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ABSTRACT

Model parameter regularization is a widely used technique to improve generaliza-
tion, but, it can also be used to shape the weight distributions for various purposes.
In this work, we propose range regularization (R2) for building quantization and
compression friendly models by removing outliers from weights during training.
By effectively regulating range of weights, we mold the overall distribution into
a tight shape to ensure high quantization bit resolution, therefore allowing model
compression and quantization techniques can to utilize their limited numeric rep-
resentation powers better. We introduce L, regularization, its extension margin
regularization and a new soft-min-max regularization to be used as a regulariza-
tion loss during full-precision model training. We show that this technique gen-
eralizes well for post training quantization, quantization aware training methods
like EWGS and compression techniques like DKM. Coupled with state-of-the-art
quantization and compression techniques, models trained with R? perform better
on an average, specifically at lower bit weights with 16x compression ratio. Our
results show that R? generates state of the art 2-bit quantized models for heav-
ily parameter constrained models like MobileNet V1 and V2 when coupled with
EWGS. Additionally, for high compression ratio (32x), models trained with R>
significantly better than the ones trained without it.

1 INTRODUCTION

Deep neural networks have become popular in human computer interaction, anomaly detection,
financial markets, etc. Since a lot of applications running these models run on edge devices, running
these compute-intensive models requires a balance of accuracy, latency, power efficiency and size
for these models.

Quantization of neural networks is an effective way of reducing the power, latency, and size of
these models. This requires that these quantized models are executed on specialized platforms with
low-bit supports and at the cost of accuracy drop Dong et al.; Wang et al.| (2019). Post training
Quantization involves distributing all the available weights in a layer into bins spread equally apart
across the range. Training time quantization techniques Bengio et al.|(2013)); Zhou et al.|(2016), use
stochastic gradient descent to quantize and optimize the weights (i.e., mapping each floating point
number to a set of discrete bins according to the precision target). Quantization bit-resolution is
inversely proportional to the range of weights and affects accuracy of the quantized models. Since
outliers tend to increase range, outliers are detrimental for quantization friendly models.

As an example, lets assume we want to quantize the weight distributions shown in Figure [T]into 3
bins. For the distribution in black (original distribution) most of the weights will be quantized to zero
and the model accuracy would drop significantly. This problem gets worse for low bit quantization
and compression such as one or two bit quantization.

We introduce Range Regularization (R2), a simple yet powerful method that helps to remove
outliers during training without severely affecting full precision accuracy and provides a quantization
or compression friendly checkpoint. Using range regularization we intend to trim the edges of the
black distribution and convert it to a distribution similar to the one shown in red in Figure [T, We
propose 3 different formulations of R? and through experimental analysis show that models trained
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Figure 1: Example weight distribution for weight quantization with three bins. Black: without a
range regularizer and Red: with a range regularizer.
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with R? are more quantization and compression friendly. We also show that R? is invariant to the
final quantization or compression algorithm.

Our experiments on MobileNet-V1 [Howard et al.| (2017) and MobileNet-V2 |Sandler et al.| (2018])
using post training quantization techniques like DFQ [Nagel et al.|[ (2019) shows > 10% imrpove-
ment using R2 trained models. For QAT methods like EWGS [Lee et al.|(2021) R? trained models
are roughly 4% better than the ones trained without R? for 2bit weight and activation quantization.
For models compressed using 32x compression, B2 improves the accuracy of parameter constrained
models like MobileNet-V1 by 5% (2-bit,2-dim) and by 1.5% (4-bit,4-dim). We have also extended
R? to fine-tuning MobileBERT on QNLI task, where we see an absolute 2% improvement in accu-
racies for 1-bit and 2-bit compressed models.

2 RELATED WORKS

2.1 MODEL COMPRESSION

The simplest and one of the most effective form of compression involves sharing weights within
a layer. Deep Compression Han et al.| (2016) introduced k-means clustering based weight sharing
for compression. Initially, all weights belonging to the same cluster, share weight of the cluster
centroid. During forward, loss is calculated using the shared weights which are then updated during
backward pass. This leads to a loss of accuracy and model train-ability because the weight to cluster
assignment is intractable during weight update Yin et al.|(2019). DKM |Cho et al.| (2021)) introduces
differentiable k-means clustering, therefore making cluster assignments tractable. During forward
clustered weights are used, however during backward the gradient is applied on the original weights.

2.2 MODEL QUANTIZATION

Model quantization reduces the memory footprint of a model by reducing the representative bits
per weight for a given model. It also quantizes activation values so that we can convert floating
point computation into integer computation which gives us a benefit of hardware efficiency. In this
paper we have applied our R? with various training time quantization (quantization-aware training,
QAT) algorithms like EWGS |Lee et al.| (2021), LSQ [Esser et al.| (2019) and DoReFa Zhou et al.
(2016) used in PACT |Choi et al.| (2018). PACT clips activation values with a trainable parameter
for activation quantization and uses DoReFa for weight quantization. LSQ quantizes weights and
activations with learnable step size (scale or bin size). EWGS applies gradient scaling with respect
to position difference in between original full precision weights and quantized weights based on
LSQ.

Also, we have compared our R? with a tate-of-the-art post-training quantization (PTQ) methods.
DFQ |Nagel et al.| (2019) equalizes per-channel weight ranges by applying per-channel scaling fac-
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tors. It resolves the wide weight range problem across channels, but still the weight range would
remain wide for lower bit quantization like 4bit as DFQ does not target outliers within a channel.
In our experiment, models trained with our R? can be effectively quantized to 4bit weight / 8bit
activation by PTQ without DFQ. AdaRound Nagel et al.| (2020) proposed adaptive rounding for
quantization bin assignment instead of nearest rounding. Pre-trained models with R? also show
better quantization accuracies with AdaRound than models trained with just L2 norm which is well-
known regularization.

In our extensible experiments, we show our R? improves accuracies with cutting-edge QAT and
PTQ for lower bit quantization like 2bit weight / 2bit activation and 4bit weight / 8bit activation.

2.3 REGULARIZATION FOR QUANTIZATION

As we mentioned earlier, range regularization is not a quantization or compression technique. It
helps compression and quantization by removing outliers in the weight distribution. Shkolnik et al.
(2020) show that uniform distribution of weights are more robust to quantization than normally-
distributed weights. To this they propose KURE (KUTrtosis REgularization) to minimize the kurtosis
of weights and ensure a uniform distribution. This method is independent of the quantization bit-
width, therefore supports PTQ (Post-Training Quantization) in addition to QAT (Quantization Aware
Training). However, this method is best suited for generic models which need to be specifically tuned
for a given bit precision use case. To reduce the accuracy drop due to quantization|Han et al.| (2021}
proposes to constrain weights to predefined bins based on the quantization bit-width. However,
selecting these bins is a difficult process and the output of the models in very sensitive to the bin
selection. In addition to that these methods ignore the effect of quantizing the first and last layers of
the models.

3 RANGE REGULARIZATION

We introduce R? as a regularization technique to reduce the range of weights for every layer to get
better pre-trained models for further quantization or compression. Just like Ly and Lo regularization
our approach is invariant to the quantization or compression technique used. But as opposed to L
or Lo regularization, R? only affects the outliers in weights by penalizing them while maintaining
accuracy of the full precision model. We demonstrate that Lo regularization (1x and 10x) does not
solve the problem of outliers in Figure 2} As a reference for the expected weight distribution for
a quantization friendly model we use the weight distribution from a model trained using KURE
Shkolnik et al.[(2020). While, the idea of minimizing range can be formulated in various ways we
propose 3 different ways of defining R?. We start from L loss, extend it to margin loss and finally
introduce soft-min-max loss for adding R? to the training loss.

L, regularization: This method tries to penalize only the outliers in an iterative manner during
training by adding L., (W) as a regularization term for every layer in the model.

Lreg = ZLOO(W) (1)

The effect of this formulation is described in Figure 2| where it shows that R? helps to get rid of all
outliers in the model. In addition, it brings the overall range of weight down in contrast to KURE
Shkolnik et al.| (2020), while, also making the weight distribution similar to a mixture of Gaussians
as seen in KURE.

Margin range-regularization: This is an extension of L., (V) regularization, where, we define a
margin for the range of allowed weights. Any weight outside this margin is penalized. In addition,
we also penalize the width of the margin to ensure that the range of the overall weight distribution is
small. The regularization loss for a given weight W is shown in Equation (Z). Here M is a learnable
parameter per layer.

Lyeg = Z(|M‘ + max(|W| — |M],0)) (2)

The effect of margin regularization is similar to that of L., in terms of the final weight distribution
as evident from Figure The only difference is that margin R? penalizes all weight outside the
margin per iteration in contrast to penalizing only the maximum weight.
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Figure 2: Weight distribution of 3x3 convolution layers and FC layer of MobileNet-V2 using only
L2 norm and the proposed methods (the red dots correspond outliers).

Soft-min-max range-regularization : In this approach, we propose an asymmetric range regular-
ization, to eliminate the constraint on the magnitude of weights and strictly enforce it on the range
of weights. We hypothesize that such a technique will improve asymmetrically quantized models
using techniques such as DKM (2021). The loss for a given weight W is described in
Equation (3).

E(W © enx (W =Wnua))

smax - Eeax(W_Wmaa:)
o E(W ® e—ax(W—Wmm)) 3)
Smin = T X (W—Wonin)

Lreg - (smaz - szn) + e ®

Here temperature « is a learnable parameter per layer. e~ term in the regularization loss L4,
encourages temperature « to increase during training time optimization process to approach hard-
min-max regularization towards the end of train time optimization. This loss does not specifically
penalize the outliers rather brings the overall range of weights down. Therefore, it might be suscep-
tible to outliers as seen in Figure 2]

All the above mentioned range-regularization techniques were employed during training time of
the base model itself and not during quantization or compression. This was done because the pur-
pose of the R? is to provide effective initial weights for compression or quantization. This ensures
extensibility of range-regularization to any quantization or compression technique.
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Table 1: Model size of compressed MobileNet-V1 (in M bytes). F: first layer, L: last layer. EWGS
2bit quantization accuracies on ImageNet excluding the first and last layer quantization and all layers
quantization.

BIT QUANT EXCL. F & L QUANT ALL
32BIT 16.1 16.1
4BIT 7.1 4.2
2BIT 5.6 2.2
1BIT 4.8 1.2
EWGS 2BIT ACC. 59.10% 55.96%

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS
4.1.1 PRE-TRAINING FROM SCRATCH WITH RANGE REGULARIZERS

We train ResNet-18He et al.|(2016), MobileNet-V1|Howard et al.[|(2017) and MobileNet-V2|Sandler
et al.| (2018) on ImageNet 1K Deng et al.| (2009) with proposed Range Regularizers on a x86 Linux
machine with eight GPUs to get pre-trained models before model compression and quantization-
aware training. We set initial learning rates to 1.0, 0.4 and 0.4 for ResNet-18, MobileNet-V1 and
MobileNet-V2 respectively. We use SGD with 0.9 of momentum with Nesterov. We apply le-4 of
weight decay (L2 norm weight regularization) for ResNet-18 and 4e-5 for MobileNet-V1 and V2.
For higher L2-regularization, 12-10x, in Figure[2} we use 4e-4 of weight decay for MobileNet-V2
to see whether heavy L2-regularization helps quantization or not. Range Regularizer weights for
each regularizers are set to 0.01. For Margin range regularizer, the margin threshold is initialized
with 2x the standard deviation of the initialized weights. In Soft-min-max regularizer training, the
learnable parameter « is initially set to 0.1. For comparison, we use pre-trained models of Resnet-
18 from Torchvision. As Torchvision did not provide a pre-trained model for MobileNet-V1, we
trained MobileNet-V1 without Range Regularizer using the same settings above. It can be observed
from Table [3|that R? doesnt significantly affect the performance of the full precision models as
well therefore provides a strong initial checkpoint for the model to be quantized. In addition, for a
large model like ResNet-18 R? also shows a regularization effect similar to weight decay, therefore,
better validation accuracy than the one without R

4.1.2 MODEL COMPRESSION AND QUANTIZATION

Range Regularizer is not a model compression nor quantization method. It regularizes weights
during training of the base model from scratch. To evaluate the effectiveness of the regulariz-
ers with model compression and quantization, we apply state-of-the-art compression/quantization
techniques, DKM |Cho et al.| (2021), LSQ [Esser et al.| (2019), EWGS |Lee et al.| (2021)), Bias cor-
rection [Nagel et al,| (2019), DFQ [Nagel et al.| (2019), and AdaRound [Nagel et al.| (2020) to the
pre-trained model with Range Regularizer. Except EWGS, since other works do not provide official
implementation, we had to implement those techniques ourselves and for Bias correction, DFQ, and
AdaRound, we used Al Model Efficiency Toolkit|'} We follow the same hyper-parameters used in
the works, but we apply compression and quantization for all layers (and activations in case of
quantization) including the first and last layers. It is important to compress/quantize all layers
including first and last layers considering computation burden at the first layer with a large con-
volutional filter size such as 7x7 convolutions in the first layer of ResNet and the large number
of weights in the last linear layer, e.g., 1.2M of weights in the last layer of MobileNet-V1 which
has 4.2M of weights in total. We have demonstrated this burden in Table [T] for more clarity. Due
to the outliers and wide weight ranges in the first and last layers, quantizing all layers have less
accuracy than quantizing a model excluding the first and layer layers as shown in Table[I} We rep-

'"https://quic.github.io/aimet-pages/
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Table 2: Top-1 accuracies (%) of MobileNet-V1 and V2 on ImageNet-1K using PTQ methods with
4bit weight and 8bit activation quantization. None: quantizing without any advanced PTQ tech-
niques, DFQ [Nagel et al.|(2019), AR: AdaRound [Nagel et al.|(2020)

PRE-TRAIN (FP32) MOBILENET-V1 0.25 MOBILENET-V1 1.0
REGULARIZATION FP32 | NONE DFQ AR | FP32 | NONE DFQ AR
BASELINE (L2) 5543 | 041 13.03 45.88 | 74.12 | 2.67 54.06 70.42
BASELINE (10x L2) | 52.40 | 11.23 18.85 44.83 | 72.67 | 13.41 57.68 69.23
KURE \ 52.83 \ 3.54 21.87 48.32 \ 72.50 \ 53.69 59.21 60.51
R_LINF 53.48 | 13.30 29.10 50.76 | 73.65 | 61.73 53.00 72.28
R.M 53.30 | 27.72 31.02 51.17 | 73.54 | 61.66 65.06 72.29
\ MOBILENET-V2 0.25 \ MOBILENET-V2 1.0
BASELINE (L2) 53.90 | 0.73 17.27 49.49 | 73.08 | 2.57 56.56 71.29
BASELINE (10X L2) | 49.25 | 0.96 0.10 45.12 | 71.00 | 4.17 0.09 68.06
KURE \ 52.80 \ 1598 27.39 50.96 \ 72.49 \ 39.21 62.49 71.68
R_LINF 53.40 | 13.08 26.51 51.68 | 72.64 | 59.95 62.39 71.76
R.M 52.82 | 31.11 27.00 51.12 | 72.73 | 60.03 66.04 71.89

resent L, range-regularization as R_Lin f, Margin range-regularization as R_} and Soft-min-max
range-regularization as R_Smm in the results.

4.2 MODEL QUANTIZATION
4.2.1 POST-TRAINING QUANTIZATION, PTQ WITH R?

We compare models trained using R? and other weight regularization, L2, heavy L2, and KURE
Shkolnik et al.| (2020) and quantized using PTQ methods such as DFQ |Nagel et al.[ (2019) and
AdaRound |Nagel et al.| (2020). There are two major techniques in DFQ, bias correction compen-
sating bias in activation and cross-layer equalization applying scale factor per channel to make all
channels in a layer have similar weight range. AdaRound adaptively rounds weights to quantization
bins instead of naive nearest rounding.

As shown in Table 2| models trained with R? are more quantization friendly than other regulariza-
tions. KURE makes the weight distribution uniform, therefore, can reduce outliers as a side-effect
while keeping a wide weight range. Therefore, KURE is more effective than L2 norm, but R? shows
the best accuracy as it reduces outliers as well as weight range. On the other hand, heavy L2 regu-
larization (10x L2) makes weight ranges smaller, but it does not remove outliers, therefore prove to
be effective here.

Even without advanced PTQ approaches such as DFQ and AdaRound, models trained with R?
can be reasonably quantized without any further fine-tuning. In Table |2, None with R? shows
significantly higher accuracy than other regularization. The models with R? have good weight
distribution already from pre-training so that they can be quantized with fairly high quantization
accuracies.

Cross-layer equalization in DFQ does not help PTQ accuracy for models trained with KURE and
R? as comapred to quantizing without any advanced PTQ approaches, None column in Table
It might be because models trained with KURE and R? do not have outliers therefore, per channel
weight equalization is not required. Cross-layer equalization might make PTQ unstable for those
models trained with R? as it propagates estimation errors from cross-layer equalization itself and
bias absorption.

4.2.2 QUANTIZATION-AWARE TRAINING, QAT WITH R?

We apply state-of-the-art quantization techniques like PACT |Choi et al.| (2018)) while training the
models from scratch using R2. For other quantization aware training methods like, EWGS [Lee
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Table 3: Top-1 accuracies (%) of MobileNet-V1 and V2 on ImageNet-1K with EWGS varying
model size. Weights and activations are quantized with the same bit.

MOBILENET-V 1

WIDTH FACTOR 0.25 \ 0.5 \ 1.0
NUMBER OF OF WEIGHTS (M) | 0.47 \ 1.33 \ 4.23
PRE-TRAIN / QUANTIZATION | FP32  2BIT | FP32  2BIT | FP32  2BIT
w/0 R? 55.43 20.85 | 66.51 38.77 | 74.12 55.96
KURE 52.83 22.16 | 63.99 39.37 | 72.50 57.80
R_LINF 53.48 26.04 | 65.68 41.22 | 73.65 59.05
R_.M 53.30 24.35 | 65.83 42.61 | 73.54 58.41
MOBILENET-V?2
WIDTH FACTOR 0.25 \ 0.5 \ 1.0
NUMBER OF OF WEIGHTS (M) | 1.52 \ 1.97 \ 3.51
w/0 R? 53.90 27.82 | 65.55 39.25 | 73.08 53.93
KURE 52.80 26.86 | 64.64 38.51 | 72.49 53.97
R_LINF 53.40 30.56 | 65.09 42.55 | 72.64 56.35
R_.M 52.82 29.61 | 64.86 43.78 | 72.73 57.36

Table 4: Top-1 accuracies (%) of ResNet18 on ImageNet-1K with various QAT methods. Weights
and activations are quantized with the same bit. We used the pre-trained model without R? from
torchvision.

QAT METHOD \ PACT \ LSQ \ EWGS
REGULARIZATION | FP32 ACC. | 2BIT ~ 4BIT | 2BIT  4BIT | 2BIT  4BIT
w/0 R? 69.76 51.97 66.90 | 58.33 69.90 | 65.42 70.19
R_LINF 70.15 55.26 68.45 | 62.23 69.55 | 65.72 70.17
R.M 70.08 56.24 68.30 | 62.25 69.56 | 64.27 69.77
R_SMM 69.84 55.64 68.36 | 62.47 69.45 | 64.94 69.80

et al.|(2021) and LSQ [Esser et al.|(2019) we initialize the model to pre-trained ResNet-18 (RN) |[He
et al. (2016), MobileNet-V1 (MN1) Howard et al.|(2017) and MobileNet-V2 (MN2) |Sandler et al.
(2018) with range-regularization.

Table[3|shows 2 bit weight and activation quantization result of MobileNet-V1 and V2 using EWGS
Lee et al.| (2021) with various regularization such as w/o R? (only with L2 norm), KURE |Shkolnik
et al. (2020), and our range-regularization. For both the models with varying model sizes, R?
outperforms the models trained with only L2 norm or KURE. Without R2, accuracy of MobileNet-
V1 2bit quantization using EWGS declines from 59.10% to 55.96% when we quantize all layers
including the first and last layers as shown previosuly in Table[I] This is because the first and last
layers have wide weight ranges and many outliers as shown in Figure [2| Our approach effectively
reduces the outliers in the first and last layer which enables the 2bit quantized model to achieve
similar accuracy to the case with original EWGS results where the first and last layer of the model
remain in FP32.

As shown in Table[d] range-regularization helps the quantization techniques in improving their accu-
racy, especially for extremely low bit quantization such as at 2 bit while it shows similar accuracies
with 4 bit. For example, all R?s improve 2 bit quantization accuracy with LSQ to over than 62%
from 58%, but there is no noticeable difference in 4 bit LSQ accuracies with and without R2. The
reason why range-regularization would not help much for higher bit like 4 bit quantization is that
QAT can effectively represent outliers using many bits.



Under review as a conference paper at ICLR 2024

Table 5: Top-1 accuracies(%) of compression using DKM and range-regularization with ResNet18
(RN), MobileNet-V1 (MN1) on ImageNet.

METHOD R? RN MNI1

NONE 58.97 45.54
R_LINF 59.52 49.74
R.M 59.70 47.21
R.SMM 59.27 52.58

NONE 67.64 65.95
R_LINF 68.53 67.06
R.M 68.33 67.50
R_.SMM 68.63 67.62

NONE 70.22  69.29
R_LINF 70.34 69.43
R.M 70.33  68.52
R.SMM 70.52 69.63

DKM 1-BIT, 1-DIM

DKM 2-BIT, 1-DIM

DKM 4-BIT, 1-DIM

Table 6: Top-1 accuracies(%) of compression using multi-dimensional DKM and range-
regularization with ResNet18 (RN), MobileNet_V1 (MN1) on ImageNet.

METHOD R? RN MN1

NONE 63.52 48.16
R_.SMM 64.64 53.99

NONE 64.89 58.55
R.SMM 66.10 60.05

DKM 2-BIT, 2-DIM

DKM 4-BIT, 4-DIM

Interestingly, soft-min-max regularization does not seem to be as good as L., or margin for quan-
tization. As discussed in Section [3} soft-min-max regularization allows us to have an asymmetric
weight distribution so that it would be more effective for model compression instead of symmetric
model quantization.

4.3 MODEL COMPRESSION

We evaluate the effectiveness of range-regularization for compression with the state-of-the-art com-
;gression technique, DKM |Cho et al.[ (2021)), for ResNet-18 and MobileNet-V1. The bit-dim ratio,
7 is an important factor in the DKM algorithm which effectively defines the kind of compression a
DKM palettized model would see. We ran these experiments for both scalar and vector palettiza-
tion. For scalar palettization(dim = 1) we ran 1 bit, 2 bit and 4 bit compression. These experiments
would yield roughly 32x, 16x and 8x compressed models respectively. Table [5] shows that range-
regularization significantly improves accuracy from original scalar palettized DKM 1 bit, 2 bit and
4 bit models. As we discussed, there is no significant difference for higher bit compression like 4
bit because many bit compression can also cover outliers even with out R2.

We also expand the application of range-regularization to vector palettization(dim > 1) DKM |Cho
et al.| (2021) as demonstrated in Table @ For these experiments, we kept the effective bit-dim ratio,
g equivalent to 1 so as to see variation across the most heavily compressed model which would be
close to 32x compressed. Since a vector palettized model will require range constraining for all di-
mensions, we applied multi-dimensional range-regularization for all layers that would be palettized
during compression. For vector palettized ResNet-18 there is an average absolute improvement of
> 1% using models pre-trained with range-regularization, and for vector palettized MobileNet-V1
it the gain ranges from 5% to 3%.

Finally we also validated that R? scales to other domains as well by applying it in compressing
MobileBERT [Sun et al.| (2020). For Question Answering (QNLI) Rajpurkar et al. (2016) using



Under review as a conference paper at ICLR 2024

MobileBERT, the proposed regularization improved the performance of the model by 2% absolute as
demonstrated in Table[7] Note that we applied R? to a QNLI fine-tuning task based on a pre-trained
MobileBERT Wolf et al.|(2020). It might be necessary to apply R? to the entire training task of
MobileBERT from scratch so that R? would have more chances to get effective weight distribution
for model compression. Through these experiments across a variety of tasks(Image Classification,
Question Answering etc.) we can also see that the application of the proposed range-regularizers is
task-invariant and yields solid results across domains.

Table 7: Question-answering NLI (QNLI) accuracies of MobileBERT using single dimension DKM

METHOD PRE-TRAIN  1-BIT 2-BIT
DKM 90.41 61.34 80.12
DKM + R_LINF 90.66 63.17 82.13
DKM + R.M 89.09 61.80 80.98

DKM + R_.SMM 90.83 61.49 80.87

5 CONCLUSION

In this paper, we introduced range regularization as an effective technique to get rid of outliers
in the weight distribution during training. This serves as a good initialization for state of the art
post training quantization, quantization aware training and compression strategies, therefore can be
coupled with any of them. This helps to augment the accuracy gained from such techniques and
is invariant to the quantization or compression algorithm. With the three proposed formulations
of range-regularization we wanted to demonstrate that there can multiple approaches of defining
R? and the final metric depends on these formulations. We also demonstrated how the proposed
method converts a normally distributed weight to a more desired uniform distribution for model
quantization. Finally, we establish that range regularization doesn’t affect the performance of the
floating point models as well and in some over parameterized models it also has a regularization
effect to address over-fitting. We also observe that for some quantization techniques like EWGS the
incremental benefit of applying range regularization is marginal especially at higher bits.
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