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ABSTRACT

The first order derivative (score) of data density, typically estimated via denois-
ing score matching, has emerged as an effective tool for modeling data distribution
and generating synthetic data. Extending this concept to higher-order scores could
uncover more detailed local information of the data distribution, enabling new ap-
plications. However, learning these high-order scores usually requires complete
data, which is often unavailable in real-world scenarios such as healthcare and fi-
nance due to privacy and cost constraints. In this work, we introduce MissScore,
a novel score-based framework for learning high-order scores from observations
with missing data. We derive objective functions for estimating high-order scores
under different missing data mechanisms and propose a new algorithm to handle
missing data effectively. Our empirical results demonstrate that MissScore effi-
ciently and accurately approximates high-order scores with missing data, while
enhancing sampling speed and data quality, as validated through several down-
stream tasks, including data generation and causal discovery.

1 INTRODUCTION

The first-order derivative of the log data density, also known as (Stein) score (Liu et al., 2016),
plays an important role in various machine learning applications, including image and tabular data
synthesis (Song & Ermon, 2019; 2020; Kim et al., 2022), super-resolution (Li et al., 2022), and
inverse problems in medical imaging (Song et al., 2021; Chung & Ye, 2022). Denoising Score
Matching (DSM) (Vincent, 2011), an efficient method for estimating the score of the data density
from samples, has become widely used in training score-based generative models (Ho et al., 2020;
Song & Ermon, 2020). Beyond the first-order score, high-order derivatives of the data density, which
we refer to as high-order scores, offer more refined local approximations of the data distribution,
such as its curvature, and enable new model capabilities. For instance, they can improve the mixing
speed of sampling methods (Dalalyan & Karagulyan, 2019; Sabanis & Zhang, 2019; Meng et al.,
2021) and provide insights into quantifying the uncertainty in denoising problem Meng et al. (2021).
Additionally, Lu et al. (2022) empirically demonstrated that incorporating high-order score matching
improves the likelihood of score-based diffusion ordinary differential equations on both synthetic
and real data, while maintaining high-quality generation. Furthermore, high-order scores have been
utilized in recovering causal structures by bridging the gap between the score of data density and the
underlying graph topology (Rolland et al., 2022; Sanchez et al., 2022; Liu et al., 2024).

Despite their promise, learning high-order scores usually requires training the model on complete
data (Meng et al., 2021; Lu et al., 2022). However, in many real-world scenarios such as health-
care, finance, and social networks, data often contain missing values due to privacy constraints or
high sampling costs (Rubin, 1976; Shpitser, 2016). A straightforward approach to handling missing
data is to impute the missing values and train the model on the imputed dataset. Yet, imputation
methods can compromise data quality, potentially leading to biased results and significantly degrad-
ing performance in downstream tasks (Ouyang et al., 2023). Specifically, imputation methods fail
to account for the inherent uncertainty in the missing data, resulting in a distribution over imputed
data that does not accurately reflect the true data distribution. Some alternative approaches, such as
using generative adversarial networks (GANs) or variational auto-encoders (VAEs) to directly ap-
proximate the data generation model from incomplete data (Li et al., 2019; Gain & Shpitser, 2018),
require training additional networks, which can be computationally expensive and may also result in
model inconsistency. To address this issue, some works propose to explicitly constrain the learning
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objective within the model, which can enhance performance (Städler & Bühlmann, 2012; Gao et al.,
2022). These studies emphasize the need for alternative unbiased approaches that can directly and
more efficiently handle missing data.

Back to score estimation from incomplete data, Ouyang et al. (2023) adopts a similar way by intro-
ducing a diffusion-based framework that learns the first-order score directly from incomplete data.
In principle, high-order scores could be estimated from a learned first-order score model trained on
incomplete data using automatic differentiation. However, this approach becomes computationally
impractical for high-dimensional data and large model sizes, particularly when using deep neu-
ral networks based models (Meng et al., 2021). Furthermore, automatic differentiation introduces
additional estimation errors, as small errors does not always lead to a small estimation error for
high-order scores. Moreover, methods based on GANs (Goodfellow et al., 2020) or VAEs (Kingma,
2013) do not inherently capture score information, regardless of whether data is missing or com-
plete. In contrast, score-based models naturally integrate this information (Li et al., 2019; Ho et al.,
2020; Gain & Shpitser, 2018). These limitations highlight the need of using score-based models
when estimating high-order scores in the presence of missing data.

Contributions. In this work, we propose a novel score-based framework, which we call MissScore,
for learning high-order scores from incomplete data. We derive objective functions for estimating
high-order scores under different missing mechanisms, leveraging DSM to recover the true score
function. While our framework can be applied to scores of any order, we focus on second-order
scores (i.e., the Hessian of the log density) in our experiments. Our empirical results demonstrate
that the proposed models efficiently and accurately approximate high-order scores with missing
data. Moreover, we show that our high-order score-based model enhances both sampling speed
and data quality in data generation tasks, even with missing data. The quality of these generated
samples is further validated across several downstream tasks. Additionally, we introduce a novel
causal discovery method for missing data, which scales effectively with the number of variables and
samples, and performs competitively with state-of-the-art methods (Gao et al., 2022; Vo et al., 2024)
in causal discovery.

The paper is organized as follows: Section 2 introduces the background on high-order DSM and
formulates the objective functions for estimating high-order scores under different missing data
mechanisms. In Section 3, we detail the proposed training method and evaluate the accuracy of the
learned scores. Sections 4 and 5 showcase experimental results on downstream tasks, illustrating
the method’s effectiveness. Finally, Section 6 concludes the paper. The Appendix includes related
work, proofs, and supplementary experimental details.

2 ESTIMATING HIGH-ORDER SCORES WITH MISSING DATA

In this section, we provide background on high-order denoising score matching and present our
method to deal with missing data.

2.1 BACKGROUND ON HIGH-ORDER DENOISING SCORE MATCHING

Consider a data distribution pdata(x) and a model distribution p(x;θ) over Rd. The score functions of
pdata(x) and p(x;θ) are denoted as s1(x) = ∇x log pdata(x) and s1(x;θ) = ∇x log p(x;θ), respec-
tively. In DSM, instead of directly estimating the score function from the original data, the method
works by introducing noise from a predefined noise distribution qσ(x̃|x) into the data. The objec-
tive is then to estimate the score of the perturbed data distribution qσ(x̃) =

∫
qσ(x̃|x)pdata(x)dx. To

achieve so, DSM minimizes the following objective function
1

2
Epdata(x)Eqσ(x̃|x)

[
∥s1(x̃;θ)−∇x̃ log qσ(x̃|x)∥22

]
. (1)

It has been shown that minimizing Eq. (1) is equivalent to minimizing the score matching loss
between s1(x̃;θ) and s1(x̃) (Vincent, 2011) under certain regularity conditions. When the noise
distribution qσ(x̃|x) is Gaussian, i.e., N (x̃|x, σ2I), the objective simplifies to

LDSM(θ) =
1

2
Epdata(x)Eqσ(x̃|x)

[∥∥∥∥s1(x̃;θ) + 1

σ2
(x̃− x)

∥∥∥∥2
2

]
. (2)
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The learned score function implicitly learns how to “denoise” the perturbed data x̃, guiding it back
toward the true data distribution through the optimization of Eq. (2). By focusing on estimating the
score of the noise-perturbed distribution qσ(x̃) instead of the original data distribution pdata(x), DSM
offers a more efficient approach to score estimation compared to other techniques (Hyvärinen &
Dayan, 2005; Song et al., 2020). When σ approaches zero, the perturbed distribution qσ(x̃) closely
approximates pdata(x), meaning that the score estimated by DSM for qσ(x̃) is nearly identical to that
of pdata(x). Meng et al. (2021) provide a derivation of DSM using Tweedie’s formula (Efron, 2011),
and they generalize this approach to incorporate high-order moments of x based on x̃, allowing them
to develop an objective function for learning high-order scores.

Theorem 1 (Meng et al., 2021) E[⊗nx|x̃] = fn(x̃, s1, ..., sn), where ⊗nx ∈ RDn

denotes n-fold
tensor multiplications, fn(x̃, s1(x̃), ..., sn(x̃)) is a polynomial of x̃, s1(x̃), ..., sn(x̃), and sk(x̃)
represents the k-th order score of qσ(x̃) =

∫
pdata(x)qσ(x̃|x)dx.

Theorem 1 shows that there exists an equality between high-order moments of the posterior distri-
bution of x given x̃ and high-order scores with respect to x̃. Leveraging Theorem 1 and the least
squares estimation of E[⊗kx|x̃], the objectives for approximating the k-th order scores sk(x̃) can
be constructed as follows.

Theorem 2 (Meng et al., 2021) Given score functions s1(x̃), . . . , sk−1(x̃), a k-th order score model
sk(x̃;θ) can be obtained by optimizing the following objective:

θ∗ = argmin
θ

Epdata(x)Eqσ(x̃|x)

[∥∥⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))
∥∥2
2

]
.

where fk is a polynomial of {x̃, s1(x̃), . . . , sk(x̃)} such that

fk(x̃, s1(x̃), . . . , sk(x̃)) =


x̃+ σ2s1(x̃), if k = 1,

σ2 ∂
∂x̃fk−1(x̃, s1, . . . , sk−1)

+σ2fk−1(x̃, s1, . . . , sk−1)⊗
(
s1(x̃) +

x̃
σ2

)
, if k ≥ 2.

(3)

We have sk(x̃;θ
∗) = sk(x̃) for almost all x̃.

2.2 HIGH-ORDER DENOISING SCORE MATCHING WITH MISSING DATA

Consider an observation x = (x1, x2, . . . , xd) ∈ Rd, which is sampled from an unknown data
distribution pdata(x). Associated with x, there is a binary mask m = (m1,m2, . . . ,md) ∈ {0, 1}d
where mi = 1 indicates that xi is missing, and mi = 0 indicates that xi is observed. The observed
data can be express as xobs = x⊙ (1−m) + na⊙m, where ⊙ is the element-wise multiplication
and na indicates the missing value. To perturb the original observation x, we adopt a Gaussian
mechanism, generating x̃ from the conditional distribution x̃|x ∼ N (x, σ2Id), where σ is a pre-
specified constant. Therefore, the conditional density function of x̃ given x is defined as qσ(x̃|x) :=
(2πσ2)−

d
2 exp{− (x̃−x)⊤(x̃−x)

2σ2 }.
The missing mechanisms can be categorized based on the relationships between the mask m and
the complete data x as follows Rubin (1976) and the data generation process for each mechanism is
detailed in Appendix D:

• Missing Completely at Random: mask m is independent with the completed data x.
• Missing at Random: mask m only depends on the observed value xobs.
• Missing Not at Random: m depends on the observed value xobs and the missing value.

In the following section, we derive the objective functions for training the high-order DSM model,
in the presence of missing data under the M(C)AR mechanisms.

2.2.1 MISSING COMPLETELY AT RANDOM (MCAR)

In this section, we start by exploring the first- and second-order scores, then extend the approach
to scores of any order under the MCAR assumption. The following theorem presents our first the-
oretical result, showing that DSM with a missing mask can recover the oracle score, which is the
gradient of log pdata(x) with respect to x.
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Theorem 3 If the missing mechanism of x is MCAR, with the missing probability of every element
lying between 0 and 1, i.e., p(mi = 1) ∈ [0, 1) for all i ∈ {1, 2 . . . , d}. We denote the objective

JDSM(θ) = Ex,mEx̃|x,m

[∥∥{s1(x̃;θ) + 1
σ2 (x̃− x)

}
⊙ (1−m)

∥∥2
2

]
. Then we have,

argmin
θ
JDSM(θ) = argmin

θ
ExEx̃|x

[∥∥∥{s1(x̃;θ)− s1(x̃)} ⊙
√
P(m = 0)

∥∥∥2
2

]
.

Furthermore, if there exist unique θ∗ such that s1(x̃) = s1(x̃;θ
∗), then θ∗ = argmin

θ
JDSM(θ).

Since P(m = 0) > 0, we can conclude that the global optimal of DSM with missing mask coincides
with the orcale score. The proof is provided in Appendix C.1. For the second-order score model,
building upon Theorem 2, the second-order DSM with missing mask can learn the oracle second-
order score, which is the Hessian of log pdata(x) with respect to x.

Theorem 4 Suppose the first-order score s1(x̃) is given, and the missing mechanism of x is MCAR,
with the missing probability of every element lying between 0 and 1, i.e., p(mi = 1) ∈ [0, 1) for all
i ∈ {1, 2 . . . , d}. We denote the objective

JD2SM(θ) = Ex̃,x,m

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
{
(1−m)(1−m)⊤

}∥∥∥∥2
2

]
,

where z = x̃−x
σ . Then we have,

argmin
θ
JD2SM(θ) = argmin

θ
ExEx̃|x

[∥∥∥∥{s2(x̃;θ)− s2(x̃)} ⊙
√
P [(1−m)(1−m)⊤ = 0]

∥∥∥∥2
2

]
.

Furthermore, if there exist θ∗ such that s2(x̃) = s2(x̃;θ
∗), then θ∗ = argmin

θ
JD2SM(θ).

Since P
[
(1−m)(1−m)⊤ = 0

]
> 0, we can conclude that the global optimal of second-order

DSM with missing mask aligns with the oracle second order score. The proof is provided in Ap-
pendix C.2.

2.2.2 MISSING AT RANDOM (MAR)

In this section, we investigate the first- and second-order scores under the MAR assumption. MAR
allows missingness to depend on the observed data but not on the unobserved (missing) data. This
is more realistic than the more restrictive MCAR assumption, where the probability of missingness
is independent of both observed and unobserved data. However, the probability of missing data
depends on the observed data, which can introduce bias in estimates if the missing data mechanism
is ignored. Thus, we cannot learn the oracle score models through objective functions proposed in
Section 2.2.1.

Inverse Probability Weighting (IPW) is essential in the MAR framework because it provides a way to
correct for the bias introduced by the missing data mechanism (Wooldridge, 2007; Seaman & White,
2013). IPW achieves this by reweighting the observed data points, compensating for the fact that
some observations are more likely to be missing than others. Each observed data point is weighted
by the inverse of its probability of being observed (i.e., the probability that it was not missing). This
means that observations with a higher chance of being missing receive a higher weight, while those
with a lower chance of being missing receive a lower weight. By reweighting in this way, IPW
ensures that the estimates reflect what would have been observed if there were no missing data, thus
mitigating the bias introduced by the MAR mechanism.

In the following theorem, we present our theoretical result that DSM with missing mask through
IPW can learn the oracle score, i.e., the gradient of log pdata(x) w.r.t. x.

Theorem 5 If the missing mechanism of x is MAR, with the missing probability of every element
lying between 0 and 1, i.e., p(mi = 1) ∈ [0, 1) for all i ∈ {1, 2 . . . , d}. We denote the objective

JDSM(θ) = Ex,mEx̃|x,m

∥∥∥∥∥
{
s1(x̃;θ) +

1

σ2
(x̃− x)

}
⊙

{
1−m√

P[m = 0|x = x]

}∥∥∥∥∥
2

2

 .
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Then we have,

argmin
θ
JDSM(θ) = argmin

θ
ExEx̃|x

[
∥{s1(x̃;θ)− s1(x̃)}∥22

]
.

Furthermore, if there exist unique θ∗ such that s1(x̃) = s1(x̃;θ
∗) , then θ∗ = argmin

θ
JDSM(θ).

We can conclude that the global optimal of DSM with missing mask coincides with the oracle score
under MAR. The proof is provided in Appendix C.4. Building on Theorem 2, the second-order score
model using DSM with a missing mask under MAR can learn the oracle second-order score, which
is the Hessian of log pdata(x) with respect to x.

Theorem 6 Suppose the first-order score s1(x̃) is given, if the missing mechanism of x is MAR, and
the missing probability of every element lies between 0 and 1, which is p(mimj = 0) ∈ [0, 1) for
all i, j ∈ {1, 2 . . . , d}, we denote the objective

JD2SM(θ) = Ex̃,x,m

∥∥∥∥∥
{
s2(x̃;θ) + s1(x̃)s

⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙

{
(1−m)(1−m)⊤√
P[mm⊤ = 0|x = x]

}∥∥∥∥∥
2

2

 ,
where z = x̃−x

σ , then we have,

argmin
θ
JD2SM(θ) = argmin

θ
ExEx̃|x

[
∥{s2(x̃;θ)− s2(x̃)}∥22

]
,

If there exist θ∗ such that s2(x̃) = s2(x̃;θ
∗), then θ∗ = argmin

θ
JD2SM(θ).

We can conclude that the global optimal of the second-order DSM with missing mask aligns with the
oracle Hessian under MAR. The proof is provided in Appendix C.5. We now extend this approach to
any desired order in both MCAR and MAR. Theorem 7 indicates that k-th order DSM with missing
mask can learn the oracle k-th order score.

Theorem 7 Given score functions s1(s̃), · · · , sk−1(s̃), and the missing probability of every element
lies between 0 and 1, which is p(mi = 1) ∈ [0, 1) for all i ∈ {1, 2 . . . , d}. If we correctly model the
k−th order derivative sk(x̃), there exists θ∗ such that sk(x̃,θ∗) = sk(x̃), then

θ∗ = argmin
θ

Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗kw∥2

]
,

where w = 1 −m if the missing mechanism of x is MCAR, and w = 1−m
P[mk=0|x=x]

if the missing
mechanism of x is MAR.

The proof is provided in Appendix C.3. The k-th order score model s2(x̃;θ) can be learned from
observed data via optimizing the following objective,

LDkSM(θ)

= Ex̃obs,xobs,m

[
∥
{
⊗kxobs − fk(x̃, s1(x̃obs), . . . , sk−1(x̃obs), sk(x̃obs;θ))

}
⊙⊗kw∥2

]
,

(4)

where fk is a polynomial of {x̃, s1(x̃), . . . , sk(x̃)} is defined in Eq. (3), and w is defined in Theorem
7.

3 TRAINING SCORE MODELS BY HIGH-ORDER DSM WITH MISSING DATA

In this section, we describe the training process for high-order score models in the presence of
missing data and evaluate their empirical performance. While our analysis specifically focuses on
the first- and second-order scores, the approach can be applied to any order of scores.

Based on Theorem 3 and Theorem 5, the first-order score model s1(x̃;θ) is learned by minimizing
the following objective function using the observed data,

LDSM(θ) = Exobs,mEx̃obs|xobs,m

[∥∥∥∥{s1(x̃obs;θ) +
1

σ2
(x̃obs − xobs)

}
⊙w1

∥∥∥∥2
2

]
, (5)

5
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where w1 = 1−m under MCAR, and w1 = 1−m√
P[m=0|x=xobs]

under MAR.

Similarly, the second-order score model s2(x̃;θ) is learned using the following objective, as derived
in Theorem 4 and Theorem 6,

LD2SM(θ) = Ex̃obs,xobs,m

[∥∥∥∥{s2(x̃obs;θ) + s1(x̃obs)s
⊤
1 (x̃obs) +

I− zobsz
⊤
obs

σ2

}
⊙w2

∥∥∥∥2

2

]
, (6)

where zobs = (x̃ − x)/σ. Under MCAR, w2 = (1 − m)(1 − m)⊤, and under MAR, w2 =
(1−m)(1−m)⊤√
P[mm⊤=0|x=x]

.

However, training the second-order score model, s2(x̃;θ), requires knowledge of the first-order
score s1(x̃). Therefore, we adopt a multi-task objective to train both s1(x̃;θ) and s2(x̃;θ) simulta-
neously,

Ljoint(θ) = LDSM(θ) + ωLD2SM(θ), (7)

where ω ∈ R+ is a tunable coefficient. LDSM(θ) and LD2SM(θ) correspond to Eq. (5) and Eq. (6).
P[m = 0|x = xobs] and P[mm⊤ = 0|x = xobs] in MAR are estimated using logistic regression
models, where the response variable indicates whether the data is missing or observed, and the
predictors are the observed variables. In the experiments, missing values are handled by replacing
them with 0 for continuous variables and creating a new category for discrete variables. One-hot
encoding is then applied to discrete variables. Element-wise multiplication with the mask naturally
mitigates the impact of replacing missing values with zeros when computing the objective. The
algorithm is provided in Appendix D.

3.1 IMPROVING STABILITY WITH VARIANCE REDUCTION

It is important to note that, in order to match the score of the true distribution pdata(x), σ needs to
be close to zero for both DSM and D2SM, so that qσ(x̃) closely approximates pdata(x). However,
training score models using denoising methods can suffer from high variance when σ approaches
zero. This challenge motivates the use of variance reduction techniques. Building on existing vari-
ance reduction methods for DSM (Song & Kingma, 2021; Meng et al., 2021), we propose tailored
variance reduction techniques specifically for training DSM with missing data, as follows

LDSM-VR(θ) = LDSM(θ)− Exobs,mEz∼N (0,I)

[(
2

σ
s(xobs;θ)

⊤z

)
⊙ g1(xobs,m) +

∥z⊙ g1(xobs,m)∥2

σ2

]
,

(8)
where g1(xobs,m) = 1−m under MCAR, and g1(xobs,m) = 1−m√

P[m=0|x=xobs]
under MAR.

For the second-order model with missing data, we implement a variance reduction (VR) technique
using antithetic sampling (James, 1985; Meng et al., 2021), which involves utilizing two negatively
correlated sample vectors centered around x. The objective function is then formulated as

LD2SM-VR(θ) = Exobs,mEz∼N (0,I)

[{
ψ(x̃+

obs)
2 +ψ(x̃−

obs)
2 + 2

I− zz⊤

σ
⊙Ψ

}
⊙ g2(xobs,m)

]
, (9)

where the antithetic samples are defined as x+
obs = xobs + σz and x−

obs = xobs − σz. Here, ψ =

s2 + s1s
⊤
1 , and Ψ =

(
ψ(x̃+

obs) + ψ(x̃
−
obs) − 2ψ(xobs)

)
. Under the MCAR setting, g2(xobs,m) =

(1 −m)(1 −m)⊤, while for MAR, g2(xobs,m) = (1−m)(1−m)⊤√
P[mm⊤=0|x=x]

. The formal analysis of the

variance reduction are provided in Appendix C.6 and Appendix C.7.

We perform an empirical analysis to assess the impact of VR on training score models with DSM
and D2SM using incomplete data. The full data is generated from a 2-d Gaussian distribution and we
simulate the incomplete data under MCAR, training s1(x̃obs;θ) and s2(x̃obs;θ) using a joint learning
objective Eq. (7). Using a sample size of 1000 and a missing ratio of 0.3, In Figure 1, we compare
the estimated score and Hessian for the first dimension against the ground truth at noise levels
σ = {0.1, 0.001}, both with and without VR. The results indicate that VR is essential for accurate
estimation in both DSM and D2SM when σ is close to zero, while its importance diminishes at higher
values of σ. As σ increases, both methods still achieve reasonable score estimates even without VR.
Additionally, when using complete data and varying the missing ratio α = {0.1, 0.3, 0.5}with DSM
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and VR at σ = 0.001, we observe that the first- and second-order score estimates remain close to the
ground truth. While performance degrades as the proportion of missing data increases, the estimates
remain generally accurate.
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Figure 1: Comparison of estimated s1 and s2 under different conditions. (a) and (b) show estimates
with DSM and D2SM varying the noise level σ with a fixed missing ratio 0.3. (c) and (d) show
estimates with DSM and D2SM varying the missing ratio α.

3.2 SCALABILITY AND NUMERICAL STABILITY

We show that the proposed method efficiently and accurately estimates second-order scores across
different missing ratios, as summarized in Table 1. To achieve this, we generate 10 synthetic datasets
with known ground truth, consisting of 100-dimensional correlated multivariate normal distributions
that include varying levels of missing data under MCAR mechanism. The covariance matrix for
these distributions is constructed using eigenvalues t ∈ {1, 5} to vary degrees of correlation. We
evaluate the performance of the estimated s1 and the diagonal of s2 by calculating the mean squared
error (MSE) between the estimated scores and the ground truth scores derived from the complete
data, across various values of σ. Our results indicate that the jointly optimized s1(x̃obs;θ) and
s2(x̃obs;θ) achieve empirical performance close to the ground truth. As previously mentioned, when
σ approaches zero, the estimates without VR become unreliable for both the score and Hessian,
likely due to convergence issues. Although performance declines with an increase in missing data,
the estimates remain reasonable.

Table 1: Mean squared error (MSE) between the estimated first-order and second-order scores and
the ground truth is evaluated across 5,000 test samples. We vary the noise scales σ and missing
ratios α, with each configuration tested using 10 random seeds.

Methods α = 0.0 α = 0.1 α = 0.3 α = 0.5

σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01

s1 0.28± 0.01 0.42± 0.02 0.29± 0.01 0.42± 0.02 0.32± 0.01 0.44± 0.01 0.37± 0.01 0.44± 0.02
s1(VR) 0.07± 0.00 0.07± 0.00 0.09± 0.00 0.09± 0.00 0.13± 0.00 0.15± 0.01 0.23± 0.00 0.27± 0.01
s2 0.16± 0.02 15.42± 0.47 0.16± 0.02 27.42± 2.34 0.16± 0.02 29.74± 3.35 0.17± 0.03 26.08± 2.03
s2(VR) 0.04± 0.00 0.05± 0.00 0.04± 0.00 0.04± 0.00 0.04± 0.00 0.05± 0.00 0.05± 0.00 0.06± 0.01

4 SAMPLING WITH MISSING DATA VIA SECOND-ORDER SCORE MODELS

In this section, we illustrate how our second-order score model s2(x̃;θ), trained with missing data,
enhances both the speed of sample generation and the quality of the synthetic data. We demon-
strate the effectiveness of the proposed model through simulations and real-world datasets contain-
ing missing values, comparing its performance against various baseline methods.

Langevin dynamics. Langevin dynamics samples data from pdata(x) by utilizing the first-order
score function s1(x) (Bussi & Parrinello, 2007; Song & Ermon, 2019). Starting with a prior distri-
bution π(x), a fixed step size ϵ > 0, and an initial value x̃0 ∼ π(x), Langevin dynamics iteratively
updates the samples as follows:

x̃t+1 = x̃t +
1

2
ϵs1(x̃t) +

√
ϵzt, (10)

where zt ∼ N (0, I) represents Gaussian noise.
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Ozaki Sampling. Following Meng et al. (2021), Ozaki discretization improves data synthesis by
integrating second-order information from s2(x) to precondition the sampling process. The updates
for Ozaki sampling are performed as follows:

x̃t = x̃t−1 +Mt−1s1(x̃t−1) + Σ
1/2
t−1zt, (11)

where zt ∼ N (0, I), Mt−1 = eϵs2(x̃t−1) − I, and Σt−1 = (e2ϵx̃t−1 − I)s2(x̃t−1)
−1.

Illustration. We use the Swiss-Roll dataset to demonstrate the effectiveness of Ozaki Sampling, fo-
cusing on its speed and quality of data generation through second-order information. Both methods
employ a step size of ϵ = 0.005 and a missing ratio of 0.5 under the MCAR missing mechanism.
As shown in Figure 2, Ozaki Sampling generates comparable data to Langevin dynamics with fewer
iterations, and resulting in data that is more concentrated around the original distribution, while
Langevin dynamics yields noisier and more dispersed results.

Following Kim et al. (2022); Ouyang et al. (2023), we conduct experiments on a simulated Bayesian
Network dataset and a real Census dataset (Kohavi, 1996) to illustrate the efficiency and effective-
ness of the data generated by our proposed model trained on missing data.

Baselines. We evaluate the proposed method using both Langevin and Ozaki sampling against sev-
eral baseline techniques for synthetic data generation on datasets with missing values. Specifically,
we implement a vanilla DSM model that (1) removes rows with missing values, and (2) uses mean
imputation for missing values in each column. Additionally, we include STaSy (Kim et al., 2022),
a state-of-the-art score-based model, which significantly outperforms other approaches for tabular
data. As STaSy requires complete datasets for training, we apply mean imputation to handle any
missing values in the training data.

Metrics. Following Kim et al. (2022); Ouyang et al. (2023), we employ two criteria, fidelity
and utility, to assess the quality of the generated synthetic tabular data. For evaluating fidelity,
we utilize the model-agnostic library SDMetrics. The result ranges from 0 to 100%. A higher
score indicates better overall quality of the synthetic data. To measure utility, we adopt the same
pipeline as Kim et al. (2022), training various models—including Decision Tree, AdaBoost, Logistic
Regression, MLP Classifier, Random Forest, and XGBoost on the synthetic data and test them with
real data. Our primary metric is classification accuracy, and we also report AUROC and Weighted-
F1 scores in the Appendix E.4. All experimental results are based on three repetitions.

Results. Figure 5 and Table 2 demonstrate the effectiveness of the proposed method on both the
simulated Bayesian Network dataset and the Census data, showing superior performance in terms of
fidelity and utility compared to other baselines. Specifically, these results confirm that the impute-
then-generate approach introduces bias, whereas directly learning from missing data significantly
improves the performance of the generative model. Furthermore, the advantages of the proposed
model become more pronounced as the missing ratios increase. Additional details and results of the
experiments can be found in Appendix E.

Table 2: Fidelity (SDMetric) and Utility (Accuracy) evaluation of MissScore using Langevin and
Ozaki samplings, along with other baselines, on the Census dataset with missing ratio 0.3 under
MCAR.

Legenvin Okazi DSM-delete DSM-mean STaSy-mean
Fiedility 86% 88% 73% 77% 82%
Utility 80% 81% 70% 75% 77%

5 CAUSAL DISCOVERY WITH MISSING DATA VIA SECOND-ORDER SCORES

Background. Causal discovery aims to identify causal relationship from purely observational data.
However, the task is ill-posed without additional assumptions. Assuming an additive noise model
(ANM) allows for the identification of causal structures. In this context, consider the ANM defined
as xi = fi(xPAi

) + zi, where fi is a nonlinear function and zi is a Gaussian noise. Rolland et al.
(2022) proposed an order-based algorithm that uses the second order score of an ANM with a prob-
ability distribution pdata(x) to identify leaf nodes, and iteratively determine the topological order of
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Figure 2: Sampling a Swiss Roll dataset with a step size of 0.005 using Langevin dynamics and
Ozaki sampling. Ozaki sampling demonstrates faster convergence and better data quality compared
to Langevin dynamics under MCAR with a missing ratio of 0.5. Figure (a) displays the dataset;
Figures (b)-(d) show the results from Langevin dynamics; and Figures (e)-(h) present the results
from Ozaki sampling. The numbers in parentheses indicate the number of iterations sampling taken.
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Figure 3: Fidelity evaluation of MissScore using Langevin and Ozaki samplings, along with other
baselines, on the Bayesian Network dataset varies with missing ratio α = {0.1, 0.3, 0.5, 0.7, 0.9}
under different missing mechanisms.

the variables. However, the computation of the Hessian requires complete data, which poses chal-
lenges in real-world scenarios such as clinical trials, and biology, where missing data is common.

A straightforward approach to address missing data problem is to first impute the incomplete entries
using off-the-shelf imputation methods and then apply existing causal discovery methods. However,
this two-step approach can be suboptimal, as the imputation process may introduce bias for modeling
the underlying data distribution. Our method mitigates this issue by directly training a second-
order model with incomplete data, thereby reducing potential bias. Since the Hessian only provides
information about variable order, we adopt a strategy similar to Rolland et al. (2022); Sanchez et al.
(2022), first computing the topological order and then using CAM pruning to derive the final directed
acyclic graph (DAG) (Bühlmann et al., 2014).

Baselines. We utilize the MissForest imputation method to address missing data, followed by the
implementation of DiffAN (Sanchez et al., 2022) (termed MissDiffAN) and DAGMA (Bello et al.,
2022) (termed MissForest) for structure learning. DiffAN serves as a diffusion-based adaptation
of the approach proposed by Rolland et al. (2022), ensuring a fair comparison. Furthermore, we
compare MissScore with MissDAG (Gao et al., 2022) and MissOTM (Vo et al., 2024), both of which
are prominent methods that have shown superior performance in causal discovery with missing data
relative to various other baselines.

Metrics. All quantitative results are averaged over 10 random initiazations. For comparing the
estimated DAG with the ground-truth one, we report commonly used metrics: Order Divergence
and Structural Hamming Distance (SHD). Order Divergence measures the number of errors in the
ordering, while SHD indicates the minimum number of edge additions, deletions, and reversals
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needed to convert the recovered DAG into the true one. Lower values for both metrics are preferred.
Order Divergence is calculated only for MissScore and MissDiffAN, as these are the only order-
based methods.

Simulations. We simulate synthetic datasets generating a ground-truth DAG from the graph model
Erdős–Rényi (ER). Each function fi is constructed from a multi-layer perceptron (MLP) and a
multiple index model (MIM) with random coefficients. We consider a general scenario of non-euqal
variances, sampling 1000 observations according to all missing mechansims: MCAR, MAR, MNAR
at 10% and 30% missing rates and complete data. In the main text, we report the SHD and runtime
in MCAR cases with missing ratio 0.1 varies with number of dimensions, using Gaussian noise.
Specifically, the number of edges is set equal to the dimensionality.

Results. In Figure 4, our approach demonstrates comparable performance to the state-of-the-
art methods MissDAG and MissOTM, although it shows slightly lower performance in the high-
dimensional scenario with d = 50. This may be attributed to the challenges of training a denois-
ing score matching model with a limited number of samples. However, MissScore significantly
reduces computation time compared to MissOTM and MissDAG, offering an efficient alternative
while maintaining similar results. With MissForest, our performance is similar, possibly due to the
additional constraints enforced during training by DAGMA. However, when comparing our method
to those that rely on imputation followed by causal discovery approach, we find that our approach
outperforms MissDiffAN. This suggests that imputation can introduce bias in downstream tasks.
Additional results for various missing ratios, mechanisms, and order divergences are provided, along
with further experimental details, in Appendix F.4.
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Figure 4: Data is generated under MCAR with a missing ratio of 0.1, varying dimensions d =
{10, 20, 50} using ER graph model. The sample size is 1000, and fi corresponds to an MLP. Left:
SHD; Right: Runtime. The shaded area indicates 95% confidence.

6 CONCLUSION

In this work, we introduce a method to directly estimate higher-order data density scores in the
presence of missing data, extending denoising score matching to accommodate scores of any order
across different missing data mechanisms. Our approach directly handles missing data without re-
lying on imputation or deletion. Empirical results demonstrate that models trained with this method
estimate second-order scores more efficiently and accurately. Moreover, second-order models en-
hance the sampling quality of Langevin dynamics via Ozaki discretization in missing data scenarios.
Our proposed causal discovery method for incomplete data scales effectively with dimensionality
and achieves performance comparable to state-of-the-art approaches. However, the effectiveness
of this approach diminishes in low-noise environments without variance reduction, particularly for
second-order scores, which poses challenges in low-noise or high-missingness scenarios. This limi-
tation also extends to downstream tasks, such as causal discovery and sampling, where performance
tends to decline slightly with increasing dimensionality. Future directions include exploring score-
based models with constraints for causal discovery in missing data contexts, applying higher-order
score estimation to a broader range of applications like image and time-series data, and further
investigating the use of denoising score matching for handling MNAR data directly.
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A RELATED WORK

Missing Data Addressing missing values in training data has been widely studied, leading to the
development of numerous imputation techniques. Traditional approaches often involve either re-
moving rows or columns with missing entries or imputing missing values by substituting them with
the mean of observed values for a given feature. More advanced methods apply machine learning
and deep generative models for imputation, such as those explored in prior work (Muzellec et al.,
2020; Van Buuren & Groothuis-Oudshoorn, 2011; Bertsimas et al., 2018). However, imputation can
reduce data diversity and introduce biases in downstream tasks. For instance, Ouyang et al. (2023)
highlight that in an “impute-then-generate” pipeline, imputation may impair generation quality by
introducing biases. In contrast, “impute-then-predict” pipelines often yield better predictive accu-
racy for classification and regression tasks, as evidenced by works like (Poulos & Valle, 2018; Jäger
et al., 2021; Shadbahr et al., 2023; Paterakis et al., 2024).

Additionally, imputation methods often fail to account for uncertainty in missing data. Multiple
imputation (MI) is a valuable alternative that incorporates this uncertainty. While Van Buuren &
Groothuis-Oudshoorn (2011) introduce the widely-used MICE algorithm for MI, MI techniques can
also be applied with deep learning models such as GAIN and MIDA (Gondara & Wang, 2018; Wang
et al., 2021) to produce multiple plausible datasets by re-running models with different random ini-
tializations, thereby capturing imputation uncertainty. A comparative study by Wang et al. (2021)
indicates that MI with classification trees (like MICE) often outperforms deep learning-based impu-
tation, especially in survey data.

Beyond imputation, recent research has explored models that directly learn from incomplete data or
synthesize complete datasets using generative architectures such as GANs and VAEs (Li et al., 2019;
Yoon et al., 2018; Park et al., 2018). These approaches typically require auxiliary networks and rely
on assumptions about the missing data mechanism. In addition, unique challenges posed by tabular
data in these contexts remain underexplored. Recent advancements include applying score-based
models with self-paced learning and fine-tuning strategies (Kim et al., 2022), as well as diffusion
models, which learn from incomplete data through first-order derivatives (Ouyang et al., 2023).

Score Matching. Score matching estimates the gradient of the log-density (known as the score
function) of a data distribution, making them highly effective in modeling complex distributions
(Hyvärinen & Dayan, 2005). A prominent technique in this family is Denoising Score Matching,
which learns the score of a perturbed version of the target distribution by minimizing a regres-
sion loss (Vincent, 2011). This method is also widely used in training Denoising Diffusion Models
and has found success in tasks such as image and audio generation (Ho et al., 2020). While first-
order score matching is prevalent, higher-order derivatives offer richer information about the data
distributions by capturing its local curvature. Although these can be derived using automatic differ-
entiation of a learned score model, such method is computationally expensive and prone to error in
high-dimensional settings. To address these, recent work by Meng et al. (2021) extends denoising
score matching to estimate higher-order derivatives by leveraging Tweedie’s formula, which relates
higher-order moments of the distribution to its scores. Lu et al. (2022) further shows that the negative
likelihood of the ODE can be bounded by controlling the high-order score matching errors.

B ADDITIONAL DISCUSSIONS

Differences between MissScore and MissDiff MissScore differs from MissDiff by focusing on
learning high-order score with missing data, specifically leveraging the Hessian to enhance down-
stream performance. In contrast, MissDiff emphasizes unbiased data synthesis with a first-order
diffusion-based approach. Additionally, MissScore introduces an oracle estimator under the MAR
mechanism and introduce a novel causal discovery method that operates effectively in the presence
of missing data.

Scalability and numerical stability for MAR We have included additional synthetic results for
the MAR mechanism in Table 3, following the same setup as described in Section 3.2. The results
exhibit a similar pattern, though slightly worse than MCAR, which may be attributed to the inverse
probability, potentially increasing variance and leading to less stable estimations. Nevertheless,
the estimates remain reasonable and demonstrate empirical performance closely aligned with the
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ground truth, along with variance reduction. Additionally, to illustrate the impact of potential model
misspecification by the logistic regression model in MAR, we conduct an experiment comparing
the ground truth p with the estimated p̂ from the logistic regression model on the same synthetic
dataset, with varying missing ratios. Comparing the performance in Tables 3 and 4, potential model
misspecification in the logistic regression model does impact the estimation of missing probability.
However, this effect remains within a reasonable range in the variance-reduced version.

Table 3: Mean squared error (MSE) between the estimated first-order and second-order scores and
the ground truth is evaluated across 5,000 test samples. We vary the noise scales σ and missing
ratios α, with each configuration tested using 10 random seeds. MAR with estimated missing
probability p̂ by logistic model.

Methods α = 0.0 (Complete data) α = 0.1 α = 0.3 α = 0.5

σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01

s1 0.28± 0.01 0.42± 0.02 0.32± 0.00 0.51± 0.02 0.36± 0.02 0.52± 0.00 0.45± 0.01 0.56± 0.03
s1(VR) 0.07± 0.00 0.07± 0.00 0.11± 0.02 0.13± 0.01 0.15± 0.01 0.16± 0.02 0.22± 0.02 0.24± 0.04
s2 0.16± 0.02 15.42± 0.47 0.28± 0.02 31.22± 1.08 0.30± 0.04 34.24± 5.14 0.36± 0.04 35.41± 1.03
s2(VR) 0.04± 0.00 0.05± 0.00 0.04± 0.00 0.05± 0.00 0.06± 0.00 0.06± 0.00 0.08± 0.01 0.07± 0.00

Table 4: Mean squared error (MSE) between the estimated first-order and second-order scores and
the ground truth is evaluated across 5,000 test samples. We vary the noise scales σ and missing
ratios α, with each configuration tested using 10 random seeds. MAR with ground truth missing
probability p.

Methods α = 0.0 (Complete data) α = 0.1 α = 0.3 α = 0.5

σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01

s1 0.28± 0.01 0.42± 0.02 0.24± 0.01 0.42± 0.02 0.27± 0.01 0.41± 0.01 0.33± 0.01 0.43± 0.04
s1(VR) 0.07± 0.00 0.07± 0.00 0.06± 0.00 0.06± 0.00 0.09± 0.00 0.10± 0.00 0.19± 0.00 0.22± 0.01
s2 0.16± 0.02 15.42± 0.47 0.24± 0.01 16.66± 4.34 0.27± 0.01 41.47± 7.28 0.33± 0.01 39.89± 4.03
s2(VR) 0.04± 0.00 0.05± 0.00 0.02± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00 0.05± 0.00 0.05± 0.00

C PROOFS

C.1 PROOF OF THEOREM 3

We know that
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(x̃− x)
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]
.

Denote qσ(x̃|x) = N (x̃;x, σ2), we only need to show there exists some constant C independent of
θ such that

Ex̃,x

[
∥{s(x̃;θ)−∇x̃qσ(x̃|x)} ⊙

√
w1∥22

]
= Ex̃,x

[
∥{s(x̃;θ)− s(x̃)} ⊙

√
w1∥22

]
+ C (12)

For simplicity, we consider the case d = 1. For the right hand side of equation 12,

R.H.S = w1 ·
{
Ex̃,x

[
s2(x̃; θ)

]
− 2Ex̃,x [s(x̃; θ)s(x̃)]

}
+ C.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For the left hand side of equation 12,

L.H.S = w1 ·
{
Ex̃,x

[
s2(x̃; θ)

]
− 2Ex̃,x [s(x̃; θ)∇x̃ log qσ(x̃|x)]

}
+ C.

Hence, we only need to show

Ex̃,x [s(x̃; θ)s(x̃)] = Ex̃,x [s(x̃; θ)∇x̃ log qσ(x̃|x)] . (13)

We have,

Ex̃,x [s(x̃; θ)s(x̃)] =

∫
s(x̃; θ)∇x̃px̃(x̃)dx̃

=

∫
s(x̃; θ)∇x̃

(∫
p(x)qσ(x̃|x)dx

)
dx̃

=

∫ ∫
s(x̃; θ)p(x)∇x̃ (qσ(x̃|x)) dxdx̃

=

∫ ∫
s(x̃; θ)p(x)qσ(x̃|x)∇x̃ (log qσ(x̃|x)) dxdx̃

=

∫ ∫
s(x̃; θ)px̃,x(x̃, x)∇x̃ (log qσ(x̃|x)) dxdx̃ = Ex̃,x [s(x̃; θ)∇x̃ log qσ(x̃|x)]

Hence, we get our desired result.

C.2 PROOF OF THEOREM 4

We have
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It is sufficient to show
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(14)

with some constant C independent of θ.

For the right hand side of equation 14,

ExEx̃|x
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where C1 is some constant independent of θ.
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For the left hand side of equation 14, note that I−zz⊤

σ2 = −
{
∇2

x̃qσ(x̃|x)
}
− ∇x̃qσ(x̃|x) ·

{∇x̃qσ(x̃|x)}⊤, then we know that
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Comparing left and right hand side of equation 14, it is sufficient to show
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We have
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Combine all the results, we get the desired result.
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C.3 PROOF OF THEOREM 7

We first consider the MCAR case. Recall that w = 1−m
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Noting that Em ⊗k (1 −m) is a constant. We can show that the solution for the weighted least
square equation for any constant matrix c is

argmin
h

E
[∥∥{⊗kx− h(x̃)

}
⊙ c
∥∥2] = E

{
⊗kx | x̃

}
.

Such equation holds since

E
[∥∥{⊗kx− h(x̃)

}
⊙ c
∥∥2] = E

[∥∥{⊗kx− E
[
⊗kx | x̃

]}
⊙ c
∥∥2]

+ E
[∥∥{E [⊗kx | x̃

]
− h(x̃)

}
⊙ c
∥∥2]

≥ E
[∥∥{⊗kx− E

[
⊗kx | x̃

]}
⊙ c
∥∥2]

By Theorem 2, we know that E
{
⊗kx | x̃

}
= fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃)). Hence, the desired

result follows.

For the MAR case, recall that w = 1−m
P[mk=0|x=x]

Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗kw∥2

]
= Ex̃,x,m

[∥∥∥∥{⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))
}
⊙⊗k 1−m

P[mk = 0|x = x]

∥∥∥∥2
]

= Ex̃,xEm|x

[∥∥∥∥{⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))
}
⊙⊗k 1−m

P[mk = 0|x = x]

∥∥∥∥2
]

= Ex̃,x

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
∥2
]
.

Thus, by Theorem 2, the solution to the criterion function is

argmin
θ

Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗kw∥2

]
= θ∗.

C.4 PROOF OF THEOREM 5

By similar argument in the proof of Theorem 3,

Ex,mEx̃|x,m

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙ 1−m√

P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x,m

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙ 1−m√

P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,xEm|x̃,x

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙ 1−m√

P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙
√
Em|x̃,x(1−m)√
P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}∥∥∥∥2
2

]
.
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where the last equality comes from Em|x̃,x(1 −m) = Em|x(1 −m) = P[m = 0|x = x]. Then
following the steps in section C.1, taking w1 in C.1 as a vector of 1, we get our desired result.

C.5 PROOF OF THEOREM 6

By similar argument in the proof of Theorem 4,

Ex̃,x,m

∥∥∥∥∥
{
s2(x̃;θ) + s1(x̃)s

⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
{
(1−m)(1−m)⊤

}√
P[mm⊤ = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x


∥∥∥∥∥∥
{
s2(x̃;θ) + s1(x̃)s

⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙

√
Em|x̃,x(1−m)(1−m)⊤√

P[mm⊤ = 0|x = x]

∥∥∥∥∥∥
2

2


=Ex̃,x

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}∥∥∥∥2
2

]
.

where the last equality comes from Em|x̃,x(1 − m)(1 − m)⊤ = Em|x(1 − m)(1 − m)⊤ =

P[mm⊤ = 0|x = x]. Then following the steps in section C.2, taking w2 in C.2 as 1, we get our
desired result.

C.6 PROOF OF EQUATION 8

Denote the oracle criterion function as

L̃DSM(θ) := Ex,mEx̃|x,m

[∥∥∥∥{s1(x̃;θ) + 1

σ2
(x̃− x)

}
⊙ g1(x,m)

∥∥∥∥2
2

]
.

where g1(x,m) = 1−m under MAR and g1(x,m) = 1−m√
P[m=0|x=x]

.

If we want to match the score of true data distribution p(x), σ should be approximately zero for both
DSM and D2SM so that qσ(x̃) is close to p(x). According to Taylor expansion we have,

L̃DSM(θ) = Ex̃,x,m

[∥∥∥∥{s1(x̃;θ) +
1

σ2
(x̃− x)

}
⊙ g1(x,m)

∥∥∥∥2

2

]

= Ex,mEz∼N (0,I)

[∥∥∥{s1(x+ σz;θ) +
z

σ

}
⊙ g1(x,m)

∥∥∥2

2

]
= Ex,mEz∼N (0,I)

[∥∥∥{s1(x;θ) + σ∇xs1(x;θ)z+
z

σ

}
⊙ g1(x,m)

∥∥∥2

2

]
+O(1)

= Ex,mEz∼N (0,I)

[∥∥∥{s1(x;θ) + z

σ

}
⊙ g1(x,m)

∥∥∥2

2

]
+O(1)

= Ex,mEz∼N (0,I)

[{
∥s1(x;θ)⊙ g1(x)∥22 +

∥z⊙ g1(x,m)∥2

σ2
+

(
2

σ
s1(x;θ)

⊤z

)
⊙ g1(x,m)

}]
+O(1)

where z = x̃−x
σ , where O(1) is bounded as σ approaches zero. However, when evaluating the

expectation above from samples, the variances of ∥z⊙g(x,m)∥2

σ2 and s(x;θ)⊤z
σ both increase without

bound as σ nears zero, due to the terms involving σ and σ2 in the denominator. This leads to a
significant increase in the variance of the DSM loss, complicating the optimization process. As a
consequence, DSM may become unstable and fail to converge when σ is small, highlighting the
need for methods to reduce variance.

We have,

Ez∼N (0,I)

[
∥z⊙ g1(x,m)∥2

σ2
+

2

σ
s1(x;θ)

⊤z

]
=
∥g1(x,m)∥2

σ2
,
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where d is the dimension of the data distribution p(x). Therefore, we can construct a variable that
is, for sufficiently small σ, positively correlated with LDSM while having an expected value of zero:

cθ(x; z) =

(
2

σ
s1(x;θ)

⊤z

)
⊙ g1(x,m) +

∥z⊙ g1(x,m)∥2

σ2
− ∥g1(x,m)∥2

σ2
.

Subtracting it from LDSM will yield an estimator with reduced variance for DSM training with miss-
ing data:

LDSM-VR(θ) = LDSM(θ)− Ex,mEz∼N (0,I)

[(
2

σ
s(x;θ)⊤z

)
⊙ g1(x,m) +

∥z⊙ g1(x,m)∥2

σ2

]
.

Here we omit the part ∥g1(x,m)∥2

σ2 since it is independent of θ.

C.7 PROOF OF EQUATION 9

Similar to proof C.6, consider the oracle criterion function

L̃D2SM(θ) = Ex̃,x,m

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙ g2(x,m)

∥∥∥∥2
2

]
,

where g2(xobs,m) = (1−m)(1−m)⊤ under MCAR, and g2(xobs,m) = (1−m)(1−m)⊤√
E[mm⊤|x=xobs]

under

MAR.

Denote ψ(x̃;θ) = s2(x̃obs;θ) + s1(x̃obs)s
⊤
1 (x̃obs), we have

L̃D2SM(θ) = Ex̃,x,m

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙ g2(x,m)

∥∥∥∥2
2

]

= Ex,mEz∼N (0,I)

[∥∥∥∥{ψ(x+ σz;θ) +
I− zz⊤

σ2

}
⊙ g2(x,m)

∥∥∥∥2
2

]

= Ex,mEz∼N (0,I)

[{
∥ ψ(x+ σz;θ)∥22 +

∥∥∥∥I− zz⊤

σ2

∥∥∥∥2
2

+ 2ψ(x+ σz;θ)
I− zz⊤

σ2

}
⊙ g2(x,m)

]

Denote ψij(x̃; θ) as the ijth term of ψ(x̃;θ), ϕij = Iij − zizj and gij as the ijth term of g2(x,m)
and according to Taylor expansion, we have,

ExEz∼N (0,I)

[{
ψij(x+ σz; θ)2 +

ϕij
σ2

+ 2ψij(x+ σz; θ)
ϕij
σ2

}
⊙ gij(x,m)

]
=ExEz∼N (0,I)

[{
ψij(x; θ)

2 + 2ψij(x; θ)
ϕij
σ2

+ 2∇ψij(x; θ)
ϕij
σ

+ C

}
⊙ gij(x,m)

]
+O(1)

where z = x̃−x
σ , withC =

(
ϕij

σ2

)2
and∇ψij(x+σz; θ) representing the derivative of ψij(x+σz; θ)

with respect to x.
(

ϕij

σ2

)2
can be treated as a constant that does not depend on θ, and O(1) remains

bounded when σ → 0. However, when calculating the expectation from samples, the variances of
ϕij

σ2 and ∇ψij(x; θ)
ϕij

σ2 increase without bound as σ → 0, due to the presence of σ and σ2 in the
denominator. This causes a significant rise in variance for D2SM, making the optimization process
more difficult. Consequently, D2SM can become unstable and fail to converge as σ approaches zero,
necessitating the use of variance reduction techniques.

In this case, we can employ the same variance reduction method outlined in the proof of C.6. How-
ever, to bypass the need for estimating ∇ψij(x; θ)

ϕij

σ2 , we utilize the antithetic sampling technique
same as Meng et al. (2021) to reduce variance.
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Denote x̃+ = x + σz and x̃− = x + σz as the antithetic samples, according to Taylor expansion,
the ijth term of the D2SM(θ) then becomes,

L̃D2SM(θ)ij = ExEz∼N (0,I)

[{(
ψij(x̃+; θ) +

ϕij

σ2

)2

+

(
ψij(x̃−; θ) +

ϕij

σ2

)2
}

⊙ gij(x,m)

]

= ExEz∼N (0,I)

[{
ψij(x̃+; θ)

2 + 2
ϕij

σ2
ψij(x̃+; θ) + ψij(x̃−; θ)

2 + 2
ϕij

σ2
ψij(x̃−; θ) + C

}
⊙ gij(x,m)

]
= ExEz∼N (0,I)

[{
ψij(x̃+; θ)

2 + ψij(x̃−; θ)
2 + 2

ϕij

σ2

(
ψij(x̃+; θ) + ψij(x̃−; θ)

)
+ C

}
⊙ gij(x,m)

]
= ExEz∼N (0,I)

[{
2 (ψij(x; θ))

2 +
ϕij

σ2

[
4ψij(x; θ) + 2∇ψij(x; θ)− 2∇ψij(x; θ)

]
+ C

}
⊙ gij(x,m)

]

= ExEz∼N (0,I)

[{
2 (ψij(x; θ))

2 + 4
ϕij

σ2
(ψij(x; θ)) + C

}
⊙ gij(x,m)

]
,

where C = 2
(

ϕij

σ2

)2
, a constant with respect to the optimization.

Therefore, we have the variance reduction for LD2SM-VR(θ) which is equivalent to optimizing Eq.
(4) up to a control variate. Moreover, when σ approaches zero, optimizing Eq. (9) is more stable.

LD2SM-VR(θ) = Ex,mEz∼N (0,I)

[{
ψ(x̃+)2 +ψ(x̃−)2 + 2

I− zz⊤

σ
⊙Ψ(·)

}
⊙ g2(x,m)

]
,

(18)
where the antithetic samples are defined as x+ = x+ σz and x− = x− σz. Here, ψ = s2 + s1s

⊤
1 ,

and Ψ =
(
ψ(x̃+) +ψ(x̃−)− 2ψ(x)

)
.
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D DATA GENERATION UNDER DIFFERENT MISSING MECHANISMS

Missing data mechanisms can vary significantly, but they are typically categorized into three main
types as defined by (Rubin, 1976): missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). In our experiments, we simulate missing data based
on these mechanisms as follows:

MCAR (Missing Completely at Random): Missing values are generated uniformly, with each
data point having an equal probability of being missing, determined by a predefined missing rate, α.
Specifically, missing values are generated using a Bernoulli distribution, Ber(α), where each entry
is missing independently with probability α.

MAR (Missing at Random): In this scenario, missing values are generated using a logistic model.
A random subset of the variables is selected to remain fully observed, while the remaining variables
have missing values depending on the fully observed ones. The missingness is determined by a
logistic model with random coefficients, scaled to achieve the target proportion of missing data for
the variables influenced by the fully observed subset.

MNAR (Missing Not at Random): The MNAR mechanism is modeled using a logistic masking
model. It implements two mechanisms and in either case, weights are random and the intercept is
selected to attain the desired proportion of missing values.

• Missing probabilities for each variable are determined by a logistic model that takes all the
variables (including those with missing data) as inputs;

• Variables are split into two sets: a set of input variables for the logistic model and a set of
variables whose missingness is determined by the logistic model. The input variables are
masked using an MCAR process, meaning the missingness in the second set depends on
the missingness in the input set.

In all experiments, for MAR missing mechanism, we use logistic regression to estimate the like-
lihood of each data point being observed. For MNAR, we utilize the same training objective as
MCAR, while recognizing that this method may introduce some bias.

The algorithm for training the first- and second-order models under different missing mechanisms
is outlined in Algorithm 1:

Algorithm 1 MissScore
1: Input: Observed data xobs, score models s1(·;θ), s2(·;θ), noise level σ, coefficient ω
2: Infer the missingness mask m = 1[xobs=na]
3: repeat
4: Sample noise z ∼ N (0, I)
5: Compute perturbed data: x̃obs = xobs + σz
6: if missing mechanism is MAR then
7: Estimate P[m = 0|x = xobs] and P[mm⊤ = 0|x = xobs] using fitted logistic models
8: end if
9: Update parameters using gradient descent on∇θ

(
Eq.(5) + ω Eq.(6)

)
10: until convergence
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E ADDITIONAL INFORMATION ON SAMPLING

In the sampling experiments with the Swiss-Roll dataset under MCAR, we use a small perturbation
σ = 0.01 and jointly optimize Eq. (8) and Eq.(9), where s1(x̃) ≈ s1(x) and s2(x̃) ≈ s2(x). The
sample size is set to 5000. Both s1(x̃;θ) and s2(x̃;θ) are modeled using a 3-layer MLP with a
latent size of 128 and a Softplus activation function. We use a learning rate of 0.001, a batch size
of 64 and train for 100 epochs, which takes approximately 4 minutes on an Intel(R) Xeon(R) Gold
6448H CPU. The experiments in Section 3 also utilize the same model configuration for training. In
the Ozaki sampling experiments, we only use the diagonal of s2(x̃;θ) to avoid the computational
costs associated with the inversion, exponentiation, and decomposition of s2(x̃;θ). The algorithm
is presented in Algorithm 2.

Algorithm 2 MissScore-Sampling
1: Input: Score models s1(·;θ∗), s2(·;θ∗); step size ϵ; number of iterations T
2: Initialize: x̃0 ∼ π(x)
3: for t = 1 to T do
4: Sample noise zt ∼ N (0, I)
5: if Ozaki sampling then
6: Compute Mt−1 =

(
eϵs2(x̃t−1) − I

)
s2(x̃t−1)

−1

7: Compute Σt−1 =
(
e2ϵx̃t−1 − I

)
s2(x̃t−1)

−1

8: Update x̃t = x̃t−1 +Mt−1s1(x̃t−1) + Σ
1/2
t−1zt

9: else
10: Update x̃t = x̃t−1 +

1
2ϵs1(x̃t−1) +

√
ϵzt

11: end if
12: end for
13: Return: x̃T

The following sections provide experimental details on data generation with the simulated Bayesian
Network and real Census data.

E.1 DATASET DESCRIPTION AND PROCESSING

Bayesian Network Details regarding the data generated from a Bayesian Network can be found in
Section B.1 in Ouyang et al. (2023).

Census Census dataset is a binary classification dataset that predict whether income exceeds 50K/yr
based on census data (Kohavi, 1996). Also known as Adult dataset.

The statistical information of datasets used in our experiments is in Table 5. #train, #test, #con-
tinuous, and #categorical mean the number of training data, testing data, continuous columns, and
categorical columns, respectively.

Table 5: Synthetic and Real-World Datasets Used in Experiments.

Dataset #Train #Test #Categorical #Continuous
Bayesian Network 2000 20000 3 2
Census 16000 4000 9 6

For data processing, we follow standard pre- and post-processing procedures for mixed-type tabular
data. Specifically, we apply min-max normalization to continuous variables and reverse this scaling
during generation. For discrete variables, we use one-hot encoding and apply a rounding function
after the softmax function during generation.
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E.2 EVALUATION METHODS

We adopt the “train on synthetic, test on real (TSTR)” framework (Esteban et al., 2017), a widely
used method for assessing the quality of sampling data from generative model (Kim et al., 2022;
Ouyang et al., 2023; Li et al., 2019). The experimental results for sampling in this paper are calcu-
lated as follows:

1. We first download a dataset and use its existing train-test split.
2. Then we generate synthetic records equal in number to the original training set using vari-

ous synthetic data generation methods.
3. Using the synthetic training records from Step 2, we train base classifiers to make pre-

dictions. We conduct a hyperparameter search for each classifier, considering Decision
Tree, AdaBoost, Logistic Regression, MLP Classifiers, Random Forest, and XGBoost for
the classification tasks. The hyperparameters and their candidate settings follow those de-
scribed in Kim et al. (2022); Ouyang et al. (2023), and are summarized in Table 26 of Kim
et al. (2022).

4. Finally, we evaluate the classifiers using the testing dataset, applying a range of evaluation
metrics for comprehensive assessment.

Steps 2 to 4 are repeated three times for each dataset, and the average scores for each method across
all evaluation metrics are calculated. The detailed metrics used in our experiment include:

1. Accuracy: This is calculated using the accuracy score function from the
sklearn.metrics module.

2. Weighted-F1:

Weighted-F1 =

N∑
i=0

wisi

where N is the total number of classes. The weight for the i-th class, wi =
1−pi

N−1 , with pi
representing the proportion of the i-th class’s size relative to the total dataset. Here, si is
the F1 score for the i-th class, calculated using the One-vs-Rest strategy. This weighting
approach is designed to prioritize the evaluation of synthesized tables by giving more im-
portance to smaller classes, which are often prone to being overlooked by the model, thus
addressing mode collapse.

3. AUROC: This is calculated using the roc auc score function from the
sklearn.metrics module.

4. SDMetrics: This metric evaluates synthetic data by comparing it against the real data, as
described in (Dat, 2023).

Among all metrics, a higher score indicates better overall quality of the synthetic data.

E.3 MODEL ARCHITECTURE

We use a perturbation of σ = 0.1 and jointly optimize Eq. (8) and Eq. (9). In the Bayesian
Network experiment, we follow the same configuration as described earlier, with each run taking
approximately 20 minutes. For the census dataset, we employ a simple MLP consisting of 5 Linear
layers, LeakyReLU activation, Layer Normalization, and Dropout with a probability of 0.2 in the
first layer. The learning rate is set to 0.001. The first two layers use a latent size of 128, while the
last three layers use a latent size of 1024. We train with a batch size of 256 for 250 epochs, with each
experiment taking approximately 4 hours. All experiments are performed on an Intel(R) Xeon(R)
Gold 6448H CPU. For the downstream classifier, we use the same base hyperparameters as listed in
Table 26 of Kim et al. (2022).

E.4 EXPERIMENTAL RESULTS

In the following experimental results, we use a missing data ratio of α = 0.3 and apply XGBoost
for the downstream tasks, without delving into specific implementation details. Table 6 presents the
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utility evaluation of MissScore using both Langevin and Ozaki samplings, compared to other base-
line methods, on the Census dataset with a missing ratio of 0.3. Additionally, Table 7 summarizes
the Accuracy, AUROC, and Weighted-F1 metrics as the missing ratio varies. Figure 5 illustrates
the fidelity evaluation of MissScore, again using Langevin and Ozaki samplings alongside other
baselines, on the Bayesian dataset.

Table 6: Utility evaluation of MissScore using Langevin and Ozaki samplings, along with other
baselines, on the Census dataset with missing ratio 0.3.

Criterion Mechanism Langevin Ozaki DSM-delete DSM-mean STaSy-mean

Accuracy
MCAR 0.80 0.81 0.70 0.75 0.77
MAR 0.82 0.82 0.69 0.77 0.74
MNAR 0.81 0.80 0.59 0.80 0.75

AUROC
MCAR 0.84 0.84 0.57 0.67 0.62
MAR 0.85 0.86 0.46 0.75 0.61
MNAR 0.86 0.86 0.52 0.76 0.63

Weighted-F1
MCAR 0.52 0.52 0.24 0.32 0.41
MAR 0.61 0.60 0.32 0.38 0.38
MNAR 0.69 0.68 0.41 0.52 0.42

Table 7: Evaluation of MissScore using Ozaki samplings on the Census dataset with varying missing
ratios {0.1, 0.3, 0.5, 0.7, 0.9}.

Methods α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

Accuracy
MCAR 0.81 0.81 0.80 0.79 0.77
MAR 0.71 0.82 0.82 0.82 0.79
MNAR 0.80 0.80 0.83 0.74 0.72

AUROC
MCAR 0.85 0.84 0.84 0.86 0.61
MAR 0.85 0.86 0.87 0.85 0.83
MNAR 0.85 0.87 0.86 0.85 0.80

Weighted-F1
MCAR 0.54 0.52 0.41 0.66 0.22
MAR 0.64 0.60 0.67 0.65 0.63
MNAR 0.46 0.68 0.61 0.64 0.63
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Figure 5: Fidelity evaluation of MissScore using Langevin and Ozaki samplings, along with other
baselines, on the Census dataset varies with missing ratio α = {0.1, 0.3, 0.5, 0.7} under different
missing mechanisms.

E.5 ANALYSIS OF SAMPLING RESULTS USING CENSUS DATA

In this section, we analyze the sampling performance using the first- and second-order models at
a missing ratio of 0.3 with real Census data. Our analysis consists of two parts: numerical and
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categorical data in the census dataset. For the numerical data, which includes variables such as
age, final weight (fnlwgt), years of education completed (education-num), and hours worked per
week, we examine the distribution of both the original data and the sampled data shown in Figures 6
to 9. This comparison is done using MissScore with first-order information via Langevin dynamics
(equivalent to MissDiff) and MissScore with second-order information through Ozaki sampling. We
observe that MissScore with second-order information captures finer details in the distribution. For
instance, in the age range of 20-40, the fnlwgt range of 0-0.25, education-num range of 10-11, and
hours per week range of 40-45, the second-order MissScore better approximates the shape of the
original distribution.

For the categorical data, we analyze the education variable and again find that the second-order
MissScore aligns more closely with the original distribution, as shown in Figure 10. These results
indicate that MissScore with second-order information captures finer-grained details in the sampled
dataset, compared to MissDiff (MissScore with first-order information).
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Figure 6: Analysis of Age in the Census Dataset: The first plot represents the actual data, the second
plot shows the sampled data using MissScore with Langevin dynamics, and the third plot displays
the sampled data using MissScore with Ozaki sampling.
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Figure 7: Analysis of Final Weights in the Census Dataset: The first plot represents the actual data,
the second plot shows the sampled data using MissScore with Langevin dynamics, and the third plot
displays the sampled data using MissScore with Ozaki sampling.
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Figure 9: Analysis of Hours-per-week in the Census Dataset: The first plot represents the actual
data, the second plot shows the sampled data using MissScore with Langevin dynamics, and the
third plot displays the sampled data using MissScore with Ozaki sampling.
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Figure 8: Analysis of The number of years of education completed in the Census Dataset: The
first plot represents the actual data, the second plot shows the sampled data using MissScore with
Langevin dynamics, and the third plot displays the sampled data using MissScore with Ozaki sam-
pling.

F ADDITIONAL INFORMATION ON CAUSAL DISCOVERY

F.1 RELATED WORK

Causal Discovery with Complete data. Causal discovery aims to uncover the underlying causal
relationships among variables of interest from purely observational data, specifically identifying a
causal Directed Acyclic Graph (DAG) for a given dataset. This problem lies at the heart of causal
inference, as knowledge of the causal graph enables prediction of the effects of interventions. How-
ever, causal discovery from observational data is inherently ill-posed, necessitating additional as-
sumptions, such as imposing functional assumptions on the data-generating process. We adopt the
notion of structural causal model (SCM) to characterize the causal relations among variables. Each
SCMM = ⟨Z,X ,F⟩ consists of the exogenous variable set Z = {Z1, Z2, . . . , Zd}, the endoge-
nous variable set X = {X1, X2, . . . , Xd}, and the function set F = {f1, f2, . . . , fd}. Here, each
function fi computes the variable Xi from its parents (or causes) XPAi and an exogenous variable
Zi, i.e., Xi = fi(XPAi , Zi). We focus on a specific class of SCMs, called the additive noise models
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Figure 10: Analysis of Education in the Census Dataset: The first plot represents the actual data,
the second plot shows the sampled data using MissScore with Langevin dynamics, and the third plot
displays the sampled data using MissScore with Ozaki sampling.

(ANMs), given by Xi = fi(XPAi
) + Zi, i = 1, 2, . . . , d, where Zi, interpreted as the additive

noise variable, is assumed to be independent of variables in XPAi and mutually independent with
variables in Z \ Zi.

Rolland et al. (2022) proposed an order-based algorithm for this model, further assuming that fi
is a twice-differentiable nonlinear function and Zi is Gaussian noise. This method enables the
identification of leaf nodes based on the diagonal of the Hessian of the log-likelihood. Before
proceeding to the method for identifying leaves, we first derive an analytical expression for the
score following Lemma 2 in Rolland et al. (2022). The score is written as follows:

∇xj log p(x) = ∇xj log

d∏
i=1

p(xi | xPAi)

= ∇xj

d∑
i=1

log p(xi | xPAi
)

= ∇xj

d∑
i=1

log p(xi − fi) (where zi = xi − fi(xPAi))

=
∂ log p(xj − fj(xPAj

))

∂xj
−
∑

i∈CHj

∂fi
∂xj

∂ log p(xi − fi(xPAi
))

∂x
.

where CHj represents the children of the variable j. As a result, ∂
∂xj
∇xj log p(x) = a, where

a is a constant, Consequently, the variance of the diagonal elements of the Hessian is zero (i.e.
VarX[Hj,j(log p(x))] = 0) if and only if node j is a leaf node.

However, existing computational methods for calculating the Hessian struggle to scale efficiently as
the number of variables and samples increases, limiting the scalability of Rolland et al. (2022). To
address this, Sanchez et al. (2022) introduced a diffusion-based model that efficiently computes the
Hessian, enabling the method to scale to larger datasets, both in terms of sample size and number of
variables, while maintaining comparable performance to Rolland et al. (2022).

Causal Discovery with Incomplete Data. Several extensions of the PC algorithm have been devel-
oped to learn causal graphs from incomplete data (Tu et al., 2019; Gain & Shpitser, 2018), utilizing
only the fully observed samples while mitigating biases in conditional independence tests. Another
prominent family of methods relies on Expectation-Maximization (Dempster et al., 1977), where
missing values are iteratively inferred while simultaneously learning the causal structure. Building
on the continuous optimization techniques introduced by NOTEARS (Zheng et al., 2018), MissDAG
(Gao et al., 2022) extends this approach to continuous identifiable Additive Noise Models (ANMs),

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

using approximate posterior inference via Monte Carlo and rejection sampling when the exact pos-
terior is unavailable. MissOTM (Vo et al., 2024) introduces a score-based method that leverages
optimal transport to learn causal structures from incomplete data. A distinct approach is taken by
VISL (Morales-Alvarez et al., 2022), which employs amortized variational inference in a Bayesian
framework. Unlike MissOTM and MissDAG, VISL assumes a latent low-dimensional factor that
captures the essential structure of the data based on observed variables. The latent factors are then
used to reconstruct the complete data and discover the underlying causal graph.

F.2 EVALUATION METRICS

For each method, we compute the

SHD. Structural Hamming distance between the output and the true causal graph, which counts the
number of missing, falsely detected, or reversed edges.

Order Divergence. Rolland et al. (2022) propose this quantity for measuring how well the topolog-
ical order is estimated. For an ordering π, and a target adjacency matrix A, we define the topological
order divergence Dtop(π,A) as

Dtop(π,A) =

d∑
i=1

∑
j:πi>πj

Aij (19)

F.3 MODEL ARCHITECTURE

We apply a perturbation of σ = 0.1 and jointly optimize Eq. (8) and Eq. (9). The model is a
simple MLP with 5 Linear layers, LeakyReLU activation, Layer Normalization, and a Dropout rate
of 0.2 in the first layer. The learning rate is set to 0.001. The first two layers have a latent size of
max(128, 3 × d), while the last three use a latent size of max(1024, 5 × d). Training is conducted
with a batch size of 128 for 150 epochs. The time efficiency is shown in the figure 4 with ER graph
model across various dimensions. All experiments are executed on an Intel(R) Xeon(R) Gold 6448H
CPU. The algorithm is presented in Algorithm 3.

Algorithm 3 MissScore-Causal Discovery

1: Input: Observed data xobs; score models s1(·;θ), s2(·;θ)
2: Initialize: π = []; nodes = {1, . . . , d}
3: n, d← shape of xobs
4: for k = 1 to d do
5: Jointly train the score models s1(θ) and s2(θ) using xobs with Algorithm 1
6: Generate n samples x̃new using Algorithm 2 with bootstrapping
7: Estimate the second-order score s2(x̃new) using s2(θ)
8: Vj = VarX [diag(s2(x̃new))]
9: ℓ← argminj∈nodes Vj ▷ The leaf node

10: π ← [ℓ, π] ▷ Update topological order
11: nodes← nodes− {ℓ} ▷ Remove node ℓ
12: Remove the ℓ-th column from xobs
13: end for
14: Obtain the final DAG using CAM pruning associated with the topological order π.

F.4 EXPERIMENTAL RESULTS

We begin by conducting experiments using complete data, evaluating our approach alongside various
missing mechanisms and different missing ratios. Additionally, we include order divergence in
the Table. Our findings reveal that, with complete data, MissScore performs on par with DiffAN,
as illustrated in Figure 11. Notably, among all settings, MissScore achieves performance similar
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to current state-of-the-art approaches while offering superior computational efficiency in terms of
memory and time. This scalability is a key advantage where other methods may struggle.
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Figure 11: The data is generated using an ER graph model with different dimensions d =
{10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. Left: fi is
an MLP; Right: fi corresponds to MIM.
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Figure 12: The data is generated under MCAR with missing ratios of 0.1 and 0.3, using an ER
graph model with different dimensions d = {10, 20, 50} and an equal number of edges. Each
dataset consists of 1000 samples. fi corresponds to MLP. Left: SHD with missing ratio 0.1; Right:
SHD with missing ratio 0.3.

Table 8: Order divergence with missing ratios of α = {0.1, 0.3} across different missing data
mechanisms. The ER graph model is considered with varying dimensions d = {10, 20, 50}, and an
equal number of edges. Each dataset consists of 1000 samples and fi corresponds to MLP. Lower
order divergence indicating better performance.

Dimensions Methods MCAR MAR MNAR
α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3

d=10 MissScore 1.62± 0.99 1.60± 0.66 1.33± 0.47 1.89± 0.75 1.33± 0.47 1.44± 0.50
MissDiffAN 2.00± 1.18 2.90± 1.87 2.75± 1.30 3.60± 1.28 2.60± 1.20 2.30± 1.35

d=20 MissScore 2.10± 0.94 2.67± 2.00 2.70± 1.85 1.94± 0.29 1.70± 1.78 0.70± 0.46
MissDiffAN 4.30± 2.00 4.22± 2.35 4.33± 2.11 3.00± 1.00 2.00± 0.89 3.40± 1.20

d=50 MissScore 3.40± 2.33 4.00± 3.10 3.10± 1.70 4.60± 2.91 2.80± 0.98 4.10± 3.30
MissDiffAN 4.50± 2.91 3.60± 3.32 8.33± 3.65 7.40± 2.84 3.50± 1.75 3.20± 3.28
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Figure 13: The data is generated under MCAR with missing ratios of 0.1 and 0.3, using an ER
graph model with different dimensions d = {10, 20, 50} and an equal number of edges. Each
dataset consists of 1000 samples. fi corresponds to MIM. Left: SHD with missing ratio 0.1; Right:
SHD with missing ratio 0.3.
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Figure 14: The data is generated under MAR with missing ratios of 0.1 and 0.3, using an ER graph
model with different dimensions d = {10, 20, 50} and an equal number of edges. Each dataset
consists of 1000 samples. fi corresponds to MLP. Left: SHD with missing ratio 0.1; Right: SHD
with missing ratio 0.3.
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Figure 15: The data is generated under MAR with missing ratios of 0.1 and 0.3, using an ER graph
model with different dimensions d = {10, 20, 50} and an equal number of edges. Each dataset
consists of 1000 samples. fi corresponds to MIM. Left: SHD with missing ratio 0.1; Right: SHD
with missing ratio 0.3.
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Figure 16: The data is generated under MNAR with missing ratios of 0.1 and 0.3, using an ER
graph model with different dimensions d = {10, 20, 50} and an equal number of edges. Each
dataset consists of 1000 samples. fi corresponds to MLP. Left: SHD with missing ratio 0.1; Right:
SHD with missing ratio 0.3.
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Figure 17: The data is generated under MNAR with missing ratios of 0.1 and 0.3, using an ER
graph model with different dimensions d = {10, 20, 50} and an equal number of edges. Each
dataset consists of 1000 samples. fi corresponds to MIM. Left: SHD with missing ratio 0.1; Right:
SHD with missing ratio 0.3.

Table 9: Order divergence with missing ratios of α = {0.1, 0.3} across different missing data
mechanisms. The ER graph model is considered with varying dimensions d = {10, 20, 50}, and an
equal number of edges. Each dataset consists of 1000 samples and fi corresponds to MIM. Lower
order divergence indicating better performance.

Dimensions Methods MCAR MAR MNAR
α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3

d=10 MissScore 1.60± 1.20 1.20± 0.60 1.35± 0.47 1.88± 0.93 1.62± 0.99 1.38± 0.48
MissDiffAN 2.22± 2.10 1.50± 0.67 2.50± 1.36 3.70± 1.10 2.40± 2.20 2.20± 1.40

d=20 MissScore 1.70± 0.90 2.20± 1.33 1.82± 1.29 1.90± 1.30 1.56± 0.68 0.56± 0.83
MissDiffAN 2.70± 1.49 3.8± 1.47 3.70± 1.35 3.10± 2.21 2.44± 1.07 2.70± 1.68

d=50 MissScore 4.90± 2.12 4.00± 1.41 4.56± 2.27 4.60± 2.24 4.20± 1.66 4.40± 1.85
MissDiffAN 5.56± 2.45 4.40± 1.56 7.90± 2.39 7.50± 2.69 5.00± 1.61 6.20± 2.68
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