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ABSTRACT

This paper aims to extract faithful interactions between input variables encoded
by a deep neural network (DNN). Recent studies (Ren et al., 2023d; Li & Zhang,
2023b) provided lots of mathematical evidence to support that interactions can
be roughly considered as primitive inference patterns encoded by a DNN, given
that a small number of interactions can accurately explain the network outputs on
any randomly masked samples. However, the instability of interactions to small
perturbations on the input still hinders people from taking interactions as rigor-
ous primitives for the network inference. Therefore, in this paper, we propose to
extract on-manifold interactions, which are shared by different perturbed inputs.
The extracted on-manifold interactions can also explain primitives for adversarial
vulnerability. The code will be released after the acceptance of the paper.

1 INTRODUCTION

In recent years, explainable artificial intelligence (XAI) has been an issue of great interest. Within
the realm of XAI, one of the ultimate questions is whether the inference logic used by a well-trained
deep neural network (DNN) can be faithfully explained by a set of symbolic concepts or primi-
tives (Zhou et al., 2016; Wu et al., 2018; Kim et al., 2018). This question involves both mathematics
and cognitive science. Up to now, people have not reached a consensus on the definition of concepts
in DNNs, due to the inherent challenge of formulating concepts in human cognition.

In spite of that, if we ignore cognitive issues, some recent research in interactions has provided an
alternative way of analyzing the knowledge or primitives encoded by DNNs. Ren et al. (2023a)
defined the measurement of interactions between input variables encoded by a DNN. For example,
let us consider the sentence “she always sees the world through rose-colored glasses” as the input
of a trained DNN, where each word is considered as an input variable. In this sentence, the DNN
may encode the co-occurrence of words in S = {through, rose, -colored, glasses} to represent the
meaning of being optimistic. Thus, S is considered to contain an AND interaction between these
four words, which has a numerical effect (denoted by I(S)) to push the output towards optimism.

Although there is no justification for whether such interactions fully align with human cognition,
these studies have nonetheless provided various evidence for considering these interactions as prim-
itives that are used by the DNN to compute the output score.
(1) Sparsity. Ren et al. (2023d) have proven that, under some common conditions1, a well-trained
DNN usually learns just a small number of interactions with salient effects. Effects of all other in-
teractions w.r.t. most subsets of input variables are almost zero.
(2) Universal matching. Li & Zhang (2023a) have further proven that the complex inference logic
(i.e., the varying output scores on an exponential number of masked input samples) of the DNN can
be universally mimicked/matched by such a small number of interactions.
(3) Generalization power. Li & Zhang (2023b) have demonstrated that these interactions have good
generalization power and discrimination power.

1There are three assumptions in (Ren et al., 2023d): (1) The high-order derivatives of the model output
w.r.t. the input are all zero; (2) Let us randomly mask some input variables to generate lots of masked samples.
The average confidence of the model inference over different masked samples monotonically decreases when
we mask more input variables. (3) The decreasing speed of the average inference confidence is not faster than
a polynomial function along with the ratio of input variables being masked.
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Figure 1: Interactions extracted from (Li & Zhang, 2023a) are sensitive to noises in the input. Small
noises make the method extract out-of-distribution (OOD) interactions. Red rectangles on the right
show some sets (S1, . . . , S4) of image patches that have different interactions in the noisy input.

The above proofs and experimental findings have partially guaranteed the worthiness of interactions.
Please see the related work section for how interactions are used to explain deep learning.

However, the previously defined interaction is usually not stable to small perturbations on the input,
which hinders the interactions from being fully considered as primitives encoded by a DNN. Specifi-
cally, given a DNN and an input sample (the blue dot in Figure 1), we find that small perturbations on
the input (the orange dot in Figure 1) may make the algorithm extract a different set of interactions,
i.e., generating many out-of-distribution interactions as shown in Figure 1. Although these inter-
actions can still well match the network output following the aforementioned universal-matching
property, such instability of the extracted interactions hinders people from rigorously taking interac-
tions as primitive patterns of the network inference.

To this end, ideal interactions are supposed to be stably extracted under different variations of the
input, so that we can consider such interactions as common primitives encoded by the DNN. In fact,
such stable interactions can be analogic to on-manifold features in a DNN. When the input is ran-
domly perturbed2, features in intermediate layers of the DNN usually primarily change along some
specific directions, rather than change along any arbitrary direction. This phenomenon indicates the
existence of a feature manifold. Similarly, given a perturbed input, the interactions are also expected
to be stably extracted from a specific manifold. Such on-manifold interactions are considered ro-
bust to perturbations. In other words, we hope to extract similar sets of salient interactions from
differently perturbed inputs, rather than obtain many out-of-distribution (OOD) interactions.

Therefore, in this study, we propose a method to extract robust on-manifold interactions encoded by
a DNN. We perturb each input sample with different random noises, and then extract similar sets
of interactions from different perturbed inputs. To this end, we revise the objective of extracting
interactions to penalize OOD interactions and meanwhile maintain the sparsity of interactions.

Furthermore, the robustness of on-manifold interactions to noises makes the on-manifold interac-
tion more likely to explain primitives of adversarial vulnerability than traditional interactions. To
be precise, we can disentangle the overall change of network output under an input perturbation
into the changes of different interaction effects, i.e., ∆v(x) =

∑
S ∆I(S), where v(x) denotes the

network output on the input x. When the input x is perturbed by a noise, ∆v(x) denotes the change
of the network output, and ∆I(S|x) denotes the change of interaction effects of S. In particular, our
on-manifold interactions well explain findings in previous studies (Ren et al., 2021), i.e., complex
interactions between lots of input variables are usually more vulnerable to adversarial attacks than
simple interactions between a few input variables. The on-manifold interactions also help us under-
stand the effectiveness of adversarial training, i.e., enhancing the robustness of complex interactions.

2 RELATED WORKS

Extracting interactions between input variables has been an emerging direction for explaining DNNs
in recent years. Some studies (Murdoch et al., 2018; Singh et al., 2019; Jin et al., 2020) quantified the
numerical contribution of a subset of input variables to the output features at each layer in LSTMs.
Sundararajan et al. (2020); Janizek et al. (2021); Tsai et al. (2022) defined interactions between
input variables of a DNN in the framework of game theory. Recently, Ren et al. (2023a) introduced
the AND interaction between input variables based on Harsanyi dividend (Harsanyi, 1959), and
considered the interaction between input variables as concepts encoded in the DNN.

2Here, we do not consider adversarial perturbations.
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The above interactions have been used to explain deep learning in various perspectives. Ren et al.
(2023c) proved that Bayesian neural networks were less likely to encode complex interactions. Deng
et al. (2022) identified a bottleneck of the DNN’s capacity in learning interactions, i.e., DNNs tended
to encode bivariate interactions with very simple or very complex contexts, while bivariate interac-
tions with contexts of intermediate complexity were hard to learn. Different types of interaction
have been used to explain the generalization ability (Zhang et al., 2021), adversarial robustness (Ren
et al., 2021), and adversarial transferability (Wang et al., 2021) of DNNs. Ren et al. (2023b) have
used interactions to learn optimal baseline values for computing Shapley values (Shapley, 1953).

3 EXTRACTING ROBUST INTERACTIONS

3.1 PRELIMINARY: INTERACTIONS

Given an input x∈Rn and a function v : Rn→R, the function may encode the interaction between
different input variables. For example, in an input image with n patches, the function may encode
the interaction between different patches to represent certain objects. Li & Zhang (2023a) have
defined two types of interaction effects between input variables that affect the function output v(x).

AND interaction. We use N = {1, 2, . . . , n} to denote the set of the n variables in x. Let us use
AND interactions between input variables to explain the target function v(x). For each subset of
input variables S ⊆ N , the numerical effect of the AND interaction between variables in S on v(x)
is defined as Harsanyi dividend (Harsanyi, 1959), as follows.

Iand(S|x) =
∑

T⊆S
(−1)|S|−|T |v(xT ) (1)

where |S| denotes the number of input variables in S. In particular, Iand(∅|x) = v(x∅). For each
subset T ⊆ S, xT denotes a masked input where we mask variables in N \ T .3 Then, v(xT ) denotes
the function output on the masked input xT . Accordingly, v(xN )=v(x) denotes the function output
on the original input x, and v(x∅) denotes the output when we mask all variables in the input.

Intuitively, the above interaction represents the AND relationship between input variables. For ex-
ample, in the sentence “she always sees the world through rose-colored glasses,” the co-appearance
of words in S={through, rose, -colored, glasses} successfully activates an AND relationship, and
makes an interaction effect Iand(S|x) to push the output towards the meaning of being optimistic.
Masking any word in S will break the AND relationship and remove the effect, i.e., making
Iand(S|xmasked)=0. If Iand(S|x)> 0 (or Iand(S|x)< 0), it means that the interaction in S has a positive
(or negative) effect on the output score v(x). If Iand(S|x) ≈ 0, it indicates that the AND interaction
within S has almost no effect on the output.

OR interaction. Li & Zhang (2023a) have also extended the AND interaction to define OR interac-
tions to explain the function v(x), as follows.

Ior(S|x) = −
∑

T⊆S
(−1)|S|−|T |v(xN\T ) (2)

The OR interaction represents the OR relationship among input variables. For example, to predict
the sentiment of the sentence “it is really exciting and touching”, a function may encode the OR
interaction in S = {exciting, touching} to represent the positive sentiment. The existence of either
word in S will make an effect Ior(S|x) on the output score. In particular, Ior(∅|x)=v(x∅).

For each subset S ⊆ N with interaction effects Iand(S|x) and Ior(S|x), its interaction order is defined
as order(S)= |S|, i.e., the number of input variables involved in S. The order of interactions enables
us to analyze the stability of interactions in a more precise way.

Taking salient AND-OR interactions as primitive inference patterns encoded by a DNN. Let
us consider a DNN v trained on a dataset D. A well-trained DNN usually encodes complex in-
teractions between input variables, including both AND interactions and OR interactions. Thus,
Li & Zhang (2023a) proposed a method to simultaneously extract AND interactions Iand(S|x)
and OR interactions Ior(S|x) from the network output v(x) ∈ R.4 Given any masked sam-
ple xS w.r.t. S ⊆ N , Li & Zhang (2023a) have proposed to learn a decomposition of network

3Each variable xi (i ∈ N \ T ) is masked by replacing its value to the baseline value bi, i.e., setting
(xT )i = bi. In this study, we adopt the setting of baseline values in (Ren et al., 2023c).

4For example, in the classification task, we set v(x) = log
py(x)

1−py(x)
∈ R, where py(x) denotes the predicted

probability of the input x belonging to the ground-truth category (i.e., the y-th category).
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outputs v(xS) = vand(xS) + vor(xS), towards the sparsest interactions. The vand(xS) term is ex-
plained by AND interactions, and the vor(xS) term is explained by OR interactions, subject to
Iand(∅|x) = vand(x∅) = v(∅), Ior(∅|x) = vor(x∅) = 0.

v(xS)=vand(xS) + vor(xS), vand(xS)=
∑

T⊆S
Iand(T |x), vor(xS)=

∑
T∩S ̸=∅

Ior(T |x) (3)

Although there is no theoretical analysis about whether such interactions fully align with human
cognition, a set of mathematical properties have been proven, which enable us to consider these
interactions as primitive inference patterns encoded by the DNN.

(1) Universal matching. Eq. (3) shows the universal matching property of AND-OR interactions.
Given an input sample x, we can randomly mask x and generate a total of 2n different masked
samples {xS} w.r.t. all 2n subsets S⊆N . Then, given any one of the 2n masked samples, the output
of a DNN could always be well mimicked by the sum of both AND interactions and OR interactions.

(2) Sparsity. According to the definition of interactions, a model may encode up to 2n AND inter-
actions and 2n OR interactions w.r.t. all subsets S ⊆ N . However, Ren et al. (2023d) have proven
that in a well-trained DNN satisfying certain conditions,1 only a small number of subsets S have
considerable AND interaction effects Iand(S). The AND interaction effects of most subsets S are
almost zero, i.e., Iand(S|x) ≈ 0. Considering that the OR interactions can also be considered as
AND interactions from another perspective (please see Appendix A for the proof), we can roughly
consider that the OR interactions in a well-trained DNN also tend to be sparse.

(3) Generalization power. Li & Zhang (2023b) have discovered that in the classification task, the
AND interactions have a good generalization power. Given DNNs trained for the same task, people
can usually extract similar interactions on the same sample from different DNNs. Besides, the salient
interactions are found discriminative for classification.

3.2 ILLUSTRATING THE INSTABILITY PROBLEM WITH INTERACTIONS

In this study, we discover some mathematical flaws in the above definition of AND-OR interactions.
Although the AND-OR interaction satisfies the aforementioned properties of the universal matching,
sparsity, and generaization power, it is still hard to consider these interactions as faithful primitive
inference patterns encoded by the DNN.

Non-uniqueness of interactions. Given a DNN and an input sample, we find that we may extract
different sets of AND-OR interactions from the same DNN, if we decompose the network output
v(xS) in different ways. For example, let us consider a toy function f(x) = 3(x1 ∧ x2) + (x1 ∨
x2) with the input x = [x1, x2]

T = [1, 1]T , xi ∈ {0, 1}. ∧ and ∨ denote the logical AND and
OR operations, respectively. If we decompose f(xS) = 3((xS)1 ∧ (xS)2) + ((xS)1 ∨ (xS)2) =
vand(xS)+vor(xS) as vand(xS) = 3((xS)1∧(xS)2) and vor(xS) = ((xS)1∨(xS)2), then the function
output is explained as an AND interaction effect Iand({x1, x2}|x) = 3 and an OR interaction effect
Ior({x1, x2}|x) = 1. Alternatively, we can also rewrite the same function as f(x) = 2(x1 ∧ x2) +
x1 + x2. Then, f(xS) can be decomposed into vand(xS) = 2((xS)1 ∧ (xS)2) + (xS)1 + (xS)2
and vor(xS) = 0. In this case, we obtain three AND interaction effects (i.e., Iand({x1, x2}|x) =
2, Iand({x1}|x) = 1, and Iand({x2}|x) = 1), without any OR interaction effects. Thus, the extraction
of AND-OR interactions highly depends on the decomposition of the output score.

Sparsity does not mean stability. Li & Zhang (2023a) propose to extract the sparsest interactions
from each input sample, to tackle the non-uniqueness problem. Specifically, they decompose the
network output v(xS) into vand(xS) = 0.5 · v(xS) + γS and vand(xS) = 0.5 · v(xS) − γS , where
{γS}S⊆N are a set of learnable parameters that determine the decomposition of output scores for
AND and OR interactions. Then, they learn the parameters {γS} by minimizing the following
LASSO-like loss to obtain sparse interactions.

min
{γS}

∑
S⊆N

[|Iand(S|x)|+ |Ior(S|x)|] (4)

However, the sparsest interactions are usually quite sensitive to small noises in the input. In fact,
faithful interactions are expected to be stably extracted from different but similar samples. For exam-
ple, given two similar images, similar interactions are supposed to be extracted from similar image
patches in two images. Otherwise, if the extracted interactions are sensitive to small perturbations on
image pixels for vision models or on word embeddings for language models, then these interactions
may be overfitted to OOD features encoded by the DNN.
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Figure 2: Comparison of numerical effects between interactions extracted from the original input
sample and interactions extracted from the perturbed inputs.

Table 1: The ratio of OOD interactions in salient interactions extracted from the perturbed inputs.
Dataset census TV news CoLA SST-2 CIFAR-10
Model MLP-5 MLP-8 MLP-5 MLP-8 LSTM LSTM ResNet-20 LLaMA

(Li & Zhang, 2023a) 24.48% 27.88% 22.37% 26.59% 6.87% 9.37% 17.82% 16.39%
On-manifold interaction 8.40% 11.55% 7.34% 14.03% 2.66% 2.57% 7.91% 8.46%

Besides, the difficulty of optimizing the above loss function is another reason for the instability of
interactions. When we use different initializations of γS , we will obtain different sets of interactions
with similar loss values. Such instability makes it hard to consider interactions as primitives for the
network inference.

Experimental verification of the instability of interactions. To this end, we conducted an exper-
iment to verify the instability of interactions. Using a ResNet-20 (He et al., 2016) trained on the
CIFAR-10 dataset (Krizhevsky, 2012), we added small Gaussian noises (δ ∼ N (0, 0.12I)) on each
input image x. We used Eq. (4) to compute the interactions in the original image and the interactions
in the perturbed image, respectively. Figure 2 shows that the small perturbations on the image pixels
caused us to extract different interactions. For some sets of input variables S ⊆ N , the interaction
Iand(S|x) and Ior(S|x) extracted from the original input image based on Eq. (4) was fully different
from that extracted from the perturbed input image (Iand(S|x+ δ) or Ior(S|x+ δ)).

In addition, we also conducted another experiment to count the number of OOD interactions ex-
tracted from the perturbed inputs. Given the original input sample x, we perturbed x by K = 3
Gaussian noises {δ(k)}k=1,2,...,K subject to δ(k) ∼ N (0, 0.052I), and obtained K perturbed inputs
x(k) = x+δ(k). Then, we computed the interaction effects (Iand(S|x) and Ior(S|x)) in the original input
x and interaction effects (Iand(S|x(k)) and Ior(S|x(k))) in the perturbed inputs by optimizing Eq. (4),
respectively. Let S(ori)

and (x) = {S ⊆ N ||Iand(S|x)| ≥ τsalient} and S(ori)
or (x) = {S ⊆ N ||Ior(S|x)| ≥ τsalient}

denote salient AND interactions and OR interactions extracted from the original input sample, re-
spectively. S(k)

and (x) = {S ⊆ N ||Iand(S|x(k))| ≥ τsalient} and S(k)
or (x) = {S ⊆ N ||Ior(S|x(k))| ≥ τsalient}

denote salient AND-OR interactions extracted from the k-th perturbed input. We set τsalient =
0.2 · Imax(x) for tabular datasets and set τsalient = 0.05 · Imax(x) for language and image datasets, where
Imax(x) = max(maxS(|Iand(S|x)|),maxS(|Ior(S|x)|)) represents the maximum absolute interaction ef-
fect over all AND-OR interactions extracted from x. The newly emerging salient interactions in
S(k)

and \ S
(ori)
and and S(k)

or \ S(ori)
or were considered OOD AND-OR interactions. The first row in Table 1

reports the average ratio of OOD interactions in salient interactions extracted from the perturbed

inputs, i.e., ExEk
|S(k)

and (x)\S(ori)
and (x)|+|S(k)

or (x)\S(ori)
or (x)|

|S(k)
and (x)|+|S(k)

or (x)|
. Under small input perturbations, the loss function

in Eq. (4) usually generated many OOD interactions.

3.3 EXTRACTING ROBUST ON-MANIFOLD INTERACTIONS

Considering the discovered instability problem, we further propose to reformulate the objective
function of extracting interactions, which aims to simultaneously constrain both the sparsity and
stability (robustness) of interactions. We are inspired by the common hypothesis of the feature
manifold in the high-dimensional feature space. Thus, we also hope to extract AND-OR interactions
in a specific manifold, instead of obtaining noisy or unstable interactions, when we add small noises
to the input.

We can understand on-manifold interactions as follows. Given the original input sample x ∈ Rn

and K Gaussian noises {δ(k)}k=1,2,...,K subject to δ(k) ∼ N (0, σ2I) ∈ Rn, we obtain K perturbed
inputs x(k) = x + δ(k). Then, we extract K sets of AND-OR interactions from the K perturbed
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inputs, respectively. If there is a large overlap between each pair of interaction sets, then we consider
such interactions shared by different perturbed inputs to be on-manifold.

In particular, on-manifold interactions mean that different perturbed inputs have similar sets of
interactions, considering it has been proven that each input only has a few salient interactions.
Noises on the input may mainly change the effect values of the shared interactions, rather than
generate a fully new set of interactions. We can consider the set/space of interactions as the manifold.
In comparison, off-manifold interactions mean that we can obtain different sets of salient interactions
under different noises.

In order to extract on-manifold interactions, we decompose the network output on each perturbed
input as v(x

(k)
S ) = vand(x

(k)
S ) + vor(x

(k)
S ), just like in (Li & Zhang, 2023a), where v(x

(k)
S ) denotes the

network output when we mask input variables in N \S in the k-th perturbed input x(k). vand(x
(k)
S ) =

0.5·v(x(k)
S )+γ

(k)
S and vor(x

(k)
S ) = 0.5·v(x(k)

S )−γ(k)
S . {γ(k)

S }S⊆N denotes the set of learnable parameters
for the k-th perturbed input, 1 ≤ k ≤ K. In this way, the most straightforward way of extracting
sparse interactions shared by different perturbed inputs while penalizing OOD interactions can be
formulated as follows.

min{γ(k)
S }

∑
S⊆N

[
∥Iand,S∥∞ + ∥Ior,S∥∞

]
(5)

where Iand,S = [Iand(S|x(1)), Iand(S|x(2)), . . . , Iand(S|x(K))]T ∈ RK denotes the vector of all AND
interaction effects of the subset S extracted from K perturbed inputs, and Ior,S = [Ior(S|x(1)),
Ior(S|x(2)), . . . , Ior(S|x(K))]T ∈ RK denotes the vector of all OR interaction effects. ∥ · ∥∞ repre-
sents the ℓ∞-norm of the vector. This objective extends the LASSO loss by applying the ℓ∞-norm
to penalize the interaction with the most significant numerical effect, which also penalizes the po-
tential OOD interactions. In other words, if the subset S has a significant interaction effect in a
perturbed input, then the same set is also expected to have considerable interaction effects in other
perturbed inputs. On the other hand, non-salient interactions are supposed to also keep silent on all
K perturbed inputs. In this way, interactions extracted from K perturbed inputs are pushed to be
similar and are considered on-manifold interactions.

Sharing decomposition. Directly optimizing Eq. (5) is difficult, so we also apply a trick to boost
the computational efficiency. The K different perturbed inputs are supposed to have similar decom-
positions of output scores. Thus, we slightly revise the setting to vand(x

(k)
S )=0.5 · v(x(k)

S ) + γ̄S + γ
(k)
S

and vor(x
(k)
S ) = 0.5 · v(x(k)

S ) − γ̄S − γ
(k)
S , where γ̄S represents the common decomposition of the

output score shared by K perturbed inputs, and γ
(k)
S represents the distinct term for each perturbed

input. In particular, we limit the distinct term γ
(k)
S to a small range, i.e., |γ(k)

S | ≤ τ , subject to
τ = 0.02 · Ek[|v(x(k)) − v(x

(k)

∅ )|]. During the optimization, we clamp the value of γ
(k)
S to be in the

range [−τ, τ ] after the update of γ(k)
S in each iteration.

Towards the redundancy of interactions. The aforementioned non-uniqueness problem may gen-
erate redundant interactions during the loss minimization in Eq.( 5). To be precise, for each subset
S ⊆ N , the loss exclusively penalizes the most salient interaction effect maxk |Iand(S|x(k))| and
maxk |Ior(S|x(k))| over K perturbed inputs, but it does not constrain interaction effects extracted
from the other K − 1 perturbed inputs. Thus, the algorithm may find a short-cut solution that uses
unconstrained interactions to represent the effect of the salient interaction, which actually transfers
the penalty to unconstrained interactions. This will generate redundant and non-transferable inter-
actions. Please see Appendix C.1 for details. Therefore, we further revise the above loss function to
incorporate some penalties of non-salient interaction effects.
min{γ̄S ,γ

(k)
S

}L = Lsalient + λLnon-salient,

Lsalient =
∑

S⊆N

[∑
k∈Ωand(S)

|Iand(S|x(k))|+
∑

k∈Ωor(S)
|Ior(S|x(k))|

]
,

Lnon-salient =
∑

S⊆N

[∑
k∈{1,2,...,K}\Ωand(S)

|Iand(S|x(k))|+
∑

k∈{1,2,...,K}\Ωor(S)
|Ior(S|x(k))|

] (6)

In the above loss, the Lsalient term extends the penalty for the maximum interaction in Eq. (5) to the
set of top-r most salient AND-OR effects among all K interaction effects for each subset S ⊆ N .
Ωand(S) and Ωor(S) denote the set of top-r salient AND interactions and OR interactions of S,
respectively. In addition, we also add small penalties Lnon-salient to other K−r non-salient interaction
effects, which are weighted by λ. In experiments, we set the number of perturbed inputs K = 3 and
the number of salient interactions r = 1. We set the weight λ = 0.1.
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Figure 3: Illustrating the stability of interactions with the 1st, 100th, 200th, 300th 400th, and 500th
largest effects, which were extracted from LLaMA. To reduce computational cost, we selected green
words as input variables and took other black words as the constant background. The blue axes
represent all AND-OR interactions sorted in the descending order. Orange lines show how the 1st,
100th, 200th, 300th 400th, and 500th-ranked interactions were ranked in the perturbed input (x+δ).

Modeling noises. There is a typical problem with interactions, i.e., small noises in the network
output may significantly affect the extraction of interactions, especially for complex interactions
between lots of variables. Specifically, let us suppose the network output v(x

(k)
S ) contains a tiny

Gaussian noise ϵ
(k)
S ∼ N(0, σ2

ϵ ), i.e., v(x(k)
S )← v(x

(k)
S ) + ϵ

(k)
S . Then, we can prove that Iand(S|x(k), v)

follows a Gaussian distribution with the variance σ2
I =2|S| ·σ2

ϵ . Please see Appendix B for the proof.
The large variance σ2

I indicates that small noises on network outputs may significantly change the
extracted interaction effects, especially for high-order interactions.

Thus, we propose to also learn to remove the noise term ϵ
(k)
S from the computation of AND-OR

interactions. We rewrite the decomposition as vand(x
(k)
S ) = 0.5 · (v(x(k)

S ) − ϵ
(k)
S ) + γ̄S + γ

(k)
S and

vor(x
(k)
S ) = 0.5·(v(x(k)

S )−ϵ(k)S )+γ̄S+γ
(k)
S . Thus, we simultaneously learn the parameters {ϵ(k)S }, {γ̄S},

and {γ(k)
S } by minimizing the loss function in Eq. (6). Similar to {γ(k)

S }, the values of {ϵ(k)S } are also
constrained in [−τ, τ ] where τ = 0.02 · Ek[|v(x(k))− v(x

(k)

∅ )|].

4 EXPERIMENTS

Datasets and models. In this section, we used Eq. (6) to extract on-manifold interactions in tabular
datasets, language datasets, and image datasets. We followed (Ren et al., 2023c) to train a 5-layer
MLP (namely MLP-5) and an 8-layer MLP (namely MLP-8) on two tabular datasets, including the
UCI census income dataset (Dua & Graff, 2017) (namely census) and the UCI TV News chan-
nel commercial detection dataset (Dua & Graff, 2017) (namely TV news). For language data, we
followed the settings in (Ren et al., 2023c) to train two three-layer unidirectional LSTM (Hochre-
iter & Schmidhuber, 1997) models on the SST-2 dataset (Socher et al., 2013) and on the CoLA
dataset (Warstadt et al., 2018), respectively. Besides, we also extracted interactions from the pre-
trained 7B LLaMA model (Touvron et al., 2023) on the sentence completion task. For image data,
we trained a ResNet-20 (He et al., 2016) on the CIFAR-10 (Krizhevsky, 2012) dataset.

For each input sample x in either a tabular dataset or an image dataset, we randomly sampled K = 3
noise vectors {δ(k)} from the Gaussian distribution N (0, σ2I) with σ = 0.05, and then added δ(k)

to the input x to obtain the perturbed input x(k) = x + δ(k). Besides, we used image patches in
each input image in the CIFAR-10 dataset, which were sampled by following (Ren et al., 2023c), as
input variables to extract interactions. For each input sentence of LSTM models, we also sampled
K = 3 noise vectors fromN (0, σ2I) with σ = 0.05, and we added noises to embeddings of input to-
kens/words. For the prompt sentence fed into the large language model LLaMA, we sampled noises
from the Gaussian distribution with σ = 0.01, and added them to embeddings of input tokens. If the
length of the sentence is larger than 10, we randomly selected 10 tokens as input variables. Figure 3
shows an example of interactions extracted from the LLaMA model. On-manifold interactions ex-
tracted from the original input and those extracted from the perturbed input were similar, while the
extracted traditional interactions (Li & Zhang, 2023a) were not similar.

4.1 TRADITIONAL INTERACTIONS V.S. ON-MANIFOLD INTERACTIONS

Comparison of sparsity. We conducted experiments to compare the sparsity of the on-manifold
interactions extracted using the loss function in Eq. (6), with the sparsity of the traditional interac-
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Figure 4: Similarity of interaction effects between interactions from different perturbed inputs
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Figure 5: Ratio of consistent interactions. On-manifold interactions exhibited much higher consis-
tency ratios than traditional interactions, especially for the comparison of high-order interactions.

tions extracted by (Li & Zhang, 2023a). To extract on-manifold interaction from the original input,
we jointly extracted K + 1 sets of interactions from the original input and other K perturbed inputs
(K = 3), respectively. In this way, the on-manifold interactions extracted from the original input
sample were compared to traditional interactions extracted from the same input sample. Figure 9 in
Appendix C.2 shows that although the proposed on-manifold interaction brought in a new loss for
the stability of interactions, it did not hurt the sparsity of interactions.

Furthermore, we proposed the following two metrics to quantify the stability of interaction effects
extracted under different input perturbations.

Metric 1: similarity between interaction effects under different input perturbations. Given
each input sample, let us extract K sets of interactions of the m-th order when we added K differ-
ent perturbations to the input sample. We extended the Jaccard similarity to compute the similarity

between K sets of m-order interactions, similaritym =
[ ∑

|S|=m

∑
op∈{and,or} mink(|Iop(S|x(k))|)∑

|S|=m

∑
op∈{and,or} maxk(|Iop(S|x(k))|)

]
. Figure 4

reports the average value over similarities computed on different input samples. To construct a com-
peting baseline, we also extracted traditional interaction effects based on Eq. (4) on each perturbed
input, so that we could also compute similarities from these interaction effects.

Figure 4 shows that under different input perturbations, traditional interactions extracted by (Li &
Zhang, 2023a) usually presented much lower similarity than on-manifold interactions, especially for
high-order (complex) interactions.

Metric 2: consistency of interactions in the original input and interactions in perturbed in-
puts. Given an input image x, we jointly extracted interaction effects in the original input and other
K perturbed inputs. Then, we selected the top 400 salient interactions with the largest values of
|Iand(S|x)| or |Ior(S|x)| in the original input, denoted by Sand(x) and Sor(x), respectively. For each
salient interaction, we examined whether its corresponding effects in perturbed inputs were consis-
tent with its effect value Iand(S|x) or Iand(S|x) in the original input. For example, let us focus on a
salient AND interaction Iand(S|x). We considered the interaction effect Iand(S|x(k)) to be consistent
with Iand(S|x) in the original input if and only if Iand(S|x(k)) contained more than 85% signals in
Iand(S|x), i.e., Iand(S|x(k))/Iand(S|x) ≥ 0.85. In this way, we computed the ratio of interaction effects
Iand(S|x(k)) in all K perturbed inputs that were consistent with the salient interaction Iand(S|x) in the
original input, denoted by αand,S = 1

K

∑
k 1(Iand(S|x(k))/Iand(S|x) ≥ 0.85). Then, Figure 5 reports

the average consistency ratio for all m-order interactions among the all top 400 salient interactions
in Sand(x) and Sor(x), i.e., Eop∈{and,or}E|S|=m,S∈Sop(x)[αop,S ]. Just like the comparison of the similarity
in Figure 4, we also used Eq. (4) to extract traditional interaction effects of the K + 1 inputs and
computed their consistency ratio as a baseline. Figure 5 shows that on-manifold interaction effects
exhibited much higher consistency ratios than traditional interaction effects.

4.2 EXPLAINING ADVERSARIAL VULNERABILITY

Faithfully extracting on-manifold interactions under different noises provides us with a new per-
spective on explaining the adversarial vulnerability of DNNs. Because the network output can be
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Figure 6: Average adversarial
effects on interactions of each
order.
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Figure 7: Variance (sensitivity) of interaction effects caused by different input perturbations.
We compared interaction effects extracted from normally-trained DNNs and adversarially-trained
DNNs. Adversarial training significantly reduced the variance of interaction effects.

disentangled into effects of different interactions, i.e., v(x) =
∑

S⊆N Iand(S|x) +
∑

S⊆N Ior(S|x) ac-
cording to Eq. (3), we can decompose the overall adversarial vulnerability ∆v(x) = v(xadv) − v(x)
into sensitivities of different interactions. I.e., ∆v(x) =

∑
S⊆N ∆Iand(S|x)+

∑
S⊆N ∆Ior(S|x), where

xadv denotes the adversarial example. ∆Iand(S|x) = Iand(S|xadv)− Iand(S|x) represents the change of
the numerical effect of the AND interaction in S caused by the adversarial perturbation. To this end,
previous studies have explored similar explanations for adversarial vulnerability. For example, Ren
et al. (2021) have used the sensitivity of multi-order bivariate interactions (Zhang et al., 2021) to
explain the adversarial robustness of DNNs.

Compared to explanations based on multi-order bivariate interaction, the AND-OR interactions in
this paper have been proven to have the sparsity, universal matching property, and generalization
power. Moreover, according to Figures 4 and 5, the on-manifold interactions proposed in this pa-
per are more robust to small perturbations on the input. Thus, such on-manifold interactions are
supposed to be more convincing metrics to explain primitive adversarial effects.

Thus, we conducted experiments to compute the influence of adversarial perturbations on the
on-manifold interaction effects. Given each input sample x, we extracted on-manifold interac-
tion effects from both the original sample x and its adversarial example xadv. Let ∆Iand(S|x) =
Iand(S|xadv) − Iand(S|x) denote the adversarial effect on Iand(S|x), and let ∆Ior(S|x) = Ior(S|xadv) −
Ior(S|x) denote the adversarial effect on Ior(S|x). We further averaged adversarial effects of interac-
tions of the same order, i.e., E|S|=mEop∈{and,or}|∆Iop(S|x)|. Figure 6 shows that high-order (complex)
interactions are more vulnerable to adversarial perturbations than low-order (simple) interactions.

4.3 ADVERSARIAL TRAINING ENHANCES THE STABILITY OF INTERACTIONS

In this section, we found that adversarial training enhanced the stability of AND-OR interactions.
We adversarially trained MLPs on the census and TV news datasets, respectively. The adversarial
settings and accuracy of models are reported in Appendix C.3. Then, we extracted on-manifold
interactions from the adversarially trained MLPs. Given K sets of interaction effects extracted
under K perturbed inputs, we computed the variance of each interaction over K perturbed versions,
denoted by varand(S|x) and varor(S|x). Figure 7 reports the average variance of interactions of each
order m, i.e., E|S|=mEop∈{and,or}[varop(S|x)]. High-order (complex) interactions were more sensitive to
perturbations than low-order (simple) interactions. Moreover, the adversarial training significantly
reduced the variance of interaction effects and enhanced the stability of interactions.

5 CONCLUSIONS

In this study, we have proposed a method to extract on-manifold interactions between input vari-
ables of DNNs. Compared to traditional interactions, the proposed on-manifold interactions are
more stable (robust) to small perturbations on the input. Experimental results have demonstrated the
stability of on-manifold interactions extracted from different perturbed inputs. Therefore, we con-
sider the on-manifold interactions as a more faithful approach to understanding primitive inference
patterns encoded by the DNN. Besides, the on-manifold interactions have also been used to explain
the effects of adversarial perturbations on the network output and the effects of adversarial training.
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This paper aims to extract stable and on-manifold interactions encoded by the DNN to better explain
the DNN. We discover that although the AND-OR interactions have some good mathematical prop-
erties, the interactions extracted by the previous method are unstable to small noises on the input.
Such instability makes people cannot rigorously take the extracted interactions as primitive infer-
ence patterns of the DNN. Thus, we propose a method to extract on-manifold interactions, which
are relatively stable to input noises. Furthermore, the extracted on-manifold interactions can help
us understand the effects of adversarial perturbations on the network output. There are no ethical
issues with this paper.

REPRODUCIBILITY STATEMENT

We have provided proofs for the theoretical results of this study in Appendix A and Appendix B. We
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A RELATIONSHIP BETWEEN AND INTERACTIONS AND OR INTERACTIONS

In this section, we provide a further discussion on understanding the relationship between AND and
OR interactions.

Given a DNN v(·) and an input sample x ∈ Rn, let b ∈ Rn denote the baseline values input
variables, which represent the masked states of variables in the input. Then, if the variables in
L ⊆ N are preserved and other variables are masked, the masked input xL is defined as follows.

(xL)i =

{
xi, i ∈ L

bi, i /∈ L
(7)

Based on the above definition of masked inputs, the AND interaction can be computed as
Iand(S|x) =

∑
L⊆S(−1)|S|−|L|vand(xL). The OR interaction between variables in x is computed as

Ior(S|x) = −
∑

L⊆S(−1)|S|−|L|vor(xN\L). To simplify the analysis, we assume vand(·) = vor(·) =
0.5v(·).
Conversely, if we consider b as the input sample and take x as baseline values of input variables in
b, the masked input bL is defined as follows.

(bL)i =

{
bi, i ∈ L

xi, i /∈ L
(8)

According to Eq. (7) and Eq. (8), we have xN\L = bL. Therefore, we can rewrite the OR interaction
as follows.

Ior(S|x) = −
∑
L⊆S

(−1)|S|−|L|vor(xN\L)

= −
∑
L⊆S

(−1)|S|−|L|vor(bL)

= −
∑
L⊆S

(−1)|S|−|L|vand(bL)

= −Iand(S|b)

(9)

Therefore, the OR interaction can be viewed as a special AND interaction by considering original
variable values x as masked states and taking the masked states b as normal values of the variables.

B NOISES IN NETWORK OUTPUTS SIGNIFICANTLY AFFECT THE
INTERACTION EFFECTS

Let us assume that the network output v(xS) on the masked input xS has a small noise ϵS , i.e.,
∀S ⊆ N, v(xS) = u(xS) + ϵS with ϵS ∼ N (0, σ2

ϵ ), where u(xS) denotes the precise network
output without any noises. Then, we prove that small noises in the network output can significantly
change the interaction effect.
Theorem 1. Suppose the network outputs contain small noises, i.e., ∀S ⊆ N, v(xS) = u(xS) + ϵS
with ϵS ∼ N (0, σ2

ϵ ). Then, the AND interaction Iand(S|x, v) = Iand(S|x, u) +
∑

T⊆S(−1)
|S|−|T |ϵT

is proven to follow a Gaussian distribution, Iand(S|x, v) ∼ N (µIand = Iand(S|x, u), σ2
Iand

= 2|S|σ2
ϵ ).

Similarly, the OR interaction Ior(S|x, v) = Ior(S|x, u) +
∑

T⊆S(−1)
|S|−|T |ϵT is also proven to follow

a Gaussian distribution, Ior(S|x, v) ∼ N (µIor = Ior(S|x, u), σ2
Ior = 2|S|σ2

ϵ ).

Proof. The proof for OR interactions is similar to the proof for AND interactions. Let us mainly
focus on the AND interaction Iand(S|x, v), whose mean value can be written as

µ(Iand(S|x, v)) = µ
(
Iand(S|x, u) +

∑
T⊆S

(−1)|S|−|T |ϵT
)

= µ (Iand(S|x, u)) + µ
(∑

T⊆S
(−1)|S|−|T |ϵT

)
= Iand(S|x, u) +

∑
T⊆S

(−1)|S|−|T |µ (ϵT ) // noises on different terms are independent.

= Iand(S|x, u) // ∀T ⊆ N,µ(ϵT ) = 0.
(10)
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Figure 8: Comparison of AND-
OR interactions extracted by
using Eq. (5) (w/o optimizing
Lossnon-salient) and AND-OR inter-
action extracted by using Eq. (6)
(with optimizing Lossnon-salient).
Eq. (5) extracted many redundant
OR interactions.

AND interactions OR interactions

with 𝐿𝑜𝑠𝑠𝑛𝑜𝑛−𝑠𝑎𝑙𝑖𝑒𝑛𝑡
w/o 𝐿𝑜𝑠𝑠𝑛𝑜𝑛−𝑠𝑎𝑙𝑖𝑒𝑛𝑡

with 𝐿𝑜𝑠𝑠𝑛𝑜𝑛−𝑠𝑎𝑙𝑖𝑒𝑛𝑡
w/o 𝐿𝑜𝑠𝑠𝑛𝑜𝑛−𝑠𝑎𝑙𝑖𝑒𝑛𝑡

In
te

ra
ct

io
n

 e
ff

ec
ts

The variance of the AND interaction Iand(S|x, v) can be written as follows.

V ar(Iand(S|x, v)) = V ar
(
Iand(S|x, u) +

∑
T⊆S

(−1)|S|−|T |ϵT
)

= V ar (Iand(S|x, u)) + V ar
(∑

T⊆S
(−1)|S|−|T |ϵT

)
.

(11)

This is because the AND interaction Iand(S|x, u) and the Gaussian noise ϵT are independent. In the
above equation, the first term is a constant with a variance of zero. For the second term, because the
Gaussian noises ∀S ⊆ N, ϵS ∼ N (0, σ2

ϵ ) are i.i.d., then the variance V ar
(∑

T⊆S(−1)
|S|−|T |ϵT

)
can be written as follows.

V ar
(∑

T⊆S
(−1)|S|−|T |ϵT

)
= V ar(ϵT1) + V ar(ϵT2) + · · ·+ V ar(ϵT

2|S| )

= 2|S| · σ2
ϵ . // there are 2|T | subsets T ⊆ S in total.

(12)

Thus, we have Iand(S|x, v) ∼ N (µIand = Iand(S|x, u), σ2
Iand

= 2|S| · σ2
ϵ ).

C IMPLEMENTATION DETAILS IN EXPERIMENTS

C.1 ABOUT THE REDUNDANCY OF INTERACTIONS IN EQ. (5)

In this section, we conducted an experiment to show that the loss function in Eq. (5) generated
some redundant interactions. In Eq.( 5), for each subset S ⊆ N , the loss exclusively penalizes the
most salient interaction effect maxk |Iand(S|x(k))| and maxk |Ior(S|x(k))| over K perturbed inputs
without constraining interaction effects extracted from the other K − 1 perturbed inputs. Therefore,
the unconstrained interactions may take on some penalized effects in the most salient interaction.
This will generate redundant and non-transferable interactions.

Let us consider a toy example. Given the function f(x) = 3x1x2x3x4x5 with the input x =
[1, 1, 1, 1, 1]T , it is supposed to contain only one AND interaction Iand({x1, x2, x3, x4, x5}|x) = 3.
We perturbed the input x with K = 3 noises sampled from the Gaussian distribution N (0, σ2I)
with σ = 0.05. Then, we jointly extracted K +1 sets of interactions from the original input and the
perturbed inputs using Eq. (5) (which is the same as only optimizing Losssalient without optimizing
Lossnon-salient in Eq. (6)). For comparison, we also extracted interactions using Eq. (6) with λ = 0.5.
Figure 8 shows the distribution of absolute values of the AND-OR interaction effects extracted from
the original input, which were sorted in a descending order. While two sets of AND interaction
effects were similar, Eq. (5) without Lossnon-salient extracted many non-zero OR interactions, which
were noisy and redundant.

C.2 SPARSITY OF ON-MANIFOLD INTERACTIONS

We compared the sparsity of the on-manifold interactions extracted using the loss function in Eq. (6),
with the sparsity of the traditional interactions extracted by (Li & Zhang, 2023a) in Figure 9. To
extract on-manifold interaction from the original input, we jointly extracted K+1 sets of interactions
from the original input sample and other K perturbed inputs, respectively (K = 3). In this way,
the on-manifold interactions extracted from the original input sample were compared to traditional
interactions extracted from the same input sample. Figure 9 shows strength (|Iand(S|x)| and |Ior(S|x)|)
of all AND-OR interactions extracted from 50 input samples, which were sorted in a descending
order.
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Figure 9: Visualizing strength of AND-OR interactions (|Iand(S|x)| and |Ior(S|x)|) extracted from
50 input samples in a descending order. The proposed on-manifold interactions (blue) have similar
sparsity as traditional interactions extracted by (Li & Zhang, 2023a) (orange).

C.3 ADVERSARIAL TRAINING

In Section 4.3, we adversarially trained two MLP-5s and MLP-8s on the census and TV news
datasets, respectively. We used ℓ∞ PGD attack to generate adversarial examples for training. The
attacking budget was set as ϵ = 0.1. For the census dataset, we attacked each input for 20 steps with
the step size of 0.01. For the TV news dataset, we attacked each input for 10 steps with the step size
of 0.02. Table 2 reports the accuracy of normally trained models and adversarially trained models
on clean samples and adversarial examples, respectively.

Table 2: The accuracy of normally trained models and adversarially trained models.

Clean sample Adversarial example
train set test set train set test set

the census dataset

Normally trained MLP-5 89.93% 84.12% 68.07% 63.96%
Adversarially trained MLP-5 85.49% 84.87% 84.06% 83.18%

Normally trained MLP-8 93.01% 83.16% 62.21% 57.87%
Adversarially trained MLP-8 85.70% 84.73% 84.24% 82.73%

the TV news dataset

Normally trained MLP-5 91.19% 81.64% 33.47% 31.12%
Adversarially trained MLP-5 81.18% 80.16% 70.30% 68.38%

Normally trained MLP-8 94.62% 79.70% 31.89% 29.60%
Adversarially trained MLP-8 81.04% 79.80% 70.39% 68.52%
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