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Abstract001

Knowledge-based complex reasoning remains002
a significant challenge for large language mod-003
els (LLMs) with in-context learning. To tackle004
this issue, previous studies focus on ensuring005
behavior fidelity, factuality, or reliability in gen-006
erated reasoning processes that guide LLMs to007
produce solutions. However, these studies of-008
ten neglect the simultaneous optimization on009
all these three aspects for each thought. The010
main challenges are the lack of comprehensive011
assessment mechanisms and the difficulty of012
efficient thought-level optimization. This pa-013
per introduces the Evolution of Thoughts (EoT)014
framework, which enhances the factuality, fi-015
delity, and reliability of each thought in the rea-016
soning process through a few LLM inferences.017
We propose a thought assessment method that018
is sensitive to knowledge and LLM behaviors,019
using three scorers to evaluate each thought020
by considering domain context, semantic align-021
ment, and behavior impact. Additionally, we022
establish a self-reflective evolution mechanism023
to facilitate each reasoning process generation024
in a single-forward inference. Extensive exper-025
iments demonstrate that, for knowledge-based026
complex tasks, EoT improves the factuality027
and fidelity of reasoning processes by approxi-028
mately 16.5% and 48.8%, respectively, while029
enhancing LLM reasoning capability by about030
6.2%, outperforming advanced approaches. 1031

1 Introduction032

Nowadays, large language models (LLMs) such033

as GPTs (Achiam et al., 2024) and DeepSeeks034

(DeepSeek-AI, 2025) exhibit remarkable perfor-035

mance in various natural language processing036

(NLP) tasks. These models often employ in-context037

learning (ICL) schemes, enabling them to learn038

from contextual examples without updating billions039

of parameters (Brown et al., 2020). However, com-040

plex reasoning tasks requiring the comprehension041

1The code of EoT and the case of experiment data can be
found in our supplementary material files.

of long-context domain knowledge and the gener- 042

ation of intricate solutions remain challenging for 043

LLMs with ICL prompting (Chen et al., 2024). 044

Many studies have shown that guiding LLMs 045

through step-by-step thought prompts significantly 046

enhances their reasoning capabilities (Chen et al., 047

2024; Lyu et al., 2023). These prompts inspire 048

LLMs to create reasoning processes that explain 049

their behaviors and aid in task resolution. Each 050

reasoning process, such as the chain of thoughts 051

(CoT) and its variants (Wang et al., 2023), com- 052

prises a sequence of coherent text units known as 053

thoughts, which serve as intermediate reasoning 054

steps. In these mechanisms, the reasoning capa- 055

bility of LLMs is often reflected in the reliability 056

of reasoning processes, which assesses the confi- 057

dence or correctness of the solutions produced by 058

LLMs under the guidance of reasoning processes 059

(Zhang et al., 2024; Madaan et al., 2023). There- 060

fore, many efforts have been dedicated to exploring 061

logical reasoning processes with high reliability 062

(Radhakrishnan et al., 2023; Besta et al., 2024). 063

Existing studies on optimizing reasoning pro- 064

cesses can be categorized into three main areas. 065

Firstly, some studies focus on enhancing behavior 066

fidelity (Chuang et al., 2024; Lyu et al., 2023). Pre- 067

vious research (Liang et al., 2024) indicates that 068

LLMs often provide reasoning processes that differ 069

significantly from their actual reasoning behaviors, 070

which compromises their reasoning capabilities. 071

This discrepancy arises from the lack of awareness 072

regarding the internal knowledge state in black-box 073

LLMs. To address this issue, xLLM (Chuang et al., 074

2024) revises reasoning processes to revises rea- 075

soning processes through evolutionary iterations 076

to improve their behavior fidelity. Secondly, some 077

work address non-factual errors in reasoning pro- 078

cesses to mitigate the hallucination phenomenon 079

in LLMs. For example, Ye et al. (Ye and Durrett, 080

2022) extract the most factual reasoning process 081

in each generation. Thirdly, many studies directly 082
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explore reasoning processes with high reliability083

(Madaan et al., 2023; Besta et al., 2024). For in-084

stance, BoT (Chen et al., 2024) uses an iterative085

method to explore many trees of thoughts, and ac-086

cumulates trial-and-error experiences to derive a087

reasoning process yielding a reliable answer.088

Nevertheless, enhancing the reasoning process089

for complex tasks presents three major challenges.090

multi-objective optimization regarding factuality,091

fidelity, and reliability has been a long-standing092

issue, as highlighted by previous research (Ye and093

Durrett, 2022; Liang et al., 2024).Secondly, the094

complexity of long-textual tasks exacerbates the095

difficulty in optimizing reasoning thoughts. These096

tasks require detailed knowledge across domains097

and expect complex solutions, it necessitates a rea-098

soning process with multiple thought steps, involv-099

ing intricate logic and precise extraction of relevant100

facts. This complexity hinders the assessment and101

improvement of the effectiveness of each thought.102

Thirdly, achieving thought-level optimization for103

reasoning processes while maintaining efficiency is104

challenging. Some studies (Chen et al., 2024; Rad-105

hakrishnan et al., 2023) improve thought quality by106

generating individual reasoning thoughts through107

extensive explorations, which incurs significant108

overhead. Conversely, studies like (Chuang et al.,109

2024; Ye and Durrett, 2022) strive to produce an im-110

proved reasoning process using a single LLM infer-111

ence, it enhances time efficiency but compromises112

the fine-grained optimization for each thought step.113

To address these challenges, we propose EoT,114

a framework that evolves reasoning processes to115

achieve multi-objective optimization in factuality,116

fidelity, and reliability. Firstly, EoT includes an as-117

sessment mechanism designed for complex reason-118

ing tasks, which evaluates each thought in reason-119

ing processes from all three perspectives. Secondly,120

we introduce a prompting mechanism to facilitate121

the creation of evolved reasoning processes with a122

single-forward LLM inference. This enables LLMs123

to comprehend thought assessment outcomes and124

ensure collaborative optimization for each thought125

within a few rounds of self-reflective evolution.126

As highlighted in Table 1, EoT distinguishes it-127

self from existing evolution frameworks with two128

key features. Firstly, EoT evaluates reasoning pro-129

cesses more comprehensively in three critical di-130

mensions. Secondly, EoT effectively manages both131

time efficiency and thought-level optimization, pro-132

ducing a complete reasoning process in each itera-133

tion through single forward inference and ensuring134

Table 1: Comparison of existing studies

Framework
Reasoning Process Optimization & Assessment

Components Generation
Factors

Level
Reliability Factuality Fidelity

BoT (Chen et al., 2024) ToT ISTE, Node ✓ % % Thought
GoT (Besta et al., 2024) GoT ISTE, Node ✓ % % Thought

Factor-dec (Radhakrishnan et al., 2023) SQAT ISTE, SQA ✓ % % Thought
CoT-dec (Radhakrishnan et al., 2023) SQAT SFI ✓ % % CRP

Ye et al. (Ye and Durrett, 2022) CoT SFI % ✓ ✓ CRP

xLLM (Chuang et al., 2024) CoT SFI % % ✓ CRP
EoT (ours) CoT SFI ✓ ✓ ✓ Thought

1 CoT , ToT , GoT , SQAT and SQA stand for chain of thoughts, tree of thoughts, graph of thoughts, sub question-answer as thoughts, and sub
question-answer respectively.

2 ISTE, SFI and CRP stand for iterations of each step of thought exploration, single forward inference, and complete reasoning process,
respectively.

granular optimization at each reasoning step. 135

We conducted extensive experiments on two 136

datasets, including one with 40 production oper- 137

ational maintenance tasks. Compared to five ad- 138

vanced frameworks, EoT improves reliability, fac- 139

tuality, and fidelity of reasoning processes by about 140

6.2%, 16.5%, and 48.8% respectively. The contri- 141

butions of this work are summarized as follows: 142

• We consider reliability, factuality, and fidelity 143

of reasoning processes to enhance LLMs’ rea- 144

soning capabilities, and assess each thought 145

in reasoning processes based on these factors. 146

• We propose an evolving mechanism that effi- 147

ciently facilitates multi-objective optimization 148

at the thought level via single-forward genera- 149

tion of the reasoning process in each iteration. 150

• We evaluate the effectiveness of EoT on a real 151

production dataset and verify its generality on 152

the LongBench dataset including questions 153

obtained from diverse fields, such as Mul- 154

tifieldQA and HotpotQA. Each question in- 155

volves a context with thousands of tokens. 156

2 Problem Setup 157

This section formulates reasoning processes, intro- 158

duces three key factors that impact LLMs’ reason- 159

ing capabilities, and defines the evolution problem. 160

2.1 Formalization of Reasoning Process 161

We first formalize LLM-generated reasoning pro- 162

cesses used for solving complex tasks. 163

Let Q = (q1, q2, · · · ), X = (x1, x2, · · · ) and 164

A = (a1, a2, · · · ) represent a question description, 165

knowledge context and a reference answer for any 166

complex task. Each component consists of sequen- 167

tial statements, denoted by qi, xi, and ai respec- 168

tively. When an LLM pθ receives a task (X,Q), it 169

generates a reasoning process R to explain its rea- 170

soning behaviors. Using R, the LLM guides itself 171

to produce a solution Ŷ for the task, formalized as: 172

Ŷ = pθ(X,Q|R) (1) 173
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A generated reasoning process R comprises mul-174

tiple thoughts, denoted as R = {T1, T2, · · ·Tn}.175

Each thought includes several statements, i.e., Ti =176

(ti,1, ti,2, · · · ). This study explores an evolved rea-177

soning process R∗ for each task (X,Q), to en-178

hance the reasoning ability of pθ. The guidance179

of R to produce Ŷ , as depicted in Eq.(1), is real-180

ized through instructions to prompt LLM to reason181

based on thoughts in R, as shown in Figure 4 in Ap-182

pendix B. Figures 5 and 7 in Appendix B presents183

examples of question-solving with thoughts.184

2.2 Reliability, Factuality and Fidelity of185

Thoughts186

Next, we outline and define three key factors of187

reasoning processes that impact LLM’s reasoning188

capabilities. To aid comprehension, we illustrate189

them with examples in Appendix C.190

Previous studies (Chen et al., 2024; Zheng et al.,191

2023; Paul et al., 2023) have revealed that the relia-192

bility of reasoning processes is essential in evaluat-193

ing LLMs’ question-solving abilities. To elucidate,194

we define the reliability of a reasoning process R:195

Definition 1: Reliability of R is measured by196

the similarity between the answer from LLMs197

guided by R and the reference answer. Greater198

similarity indicates higher reliability. Given a task,199

a generated answer Ŷ guided by R, and reference200

answer A, the reliability of R is defined as:201

Reliability(R) = Similarity(Ŷ , A) (2)202

The similarity metric can be computed using var-203

ious methods, such as token overlaps (Lin, 2004),204

learning-based distance (Sellam et al., 2020), and205

entailment extent in natural language inference206

(NLI) (Gao et al., 2023). Intuitively, Figure 6 and207

Figure 8 in Appendix C illustrate reasoning pro-208

cesses with different levels of reliability.209

As outlined in Section 1, enhancing behavior210

fidelity and reducing hallucinations of reasoning211

processes can improve LLMs’ reasoning capabil-212

ities. Inspired by prior studies (Ye and Durrett,213

2022; Chuang et al., 2024), we define two key fac-214

tors of reasoning processes, factuality and fidelity:215

Definition 2: Factuality pertains to how well216

thoughts in reasoning processes are grounded in the217

relevant knowledge context. As shown in Figure218

6 in Appendix C, a fully factual reasoning process219

excludes hallucinations that contradict the context.220

Conversely, a non-factual reasoning process with221

hallucinations can lead to erroneous solutions. Let222

Ti = (ti,1, ti,2, · · · , ti,J) represent a thought step 223

consisting of J statements in R for question Q with 224

context X . The factuality of Ti is expressed as: 225

Factual(Ti) =

∑
ti,j∈Ti

Ground(X, ti,j)

J

Ground(X, ti,j) =

{
1 ti,j is grounded in X

0 Otherwise
(3) 226

Definition 3: Fidelity evaluates the faithfulness 227

of thoughts in the reasoning process to explain 228

the actual behaviors of the LLM when generat- 229

ing answers. Based on previous studies (Lopardo 230

et al., 2023; Chuang et al., 2024), fidelity is de- 231

fined by the extent to which an explained reasoning 232

thought influences the LLM-generated answers, as- 233

suming ground-truth reasoning behaviors are typi- 234

cally available. A greater degree indicates higher 235

fidelity. Specifically, for a reasoning process R, the 236

fidelity of each thought Ti ∈ R is assessed by com- 237

paring the answers generated by the LLM guided 238

by R with and without Ti. This is expressed as: 239

Fidelity(Ti) = Diff(pθ((X,Q)|R),

pθ((X,Q)|(R\Ti)))
(4) 240

where (R\Ti) represents the reasoning process 241

without thought Ti, and Diff(·, ·) denotes the 242

difference estimation. Appendix C.2 illustrates 243

thoughts with high and low fidelity. 244

In summary, EoT guides LLMs to find a refined 245

n-step reasoning process R∗ = (T ∗
1 , T

∗
2 , ..., T

∗
n) 246

via iterative self-reflecting evolution. In each itera- 247

tion, the LLM pθ generates an enhanced reasoning 248

process to address multiple-objective optimization 249

in reliability, factuality and fidelity for each reason- 250

ing thought, as defined in Eq. (5): 251

R∗ ← argmax
R

Reliability(R)

maxmize Factual(T ∗
i ) for ∀T ∗

i ∈ R∗

maxmize F idelity(T ∗
i ) for ∀T ∗

i ∈ R∗

(5) 252

3 Evolution of Thoughts 253

3.1 Overview 254

This section introduces the Evolution of Thoughts 255

(EoT) framework to enhance reasoning processes. 256

EoT refines thoughts evolutionarily to simultane- 257

ously improve their reliability, factuality, and be- 258

havior fidelity, thereby boosting LLMs’ reasoning 259
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Figure 1: The framework of EoT.

capabilities. Each iteration of evolution enables260

LLMs to comprehend the assessment of the current261

reasoning process and provides feedback to refine262

a group of individual thoughts in the reasoning pro-263

cess via a single-forward inference. In this way,264

EoT effectively and efficiently guides reasoning265

process optimization toward multiple objectives.266

Figure 1 illustrates the framework of EoT, com-267

prising three modules: an assessor, a prompter268

and a generator. These modules collaborate to269

achieve multi-objective optimization of reasoning270

processes over iterations of evolution. Initially, the271

assessor uses three scorers to evaluate the reliability,272

fidelity and factuality of thoughts in the reasoning273

process during each iteration. The prompter then274

guides LLMs to thoroughly comprehend the perfor-275

mance of the current reasoning process accross the276

three aspects, prompting self-reflection in LLMs277

to ensure thought-level optimization. Lastly, in278

each iteration, the generator served by task-solving279

LLMs, uses our crafted prompts to generate a re-280

fined reasoning process through a single-forward281

inference. After N iterations, EoT produces an im-282

proved reasoning process, denoted as R∗. Further283

details of the three modules are provided below.284

3.2 Assessor285

EoT focuses on optimizing the factuality, reliability286

and fidelity of reasoning processes. Therefore, we287

design three scorers in the assessor to quantify the288

performance of thoughts across these three aspects.289

3.2.1 Factuality Scorer290

As defined in Eq.(3), the factuality of reasoning pro-291

cess for complex tasks is expressed by how well the292

thoughts in it can be supported by relevant domain-293

knowledge facts. For tasks with long-textual con-294

text, EoT leverages the impressive capability of295

LLMs in natural language inference (NLI) to tackle296

the scoring of factuality. We employ an NLI model297

ϕ to estimate Ground(·, ·) in the factuality defini-298

tion in Eq. (3). Specifically, given a pair of premise299

and hypothesis statements, represented as xpre and 300

thyp respectively, ϕ infers their relationship through 301

a triple-label classification task: 302

ϕ(xpre, thyp) =


0 thyp contradicts with xpre

1 xpre entails thyp

2 xpre is neutral with thyp

(6) 303

Definitions of “Entailment”, “Contradiction” and 304

“Neutral” are provided in Appendix E.1. Inspired 305

by prior work (Gao et al., 2023), consider a rea- 306

soning process R = (T1, T2, · · · ) for task (X,Q), 307

where each thought Ti = (ti,1, ti,2, · · · , ti,J) con- 308

tains J statements. For ∀ti,j ∈ Ti, we define 309

Ground(X, ti,j) = 1 iff ϕ(X, ti,j) = 1; other- 310

wise, it is 0. We use a GPT-4 model with few-shot 311

learning for ϕ. The efficacy of this NLI scheme 312

is presented in Appendix E.2. Then, the factuality 313

score Sfac(Ti) for ∀Ti ∈ R is computed as: 314

Sfac(Ti) = Factual(Ti) (7) 315

3.2.2 Reliability Scorer 316

According to Eq.(2), assessing the reliability of the 317

reasoning process R largely relies on measuring 318

the similarity between the answer generated under 319

R and the reference answer. However, existing 320

similarity metrics struggle to ensure both sufficient 321

variation sensitivity and robust human-level align- 322

ment simultaneously. To address these issues, EoT 323

proposes a novel similarity metric. 324

Recent studies propose learning-based methods, 325

such as SimCSE (Gao et al., 2021) and BLEURT 326

(Sellam et al., 2020), to improve sensitivity to 327

semantic and syntactic variations beyond hand- 328

crafted metrics like ROUGE (Lin, 2004) and BLEU 329

(Papineni et al., 2002). These methods utilize lan- 330

guage models such as BERT (Devlin et al., 2019) to 331

encode statement pairs, producing scalar similarity 332

scores based on the encoded representations. 333

However, learning-based metrics struggle to 334

robustly align with human judgment in domain- 335

specific scenarios. These metrics typically rely 336

on end-to-end predictions from models trained on 337

synthetic or commonsense datasets (Zhang et al., 338

2019). Discrepancies between distributions of train- 339

ing data and domain knowledge can lead to mis- 340

alignment due to domain drift (Honovich et al., 341

2022). Moreover, while syntactic alignment strate- 342

gies are prevalent, achieving semantic alignment 343

akin to human judgment remains challenging. 344
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To enhance robustness while maintaining high345

sensitivity, we introduce Hssim, a hybrid met-346

ric to score similarity between statements, which347

combines the learned metric BLEURT with the348

NLI judgement of model ϕ, as detailed in Eq. (6).349

Specifically, given a reasoning process R for task350

(X,Q), the LLM generates an answer of n1 state-351

ments Ŷ = (ŷ1, ŷ2, · · · , ŷn1) guided by R. Let352

A = (a1, a2, · · · an2) represent a reference answer353

n2 statements. The similarity between Ŷ and A is354

evaluated using Hssim(Ŷ , A) calculated as:355

Hssim(Ŷ , A) =

∑
ŷi∈Ŷ sim(ŷi, A)

n1

sim(ŷi, A) =


0 ϕ(A, ŷi) = 0

µ+ (1− µ)βw(A, ŷi) ϕ(A, ŷi) = 1

(1− µ)βw(A, ŷi) Otherwise

(8)356

where µ ∈ (0, 1) is the weight coefficient for mea-357

suring similarity between the NLI judgement and358

the learning-based scalar metric, and βw(·, ·) de-359

notes an approximation of the BLEURT score at360

the statement window level, calculated as:361

βw(A, ŷi) = max({BLEURT (A[i1 : i2], ŷi)|
∀0 < i1 < i2 ≤ n2})

(9)362

Leveraging the exceptional in-context learning363

capabilities of LLMs, their NLI judgment can be364

robustly aligned with human judgement even fac-365

ing domain drift, as noted in previous work (Ye and366

Durrett, 2022). Furthermore, the window-based367

estimation of BLEURT scores ensures sensitivity368

and alignment at the syntactic level. This allows for369

a rational and effective assessment of the reliability370

of any reasoning process R for question (X,Q),371

using Hssim, which balances variation sensitivity372

and semantic alignment robustness:373

Srel(R) = Hssim(pθ(X,Q|R), A) (10)374

3.2.3 Fidelity Scorer375

Based on the fidelity definition in Eq.(4), scoring376

the fidelity of thoughts involves two key aspects: 1)377

efficiently excluding a thought from LLMs’ reason-378

ing behaviors, and 2) accurately measuring the dif-379

ference between answers produced with and with-380

out the thought. We use a thought masking scheme381

and metric Hssim to achieve these goals.382

Given a reasoning process R, each thought Ti ∈383

R is removed from R to create a masked reasoning384

process (R\Ti), as shown in Figure 8 in Appendix385

Figure 2: Prompt template to evolve reasoning process.

C. According to Eq.(1), a prompt directs the LLM 386

to generate answers Ŷ and Ŷ\Ti
for task (X,Q), 387

using instructions from R and (R\Ti) respectively. 388

An example is provided in Figure 4 in Appendix B. 389

Finally, with Ŷ as the reference, the fidelity score 390

of Ti is assessed using the Hssim metric: 391

Sfid(Ti) = 1−Hssim(Ŷ\Ti
, Ŷ ) (11) 392

Moreover, enhancing LLMs’ reasoning capabilities 393

requires fidelity optimization to focus on thoughts 394

that faithfully represent the reasoning behaviors 395

essential for reliable answers. Thus, we propose a 396

weighted fidelity score for thought Ti, accounting 397

for the reliability of the reasoning process: 398

Srel
fid(Ti) = Sfid(Ti)× Srel(R) (12) 399

Ultimately, we achieve a comprehensive assess- 400

ment of the reasoning process and its thoughts: 401(
Srel(R), {Sfac(Ti), S

rel
fid(Ti)|∀Ti ∈ R}

)
(13) 402

3.3 Prompter 403

The prompting mechanism of EoT is designed to 404

enhance the reasoning process by enabling LLMs 405

to comprehend the scoring outcomes from previous 406

iterations. This prompt LLMs to self-reflect and 407

refine reasoning processes, optimizing reliability, 408

fidelity, and factuality at the thought level. 409

The prompt template for the K-th iteration (1 ≤ 410

K ≤ N ) is presented in Figure 2. Each evolution 411

iteration includes a prompt with three components: 412

(1) the question description Q, knowledge context 413

X , and reference answer A for the task; (2) the 414

evolution logic, encompassing: a) the significance 415

of three score types and b) instructions for multi- 416

objective optimization; and (3) the assessing results 417

of reasoning processes produced in prior iterations, 418

as defined in Eq.(13). An example of a complete 419

prompt is shown in Figure 9 in Appendix D. 420
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Table 2: The parameter settings in evaluations

Parameter Value Description
N 10 The number of iterations
µ 0.5 The alignment weight in Eq.(8)

3.4 Self-reflective Generator421

To align the LLM’s reasoning capability with the422

fidelity of its behavioral patterns, EoT employs the423

LLM used for question answering as the generator424

to iteratively refine reasoning processes via self-425

reflection. Each iteration uses prompts to guide426

the generator to produce an enhanced reasoning427

process, leading to multi-objective improvements428

recognized by LLMs. After N iterations, the rea-429

soning process with the highest reliability score is430

chosen as the final evolved process R∗.431

4 Experiments432

4.1 Setup433

Datasets To evaluate the effectiveness of EoT, we434

conduct experiments on two datasets: 1) OpsQA:435

an question-answering dataset with 40 complex436

operational maintenance tasks covering cloud com-437

puting, code management, application upgrades,438

deployment, and more. 2) LongBench (Bai et al.,439

2023b): a benchmark comprising problems from440

various open-source datasets such as HotpotQA,441

MultifieldQA, WikimQA. We select 60 representa-442

tive questions from LongBench for evaluation. All443

tasks from OpsQA and LongBench involve com-444

plex reasoning requiring long-context knowledge.445

Each task includes a domain knowledge context446

with thousands or tens of thousands of tokens, a447

question description, and a reference answer, neces-448

sitating intricate solutions. Context length statistics449

are detailed in Table 7 in Appendix F.450

Testbed and Parameter Settings We utilize two451

widely used LLMs, Qwen2-72B (Bai et al., 2023a)452

and GPT-4 Turbo (Openai, 2023), each severing453

as the generator of both reasoning processes and454

solutions. For the assessor, EoT uses GPT-4 Turbo455

to implement the NLI model ϕ, due to its advanced456

NLI accuracy as evaluated in Appendix E.2, and457

compute window-based BLEURT scores in Eq. (9)458

using V100 GPUs. Table 2 outlines the hyper-459

parameter settings in our evaluations.460

Metrics To assess LLMs’ reasoning capabilities,461

we compute four metrics by comparing answers462

generated by the reasoning process Ŷ with the ref-463

erence answer A: 1) reliability defined in Eq. (10),464

2) BLEURT, 3) ROUGE-L (Lin, 2004), and 4) NLI465

results from GPT-4 Turbo, denoted as entail(%), 466

which measures the percentage of statements in Ŷ 467

entailed by A. Additionally, following prior stud- 468

ies (Ye and Durrett, 2022; Lyu et al., 2023), we 469

use Sfac and Sfid from Eq.(7) and Eq.(11) to as- 470

sess performance in factuality and behavior fidelity, 471

respectively. Scores of a reasoning process are 472

averaged from those of thoughts. Higher values 473

indicate better performance for each metric. 474

Baselines We compare EoT with five advanced 475

frameworks for evolving reasoning processes: 1) 476

BoT (Chen et al., 2024), CoT-dec (Radhakrishnan 477

et al., 2023), and its variant Factor-dec, which em- 478

phasize reliability optimization; 2) xLLM (Chuang 479

et al., 2024) designed for fidelity optimization; and 480

3) Calibrator (Ye and Durrett, 2022) targeting factu- 481

ality and fidelity optimization. EoT, CoT-dec, and 482

Calibrator generate reasoning via single-forward in- 483

ference, while BoT and Factor-dec produce thought 484

steps as nodes of ToT and subquestions during each 485

LLM inference, respectively. For more details on 486

baselines, see Appendix G. 487

4.2 Overall Performance 488

We conduct experiments on the OpsQA and Long- 489

Bench datasets to evaluate the performance2 of the 490

six frameworks in terms of the reasoning capability, 491

factuality and fidelity of reasoning processes and 492

the time efficiency of evolution. Moreover, ablation 493

study of EoT is detailed at Appendix I. 494

4.2.1 Reasoning Capability (Reliability) 495

Table 3 presents the average reasoning capability 496

of two LLMs utilizing the six frameworks. EoT 497

surpasses the five baselines in three areas. First, 498

compared to the leading baseline, CoT-dec, EoT 499

boosts reliability scores on the OpsQA and Long- 500

Bench datasets by about 11.7% and 5.8% using 501

Qwen2-72B, and by about 3.3% and 3.7% using 502

GPT-4 Turbo. Second, in terms of sensitivity to 503

token and semantic variation, EoT improves the 504

ROUGE-L and BLEURT on LongBench dataset 505

by about 7.2% and 16.2% using Qwne2-72B, and 506

2.6% and 6.8% using GPT-4 Turbo. Third, regard- 507

ing semantic alignment robustness, on the OpsQA 508

dataset, EoT improves entail(%) by around 14.4% 509

and 6.7% using Qwen2-72B and GPT-4 Turbo, re- 510

spectively. These findings indicate that EoT em- 511

powers diverse LLMs to enhance overall reasoning 512

2Appendix J applies the T-test method to examine the
significance of performance variations.
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Table 3: Reliability performance for reasoning processes evolved by six frameworks with two LLMs on two datasets.

LLMs Models
OpsQA LongBench

BLEURT ROUGE-L
NLI results Reliability

BLEURT ROUGE-L
NLI results Reliability

entail(%) Score entail(%) Score

Qwen2

BoT 0.499 0.297 43.29 0.401 0.494 0.677 62.92 0.526
xLLM 0.554 0.355 65.83 0.576 0.572 0.739 87.50 0.721

Calibrator 0.559 0.365 70.27 0.597 0.575 0.744 80.88 0.675
CoT-dec 0.579 0.361 73.35 0.632 0.586 0.769 92.63 0.757

Factor-dec 0.545 0.324 62.55 0.569 0.570 0.745 84.47 0.729
EoT (ours) 0.595 0.395 83.90 0.706 0.681 0.824 91.52 0.801

GPT-4

BoT 0.486 0.307 48.50 0.443 0.530 0.704 67.99 0.568
xLLM 0.575 0.408 72.16 0.609 0.629 0.801 85.09 0.729

Calibrator 0.554 0.380 68.50 0.589 0.592 0.775 83.98 0.709
CoT-dec 0.613 0.446 83.02 0.694 0.617 0.805 91.65 0.767

Factor-dec 0.541 0.358 74.48 0.632 0.587 0.767 89.44 0.739
EoT (ours) 0.602 0.427 88.58 0.717 0.659 0.826 92.47 0.795

1 Qwen2 and GPT-4 represent the LLMs of Qwen2-72B and GPT-4 Turbo, respectively.
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Figure 3: The CDF results of the reliability, factuality and fidelity scores of reasoning processes evolved by the six
frameworks using GPT-4 Turbo on 40 tasks in the OpsQA dataset.

capability in complex tasks.513

Figure 3a intuitively shows that, with GPT-4514

Turbo, EoT achieves a reliability score > 0.75 for515

52.5% of tasks in the OpsQA dataset, surpassing516

BoT, xLLM, Calibrator, CoT-dec, and Factor-dec517

by about 50%, 27.5%, 22.5%, 7.5% and 35%, re-518

spectively. Furthermore, for tasks in OpsQA and519

LongBench, the complete CDF results of reason-520

ing capability using Qwen-72B and GPT-4 Turbo,521

equipped with the six frameworks, are detailed in522

Appendix H.1. These findings confirm EoT’s sig-523

nificant generality in enhancing reasoning capabil-524

ity across diverse fields with various LLMs.525

EoT’s enhanced reasoning capability stems from526

two key aspects. Firstly, we introduce an effective527

similarity scoring metric Hssim to measure the528

reliability of reasoning processes. By accounting529

for sensitivity to semantic variations and robustness530

in semantic alignment, Hssim promote the relia-531

bility improvement of EoT, facilitating comprehen-532

sive optimization of LLMs’ reasoning capabilities533

across various semantic aspects. For instance, on534

the OpsQA dataset, despite EoT’s BLEURT per-535

formance being about 1.79% lower than CoT-dec536

using GPT-4 Turbo, EoT improves NLI results by537

about 6.7%, thereby raising the reliability score by538

3.3%. Secondly, unlike baselines focusing on indi-539

vidual or partial factors, EoT efficiently achieves 540

multi-objective optimization in reliability, factual- 541

ity, and fidelity during reasoning process evolution, 542

thereby enhancing LLMs’ reasoning capabilities. 543

Table 4: The performance on factuality and fidelity for
reasoning processes evolved by six frameworks.

LLMs Models
OpsQA LongBench

Factuality Fidelity Factuality Fidelity
Sfac Sfid Sfac Sfid

Qwen2

BoT 0.752 0.234 0.879 0.208
xLLM 0.720 0.216 0.864 0.152

Calibrator 0.860 0.258 0.935 0.141
CoT-dec 0.638 0.167 0.839 0.179

Factor-dec 0.706 0.208 0.901 0.197
EoT (ours) 0.823 0.267 0.943 0.243

GPT-4

BoT 0.775 0.203 0.896 0.237
xLLM 0.607 0.238 0.848 0.169

Calibrator 0.878 0.257 0.942 0.180
CoT-dec 0.685 0.199 0.934 0.171

Factor-dec 0.769 0.228 0.936 0.208
EoT (ours) 0.906 0.281 0.956 0.275

4.2.2 Factuality & Fidelity Performance. 544

The central concept of EoT is to improve the fac- 545

tuality and behavior fidelity of thoughts, in a di- 546

rection of enhancing LLMs’ reasoning capabilities. 547

To assess these efforts, Table 4 presents the average 548

performance in fidelity and factuality of reason- 549

ing processes evolved by six frameworks, using 550

Qwen2-72B and GPT-4 Turbo on the two datasets. 551

These results highlight two key aspects. 552
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Firstly, EoT significantly reduces non-factual553

errors in thoughts while boosting the behavior fi-554

delity of LLMs. Compared to the leading baseline555

Calibrator, using GPT-4 Turbo, EoT improves the556

factuality score by about 3.2% and 1.3% on the Op-557

sQA and LongBench datasets respectively. With558

Qwen2-72B, EoT shows a factuality improvement559

of around 4.0% on the LongBench dataset. Ad-560

ditionally, on the OpsQA dataset, EoT surpasses561

Calibrator by enhancing the fidelity score by about562

9.3% using GPT-4 Turbo. Similarly, on the Long-563

Bench dataset, compared to BoT, EoT improves the564

fidelity score by roughly 16.8% and 16.0% using565

Qwen-72B and GPT-4 Turbo respectively. These566

results confirm EoT’s capability to effectively en-567

hance both factuality and behavior fidelity.568

Secondly, EoT’s optimization on factuality and569

fidelity effectively boosts reasoning capabilities of570

LLMs. On the OpsQA dataset, EoT surpasses CoT-571

dec in factuality and fidelity by about 28.9% and572

59.9% respectively, resulting in a reliability im-573

provement of around 11.7%. This enhanced rea-574

soning capability is largely due to substantial ad-575

vancements in factuality and fidelity of reasoning576

processes. Moreover, although Calibrator improves577

factuality by about 4.4% over EoT on the OpsQA578

dataset, EoT improves fidelity and reliability by579

about 3.5% and 18.3% respectively.580

To illustrate EoT’s generality in optimizing fac-581

tuality and fidelity, Figures 3b and 3c show the582

CDF of factuality and fidelity scores for reasoning583

processes evolved by six frameworks using GPT-4584

Turbo on the OpsQA dataset, respectively. EoT585

achieves a factuality score of 1.0 for 50% of Op-586

sQA questions, surpassing BoT, xLLM, Calibrator,587

CoT-dec, and Factor-dec by around 15%, 47.5%,588

20%, 35%, and 42.5%, respectively. Moreover,589

EoT exceeds a fidelity score of 0.25 for 60% of590

questions, surpassing BoT, xLLM, Calibrator, CoT-591

dec, and Factor-dec by about 32.5%, 20%, 25%,592

50%, and 37.5%, respectively. Further CDF results593

for fidelity and factuality on OpsQA and Long-594

Bench datasets are provided in Appendix H.2 and595

H.3. These results confirm that EoT’s improve-596

ments in fidelity and factuality are generalized to597

tasks across various domains, including operational598

maintenance and academic literature.599

These improvements stem from two aspects.600

Firstly, EoT effectively assesses factuality and fi-601

delity at a granular thought level, providing a foun-602

dation for effective optimization. Secondly, our603

prompter fully leverages ICL capabilities of LLMs,604

Table 5: The average performance on time efficiency
of the six frameworks on the OpsQA dataset.

Models Overhead(s) Iterations
BoT 945.85 4.48

Factor-dec 114.77 5.21
xLLM 70.89 5.25

Calibrator 67.75 4.92
CoT-dec 70.22 5.34

EoT (ours) 75.46 4.62

enabling them to rationally comprehend perfor- 605

mance experiences and simultaneously optimize 606

across three objectives, as defined in Eq.(5). 607

4.2.3 Time Efficiency 608

We assess the time efficiency of six frameworks 609

using two criteria: 1) the average overhead per iter- 610

ation, where lower values denote higher efficiency; 611

and 2) the convergence rate, measured as the av- 612

erage number of iterations needed to produce the 613

final enhanced reasoning process for various ques- 614

tions. Lower values signify quicker convergence. 615

Table 5 showcases the time efficiency of the six 616

frameworks on the OpsQA dataset. EoT reduces it- 617

eration overhead by about 92.0% compared to BoT 618

and 33.4% versus Factor-dec, both of which involve 619

multiple thought explorations per iteration. In addi- 620

tion, compared to three other baselines employing 621

single-forward inference, EoT uses fewer iterations 622

to generate refined reasoning processes with simi- 623

lar iteration time. These results validate that EoT 624

achieves comprehensive, fine-grained optimization 625

of each thought with high time efficiency. 626

5 Conclusion 627

Through in-depth analysis, we outline three key fac- 628

tors in reasoning processes to enhance LLMs’ ca- 629

pabilities, namely factuality, fidelity and reliability. 630

We propose EoT to evolve LLM-generated reason- 631

ing processes across these dimensions. An asses- 632

sor is designed to quantify performance on these 633

aspects for each thought in reasoning processes. 634

Additionally, we propose a prompting mechanism 635

that efficiently guides LLMs to comprehend assess- 636

ments and trigger self-reflection to achieve thought- 637

level and multi-objective optimization of reasoning 638

processes via single-forward inference. EoT offers 639

two key advantages. First, it considers comprehen- 640

sive factors to improve reasoning capability. Sec- 641

ond, it ensures thought-level evolution with high 642

time efficiency. In the future, we will address unsu- 643

pervised evolution of reasoning processes to further 644

enhance reasoning capabilities of LLMs for out-of- 645

domain tasks without reference solutions. 646
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A Limitations 782

The EoT framework exhibits two principal limita- 783

tions that warrant discussion. First, its assessing 784

mechanism inherently relies on reference solutions 785

to assess reasoning reliability and subsequently re- 786

fines the reasoning processes based on these super- 787

vised signals. This paradigm creates a dependency 788

on domain-specific answer templates, potentially 789

constraining the framework’s capacity to general- 790

ize and enhance LLM reasoning performance for 791

out-of-domain tasks where authoritative references 792

are unavailable or undefined. 793

Second, the Hssim metric implementation in- 794

troduces an intrinsic dependency on the LLM’s 795

natural language inference (NLI) capabilities. The 796

effectiveness of Hssim measurements becomes 797

contingent upon the model’s cross-domain NLI 798

accuracy, introducing potential error propagation 799

across different knowledge domains. To address 800

this limitation, our future work will focus on inte- 801

grating state-of-the-art LLMs with enhanced NLI 802

datasets while developing domain-agnostic verifi- 803

cation mechanisms to strengthen metric robustness. 804

B Examples of Reasoning Process 805

Formalization 806

As formulated in Section Problem Setup, for each 807

complex task (X,Q), an LLM expresses its reason- 808

ing behaviors in the form of a reasoning process 809

R. This process consists of multiple thought steps 810

and helps guide the LLM in producing the task’s 811

solution, denoted as Ŷ in Eq. (1) of our submitted 812

manuscript. Specifically, LLMs that respond to 813

questions by following a reasoning process oper- 814

ate by using specific prompting instructions. The 815

prompt template used in these invocations is pre- 816

sented in Figure 4. This prompting strategy en- 817

courages LLMs to execute their genuine reason- 818

ing behaviors in a way that closely reflects self- 819

explanatory thoughts, with the goal of enhancing 820

the influence of these thoughts on the LLMs’ solu- 821

tion generation. 822

On this basis, to intuitively illustrate the self- 823

explained reasoning process, Figure 5 and 7 present 824

two examples of reasoning processes generated by 825

the widely used LLM Qwen2-72B. These exam- 826

ples are specifically aimed at guiding the LLM in 827

addressing two distinct tasks in LongBench. 828
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Figure 4: An example prompt template that guides LLMs to generate task solutions under the guideline of specified
self-explanatory reasoning processes.

C Illustration of Factuality, Fidelity and829

Reliability830

In Section Problem Setup of our submitted831

manuscript, we define three critical factors that832

influence the reasoning capability of LLMs: factu-833

ality, fidelity and reliability. To aid in the intuitive834

understanding of the measurement of these three835

factors, this appendix presents both positive and836

negative examples of reasoning thoughts for each837

of them. For each factor, the positive examples838

demonstrate strong performance, while the nega-839

tive ones illustrate poor performance.840

C.1 Factuality841

Figure 6 presents a completely factual reason-842

ing process Rfac, alongside a reasoning process843

that contains non-factual errors Rnonfac. Specifi-844

cally, all four thought steps in Rfac are factually845

grounded in the knowledge context. In contrast, T2846

and T3 in Rnonfac contain errors that contradict es-847

tablished domain knowledge, as highlighted in the848

underlined part, which demonstrates that T2 and849

T3 exhibit poor factual performance. On this basis,850

Qwen2-72B generates two answers to the question851

“Which film came out first", denoted as Ŷfac and852

Ŷnonfac, under the guideline of Rfac and Rnonfac,853

respectively. 854

Then, we observe that, when Qwen2-72B re- 855

sponds to the question following the guideline of 856

reasoning process Rnonfac which contains non- 857

factual date errors, non-factual hallucination may 858

emerge in its generated solution Ŷnonfac. In con- 859

trast, a correct answer Ŷfac can be produced by 860

LLMs under the guideline of Rfac, where the fac- 861

tuality of the explanatory reasoning thoughts is 862

ensured. These clear examples highlight the im- 863

portance of ensuring the factuality of reasoning 864

processes during optimization, as this is crucial to 865

prevent the reasoning capability of LLMs being 866

compromised by non-factual hallucinations. 867

C.2 Fidelity 868

We review the reasoning process R that guides 869

Qwen2-72B in solving the question, “What are 870

some fields in which the inverse problem is encoun- 871

tered?", as presented in Figure 7. This reasoning 872

process consists of four steps of thought. To investi- 873

gate whether each step faithfully reflects the actual 874

reasoning behaviors of LLMs, we demonstrate the 875

measurement of behavior fidelity for each reason- 876

ing step as defined in Eq.(4). Specifically, we mask 877

thoughts T1 and T3 in R to obtain two masked rea- 878
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Figure 5: A factual reasoning process produced by Qwen2-72B for problem "Which film came out first?". The
highlighted part represents the critical information and claims in the context and reasoning behaviors.

Figure 6: Examples of total factual and non-factual reasoning processes produced by Qwen2-72B for problem
"Which film came out first?". The highlighted part in factual reasoning process represents the key factual claims,
while the underlined part is the claims with non-factual errors which cause the hallucination in answers.
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Figure 7: A reasoning process of Qwen2-72B for the problem “What are some fields in which the inverse problem
is encountered?". The highlighted part represents the critical information and claims in the context and reasoning
behaviors.

soning processes R\T1 and R\T3 respectively, as879

discussed in subsection Fidelity Scorer. Figure 8880

shows that Qwen2-72B generates two answers to881

the question under the guidelines of RP\T1 and882

RP\T3, denoted as Ŷ\T1
and Ŷ\T3

, respectively.883

A comparison reveals that, relative to the answer884

guided by R, represented as Ŷ , a significant change885

is observed in Ŷ\T1
, while only a minor modifica-886

tion is noted in Ŷ\T3
.887

In light of this, we can derive two insights.888

Firstly, the reasoning behavior exhibited in T1,889

namely “Extract Key Concepts", faithfully reflects890

a critical step in the actual reasoning actions of891

Qwen2-72B. This indicates that LLMs delve into892

the significance of each key entity, including “in-893

verse problem" and its related fields, at the begin-894

ning of inference. In other words, T1 significantly 895

affects the reasoning results of LLMs, which indi- 896

cates that T1 exhibits strong behavior fidelity for 897

Qwen2-72B. Secondly, the reasoning claim in T3, 898

termed “Contextual Understanding", inadequately 899

uncovers the actual behaviors that Qwen2-72B ex- 900

ecutes, as omitting these claims has only a minor 901

impact on the LLM’s reasoning results. Thus, rea- 902

soning thoughts such as T3 can be regarded as 903

unfaithful thoughts in the reasoning processes ex- 904

plained by LLMs. In other words, thoughts like T3 905

demonstrate poor behavior fidelity for the LLM. 906

C.3 Reliability 907

As demonstrated in Section Problem Setup, the 908

reliability of a reasoning process for LLMs in ad- 909

dressing any task can be measured by the simi- 910
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Figure 8: Examples of masked reasoning processes produced by Qwen2-72B for problem "What are some fields in
which the inverse problem is encountered?". The highlighted part represents the critical information and claims in
the context and reasoning behaviors. We exclude the claims of thoughts T1 and T3 respectively, and find that T1 has
a higher fidelity performance compared with T3.

larity between the generated solution and the ref-911

erence answer. Since solutions often consist of912

long-textual statements, the assessment of similar-913

ity should occur at both syntactic and semantic914

levels. In addition, all measurements should aim915

to align with the understanding of experts in the916

relevant domain.917

Intuitively, the reasoning processes presented in918

Figure 5 and Figure 7 perform satisfied reliability919

as they effectively guide Qwen2-72B in produc-920

ing solutions that adequately address the respective921

questions. Consequently, we should evaluate the922

high similarities between the produced and refer-923

ence solutions for these two reasoning processes924

accordingly. Conversely, the assessed similarity925

should be significantly low for unreliable reasoning926

processes. For example, as shown in Figure 6, the927

non-factual reasoning process Rnonfac results in928

an incorrect answer to the question. Therefore, we929

should accurately measure a low similarity between 930

these hallucinations and the correct reference. In 931

addition, as presented in Figure 8, a reasoning pro- 932

cess excluding faithful thoughts, denoted as R\T1, 933

will diminish the reasoning capabilities of LLMs, 934

and results in the emergence of redundant state- 935

ments in generated answers, which are unrelated 936

to problem-solving. Thus, a low similarity needs 937

to be measured to represent the decline of reliabil- 938

ity in terms of the precision of extracting useful 939

knowledge. 940

D Prompting Mechanism of EoT 941

To illustrate the design of prompting scheme in EoT 942

that drives the evolution of the reasoning process, 943

Figure 9 provides an example prompt in an evo- 944

lution iteration. This prompt is intended to guide 945

a specific optimization of the reasoning process 946

explained by Qwen2-72B for the question “What 947
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Figure 9: Instance of a specific complete prompt to evolve the reasoning process in Figure 7, involving the
instructions of evolution and the textual description of assessment results of reasoning process shown in Figure 7

are some fields in which the inverse problem is en-948

countered?". Specifically, this prompt follows the949

template illustrated in Figure 2 of our submitted950

manuscript, and includes a textual description of951

the assessment results from an existing reasoning952

process, as shown in Figure 7.953

E NLI mechanism in Assessment of954

Reasoning process955

In EoT, we prompt LLMs to perform natural lan-956

guage inference (NLI) judgements to evaluate the957

effectiveness of reasoning processes. Overall, lever-958

aging the NLI of LLMs is intended to improve959

semantic alignment with the human-level percep-960

tion, particularly when estimating the extent of961

estimation of knowledge entailment and assessing962

similarities. This approach further enhances the963

robustness of the scoring scheme in EoT. In this964

appendix, we first define the triple labels of the965

statement-pair relationships. Then, we evaluate the966

effectiveness of NLI mechanism when using var-967

ious types of LLMs and discuss the threats to the968

EoT framework given the use of the GPT-4 model. 969

E.1 Definition of Triple Labels in NLI 970

Mechanism 971

In Section 3.2 in our submitted manuscript, EoT re- 972

gards the NLI judgements as triple-label classifica- 973

tion tasks as shown in Eq.(6). Specifically, let xpre 974

and thyp denote a premise and hypothesis state- 975

ment, respectively. In a canonical NLI mechanism, 976

there are three category labels to represent the re- 977

lationship between any statement pair (xpre, thyp), 978

which is defined as follows. 979

Definition 4 Entailment: If hypothesis state- 980

ment thyp is necessarily true or appropriate when- 981

ever the premise statement xpre is true, we label the 982

relationship between the statement pair (xpre, thyp) 983

as “Entailment”. In other words, xpre entails thyp. 984

Definition 5 Contradiction: If hypothesis state- 985

ment thyp is necessarily false or inappropriate 986

whenever the premise statement xpre is true, we 987

label the relationship between the statement pair 988

(xpre, thyp) as “Contradiction”. In other words, 989
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Table 6: The Accuracy of NLI using LLMs

LLM Model Accuracy(%)
Qwen2-72B 76.14

GPT-3.5 Turbo 67.64
GPT-4 Turbo 85.80

thyp contradicts with xpre.990

Definition 6 Neutral: When neither “Entail-991

ment” nor “Contradiction” applies to relationship992

between the statement pair (xpre, thyp), we label993

this relationship between (xpre, thyp) as “Neutral".994

In other words, xpre is neutral with thyp.995

E.2 Performance of NLI using Various Types996

of LLMs997

To evaluate the effectiveness of NLI in LLMs using998

few-shot prompts, we conduct experiments on the999

MNLI dataset (Williams et al., 2018). This dataset1000

is well-known and comprises 40, 000+ samples of1001

NLI tasks collected from dozens of different do-1002

mains, including transcribed speech, fiction, and1003

reports. For our evaluation, we select 10, 000 repre-1004

sentative samples from the MNLI dataset, consider-1005

ing the scale and overhead of experiments. On this1006

basis, we evaluate the NLI performance of three1007

widely used LLMs: Qwen2-72B, GPT-3.5 Turbo1008

and GPT-4 Turbo, using the selected samples.1009

Table 6 presents the accuracy performance of1010

NLI achieved by the three LLMs. It is evident that1011

GPT-4 Turbo outperforms the others in NLI tasks1012

that require context from various domains. More-1013

over, based on previous studies (Gao et al., 2023)1014

and our experiment results, we observe that GPT-1015

4 Turbo achieves state-of-the-art accuracy in NLI.1016

This suggests that using GPT-4 Turbo for NLI can1017

lead to superior alignment between the judgements1018

of LLMs and human assessments. Consequently,1019

EoT employs GPT-4 Turbo with tailored few-shot1020

learning to perform NLI by default, aiming to better1021

align with human judgement.1022

Finally, we discuss the limitations of the NLI1023

mechanism based on the GPT-4 Turbo. As we can1024

see, the classification accuracy of NLI in EoT still1025

needs to be improved, which could result in threats1026

to the precise alignment of the assessment of EoT1027

with that of humans. To further enhance EoT’s ca-1028

pabilities, we intend to improve NLI performance1029

in EoT by integrating novel LLMs with advanced1030

NLI capabilities or optimizing the few-shot prompt-1031

ing mechanism.1032

Table 7: Statistics of Context Length of Selected Tasks

Dataset
Context (token)

Mean P95 Max
OpsQA 6, 052 11, 640 21, 045

LongBench (selected) 5, 700 11, 782 14, 640

F Description of Context Complexity 1033

In our evaluation, we select 40 questions from the 1034

OpsQA dataset and 60 questions from the Long- 1035

Bench dataset respectively. Resolving each ques- 1036

tion is a representative reasoning task, which needs 1037

to comprehend a series of long-textual domain 1038

knowledge contexts. In this appendix, we present 1039

a set of statistics related to the context length of 1040

selected questions, including the mean, the 95th 1041

percentile (P95) and the maximum (Max) value, to 1042

illustrate the complexity of tasks in our evaluation. 1043

As presented in Table 7, it can be found that, the 1044

average length of knowledge context can achieve 1045

6, 052 and 5, 700 tokens for selected tasks in Op- 1046

sQA and LongBench datasets, respectively. More- 1047

over, the maximum context length can even be 1048

up to 21, 045 and 14, 640 tokens for the selected 1049

task in OpsQA and LongBench datasets respec- 1050

tively. This significant complexity of the domain 1051

knowledge context for tasks could validate that, 1052

our experiments could appropriately evaluate the 1053

effectiveness of EoT for addressing the complex 1054

reasoning tasks that require the comprehension of 1055

long-context domain knowledge and the generation 1056

of intricate solutions. 1057

G Description of Baselines 1058

We compare EoT with five state-of-the-art frame- 1059

works for reasoning process evolution. Accord- 1060

ing to the schema of reasoning process generation, 1061

these frameworks can be categorized into three 1062

groups. 1) Exploration of structured thoughts: BoT 1063

(Chen et al., 2024) guides LLMs to explore ensem- 1064

ble of trees of thoughts (ToTs) and acquire trial- 1065

and-error reasoning experiences for each explored 1066

ToT, with the aim of improving the reliability of 1067

reasoning processes. In BoT, a reasoning thought 1068

is generated by the LLM as a node of ToT in each 1069

inference, and the complete reasoning process is 1070

formed by a series of such LLM inferences. 2) 1071

Revision of the complete reasoning process: a) 1072

xLLM (Chuang et al., 2024) provides feedback 1073

on the fidelity assessment for the complete rea- 1074

soning process and guides LLMs to optimize rea- 1075

soning processes through iterative improvements, 1076
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Figure 10: The CDF results of the reliability scores of evolved reasoning processes for various complex questions

aiming to enhance fidelity performance; b) Calibra-1077

tor (Ye and Durrett, 2022) focuses on revising rea-1078

soning processes to improve factuality and further1079

enhance the reasoning capability of LLMs through1080

iterations. In these studies, LLMs generate a com-1081

plete reasoning process in textual paragraphs via1082

a single-forward inference. 3) Question decom-1083

position: a) CoT-dec (Radhakrishnan et al., 2023)1084

prompts LLMs to decompose the reasoning pro-1085

cess to a sequence of subquestion-subanswer pairs1086

produced in single-forward inference in each itera-1087

tion. It seeks decomposed results that achieve the1088

best reliability performance as the final reasoning1089

process after multiple iterations; b) Factor-dec is1090

a variant of CoT-dec, aiming to enhance the reli-1091

ability of reasoning processes. In each evolution1092

iteration, Factor-dec guides LLMs to decompose1093

a reasoning process into a subqeustion sequence1094

and prompts LLMs to answer these subquestions1095

through step-by-step inferences. In other words,1096

each evolution iteration of Factor-dec involves mul-1097

tiple steps of question-answering in generating a1098

reasoning process.1099

H Experiment Results of Diverse1100

Questions1101

In this appendix, we intuitively present the perfor-1102

mance of the six evolution frameworks applied to1103

various tasks within the OpsQA and LongBench1104

datasets, utilizing two LLMs Qwen2-72B and GPT-1105

4 Turbo. The results demonstrate that EoT sig-1106

nificantly enhances the reasoning capabilities of1107

diverse LLMs, as well as behavior fidelity and fac-1108

tuality of the explained reasoning processes across1109

a broad spectrum of tasks.1110

H.1 Reasoning Capability (Reliability)1111

Figure 10a ∼ Figure 10d present the CDF results1112

of reliability scores of reasoning processes evolved1113

by the six frameworks on the two LLMs for all1114

questions in the two datasets. Notably, EoT demon-1115

strates superior reasoning capabilities compared1116

to the five baselines for most tasks across diverse 1117

LLMs. For instance, in the case of the 40 questions 1118

in the OpsQA dataset, Figure 10a shows that EoT 1119

achieve a reliability score exceeding 0.6 for 85.0% 1120

of the questions. This performance surpasses that 1121

of BoT, xLLM, Calibrator, CoT-dec and Factor-dec 1122

by about 75.0%, 35.0%, 22.5%, 15.0% and 40.0%, 1123

respectively, when using Qwen2-72B. As for the 1124

60 questions in the LongBench dataset, when us- 1125

ing Qwen2-72B, Figure 10c illustrates that EoT 1126

achieves a reliability score exceeding 0.8 for about 1127

61.67% of the questions. This performance sur- 1128

passes that of BoT, xLLM, Calibrator, CoT-dec 1129

and Factor-dec by about 43.43%, 33.34%, 43.34%, 1130

21.67% and 38.34%, respectively. In addition, 1131

when employing GPT-4 Turbo, Figure 10d indi- 1132

cates that EoT attains a reliability score higher than 1133

0.8 for roughly 63.3% of these 60 questions, which 1134

exceeds the performance of BoT, xLLM, Calibrator, 1135

CoT-dec and Factor-dec by roughly 45.0%, 20.0%, 1136

34.67%, 16.67% and 31.67%, respectively. 1137

In summary, these results confirm that EoT 1138

achieves exceptional reliability across a wide range 1139

of tasks. This suggests that the improvement of rea- 1140

soning capabilities in LLMs, facilitated by EoT, is 1141

well-suited for problem-solving in various domains 1142

with leading generality. 1143

H.2 Factuality 1144

Figure 11a ∼ Figure 11d present the CDF results 1145

of factuality scores of reasoning processes evolved 1146

by the six frameworks on the two LLMs for all 1147

the questions in the two datasets. We find that, 1148

compared with the five baselines, EoT remark- 1149

ably optimizes the factuality of reasoning processes 1150

for a wider range of questions on diverse LLMs. 1151

Specifically, as for the 40 questions in OpsQA, 1152

Figure 11b illustrates that EoT achieves the upper 1153

limit of factuality score 1.0 for about 50.0% of 1154

the questions, which exceeds the performance of 1155

BoT, xLLM, Calibrator, CoT-dec and Factor-dec 1156

by about 15.0%, 47.5%, 20.0%, 35.0% and 42.5%, 1157
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Figure 11: The CDF results of the factuality scores of evolved reasoning processes for various complex questions
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Figure 12: The CDF results of the fidelity scores of evolved reasoning processes for various complex questions

respectively when using GPT-4 Turbo. As for1158

the 60 questions in the LongBench dataset, when1159

using Qwen-72B, Figure 11c illustrates that EoT1160

achieves factuality scores of 1.0 for about 73.3%1161

of the questions, which exceeds the performance1162

of BoT, xLLM, Calibrator, CoT-dec and Factor-dec1163

by about 25.0%, 20.0%, 3.3%, 13.3% and 26.7%,1164

respectively. Moreover, when using GPT-4 Turbo,1165

Figure 11d shows that EoT obtains factuality scores1166

of 1.0 for 75% of these 60 questions, which sur-1167

passes the performance of BoT, xLLM, Calibrator,1168

CoT-dec and Factor-dec by about 26.7%, 36.7%,1169

3.3%, 5.0% and 25.0%, respectively.1170

These results suggest that EoT demonstrates re-1171

markable generality in ensuring the factuality of1172

reasoning processes, proving to be highly robust1173

across various knowledge domains. This assur-1174

ance stems from the detailed evaluation of thoughts1175

and the effective evolving framework that enables1176

LLMs to eliminate non-factual errors during the1177

explanation of these thoughts.1178

H.3 Fidelity1179

Figure 12a ∼ Figure 12d illustrate the behavior fi-1180

delity performance of reasoning processes evolved1181

by the six frameworks on the two LLMs for all1182

the questions in the two datasets. Compared to1183

the five baselines, EoT implements an evolution1184

mechanism that guides diverse LLMs in generating1185

reasoning processes, resulting in state-of-the-art1186

performance in behavior fidelity across most tasks1187

from various knowledge domains. These enhance-1188

ments demonstrate the exceptional generality of1189

EoT in improving behavior fidelity. Specifically, as 1190

for the 40 questions in the OpsQA dataset, when 1191

using Qwen2-72B, Figure 12a illustrates that EoT 1192

obtains fidelity scores higher than 0.225 for 71.7% 1193

of the questions, which exceeds the performance 1194

of BoT, xLLM, Calibrator, CoT-dec and Factor- 1195

dec by about 36.7%, 53.3%, 5.0%, 58.3% and 1196

43.3%, respectively. Moreover, when using GPT-4 1197

Turbo, Figure 12b presents that EoT achieves fi- 1198

delity scores higher than 0.25 for 60.0% of these 1199

40 questions, which surpasses the performance 1200

of BoT, xLLM, Calibrator, CoT-dec and Factor- 1201

dec by roughly 32.5%, 20.0%, 25.0%, 50.0% and 1202

37.5%, respectively. As for the 60 questions in the 1203

LongBench dataset, when using Qwen2-72B, Fig- 1204

ure 12c presents that EoT achieves fidelity scores 1205

higher than 0.2 for 40% of the questions, which 1206

surpasses the performance of BoT, xLLM, Cali- 1207

brator, CoT-dec and Factor-dec by roughly 10%, 1208

26.7%, 26.7%%, 21.7% and 6.7%, respectively. In 1209

addition, when using GPT-4 Turbo, Figure 12d il- 1210

lustrates that EoT obtains fidelity scores higher 1211

than 0.2 for 75.0% of the questions, which exceeds 1212

the performance of BoT, xLLM, Calibrator, CoT- 1213

dec and Factor-dec by about 16.7%, 41.7%, 36.7%, 1214

51.7% and 26.7%, respectively. 1215

These results demonstrate that EoT significantly 1216

improves the fidelity of reasoning processes as ex- 1217

plained by various LLMs, and this improvement is 1218

broadly applicable across diverse tasks rooted in 1219

different domains of knowledge. In summary, this 1220

enhancement in behavior fidelity can be attributed 1221
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to two key factors. Firstly, building on prior stud-1222

ies, EoT implements an effective mechanism for1223

assessing the behavior fidelity of explained reason-1224

ing thoughts in a detailed manner. Secondly, the1225

evolution mechanism of EoT effectively encour-1226

ages LLMs to clarify their reasoning with enhanced1227

faithfulness.1228

The optimization of reasoning processes regard-1229

ing factuality and fidelity, as shown in Appendices1230

H.2 and H.3, is beneficial for further enhancing the1231

reasoning capabilities of LLMs, as illustrated in1232

Appendix H.1.1233

Table 8: The performance on reliability for reasoning
processes evolved by EoT and its variants using two
LLMs on the OpsQA dataset.

LLMs Models
OpsQA

BLEURT ROUGE-L
NLI results Reliability
entail(%) Score

Qwen2

EoT_w/o_fact 0.593 0.362 70.16 0.607
EoT_w/o_fide 0.602 0.377 76.32 0.651
EoT_w/o_reli 0.609 0.386 77.33 0.655

EoT 0.595 0.395 83.90 0.706

GPT-4

EoT_w/o_fact 0.573 0.403 78.75 0.658
EoT_w/o_fide 0.597 0.417 80.03 0.675
EoT_w/o_reli 0.593 0.402 75.84 0.634

EoT 0.602 0.427 88.58 0.717
1 Qwen2 and GPT-4 represent the LLMs of Qwen2-72B and GPT-4 Turbo, respectively.

Table 9: The performance on factuality and fidelity for
reasoning processes evolved by EoT and its variants
using two LLMs on the OpsQA dataset.

LLMs Models
OpsQA

Factuality Fidelity
Sfac Sfid

Qwen2

EoT_w/o_fact 0.737 0.231
EoT_w/o_fide 0.840 0.226
EoT_w/o_reli 0.723 0.272

EoT 0.823 0.267

GPT-4

EoT_w/o_fact 0.722 0.277
EoT_w/o_fide 0.869 0.262
EoT_w/o_reli 0.882 0.296

EoT 0.906 0.281

I Ablation Study1234

I.1 Setup1235

We conduct ablation studies for EoT on the OP-1236

SQA dataset. To evaluate the effectiveness of the1237

optimization achieved by EoT concerning the three1238

factors, namely reliability, factuality and behavior1239

fidelity of reasoning processes, we design three1240

variants of EoT: EoT_w/o_fact, EoT_w/o_fide, and1241

EoT_w/o_reli. Each variant removes the optimiza-1242

tion related to factuality, behavior fidelity, and reli-1243

ability respectively from the evolution of thoughts.1244

We then compare the performance of the canonical1245

EoT with that of these three variants.1246

Table 8 presents the reasoning capability of 1247

Qwen2-72B and GPT-4 Turbo equipped with the 1248

canonical EoT and its three variants. Additionally, 1249

Table 9 shows the fidelity and factuality perfor- 1250

mance of the reasoning processes evolved by the 1251

EoT and its variants. 1252

I.2 Effectiveness of Factuality Optimization 1253

We compare the performance of EoT with that of 1254

EoT_w/o_fact to assess the effectiveness of evo- 1255

lution in terms of factuality. First of all, it can 1256

be observed that EoT significantly enhances the 1257

factuality of reasoning processes through the fine- 1258

grained evolution explicitly optimizing factuality. 1259

For instance, Table 9 shows that, when using GPT-4 1260

Turbo, EoT increases the factuality score by about 1261

25.5% compared to EoT_w/o_fact. Furthermore, 1262

the experiment results validate that the optimiza- 1263

tion on the factuality of reasoning processes in EoT 1264

further enhances the reasoning capabilities of di- 1265

verse LLMs. For instance, Table 8 demonstrates 1266

that compared to EoT_w/o_fact, EoT improves 1267

BLEURT, ROUGE-L and NLI result entail(%) 1268

by about 5.1%, 6.0%, and 12.5% respectively, and 1269

finally obtains the improvement of reliability score 1270

by about 9.0% when using GPT-4 Turbo. 1271

I.3 Effectiveness of Fidelity Optimization 1272

We compare the performance of EoT with that of 1273

EoT_w/o_fide, and then there are two insights can 1274

be observed, which indicates the effectiveness of 1275

behavior fidelity evolution in EoT. Firstly, com- 1276

pared to EoT_w/o_fide, EoT produces reasoning 1277

processes that achieve a significantly improved be- 1278

havior fidelity. Specifically, as shown in Table 9 1279

, when using Qwen2-72B, EoT increases the fi- 1280

delity score by about 18.1%. This enhancement is 1281

attributed to the fine-grained assessment of fidelity 1282

of reasoning thoughts and the effective prompting 1283

scheme aimed at faithfully explaining the behaviors 1284

of LLMs. 1285

Secondly, the mechanism that enhances behavior 1286

fidelity in EoT facilitates the positive emergence of 1287

reasoning capabilities in LLMs. For instance, com- 1288

pared to EoT_w/o_fide, EoT increases the reliabil- 1289

ity score by about 8.5% when using Qwen2-72B. 1290

In detail, this improvement is mainly attributed to 1291

that the fidelity enhancement achieved by EoT si- 1292

multaneously enhances the reasoning capabilities 1293

of LLMs from aspects of token overlapping and 1294

semantic alignment with human judgement. Specif- 1295

ically, EoT improves ROUGE-L and NLI result 1296
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Table 10: The p-value of performance improvement or decrease in terms of reasoning capability of LLMs between
the five baselines and EoT in T-test.

LLMs Models
OpsQA LongBench

BLEURT ROUGE-L
NLI results Reliability

BLEURT ROUGE-L
NLI results Reliability

entail(%) Score entail(%) Score

Qwen2

BoT 8.602× 10−5 3.720× 10−6 6.449× 10−10 6.463× 10−10 6.007× 10−9 2.843× 10−7 3.143× 10−6 2.308× 10−9

xLLM 0.011 0.003 1.362× 10−5 3.263× 10−7 1.561× 10−9 1.598× 10−7 0.026 0.001
Calibrator 0.028 0.036 0.006 9.268× 10−6 1.032× 10−10 8.322× 10−8 0.003 3.122× 10−7

CoT-dec 0.023 0.043 0.008 0.043 1.690× 10−7 6.397× 10−5 0.221 0.038
Factor-dec 0.014 1.343× 10−5 1.657× 10−6 2.380× 10−7 5.173× 10−9 2.270× 10−6 0.030 0.003

GPT-4

BoT 9.132× 10−7 1.546× 10−7 2.110× 10−9 5.074× 10−11 5.971× 10−9 2.993× 10−9 1.892× 10−6 3.809× 10−9

xLLM 0.036 0.045 5.120× 10−8 3.042× 10−8 0.047 0.034 0.013 9.875× 10−4

Calibrator 0.034 0.037 3.330× 10−4 2.664× 10−4 4.896× 10−5 1.813× 10−4 7.135× 10−4 6.534× 10−6

CoT-dec 0.014 0.446 0.039 0.040 0.005 0.041 0.235 0.043
Factor-dec 0.001 1.073× 10−8 0.001 7.063× 10−4 5.572× 10−6 3.859× 10−5 3.864× 10−4 0.001

entail(%) by about 4.8% and 9.9% respectively1297

when using Qwen2-72B.1298

I.4 Effectiveness of Reliability Optimization1299

We assess the performance of EoT in comparison to1300

EoT_w/o_reli to determine the effectiveness of the1301

evolution incorporated in the canonical EoT, which1302

aims to directly improve the overall reliability of1303

reasoning processes. As shown in Table 8, EoT1304

increases the reliability score by about 13.1% when1305

using GPT-4 Turbo, compared to EoT_w/o_reli.1306

For further details, EoT improves the BLEURT,1307

ROUGE-L and entail(%) by about 1.5%, 6.2%1308

and 16.8% respectively. These findings suggest1309

that explicitly addressing the reliability factor can1310

lead to a significant improvement in the overall1311

reasoning capabilities of LLMs, in contrast to the1312

unsupervised evolution that does not consider the1313

solving reliability under the guideline of previously1314

produced reasoning processes.1315

I.5 Effectiveness of Multi-objective1316

Optimization on Three Factors1317

According to the experiment results of ablation1318

studies as mentioned above, it can be observed1319

that EoT achieves the best collaborative optimiza-1320

tion among the three factors compared with the1321

three variants. In other words, when considering1322

the three factors simultaneously, EoT produces the1323

evolved reasoning processes that achieves the best1324

trade-off among the three factors under the promise1325

of reasoning capability improvement on LLMs.1326

Firstly, excluding a factor from EoT can make1327

evolved reasoning processes achieve a better per-1328

formance on some other factors. However, this1329

improvement of performance on other factors is1330

always along with the degradation of the perfor-1331

mance on the excluded factor, and would further1332

compromise reasoning capabilities of LLMs. For1333

instance, as shown in Table 8 and Table 9, when us-1334

ing Qwen2-72B, EoT_w/o_fide improves the factu-1335

ality performance by about 2.1% compared to EoT. 1336

However, EoT attains the improvement on fidelity 1337

performance and the overall reasoning capabilities 1338

by about 18.1% and 8.5% respectively. 1339

Secondly, evolving reasoning process in terms 1340

of fidelity and factuality in a unsupervised way, 1341

can effectively optimize the behavior fidelity of 1342

reasoning processes produced by diverse LLMs. 1343

Nevertheless, EoT which evolves reasoning pro- 1344

cess with supervised awareness of reliability perfor- 1345

mance further enhance the factuality of produced 1346

reasoning processes and the reasoning capability of 1347

LLMs simultaneously. Specifically, compared to 1348

EoT, EoT_w/o_reli improves the fidelity score by 1349

about 1.9% and 5.3% when using Qwen2-72B and 1350

GPT-4 Turbo, respectively. In contrast to that, EoT 1351

improves the factuality score and reliability score 1352

by about 13.8% and 7.8% when using Qwen2-72B, 1353

and by about 2.7% and 13.1% when using GPT-4 1354

Turbo, respectively. 1355

Table 11: The p-value of performance improvement or
decrease in terms of factuality and fidelity for reasoning
processes of reasoning processes between the five base-
lines and EoT in T-test.

LLMs Models
OpsQA LongBench

Factuality Fidelity Factuality Fidelity
Sfac Sfid Sfac Sfid

Qwen2

BoT 0.039 0.041 0.017 0.045
xLLM 0.003 1.215× 10−4 1.590× 10−4 2.047× 10−5

Calibrator 4.258× 10−4 0.046 0.072 2.550× 10−4

CoT-dec 1.142× 10−9 3.172× 10−13 0.007 0.002
Factor-dec 8.081× 10−5 1.488× 10−6 0.045 0.032

GPT-4

BoT 0.001 2.604× 10−6 0.009 0.027
xLLM 3.667× 10−16 1.010× 10−4 2.988× 10−6 1.470× 10−9

Calibrator 0.039 0.041 0.087 6.041× 10−6

CoT-dec 1.644× 10−7 8.337× 10−7 0.074 1.372× 10−6

Factor-dec 8.267× 10−5 4.683× 10−5 0.062 8.401× 10−6

J Significance of Performance 1356

Improvement or Decrease 1357

In this appendix, we use the T-test, an appropriate 1358

method of statistical test, to evaluate the signif- 1359

icance of performance improvement or decrease 1360

presented in Table 3 and Table 4 in our submitted 1361
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manuscript. In general, for each of the five base-1362

lines, we compute the p-value in T-test between1363

the distribution of each performance metric ob-1364

tained by the baseline and EoT respectively when1365

using each type of LLMs on each dataset. Specif-1366

ically, the performance metric includes BLEURT,1367

ROUGE-L, NLI score and reliability score for1368

reasoning capability evaluation and the factuality1369

score and fidelity score for the evaluation of factu-1370

ality and behavior fidelity of reasoning processes.1371

When computing the p-value of any metric for each1372

baseline on a specific dataset, the performance dis-1373

tribution is estimated among the metric value for1374

each question in the dataset. A lower p-value rep-1375

resents a higher significance for performance im-1376

provement and decrease, and p-value ≤ 0.05 often1377

indicates that the evaluation results achieve the suf-1378

ficient significance in statistical tests.1379

As for the performance metrics reflecting the1380

reasoning capability of LLMs, namely BLEURT,1381

ROUGE-L, NLI results and reliability score, As1382

presented in Table 10, the p-value between perfor-1383

mance achieved by the baselines and that obtained1384

by EoT can be limited below 0.05 in most scenar-1385

ios. These results indicate that the performance im-1386

provement or decrease achieved by EoT in terms of1387

reasoning capability of LLMs which are presented1388

in our submitted manuscript, have the outstanding1389

significance. Thus, our conducted evaluations and1390

the conclusion that EoT effectively achieves the1391

enhancement of reasoning capability have a reason-1392

able robustness. Nevertheless, we find that p-value1393

significantly exceeding 0.05 only occurs between1394

the value of NLI results achieved by the CoT-dec1395

and EoT respectively on LongBench dataset. This1396

is mainly attributed to that CoT-dec and EoT ob-1397

tains the similar performance of reasoning capabil-1398

ity on the aspects of semantic alignment robustness1399

on LongBench dataset. Since EoT achieves ade-1400

quate significance of performance improvement for1401

all the remaining metrics i.e., BLEURT, ROUGE-L1402

and reliability score, it still can be regarded that1403

EoT enhances the reasoning capability of LLMs1404

compared with CoT-dec in a robust way on Long-1405

Bench dataset. In future, we will evaluate the per-1406

formance difference between NLI results of CoT-1407

dec and EoT on a larger scale of datasets.1408

As for the performance metrics mirroring fac-1409

tuality and behavior fidelity of evolved reasoning1410

processes, It can be observed in Table 11 that, on1411

OpsQA dataset, p-value ≤ 0.05 occurs for each1412

metric achieved by the five baselines in our evalua-1413

tion. Nevertheless, on LonBench dataset, we find 1414

that p-value for factuality score achieved by Cal- 1415

ibrator, CoT-dec and Factor-dec slightly exceeds 1416

0.05 when using GPT-4 Turbo. This is because 1417

that these three baselines and EoT all obtain the 1418

outstanding but close performance on factuality of 1419

reasoning processes. We will use more open-source 1420

dataset to further evaluate the performance differ- 1421

ence on factuality among these four frameworks in 1422

the future. 1423
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