
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a paper at DATA-FM workshop @ ICLR 2025

IMPROVING INFLUENCE-BASED INSTRUCTION TUNING
DATA SELECTION FOR BALANCED LEARNING OF DI-
VERSE CAPABILITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Selecting appropriate training data is crucial for effective instruction fine-tuning
of large language models (LLMs), which aims to (1) elicit strong capabilities,
and (2) achieve balanced performance across a diverse range of tasks. Influence-
based methods show promise in achieving (1) by estimating the contribution of
each training example to the model’s predictions, but often struggle with (2). Our
systematic investigation reveals that this underperformance can be attributed to an
inherent bias where certain tasks intrinsically have greater influence than others.
As a result, data selection is often biased towards these tasks, not only hurting the
model’s performance on others but also, counterintuitively, harms performance on
these high-influence tasks themselves.
As a remedy, we propose BIDS, a Balanced and Influential Data Selection al-
gorithm. BIDS first normalizes influence scores of the training data, and then
iteratively balances data selection by choosing the training example with the highest
influence on the most underrepresented task. Experiments with both Llama-3 and
Mistral-v0.3 on seven benchmarks spanning five diverse capabilities show that
BIDS consistently outperforms both state-of-the-art influence-based algorithms
and other non-influence-based selection frameworks. Surprisingly, training on a
15% subset selected by BIDS can even outperform full-dataset training with a
much more balanced performance. Our analysis further highlights the importance
of both instance-level normalization and iterative optimization of selected data for
balanced learning of diverse capabilities.

1 INTRODUCTION

Supervised instruction finetuning (SFT) plays a crucial role in eliciting strong capabilities from
large language models (LLMs). Typically, a pretrained LLM is finetuned on a mixture of different
datasets to achieve strong and balanced performance (Ouyang et al., 2022; Touvron et al., 2023;
Dubey et al., 2024; Jiang et al., 2023). The importance of SFT data quality (Zhou et al., 2024) has
spawned many works on instruction tuning data selection (Cao et al., 2023; Chen et al., 2023; Liu
et al., 2023). Influence-based methods estimate each individual training example’s influence on the
model’s prediction on a downstream task (Koh & Liang, 2017; Pruthi et al., 2020). Thanks to recent
advances, they have been scaled to LLM-level computations and demonstrated strong potential in
facilitating high-quality data selection (Xia et al., 2024; Choe et al., 2024; Yu et al., 2024).

However, influence estimation methods are typically designed to measure the data influence for a
single task (Koh & Liang, 2017; Pruthi et al., 2020). In this study, we demonstrate that existing
influence-based data selection algorithms (Xia et al., 2024) struggle to balance capabilities across
diverse tasks, which is crucial in real-world applications1. Specifically, our analysis reveals that the
influence scores for certain tasks exhibit larger magnitudes than others, introducing systematic bias in
the data selection process when cross-task influence scores are directly compared, as done in many
existing works (Yin & Rush, 2024; Albalak et al., 2024). This leads to a couple of pitfalls. First,
biasing towards some tasks hurts the model’s performance on others, making it more challenging
for the LLM to achieve balanced capabilities. Second, perhaps counterintuitively, it may even hurt

1E.g., it is desirable for a coding agent to faithfully follow user instructions and perform complex reasoning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a paper at DATA-FM workshop @ ICLR 2025

the model’s performance on the very task that the data is biased towards. These issues call for an
influence-based selection algorithm designed for training LLMs to achieve balanced capabilities
across diverse tasks.

BIDS, our proposed algorithm, addresses these challenges with two key designs. Given a training
dataset to select from and a validation dataset representing the diverse target tasks, we formulate
the influence-based selection with a matrix, where each column consists of the influence scores
of different training examples on a specific validation instance. BIDS first applies column-wise
normalization to this matrix, thus setting the influence for different validation instances on the same
scale. Then, in contrast to prior methods that simply select top-ranked examples with the highest
influence values, BIDS applies an iterative selection algorithm. At each iteration, this algorithm
compares the influence of each candidate training example with the average influence of those already
selected ones, and selects the candidate that can provide the largest marginal improvement. If the
current selected dataset falls short in influence on certain validation instances, then our algorithm
will intuitively favor candidate examples that have high influence on the specific tasks represented
by these validation data. In this way, BIDS actually favors training data that contribute most to the
underrepresented tasks in the current selected subset, and thus promotes balanced multi-task learning.

In order to show the consistently strong performance of BIDS, we conduct experiments on an
extensive suite of training and evaluation data, UltraInteract (Yuan et al., 2024), with base models
from two different families—Llama-3-8B (Dubey et al., 2024) and Mistral-7B-v0.32. Across seven
tasks spanning five diverse capabilities including coding, math, logical inference, world knowledge
and general instruction following, BIDS consistently outperforms both influence- and non-influence-
based selection algorithms, not only in terms of macro-average performance across diverse tasks,
but also in most individual cases. Surprisingly, a 15% subset selected by BIDS even outperforms
full-dataset training in average performance, emphasizing the huge potential of selective training
in multi-capability learning of LLMs. Further analysis reveals the positive contributions from both
the instance-level normalization and iterative selection. Investigation of the influence distribution of
BIDS-selected data also gives valuable insight on how BIDS reduces the influence disparity across
tasks, and what might be the properties of a balanced set of influential data.

The contributions of this paper include:

1. We identify the problem of influence-based data selection algorithms in instruction tuning LLMs
for learning diverse tasks, and attribute this problem to an inherent bias in cross-task influence
through systematic analysis.

2. We propose BIDS, a simple and effective influence-based selection algorithm for balanced learning
of diverse capabilities.

3. Through extensive experiments, we confirm the consistent and significant effectiveness of BIDS,
and provide valuable insights on what makes a balanced set of influential data.

2 BACKGROUND AND PRELIMINARIES

Influence-based instruction tuning data selection. Estimating the influence of individual training
examples on model predictions is critical for understanding model behavior and selecting influential
training data to improve model performance. Traditional methods, including retraining-based (Ghor-
bani & Zou, 2019; Ilyas et al., 2022; Park et al., 2023) and gradient-based (Koh & Liang, 2017; Pruthi
et al., 2020) approaches, have proven effective but are computationally prohibitive when scaling to
LLMs, as they either require retraining on a large number of subsets, or computing at least a forward
and backward pass for each training example in order to obtain its gradient (Hammoudeh & Lowd,
2024; Ko et al., 2024). Several recent advances have sought to address these challenges by extending
gradient-based approaches to scale more effectively. Given a large training dataset to select from and
a validation set representing some targeted capabilities, LESS (Xia et al., 2024) models the influence
between each pair of training and validation examples through LoRA-based low-dimensional gradient
similarity, and then selects training points with highest influence on the validation set. LOGRA (Choe
et al., 2024) leverages a low-rank gradient projection algorithm to further improve the efficiency.

2https://huggingface.co/mistralai/Mistral-7B-v0.3

2

https://huggingface.co/mistralai/Mistral-7B-v0.3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a paper at DATA-FM workshop @ ICLR 2025

MATES (Yu et al., 2024) formulates the pointwise data influence between each training point and the
whole validation set, and uses a small data influence model to learn this pointwise influence.

Upon closer inspection, these LLM-scale influence-based selection methods share a similar problem
formulation. They all need a validation set to represent a targeted data distribution and require the
computation of pointwise data influence between each training example and the validation data. In
this work, we aim to extend this influence-based data selection paradigm to the setup of multi-task
instruction tuning, where the model is expected to simultaneously learn multiple diverse capabilities
that may require training data from drastically different distributions. Concretely, since only LESS
directly targets instruction tuning among the three LLM-scale approaches, we ground our study on
the specific formulation of LESS. But we emphasize that due to the highly similar influence modeling
patterns shared among these methods, the results of our work should also provide useful insight for
other influence-based selection methods.

Problem Setup and Notations. Assume an instruction tuning dataset D, a validation dataset V ,
which spans m diverse tasks that we want to optimize the LLM’s performance for: V = V1∪· · ·∪Vm,
and an influence estimation method that can compute the influence of each training example on each
validation instance. We first compute the influence score between each pair of training and validation
data, yielding a |D| × |V| matrix A. Each row of A corresponds to an individual training example,
and each column a validation instance. Element Aij indicates the influence of i-th example from D
on j-th instance from V . We dub A an Attribution Matrix (AM) as it reveals the overall attribution
pattern from the training set to all target tasks, and each row Ai the Influence Distribution of the
i-th training example.

Our goal is to design a data selection algorithm that can effectively select a subset T from D with
size under a pre-defined budget, based on the influence information presented in A. Finetuning the
LLM on T is supposed to help the model achieve strong and balanced performance on all targeted
tasks. The evaluation tasks are specifically chosen to have minimal overlap in terms of the capabilities
they benchmark. The size of validation set for each task is also kept the same to avoid bias in the
selection process.

3 EXISTING INFLUENCE-BASED SELECTION FAILS AT BALANCING DIVERSE
TASKS

We first show that LESS leads to significantly unbalanced and weak performance in a multi-task
learning setup. This is quantitatively revealed by our analysis framework, which identifies inherent
biases in the scale of influence values across different tasks. Insights drawn in this section pave the
way for the design choices of BIDS in §4.

Setting. In this section, we use Llama-3-8B (Dubey et al., 2024) as the base model for both
influence estimation and evaluation of selected datasets. For the instruction dataset to select from, we
use UltraInteract (Yuan et al., 2024), a state-of-the-art, large-scale, high-quality dataset designed to
enhance diverse reasoning capabilities, including mathematical reasoning, coding, and general logical
inference. We also follow the evaluation setup of Yuan et al. (2024), with seven datasets spanning
five diverse capabilities. We use HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for
coding, GSM-Plus (Li et al., 2024) and MATH (Hendrycks et al., 2021) for math, and BigBench-Hard
(BBH) (Suzgun et al., 2022) for general logical inference. We also use MMLU (Hendrycks et al.,
2020) to assess the model’s ability to understand and reason over world knowledge, and IFEval (Zhou
et al., 2023) for the fine-grained instruction following ability. For more details about the training and
evaluation setups, please refer to Appendix A.2.

For the influence estimation method throughout this work, we follow the original pipeline introduced
by LESS, with an equal number of validation instances sampled uniformly from each of the seven
evaluation tasks. In this section, for the data selection algorithm, we also start with the task-wise
max algorithm (Appendix A.3) used by LESS, which, for each training example, first computes
its mean influence over validation examples within the same task, followed by selecting training
examples with the highest maximum influence across different tasks. We compare this algorithm
against a random selection baseline, which represents the average performance of models trained on
two sets of randomly selected data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a paper at DATA-FM workshop @ ICLR 2025

Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5% Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 43.4
LESS 43.9 50.7 62.7 65.1 42.5 22.6 19.7 43.9

10% Random 47.8 50.6 65.0 64.9 43.9 24.0 17.8 44.9
LESS 44.7 51.3 62.0 64.7 44.6 24.3 19.3 44.4

15% Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7
LESS 46.5 51.0 63.2 64.6 44.9 24.9 21.2 45.2

Table 1: Comparison between LESS and the random baseline. The highest performance for each task
and macro-average is bolded. LESS only outperforms the random baseline in macro-average under
the 5% budget, while lags behind under the other two with imbalanced performance distributions.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0.0025

0.0020
0.0015
0.0010
0.0005
0.0000
0.0005
0.0010

AID
Mean AID per task

Figure 1: Unnormalized Average Influence
Distribution (AID) of the whole UltraInteract
dataset (Yuan et al., 2024), showing great scale
disparities for inter-task and intra-task influence.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0

2000

4000

6000

8000

1247

5220
4292

9304

6441

2073

280

Figure 2: Task frequencies with Highest Influ-
ence (THI) under the 10% budget. MMLU is
obviously oversampled in LESS-selected data.

LESS fails to balance different capabilities (Table 1). LESS shows substantial imbalance and
variability in task-specific performance across different budgets. Although it consistently outperforms
the random baseline in IFEval by a margin over 1.5%, it also consistently and significantly lags
behind in BBH by two to three points, and shows no clear trend of advantage in the remaining five
tasks. Moreover, with the increase of budget level, LESS is gradually outperformed by the random
baseline in more tasks, leading to weaker macro-average performance under both 10% and 15%
budgets.

The underperformance of LESS may stem from the fact that it is not designed for learning multiple
diverse capabilities, thus less suitable for general-purpose instruction tuning. But the observations
above still raise critical questions, especially given that an equal number of validation instances were
used for each task during selection. This suggests a potential inherent bias in the influence values
across different tasks, which could skew the selection algorithm towards certain capabilities. If the
overall influence on certain task is inherently higher, then the naive task-wise max selection algorithm
will naturally prioritize training examples that have high influence on these tasks, possibly at the
expense of others.

In what follows, we aim to answer the following two questions: (1) whether influence values differ
across tasks and to what extent, and (2) whether tasks with higher influence values have larger space
for performance improvement.

What causes the imbalance of LESS? To examine the influence distribution of LESS-selected
data, we first define two data analysis metrics.

• Average Influence Distribution (AID):
∑N

i=1 Ai/N , is the average of Influence Distributions of
all the training examples.

• The Task Frequency with Highest Influence (THI) for a task t is the number of selected training
examples that have the highest average influence on t.

Our AID analysis of the whole UltraInteract dataset (Figure 1) reveals both task- and instance-level
discrepancies. MMLU receives the highest average influence that is substantially higher than BBH’s,
despite the fact that MMLU is out-of-distribution for the training data, while BBH is in-distribution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a paper at DATA-FM workshop @ ICLR 2025

Moreover, there are also significant influence disparities for validation instances inside the same
task. For example, the gap between the highest and lowest instance-wise influence inside IFEval is
more than 0.0025, while the globally highest instance-wise influence is less than 0.001. These results
answer our question (1) by confirming that the scales of influence values indeed differ significantly
across various tasks.

Further, the THI analysis of LESS-selected data (Figure 2) validates that the scale differences indeed
make the selection algorithm of LESS disproportionately favor certain tasks over others. Specifically,
MMLU has the highest frequency of being the most influential task, which is consistent with the
observations in Figure 1 where MMLU has the highest task-level average influence. However, this
does not translate into proportionally better performance—LESS even frequently underperforms the
random baseline on MMLU. For other in-distribution tasks with high THI, such as MBPP, BBH, and
GSM-Plus, LESS is either consistently outperformed or shows no clear trend of advantage. As is
suggested by these observations, although high-influence tasks tend to have more supporting data in
the selected dataset, they do not necessarily have larger room for performance improvement. Besides,
such biased sampling may hinder the learning of other necessary capabilities as well. Thus, we
answer the question (2) by concluding that the inherent difference in the scale of cross-task influence
values is indeed a harmful bias, and can severely undermine the performance of the data selection
algorithm employed by LESS.

4 BIDS: SELECTING INFLUENTIAL DATA FOR BALANCED CAPABILITY
LEARNING

In this section, we introduce BIDS, a Balanced and Influential Data Selection algorithm to address
the issues identified in §3. BIDS has two key design choices: (1) instance-level normalization, and
(2) iterative selection favoring underrepresented tasks.

Instance-level normalization. At a higher level, this technique aims to address the scale difference
of influence values across different validation instances. This can be achieved by applying a column-
wise normalization to the Attribution Matrix. Specifically, for validation instance vj , the influence of
each training example ti is normalized by Anorm

ij = (Aij − µj)/σj , where µj and σj are the sample
mean and standard deviation of all values in column j of A. This normalization step ensures that the
influence scores of different columns are on the same scale. In other words, if two influence scores of
different columns have similar intra-column rankings, then they should also have similar values.

Iterative selection favoring underrepresented tasks. We further propose an iterative greedy
selection algorithm (Figure 3, and Algorithm 1 in Appendix A.5) to promote the balance over
different capabilities. It begins with an empty set. In each iteration, the algorithm first computes
the average influence distribution of the current selected subset T , denoted as AT ≜ 1

|T |
∑

k:tk∈T
Ak.

Then it iterates through each training example ti in the candidate subset D \ T , and calculates a
component-wise difference between Ai and AT . The utility ∆(i) of candidate ti is then defined as
the largest component of Ai −AT , and the candidate example with the highest utility is selected
for this iteration. In other words, BIDS actually favors training examples that can bring the largest
improvement in influence to the most underrepresented task of the current selected data. This
approach essentially differs from LESS, which only scores each training example independently and
then selects the top-ranked ones, by considering the interactions of influence distributions among
different selected examples and promoting the balance of overall influence distribution of the selected
dataset.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Basic setup. We follow the experimental setup outlined in §3, including the same set of LLMs,
datasets, tasks, and influence estimation implementations. To further validate the generalizability of
BIDS, we also conduct experiments on base models from different model families, which is detailed
in Appendix A.6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a paper at DATA-FM workshop @ ICLR 2025

Training Set
(𝓓𝓓 = 𝒕𝒕𝒊𝒊 𝒊𝒊=𝟏𝟏

|𝓓𝓓|)

|𝓥𝓥|

|𝓓𝓓|

(𝒋𝒋)

𝑨𝑨𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 =
𝑨𝑨𝒊𝒊𝒊𝒊 − 𝜇𝜇𝑗𝑗

𝜎𝜎𝑗𝑗

(2) BIDS

Selected
(𝓣𝓣)

Candidates
(𝓓𝓓 \ 𝓣𝓣)

(𝒊𝒊) . . .

𝚫𝚫𝟏𝟏
(𝒊𝒊)

𝚫𝚫𝟒𝟒
(𝒊𝒊)

𝚫𝚫|𝓥𝓥|
(𝒊𝒊)

𝚫𝚫𝟐𝟐
(𝒊𝒊)

𝚫𝚫𝟑𝟑
(𝒊𝒊)

Influence

Validation Index

Component-wise Difference

𝜟𝜟(𝒊𝒊) = max
1≤𝑗𝑗≤|𝒱𝒱|

𝜟𝜟𝒋𝒋
(𝒊𝒊) = 𝑨𝑨𝒊𝒊𝒊𝒊 −

1
|𝒯𝒯| �

𝑘𝑘: 𝑡𝑡𝑘𝑘∈𝒯𝒯

𝑨𝑨𝒌𝒌𝒌𝒌

Select candidate 𝒕𝒕𝒊𝒊∗
with highest 𝜟𝜟(𝒊𝒊∗)

Candidates
(𝓓𝓓 \ (𝓣𝓣 ∪ 𝒕𝒕𝒊𝒊∗))

(𝒊𝒊∗)

Selected
(𝓣𝓣 ∪ 𝒕𝒕𝒊𝒊∗)

mean(dim=0)

Instance-level
Normalization

Iterative Selection Favoring Underrepresented Tasks (until 𝓣𝓣 = 𝑩𝑩)

(1) LESS
(task-wise max)

𝒎𝒎 𝟏𝟏

𝟏𝟏

|𝑩𝑩|
Intra-task mean Cross-task max Select Top-B

Largest improvement to
most underrepresented task

Training Set
(𝓓𝓓 = 𝒕𝒕𝒊𝒊 𝒊𝒊=𝟏𝟏

|𝓓𝓓|)

|𝓥𝓥|

|𝓓𝓓|

Figure 3: A comparison between BIDS and the task-wise max algorithm used by LESS. For
convenience, we represent the training set D with its Attribution Matrix (AM), in which the i-th row
is the |V|-dimensional Influence Distribution of the i-th training example, ti, in D. BIDS differs from
LESS in mainly two aspects. First, it applies a column-wise normalization to the AM. Next, instead
of directly selecting top-B examples in influence, BIDS applies an iterative algorithm which, at each
iteration, obtains the utility ∆(i) of each candidate example ti by calculating how much improvement
in influence it can bring to the current selected subset T , and selects candidate ti∗ with the highest
utility ∆(i∗). Please see §4 for a more detailed walkthrough.

Baselines. Apart from the original task-wise max algorithm used by LESS, we compare with two
other influence-based intuitive variants that are applicable to the Attribution Matrix. In addition, we
also compare with three strong non-influence-based selection methods to further demonstrate the
necessity of balanced data selection. These five additional baselines are briefly summarized below.
For more details about their mechanisms and implementation, please refer to Appendix A.3.

• Instance-wise max: For each training example, it uses the maximum of influence values over all
validation instances as the utility score. Training examples with highest scores are selected.

• Sum also selects training examples with highest scores, but uses the sum of an example’s influence
instead of the max.

• Representation-based Data Selection (RDS; Zhang et al., 2018; Hanawa et al., 2020; Xia
et al., 2024) is a non-influence-based targeted data selection method, as it also requires access
to validation data that represent the targeted capabilities. It selects the training data that are most
similar to the validation instances based on the language model’s hidden representations.

• S2L (Yang et al., 2024) and DEITA (Liu et al., 2023) are two state-of-the-art, non-influence-based
general data selection methods. They aim to select training data that are generally of high-quality
and diverse without knowing the targeted capabilities beforehand. We hypothesize that such a
general property may save these two methods from severe bias towards certain tasks or capabilities.

5.2 RESULTS

Comparison under the same budget. As shown in Table 2, across the 5%, 10% and 15% budgets,
BIDS consistently outperforms both influence-based and non-influence-based baselines in terms
of the macro-average score across all seven benchmarks. Moreover, when compared on specific
tasks, BIDS ranks either first or second among the eight selection algorithms on 3/7, 4/7 and 3/7
benchmarks under the three budgets respectively. These results show that BIDS indeed helps achieve
strong and balanced performance across multiple different tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a paper at DATA-FM workshop @ ICLR 2025

Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%

Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 43.4
Task-max (LESS) 43.9 50.7 62.7 65.1 42.5 22.6 19.7 43.9

Sum 45.6 51.9 63.6 64.8 42.4 21.3 20.1 44.2
Instance-max 43.9 52.1 63.2 65.0 42.6 22.3 20.6 44.2

RDS 45.6 52.7 62.2 65.0 34.5 17.2 15.5 41.8
S2L 40.4 49.0 64.3 65.0 41.8 23.5 16.5 42.9

DEITA 43.9 47.3 65.0 65.1 41.9 22.3 18.1 43.4
BIDS (ours) 45.6 51.0 64.3 64.9 42.1 22.9 21.4 44.6

10%

Random 47.8 50.6 65.0 64.9 43.9 24.0 17.8 44.9
Task-max (LESS) 44.7 51.3 62.0 64.7 44.6 24.3 19.3 44.4

Sum 45.6 51.6 61.6 64.6 43.8 23.7 21.0 44.6
Instance-max 46.5 47.3 64.6 65.0 44.1 24.7 22.8 45.0

RDS 50.0 54.7 63.2 64.6 39.3 22.4 18.3 44.6
S2L 46.5 50.7 64.5 65.0 43.3 22.7 18.9 44.5

DEITA 51.8 49.9 65.6 65.0 43.1 24.5 17.5 45.3
BIDS (ours) 48.2 50.4 65.1 64.9 45.1 25.1 23.4 46.0

15%

Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7
Task-max (LESS) 46.5 51.0 63.2 64.6 44.9 24.9 21.2 45.2

Sum 48.2 51.0 62.6 64.6 44.8 24.0 19.3 44.9
Instance-max 47.4 48.1 63.2 65.0 45.8 25.1 20.3 45.0

RDS 50.0 53.9 63.7 64.5 41.1 23.5 18.1 45.0
S2L 51.8 50.7 65.4 64.8 44.7 24.2 16.9 45.5

DEITA 50.0 50.7 65.8 64.7 45.0 23.3 16.7 45.2
BIDS (ours) 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1

BIDS (ours; epochs=4) 50.0 53.0 64.4 64.7 47.0 26.9 23.4 47.1

100% Full (epochs=1) 52.6 53.6 65.5 64.1 47.2 27.9 17.5 46.9
Full (epochs=4) 48.2 54.4 59.2 63.1 51.5 32.3 17.9 46.7

Table 2: Comparison between BIDS and various selection algorithms, including both influence-based
and non-influence-based ones. The task-specific or macro-average performance is bolded if it ranks
first under the same budget, and underlined if it ranks second. “BIDS (epochs=4)” is compared with
100% full training. When scaling the training of BIDS to four epochs, it outperforms full-dataset
training with both one and four epochs, showing its consistently strong and balanced performance.

Notably, the three non-influence-based selection methods (i.e., RDS, S2L, DEITA) are consistently
outperformed by the random baseline across all three budgets. Upon inspection of their task-specific
performance, both RDS and DEITA are significantly biased towards the two coding tasks under
the 10% and 15% budgets, at the cost of serious performance drop on others, especially math and
instruction-following. In contrast, S2L shows a shifting trend in its performance bias, from MATH
under the 5% to HumanEval under the 15%. These observations consolidate the unique value of
BIDS, as existing works on both targeted and general instruction data selection all fail to generalize
to the challenging setup of learning multiple diverse capabilities simultaneously. Moreover, they
also suggest that the imbalance of utility scores (Yin & Rush, 2024) may commonly exist for both
influence- and non-influence-based data selection approaches, and deserves careful investigation in
future work.

BIDS outperforms full-dataset training. As shown in the last three rows in Table 2, training on a
15% subset selected by BIDS over four epochs consistently outperforms full-dataset training. Further
analysis on task-specific performance reveals that BIDS achieves better performance by maintaining
balanced and strong performance across six reasoning-related tasks while significantly improving
instruction-following. These results demonstrate that BIDS not only excels in selecting influential
and balanced data, but also that full-dataset training may not always be optimal for LLMs to learn
multiple diverse capabilities. This finding highlights the potential for training on selective subsets to
offer more efficient and effective instruction finetuning.

6 ANALYSIS

This section presents ablation studies and analyses of the two key components of BIDS, in terms of
their contributions to BIDS’ performance improvements and their effect on the selected data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a paper at DATA-FM workshop @ ICLR 2025

Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%
BIDS 45.6 51.0 64.3 64.9 42.1 22.9 21.4 44.6
−Iter 45.6 52.1 62.5 64.8 42.5 22.5 20.1 44.3

−(Norm+ Iter) 43.9 52.1 63.2 65.0 42.6 22.3 20.6 44.2

10%
BIDS 48.2 50.4 65.1 64.9 45.1 25.1 23.4 46.0
−Iter 47.4 48.4 64.6 65.1 45.4 25.2 23.0 45.6

−(Norm+ Iter) 46.5 47.3 64.6 65.0 44.1 24.7 22.8 45.0

15%
BIDS 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1
−Iter 47.4 50.1 64.9 65.0 45.6 26.0 20.8 45.7

−(Norm+ Iter) 47.4 48.1 63.2 65.0 45.8 25.1 20.3 45.0

Table 3: Respective contribution of the two components of BIDS. −Iter ablates the iterative
selection, and −(Norm + Iter) further ablates both normalization and iterative selection. The
highest performance is bolded for each task and macro-average. The performance shows a decreasing
trend as more technical components are ablated, which substantiates the positive contributions of
both techniques in BIDS.

6.1 ABLATION

The ablation results are summarized in Table 3. We compare BIDS with the −Iter baseline
to ablate iterative selection, and with −(Norm + Iter) to further ablate both normalization and
iterative selection. In other words, −(Norm + Iter) is the naive instance-wise max algorithm
applied to the unnormalized Attribution Matrix, and −Iter only additionally applies the instance-
level normalization proposed by BIDS to the AM, but without the iterative selection that favors
underrepresented tasks. From the table, we observe that normalization alone can already consistently
improve the overall performance of selected data under various budgets. And applying the iterative
selection not only further elevates the macro-average score, but also improves the balance of cross-
task performance. These two observations confirm that both design choices of BIDS contribute
positively to the performance gains.

6.2 CHANGES IN INFLUENCE DISTRIBUTION OF SELECTED DATA

After confirming the positive contribution from both components of BIDS, we then proceed to
explore how they affect the influence distribution of selected data, and whether such effects can
provide insight into why BIDS advances balanced learning of diverse capabilities.

We compare the same models as in §6.1, using a slightly modified version of the two types of data
analysis metrics defined in §3. For better AID comparisons, we report influence values after instance-
level normalization. We also replace task-wise average influence with instance-wise influence in the
THI calculation, since the three algorithms we are comparing are all built upon the instance-wise max
approach. Concretely, for each selected training example ti, if its influence on validation instance
vk (vk ∈ Vj) is the highest across all |V| validation instances, then the THI frequency for task j
increases by one.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0

2000

4000

6000 6049
5330 5375

742

3205
4221 3935

(a) −(Norm+ Iter)
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0

2000

4000

6000 5441

4175 3772

2268

3969
4776 4456

(b) −Iter
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0

2000

4000

6000
6140

4253
3239

2376
3357 3827

5665

(c) BIDS

Figure 4: Comparative analysis of THI under the 10% budget. Both −Iter and BIDS have more
balanced task frequencies compared with −(Norm+ Iter).

Normalization balances THI. Comparing 4a with 4b and 4c, we see that after normalization
the task frequency distribution becomes much more balanced. The frequencies for tasks such as
MMLU, GSM-Plus, MATH and IFEval all increase by a great extent, while those for BBH and the
two coding tasks decrease. This is fairly surprising when compared with the experimental results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0.4

0.2
0.0
0.2
0.4
0.6
0.8

AID
Mean AID per task

(a) −(Norm+ Iter)
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0.4
0.2
0.0
0.2
0.4
0.6
0.8

AID
Mean AID per task

(b) −Iter
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0.4
0.2
0.0
0.2
0.4
0.6
0.8

AID
Mean AID per task

(c) BIDS

Figure 5: Comparative analysis of normalized AID under the 10% budget. From −(Norm+ Iter)
to −Iter to BIDS, the disparity in AID among different tasks and instances gradually diminishes,
with both decreasing upper bounds and increasing lower bounds.

in Table 3, where −Iter and BIDS actually show improvements in tasks with both decreased
and increased THI frequencies compared with −(Norm+ Iter). This observation suggests that a
balanced selection of influential data may improve data efficiency not only by allocating more budget
for capabilities that are underrepresented, but also reducing the redundancy in over-represented
capabilities.

Better performance comes with smaller influence discrepancies. The AID results (Figure 5)
offer further insights. Moving from 5a to 5b to 5c, we observe a progressive reduction in the disparity
of average influence across tasks, which leads to the following two interesting observations:

• The maximums of AID decrease. Despite generally lower influence scores across these evaluation
tasks, the performance of BIDS improves consistently compared with the other two ablated
baselines. This observation actually reveals a limitation of the first-order linearity assumption by
the influence estimation method of LESS: simply selecting high-influence points using a Top-K
algorithm increases the average influence distribution on almost all tasks, but their effectiveness
doesn’t linearly add up, thus not necessarily improving task-level or overall performance.

• The minimums of AID increase, especially for validation instances with exceptionally low
influence, such as HumanEval and MBPP. This observation again suggests the effectiveness of
one of BIDS’ key motivations: improving the model’s overall performance by enhancing the
capabilities that are most underrepresented in the current selected data.

7 RELATED WORK

Data Selection for Instruction Finetuning. Since the pioneering work LIMA (Zhou et al., 2024)
showed that a mere 1000 carefully curated high-quality instruction data can already lead to significant
performance improvement, many works have been exploring automatic data selection pipelines
guided by different metrics. Quality-guided selection mostly defines the quality for each data point
based on natural language indicators (Cao et al., 2023), quality scores from strong evaluators such as
GPT-4 (Chen et al., 2023; Parkar et al., 2024), or principled metrics derived from various learning
dynamics (Kang et al., 2024; Mekala et al., 2024; Xia et al., 2024; Choe et al., 2024). Diversity-guided
methods usually apply clustering algorithms based on certain informative representation of each data
point (Yang et al., 2024), and also take inspiration from traditional core-set selection approaches (Das
& Khetan, 2023). Both of these dimensions have been proved effective for instruction finetuning of
LLMs (Bukharin & Zhao, 2023; Liu et al., 2023), and we remark that our method BIDS considers both
quality and diversity metrics by applying an iterative selection algorithm to influence distributions.

Influence Estimation. Influence estimation has long been an important type of data attribution
method, which can be classified into gradient-based and retraining-based approaches (Hammoudeh
& Lowd, 2024; Ko et al., 2024). Gradient-based influence estimation focuses on the gradient
trace of each training point, and assesses the gradient alignment between training and validation
examples (Koh & Liang, 2017; Pruthi et al., 2020). Retraining-based estimation usually trains a large
number of models on different training subsets, and then inspects how their performance changes
when a training example is added to these subsets (Ghorbani & Zou, 2019; Ilyas et al., 2022; Park
et al., 2023). Recently both lines of works have been extended to LLM-scale applications, covering
various aspects including pretraining (Engstrom et al., 2024; Yu et al., 2024; Choe et al., 2024) and
instruction tuning (Xia et al., 2024; Liu et al., 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a paper at DATA-FM workshop @ ICLR 2025

8 CONCLUSION

In this work, we introduce BIDS, an influence-based instruction tuning data selection algorithm
specifically designed for balanced learning of multiple diverse capabilities. Motivated by the ob-
servation of an inherent bias in influence across various tasks, BIDS first applies column-wise
normalization to the Attribution Matrix that contains pairwise data influence. Together with an
iterative selection algorithm favoring underrepresented tasks, BIDS consistently outperforms various
selection algorithms as well as full-dataset training with much more balanced performance. Our
analysis further provides insight into the properties of an influential dataset with balanced capabilities.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language mod-
els. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=XfHWcNTSHp. Survey Certification.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle OâĂŹBrien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Alexander Bukharin and Tuo Zhao. Data diversity matters for robust instruction tuning. arXiv
preprint arXiv:2311.14736, 2023.

Yihan Cao, Yanbin Kang, and Lichao Sun. Instruction mining: High-quality instruction data selection
for large language models. arXiv preprint arXiv:2307.06290, 2023.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

Devleena Das and Vivek Khetan. Deft: Data efficient fine-tuning for large language models via
unsupervised core-set selection. arXiv preprint arXiv:2310.16776, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926, 2024.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.

10

https://openreview.net/forum?id=XfHWcNTSHp
https://openreview.net/forum?id=XfHWcNTSHp

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a paper at DATA-FM workshop @ ICLR 2025

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
Machine Learning, 113(5):2351–2403, 2024.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of similarity-based
explanations. arXiv preprint arXiv:2006.04528, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate:
Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into hilbert space.
Contemporary mathematics, 26:189–206, 1984. URL https://api.semanticscholar.
org/CorpusID:117819162.

Feiyang Kang, Hoang Anh Just, Yifan Sun, Himanshu Jahagirdar, Yuanzhi Zhang, Rongxing Du,
Anit Kumar Sahu, and Ruoxi Jia. Get more for less: Principled data selection for warming up
fine-tuning in llms. arXiv preprint arXiv:2405.02774, 2024.

Myeongseob Ko, Feiyang Kang, Weiyan Shi, Ming Jin, Zhou Yu, and Ruoxi Jia. The mirrored influ-
ence hypothesis: Efficient data influence estimation by harnessing forward passes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26286–26295,
2024.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255, 2024.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. arXiv preprint
arXiv:2312.15685, 2023.

Zikang Liu, Kun Zhou, Wayne Xin Zhao, Dawei Gao, Yaliang Li, and Ji-Rong Wen. Less is more:
Data value estimation for visual instruction tuning. arXiv preprint arXiv:2403.09559, 2024.

Dheeraj Mekala, Alex Nguyen, and Jingbo Shang. Smaller language models are capable of selecting
instruction-tuning training data for larger language models. arXiv preprint arXiv:2402.10430,
2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

11

https://api.semanticscholar.org/CorpusID:117819162
https://api.semanticscholar.org/CorpusID:117819162
https://arxiv.org/abs/2203.02155

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a paper at DATA-FM workshop @ ICLR 2025

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Ritik Sachin Parkar, Jaehyung Kim, Jong Inn Park, and Dongyeop Kang. Selectllm: Can llms select
important instructions to annotate? arXiv preprint arXiv:2401.16553, 2024.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l):
Scalable data selection for fine-tuning large language models by summarizing training trajectories
of small models. arXiv preprint arXiv:2403.07384, 2024.

Junjie Oscar Yin and Alexander M Rush. Compute-constrained data selection. arXiv preprint
arXiv:2410.16208, 2024.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. arXiv preprint arXiv:2406.06046, 2024.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference trees.
arXiv preprint arXiv:2404.02078, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a paper at DATA-FM workshop @ ICLR 2025

A APPENDIX

A.1 INFLUENCE ESTIMATION PIPELINE OF LESS

We briefly introduce the influence estimation pipeline of LESS in this section. For more detailed
motivation and step-by-step mathematical deduction, we suggest referring to Xia et al. (2024).

Assume a model Ms which scores and selects data, and another model Mt which is trained on
the selected data. For a training dataset D and validation dataset V , LESS formulates the pairwise
influence between each training example ti ∈ D and validation instance vj ∈ V with the following
three steps.

Step 1: Warmup training with LoRA. LESS first trains Ms on a random subset Dwarmup ⊂ D for
N epochs using the parameter-efficient finetuning method LoRA (Hu et al., 2021), and checkpoints
the model after each epoch to store LoRA parameters {θt}Nt=1.

Step 2: Gradient computation and projection. For each checkpoint θt of LoRA-trained Ms,
LESS computes the SGD gradient of validation instance vj , and further uses random projection (John-
son & Lindenstrauss, 1984; Park et al., 2023) to project the gradient to a tractable lower dimension.
The resulting projected gradient is denoted as ∇ℓ(vj ;θt) . LESS also computes and projects the
gradient of training example ti, but uses the Adam gradient defined as follows:

Γ(ti,θt) ≜
mt+1

√
vt+1 + ϵ

where mt+1 and vt+1 are the first and second moments in the parameter update rule for Adam
optimizer.

Step 3: Gradient matching and influence calculation. Finally, LESS employs the following
cosine-similarity-based approach to calculate the alignment between the gradient of each training and
validation example, accumulated over all the warmup training epochs:

InfAdam(ti,vj) ≜
N∑
t=1

η̄t cos(∇ℓ(vj ;θt),Γ(ti,θt))

where η̄t is the average learning rate in the t-th epoch.

A.2 DETAILS OF TRAINING AND EVALUATION SETUPS

Based on the LESS pipeline described above, we further introduce the implementation details of the
training and evaluation setups in this work. All the experiments are carried out on 2 H100 GPUs with
80 GB memories.

Training Details. We basically follow the same set of hyperparameters as LESS when training both
Ms and Mt. Specifically, a batch size of 128 is used throughout all the training processes in this
work, along with a learning rate scheduler with linear warm-up, cosine decay, and a peak learning
rate of 2× 10−5. For the influence estimation pipeline, we consistently conduct the warmup training
of Ms using four epochs and the full training set. For gradient computation and projection, we
uniformly sample 50 validation instances from either the validation or the test split (when there is not
a separate validation split) of each of the seven evaluation tasks, leading to a total of 350 validation
instances. The projection dimension is set as 8192 for all the training and validation examples. For
training Mt on the selected data, we consistently train for two epochs if not otherwise specified.

Both the warmup training for influence estimation and the training on selected data are carried out
with LoRA (Hu et al., 2021). The configurations of LoRA adapters are kept the same throughout the
experiments, with a rank of 128, an α value of 512, a dropout rate of 0.1, and LoRA matrices being
applied to all the attention modules.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a paper at DATA-FM workshop @ ICLR 2025

Evaluation Details. We follow the evaluation convention of UltraInteract (Yuan et al., 2024) by
using greedy decoding (i.e., temperature = 0) for all the evaluation tasks except for IFEval, where we
use temperature = 0.7 and take the median result of three random seeds due to the high variability of
this task.

A.3 DETAILS OF DATA SELECTION BASELINES

In this section, we first specify the mathematical definitions of all the three influence-based selection
algorithms used in this work. They share the same framework of first assigning an overall utility
score si to each training example ti and then selecting examples with the highest scores, and only
differ in the specific definition of si.

• Task-wise Max: si ≜ maxk=1,...,m{
∑

vj∈Vk
Aij}.

• Instance-wise Max: si ≜ maxj=1,...,|V|{Aij}.

• Sum: si ≜
∑|V|

j=1 Aij .

We then summarize the mechanisms and provide the implementation details of the remaining three
non-influence-based selection methods.

• RDS (Zhang et al., 2018; Hanawa et al., 2020; Xia et al., 2024). We follow the RDS implemen-
tation in Xia et al. (2024), which computes the cosine similarity between training and validation
examples based on the final layer representation of the last token in each example sequence. Train-
ing examples with the highest similarity to any one of the validation examples are selected. In
order to ensure fair comparison, we use the same model that computes gradient features in BIDS
to extract the final layer representations for RDS.

• S2L (Yang et al., 2024) first collects the training loss trajectory for each training example using a
small reference model that belongs to the same family as the final model, and then applies K-means
clustering to these trajectories. Finally, an equal number of examples are sampled from each cluster
to train the final model, ensuring the balance among clusters of different sizes. Specifically, we use
Llama-3.2-1B3as the reference model, which belongs to the Llama-3 family and is much larger
than the Pythia-70M (Biderman et al., 2023) used in Yang et al. (2024), thus improving the fidelity
of S2L’s performance. The remaining hyperparameters follow the configurations in Yang et al.
(2024). We note that although S2L performs selection with a small model, its total computational
cost is similar to LESS, as the loss for each example needs to be computed more frequently than
the gradient along the training trajectory.

• DEITA (Liu et al., 2023) first uses ChatGPT (Achiam et al., 2023) to curate training data for
training a complexity scorer and a quality scorer. Then with the trained scorers, it assigns a
complexity score and a quality score to each training example and sorts the training dataset by
their product. Finally, it applies an iterative selection algorithm to the sorted dataset based on the
embedding of each training example, with the aim of promoting diversity. Specifically, we use the
7B scorer models45publicly released by the DEITA team, and obtain example-wise embeddings
using the final-layer hidden states of a pretrained Llama-3-8B to align with the final evaluation.

A.4 EFFECT OF NORMAL STANDARDIZATION ON THE ATTRIBUTION MATRIX

In §4 we introduce the instance-level normalization technique of BIDS. One potential issue with
this normal standardization approach is that it may not work sufficiently well when the distribution
of unnormalized influence scores differs much from an approximate normal distribution. In this
section we aim to justify the application of normal standardization to the Attribution Matrix (AM).
Specifically, we randomly select five validation instances (i.e., five columns in the AM) from each task,
and compare their empirical distributions after normalization with a standard normal distribution. The
results show that almost all of the sampled columns approximate a standard normal distribution after

3https://huggingface.co/meta-llama/Llama-3.2-1B
4https://huggingface.co/hkust-nlp/deita-complexity-scorer
5https://huggingface.co/hkust-nlp/deita-quality-scorer

14

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/hkust-nlp/deita-complexity-scorer
https://huggingface.co/hkust-nlp/deita-quality-scorer

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a paper at DATA-FM workshop @ ICLR 2025

the instance-level normalization, which justifies the use of normal standardization as the normalization
method in BIDS.

5 0 5 100.0

0.2

0.4
human_eval: 1

10 0 100.0

0.2

0.4
human_eval: 2

10 5 0 50.0

0.2

0.4
human_eval: 3

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
human_eval: 4

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
human_eval: 5

5 0 50.0

0.2

0.4
mbpp: 1

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mbpp: 2

5 0 50.0

0.2

0.4
mbpp: 3

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
mbpp: 4

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mbpp: 5

7.5 5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 1

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 2

5 0 50.0

0.2

0.4
bbh: 3

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 4

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 5

5 0 50.0

0.2

0.4
mmlu: 1

5 0 50.0

0.2

0.4
mmlu: 2

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mmlu: 3

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mmlu: 4

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
mmlu: 5

5 0 5 100.0

0.2

0.4
gsm_plus: 1

5 0 5 100.0

0.2

0.4
gsm_plus: 2

5 0 5 100.0

0.2

0.4
gsm_plus: 3

5 0 50.0

0.2

0.4
gsm_plus: 4

5 0 5 100.0

0.2

0.4
gsm_plus: 5

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
MATH: 1

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
MATH: 2

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
MATH: 3

5 0 50.0

0.2

0.4
MATH: 4

5 0 50.0

0.2

0.4
MATH: 5

6 4 2 0 2 40.0

0.2

0.4
if_eval: 1

5 0 50.0

0.2

0.4
if_eval: 2

4 2 0 2 40.0

0.2

0.4
if_eval: 3

4 2 0 2 40.0

0.2

0.4
if_eval: 4

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
if_eval: 5

Figure 6: The effect of normal standardization. Five AM columns are sampled for each task.
Most of the columns in the AM indeed approximate a standard normal distribution after normal
standardization.

A.5 ALGORITHMIC ILLUSTRATION OF THE ITERATIVE SELECTION IN BIDS

Algorithm 1 BIDS: Iterative Selection Favoring Underrepresented Tasks
1: Input: D: the set of all training examples; V : the set of validation examples; B: the number of examples to

be selected; A ∈ R|D|×|V|: the Attribution Matrix between D and V .

2: Initialization: T = ∅, D = {ti}|D|
i=1

3: while |T | < B do
4: i∗ = argmax

i∈{i|ti∈D\T }
max

1≤j≤|V|
{Aij − 1

|T |
∑

k∈{k|tk∈T }
Akj}

5: T = T ∪ {ti∗}
6: end while
7: Return: T : selected training examples.

Algorithm 1 provides a step-by-step illustration of the iterative selection algorithm in BIDS (§4 and
Figure 3). As is shown in line 4, at each iteration, the utility of each candidate example ti is defined
as

∆(i) ≜ max
1≤j≤|V|

{Aij −
1

|T |
∑

k∈{k|tk∈T }

Akj}

i.e., the largest component of Ai −AT . And the candidate example ti∗ with the highest utility ∆(i∗)

is selected for this iteration.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a paper at DATA-FM workshop @ ICLR 2025

A.6 RESULTS WITH DIFFERENT BASE MODELS

In order to further validate the generalizability of BIDS, we compare BIDS with other baseline data
selection algorithms using Mistral-7B-v0.3 as the backbone for both selection and training. The
results are presented in Table 4. The two algorithms compared here, −(Norm+ Iter) and −Iter,
follow the same definition in §6.1. And the random baseline is also the average result of two different
random seeds.

Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%

Random 36.8 44.3 59.5 61.7 37.0 19.9 22.2 40.2
Task-max (LESS) 36.8 45.6 60.1 62.3 38.6 19.5 23.8 41.0

BIDS (ours) 37.7 44.4 59.5 61.8 38.0 19.8 26.1 41.0
−Iter 36.8 44.1 59.1 61.5 38.2 19.6 27.5 41.0

−(Norm+ Iter) 33.3 45.0 59.3 61.6 38.0 18.7 22.0 39.7

10%

Random 37.7 44.8 59.8 61.8 40.0 21.2 22.0 41.0
Task-max (LESS) 39.5 43.8 60.3 62.0 39.7 20.0 24.6 41.4

BIDS (ours) 40.4 46.1 60.5 61.7 40.5 21.0 27.1 42.5
−Iter 37.7 45.0 59.7 61.6 40.2 20.2 26.7 41.6

−(Norm+ Iter) 36.0 43.8 59.7 61.5 41.6 20.8 24.6 41.1

15%

Random 37.7 45.9 59.6 61.9 41.0 21.7 21.8 41.4
Task-max (LESS) 40.4 44.1 59.6 61.3 41.9 21.5 24.0 41.8

BIDS (ours) 39.5 47.0 59.5 61.7 41.8 21.7 27.1 42.6
−Iter 38.6 46.4 59.8 61.6 41.8 20.9 26.1 42.2

−(Norm+ Iter) 39.5 45.0 60.1 61.6 42.8 21.5 23.2 42.0

BIDS (ours; epochs=4) 40.4 47.0 58.9 61.1 44.1 23.5 28.1 43.3

100% Full (epochs=1) 40.4 49.6 58.8 60.8 45.2 25.4 20.8 43.0
Full (epochs=4) 41.2 49.3 54.6 59.4 48.1 30.1 19.6 43.2

Table 4: Additional results when using Mistral-7B-v0.3 as the base model for selection and training.
The task-specific or macro-average performance is bolded if it ranks first under the same budget,
and underlined if it ranks second. “BIDS (epochs=4)” is compared with 100% full training. Under
all the three budgets, BIDS still maintains the strongest macro-average performance, and ranks
either first or second among the five baselines on 5/7, 6/7, 5/7 benchmarks respectively. Also, the
performance improvements from −(Norm+ Iter) to −Iter to BIDS are consistent with prior
observation with Llama-3-8B in §6.1. Finally, the top 15% BIDS-selected subset again outperforms
full dataset training in macro average, by steadily improving on coding and math while maintaining
its remarkable general instruction-following ability.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

AID
Mean AID per task

Figure 7: Unnormalized Average Influence
Distribution (AID) of the whole UltraInteract
dataset (Yuan et al., 2024), with the base model
being Mistral-7B-v0.3. It still shows great inter-
task and intra-task influence scale differences.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0

2000
4000
6000
8000

10000
12000
14000
16000

1106 1638 1298

15443

9088

172 112

Figure 8: Task frequencies with Highest Influ-
ence (THI) of LESS-selected data under the 10%
budget, with the base model being Mistral-7B-
v0.3. In this case, MMLU is even more obvi-
ously oversampled than prior observation with
Llama-3-8B.

Similar to the analysis framework in §3, we also present the AID analysis of the whole UltraInteract
dataset (Figure 7) and the THI analysis of LESS-selected data (Figure 8). Then we follow the workflow
in §6.2 to present both THI and AID analyses for the three progressive algorithms: −(Norm+Iter),
−Iter and BIDS (Figure 9, 10). The only difference here is that the selection model is Mistral-7B-
v0.3 instead of Llama-3-8B.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a paper at DATA-FM workshop @ ICLR 2025

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0

2000

4000

5061 4894
4247

1924

4546
3855

4330

(a) −(Norm+ Iter)
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0

2000

4000

4985 4593
3726

2645

3868
4751

4289

(b) −Iter
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0

2000

4000

5171 4765

3360
2747 2880

4839 5095

(c) BIDS

Figure 9: Comparative analysis of THI under the 10% budget, with the base model being Mistral-7B-
v0.3. Similar to prior observations with Llama-3-8B, both −Iter and BIDS have more balanced
task frequencies than −(Norm+ Iter).

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0.0

0.1

0.2

0.3

0.4

0.5

0.6

AID
Mean AID per task

(a) −(Norm+ Iter)
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0.0

0.1

0.2

0.3

0.4

0.5

0.6

AID
Mean AID per task

(b) −Iter
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0.0

0.1

0.2

0.3

0.4

0.5

0.6

AID
Mean AID per task

(c) BIDS

Figure 10: Comparative analysis of normalized AID under the 10% budget, with the base model
being Mistral-7B-v0.3. Similar to prior observations with Llama-3-8B, from −(Norm+ Iter) to
−Iter to BIDS, the disparity among different tasks and instances in AID gradually diminishes, with
both decreasing maximums and increasing minimums, although the degree of the original imbalance
for Mistral-v0.3 is not as high as Llama-3.

A.7 DISCUSSION ON THE COMPUTATIONAL COST OF BIDS

In this section, we aim to discuss and show that BIDS does not incur much memory or latency
overhead, and can thus serve as an efficient plug-and-play module. In our training and evaluation
setup, the |D| dimension for the Attribution Matrix is about 288 K (Yuan et al., 2024), and the |V |
dimension is 350. Therefore, the memory cost for storing the AM using FP 64 precision is less than
800 MB. The latency cost for running the whole BIDS algorithm is less than 1 minute with CUDA
acceleration of a single H100 GPU. More generally, since many popular mixtures of instruction
finetuning data are maintained on the scale of hundreds of K (Wang et al., 2023; Ivison et al., 2023;
Yuan et al., 2024; Yue et al., 2023), the memory and latency cost of BIDS should be light for most
practical training setups.

A.8 QUALITATIVE ANALYSIS

In this section, we aim to demonstrate the following two properties of BIDS with some qualitative
examples, and thus better illustrate the effectiveness of BIDS.

1. Models trained on BIDS-selected data can indeed achieve a stronger balance between mastering
task-specific skills (e.g., math reasoning, coding knowledge, etc.) and fully understanding various
types of instructions given by the user (e.g., format-following, response style, etc.).

2. Such a stronger balance is indeed helpful to improving the accuracy or human-perceived quality
of model responses.

Concretely, we present three sets of model responses in the task of coding (Table 5), math (Table 6)
and general instruction-following (Table 7) respectively. Each set contains a correct response by a
Mistral-7B-v0.3 model trained on top-15% BIDS-selected data, and a false response by the same base
model trained on the full (i.e., 100%) UltraInteract, both to exactly the same prompt. We analyze how
the BIDS-trained model correctly answers all these prompts due to the greater balance of capabilities
it achieves.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 5: For the example 1, the model trained on the full dataset fails to handle the corner case of
numbers = []. For the example 2, the full-trained model also fails at not adding the constraint of
y != x in its sorting rule. In both cases, BIDS-trained model returns the correct code completion
because it better considers and handles corner cases. It reflects that BIDS-trained model balances its
capability in correct coding knowledge and comprehensive thinking behavior.

HumanEval: Example 1 HumanEval: Example 2

Prompt Prompt

1 def rolling_max(numbers):
2 # Write a Python function ‘rolling_max(

numbers: List[int]) -> List[int]‘ to solve
the following problem:

3 # From a given list of integers, generate a
list of rolling maximum element found until
given moment

4 # in the sequence.
5 # >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
6 # [1, 2, 3, 3, 3, 4, 4]

1 def find_closest_elements(numbers: List[float])
-> Tuple[float, float]

2 # From a supplied list of numbers (of length
at least two) select and return two that

are the closest to each other and return
them in order (smaller number, larger number
).

3 # >>> find_closest_elements([1.0, 2.0, 3.0,
4.0, 5.0, 2.2])

4 # (2.0, 2.2)
5 # >>> find_closest_elements([1.0, 2.0, 3.0,

4.0, 5.0, 2.0])
6 # (2.0, 2.0)

Wrong Completion: Full-trained model Wrong Completion: Full-trained model

1 # Initialize the result list with the first
element of the input list

2 result = [numbers[0]]
3 # Initialize the maximum value with the first

element of the input list
4 max_value = numbers[0]
5 # Iterate through the input list starting from

the second element
6 for num in numbers[1:]:
7 # If the current number is greater than the

maximum value, update the maximum value and
append the current number to the result list

8 if num > max_value:
9 max_value = num

10 result.append(num)
11 # If the current number is not greater than

the maximum value, append the maximum value
to the result list

12 else:
13 result.append(max_value)
14 # Return the result list
15 return result

1 closest_pair = min(numbers, key=lambda x: min(
abs(x - y) for y in numbers))

2 return closest_pair, min(numbers, key=lambda x:
abs(x - closest_pair))

Correct Completion: BIDS-trained model Correct Completion: BIDS-trained model

1 if not numbers:
2 return []
3 n = len(numbers)
4 result = [numbers[0]]
5 for i in range(1, n):
6 result.append(max(numbers[i], result[-1]))
7 return result

1 # Step 1: Sort the list of numbers in ascending
order

2 numbers.sort()
3 # Step 2: Initialize the closest_numbers

variable with the first two elements of the
sorted list

4 closest_numbers = (numbers[0], numbers[1])
5 # Step 3: Iterate through the list to find the

two numbers that are the closest to each
other

6 for i in range(1, len(numbers) - 1):
7 # Step 4: Calculate the difference between

the current number and the next number
8 diff = abs(numbers[i] - numbers[i + 1])
9 # Step 5: If the difference is less than the

difference between the current closest
numbers, update the closest numbers

10 if diff < abs(closest_numbers[0] -
closest_numbers[1]):

11 closest_numbers = (numbers[i], numbers[i
+ 1])

12 # Step 6: Return the two closest numbers in
order (smaller number, larger number)

13 return closest_numbers

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 6: For the example 1, BIDS-trained model understands the implicit condition contained in
the question that only after a whole number of years can a tree grow oranges for sale, and thus goes
on to round the calculated the calculation to integer (Step 7). For the example 2, the model trained
on the full dataset fails to understand the meaning of "a person was born 8 years before another"
(Step 3) and thus performs the calculation in the wrong way. In both examples, BIDS-trained
model correctly answers the question because it balances its capability in math reasoning and natural
language understanding.

GSM-Plus: Example 1 GSM-Plus: Example 2

Question Question

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{Your Answer}.
Carlos is planting an orange tree. The tree will cost $120 to
plant. Each year it will grow 10 oranges, which he can sell for
$2 each. It costs $4 a year to water and feed the tree. How many
years will it take before he starts earning money on the orange
tree?

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{Your Answer}.
Raymond and Samantha are cousins. Raymond was born 8
years before Samantha. Raymond had a son at the age of 25. If
Samantha is now 35, how many years ago was Raymond’s son
born?

Wrong Response: Full-trained model Wrong Response: Full-trained model

Step 1: To determine the number of years it will take for
Carlos to start earning money from the orange tree, we need
to consider the initial cost of planting the tree and the annual
expenses associated with watering and feeding it.
Step 2: The tree costs $120 to plant, and it incurs an annual
expense of $4 for watering and feeding.
Step 3: Each year, the tree produces 10 oranges, which he can
sell for $2 each.
Step 4: So, the total income from selling the oranges each year
is 10 * $2 = $20.
Step 5: However, we need to subtract the annual expenses of $4
from the income to find the net profit from the oranges.
Step 6: Therefore, the net profit from the oranges each year is
$20 - $4 = $16.
Step 7: To determine the number of years it will take for Carlos
to start earning money, we can divide the initial cost of planting
the tree by the net profit from the oranges each year.
Step 8: This gives us the number of years it will take for the
tree to start generating a positive return on investment.
Step 9: So, the number of years it will take before Carlos starts
earning money on the orange tree is $120 / $16 = 7.5$ years.

Answer:
\boxed{7.5}

Step 1: To solve this problem, we need to first understand the
given information and then work through the steps to find the
age of Raymond’s son.
Step 2: We’re given that Raymond was born 8 years before
Samantha, and Samantha is currently 35 years old.
Step 3: This means that Raymond was born 35 - 8 = 27 years
ago.
Step 4: Now, we know that Raymond had a son at the age of 25.
So, we need to find out how many years ago Raymond’s son
was born.
Step 5: To do this, we can simply subtract Raymond’s age when
his son was born (27 years) from the current age of Samantha
(35 years).
Step 6: This gives us 35 - 27 = 8 years.
Step 7: Therefore, Raymond’s son was born 8 years ago.

Answer:
\boxed{8}

Correct Response: BIDS-trained model Correct Response: BIDS-trained model

Step 1: To determine how many years it will take for Carlos to
start earning money from his orange tree, we need to consider
the costs involved in planting and maintaining the tree, as well
as the revenue generated from selling the oranges.
Step 2: First, we need to calculate the total cost of planting the
tree, which is $120.
Step 3: Each year, the tree will grow 10 oranges that can be
sold for $2 each, resulting in a total revenue of $20 per year.
Step 4: However, it also costs $4 per year to water and feed the
tree.
Step 5: Therefore, the net revenue from selling the oranges
each year is $20 - $4 = $16.
Step 6: To determine how many years it will take for Carlos to
start earning money, we can divide the total cost of planting the
tree by the net revenue each year. This gives us 120 / 16 = 7.5
years.
Step 7: Since we can’t plant a tree for half a year, Carlos will
need to wait 8 years before he starts earning money from the
orange tree.

Answer:
\boxed{8}

Step 1: To solve this problem, we need to understand the
relationship between Raymond and Samantha, and then
calculate the age of Raymond’s son based on the given
information.
Step 2: Raymond is Samantha’s cousin, and he was born 8
years before her. This means that Raymond is 8 years older
than Samantha.
Step 3: Raymond had a son at the age of 25, so we need to
calculate Raymond’s age at that time. Since Raymond is 8
years older than Samantha, and Samantha is currently 35, we
can calculate Raymond’s age as 35 + 8 = 43.
Step 4: Now, we know that Raymond had his son at the
age of 25, so we can calculate the age of Raymond’s son by
subtracting 25 from Raymond’s age at that time, which is 43 -
25 = 18.
Step 5: Therefore, Raymond’s son was born 18 years ago.

Answer:
\boxed{18}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 7: For the example 1, the model trained on the full dataset ignores the explicit requirement of
forming its output as a single JSON block. It is especially overfit to the response format of Step
X: ... which is frequently seen in the training data. In contrast, BIDS-trained model handles
its CoT in a nifty way by expressing its thinking process in the values of a JSON block. For the
example 2, full-trained model not only fails to completely follow the explicitly required format, but
also hardly writes a poem, compared with the high-quality one generated by BIDS-trained model. In
both examples, BIDS-trained model generates content with significantly higher quality due to the
balance between strict format-following and flexible use of parametric knowledge.

IFEval: Example 1 IFEval: Example 2

Prompt Prompt

Please provide the names of 5 famous moms in JSON format.
Please, use any interesting or weird tone. Your entire output
should just contain a JSON block, nothing else.

Write a poem about how I am missing my classes. The poem
must have 4 sections marked with SECTION X. Finish the
poem with this exact phrase: "Can I get my money back for
the classes I missed?"

Wrong Response: Full-trained model Wrong Response: Full-trained model

Step 1: Let’s think of 5 famous moms who have made a
significant impact in their respective fields.
Step 2: Oprah Winfrey - Talk show host, media mogul,
producer, actress, philanthropist
Step 3: Angelina Jolie - Actress, filmmaker, humanitarian
Step 4: Michelle Obama - Former First Lady of the United
States
Step 5: Serena Williams - Professional tennis player
Step 6: Create a JSON block with the names of the 5 famous
moms.

‘‘‘javascript
// Step 7: Create a JSON block with the names of the 5
famous moms.
[
"Oprah Winfrey",
"Angelina Jolie",
"Michelle Obama",
"Serena Williams"
]
‘‘‘

Section 1:
I missed my first class today and I’m feeling quite disap-
pointed.
Section 2:
I really wanted to learn all the new material, but I had to stay
home due to illness.
Section 3:
I hope I can make up for the missed class by studying extra
hard for the next exam.
Section 4:
Can I get my money back for the classes I missed?

Answer:
"I missed my first class today and I’m feeling quite
disappointed.
I really wanted to learn all the new material, but I had to stay
home due to illness.
I hope I can make up for the missed class by studying extra
hard for the next exam.
Can I get my money back for the classes I missed?"

Correct Response: BIDS-trained model Correct Response: BIDS-trained model

{
"Meryl Streep": "An American actress and filmmaker, known
for her versatile and powerful performances in films like
Kramer vs. Kramer, Sophie’s Choice, The Devil Wears Prada,
and many more.",
"Oprah Winfrey": "An American media mogul, talk show
host, actress, producer, and philanthropist. She is best known
for her talk show The Oprah Winfrey Show, which ran for 25
years.",
"Sarah Jessica Parker": "An American actress, producer, and
designer. She is best known for her role as Carrie Bradshaw
in the HBO series Sex and the City.",
"Jennifer Garner": "An American actress, producer, and en-
trepreneur. She is best known for her roles in films like 13
Going on 30, Juno, and Alias.",
"Angelina Jolie": "An American actress, filmmaker, and hu-
manitarian. She is best known for her work as a United
Nations Special Envoy and as a Goodwill Ambassador."
}

SECTION 1:
I’m sitting here feeling so lonely,
Missing my classes with all my friends,
Wishing I could be there with them,
Instead of sitting at home and mend.
SECTION 2:
I’m looking at my empty calendar,
Wondering what I’m missing out on,
Wishing I could join in on the fun,
Instead of staring at the screen and frown.
SECTION 3:
I’m listening to the sound of silence,
While my friends are making memories,
Wishing I could join in on the laughter,
Instead of feeling left out and sadder.
SECTION 4:
I’m staring at the clock, counting the minutes,
Until I can see my teachers and classmates,
Wishing I could just teleport there,
Instead of waiting for the next class to start.

Finish:
Can I get my money back for the classes I missed?

20

	Introduction
	Background and Preliminaries
	Existing Influence-based Selection Fails at Balancing Diverse Tasks
	BIDS: Selecting Influential Data for Balanced Capability Learning
	Experiments
	Experimental Setups
	Results

	Analysis
	Ablation
	Changes in Influence Distribution of Selected Data

	Related Work
	Conclusion
	Appendix
	Influence Estimation Pipeline of LESS
	Details of Training and Evaluation Setups
	Details of Data Selection Baselines
	Effect of Normal Standardization on the Attribution Matrix
	Algorithmic Illustration of the Iterative Selection in BIDS
	Results with Different Base Models
	Discussion on the Computational Cost of BIDS
	Qualitative Analysis

