED PARAMETERS

For random initialized parameters, we scale them to satisfy the desired δ as the noise perturbation and estimate αS , αE of
test error curve along the interpolation path between scaled initialized parameters and the original converged parameters, as
shown in two sub-figures on the left of Figure 13. The results confirm the conclusion in Section 5.1 that the error plateau
becomes longer with increasing in δ, while the length of rapid descent interval remains unchanged. We can infer that the
value of δ determines the performance variation of the interpolated network concerning α. The noise perturbation dominates
the performance when δ is large, while the converged network plays a significant role in the error of the interpolated network
when δ is small.

A.4.2. CONSTANT INITIALIZED PARAMETERS

For noise perturbation consisting of a common constant value, we set the parameters to a constant value ensuring the δ
interpolates them and converged parameters as MLI formula. The right two sub-figures of Figure 13 illustrate the αS , αE in
test error curves of interpolated networks. The results demonstrate that the error of interpolated networks following the MLI
formula exhibits monotonic decreasing across various distributions and scales.

A.5. Exploring the scale invariance Property

To further explore the scale invariance property of DNNs, we experiment with LeNet on the SVHN dataset and plot test
error curves of networks with different compositions in Figure 14. LeNet with only weights and LeNet with bias parameters
exhibit GSI property and RSI property respectively. To explore the NSI property, we add a BN layer after a convolutional
layer and not modify the fully connected layer. For networks with both bias and BN, the NSI property diminishes due to the
bias parameters in fully connected layers, while the RSI property still holds.

To investigate the noise robustness of scaled networks, we adopt (1−α)θ0 and θ0 as noise perturbation. The noise robustness
of the scaled converged network improves as α increases, which can be seen from the test error curve of αθF + θ0. The
results align well with our hypothesis proposed in Section 5.3. The MLI property holds for the interpolated network
αθF + (1− α)θ0 following the MLI formula, which can be attributed to the decreasing noise perturbation and enhanced
noise robustness.
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A.6. Explanation of previous MLI violation

Lucas et al. (2021) shows that adaptive optimizers such as Adam consistently find final solutions that violate MLI property.
We provide additional experiment results to explain the violation of MLI property. Figure 15 shows the instances of violating
the MLI property. To confirm our explanation in Section 5.4, we analyze the bias distribution of the last layers in Figure 16.
The networks that violate the MLI property both have a much broader distribution of bias values around 0, which leads to an
increase in the impact of the scaled bias on the output of the network.
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Figure 15. Train loss curves of interpolated networks that have non-monotonic interpolations from initialization to final solution.
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Figure 16. Comparison of bias distribution between networks satisfying the MLI property and networks that violate the MLI property.

A.7. Visualization of the loss landscape

We propose a two-dimensional visualization method and provide the visualization of the loss landscape of ResNet20 on
CIFAR100 in Section 5.5. To further confirm our hypothesis about the MLI property, we visualize the test error of networks
using the proposed method. The visualizations of three networks exhibit MLI property as shown in the purple rectangle
of Figures 17 to 19. However, test errors of networks on opposite sides of α = 0 exhibit substantial asymmetry, especially
for networks with BN, which may confirm the conclusion in He et al. (2019) that directions on BN parameters are more
asymmetric compared to non-BN parameters.
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Figure 17. Test error of FCN4 scaled by a range of α and perturbed by various β on MNIST.
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Figure 18. Test error of VGG8 without BN scaled by a range of α and perturbed by various β on SVHN.
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Figure 19. Test error of VGG16 with BN scaled by a range of α and perturbed by various β on CIFAR10.

B. Experiment Details
B.1. Image classification experiments

In the image classification experiments, we summarize all the settings we used below.

B.1.1. FCN4 MNIST

When training networks with the ReLU activation function, we adopt SGD optimizer with a momentum coefficient of 0.9.
Each network is trained for 100 epochs using a fixed learning rate 1e-2.

B.1.2. VGG8 SVHN

We use VGG8 without batch normalization for SVHN dataset. We use Kaiming Initialization for the weight parameters and
set all bias terms to zero. We train the network using SGD with momentum 0.9 and weight decay 1e-4 for 100 epochs. For
the learning rate, we start from 0.01 and reduce it by a factor of 0.1 at the 60-th and 90-th epoch.

B.1.3. VGG16 CIFAR10

We train VGG16 with batch normalization on CIFAR10 dataset using SGD optimizer with momentum 0.9 and weight decay
1e− 4 for 160 epochs. We initialize the learning rate as 0.1 and decay it by a factor of 0.1 at the 80-th and 120-th epochs.

B.1.4. RESNET20 CIFAR100

We use ResNet20 for CIFAR100. We train the network using SGD with momentum 0.9 and weight decay 1e− 4 for 160
epochs. For the learning rate, we start from 0.1 and reduce it by 0.1 at the milestone of the 60-th, 90-th, and 120-th epoch.
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B.2. Fine-tune pre-trained models on downstream tasks

For the image classification task, we adopt ResNet50 (He et al., 2016) pre-trained on Imagenet (Deng et al., 2009) and select
CUB200 classification (Wah et al., 2011) problem as the downstream task. We fine-tune the network using SGD optimizer
with momentum 0.9 and weight decay 1e-4 for 95 epochs. The learning rate is initially 1e-3 and multiplied by 0.1 for each
30 epochs.

For the sequence classification task, we adopt RoBERTa (Liu et al., 2019) pre-trained on a large corpus of English data in
a self-supervised fashion and select AG’s news topic classification (Zhang et al., 2015) problem as the downstream task.
We fine-tune the network using Adam with weight decay 1e-4 for 5 epochs. The learning rate is initially 5e-5 and linearly
reduced to 0 during training.

B.3. Violation of the MLI property

For models that violate the MLI property, we follow the hyperparameters in Lucas et al. (2021) and train it using SGD or
Adam with learning rate in the set {0.01, 0.03, 0.1, 0.3}. We linearly interpolate using 50 spaced points between the network
at initialization and the network at the end of training. We evaluate the error or loss on both the train set and the test set.

C. Demo Python Code
We provide a demonstration using “scikit-learn” 2 to showcase the monotonic decreasing property. The code is listed in
Code 1.

Listing 1. Monotonic Loss Decreasing Presented by MLI Formula
1 import numpy as np
2 from sklearn.linear_model import LogisticRegression
3 from matplotlib import pyplot as plt
4 from sklearn.datasets import load_digits
5 from sklearn.metrics import log_loss
6 from scipy.special import softmax
7

8 digits, labels = load_digits(return_X_y=True)
9 model = LogisticRegression(max_iter=500, fit_intercept=False)

10 model.fit(digits, labels)
11 weight = model.coef_
12 noise_weight = np.random.randn(*weight.shape)
13

14 betas = np.linspace(0.0, 1.0, 21)
15 losses = []
16 errors = []
17 for beta in betas:
18 per_weight = (1.0 - beta) * noise_weight + beta * weight
19 logits = np.dot(digits, per_weight.transpose())
20 probas = softmax(logits, axis=1)
21 loss = log_loss(y_true=labels, y_pred=probas)
22 acc = np.mean(np.argmax(probas, axis=1) == labels)
23 losses.append(loss)
24 errors.append(1.0 - acc)
25

26 plt.figure()
27 plt.plot(errors / np.max(errors), color="red")
28 plt.plot(losses / np.max(losses), color="blue")
29 plt.show()
30 plt.close()

2https://scikit-learn.org/stable/index.html
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