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Abstract

In federated learning, a large number of users collaborate to learn a global model.
They alternate local computations and communication with a distant server. Com-
munication, which can be slow and costly, is the main bottleneck in this setting. In
addition to communication-efficiency, a robust algorithm should allow for partial
participation, the desirable feature that not all clients need to participate to every
round of the training process. To reduce the communication load and therefore ac-
celerate distributed gradient descent, two strategies are popular: 1) communicate
less frequently; that is, perform several iterations of local computations between
the communication rounds; and 2) communicate compressed information instead
of full-dimensional vectors. We propose TAMUNA, the first algorithm for dis-
tributed optimization and federated learning, which harnesses these two strategies
jointly and allows for partial participation. TAMUNA converges linearly to an
exact solution in the strongly convex setting, with a doubly accelerated rate: it
provably benefits from the two acceleration mechanisms provided by local train-
ing and compression, namely a better dependency on the condition number of the
functions and on the model dimension, respectively.

1 Introduction

Federated Learning (FL) is a novel paradigm for training supervised machine learning models. Ini-
tiated a few years ago (Konečný et al., 2016a,b; McMahan et al., 2017; Bonawitz et al., 2017), it
has become a rapidly growing interdisciplinary field. The key idea is to exploit the wealth of infor-
mation stored on edge devices, such as mobile phones, sensors and hospital workstations, to train
global models, in a collaborative way, while handling a multitude of challenges, like data privacy
(Kairouz et al., 2021; Li et al., 2020a; Wang et al., 2021). In contrast to centralized learning in a
datacenter, in FL, the parallel computing units have private data stored on each of them and com-
municate with a distant orchestrating server, which aggregates the information and synchronizes the
computations, so that the process reaches a consensus and converges to a globally optimal model. In
this framework, communication between the parallel workers and the server, which can take place
over the internet or cell phone network, can be slow, costly, and unreliable. Thus, communication
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dominates the overall duration and cost of the process and is the main bottleneck to be addressed by
the community, before FL can be widely adopted and applied in our daily lives.

The baseline algorithm of distributed Gradient Descent (GD) alternates between two steps: one
round of parallel computation of the local function gradients at the current model estimate, and one
round of communication of these gradient vectors to the server, which averages them to form the
new estimate for the next iteration. To decrease the communication load, two strategies can be used:
1) communicate less frequently, or equivalently do more local computations between successive
communication rounds; or 2) compress the communicated vectors. We detail these two strategies in
Section 1.3. Moreover, in practical applications where FL is deployed, it is unrealistic to assume that
all clients are available 100% of the time to perform the required computation and communication
operations. Thus, partial participation is an essential feature in practice, whereby only part of
the clients need to participate in any given round of the process, while maintaining the overall
convergence guarantees.

In this paper, we propose a new randomized algorithm named TAMUNA, which combines local train-
ing and compression for communication-efficient FL. It is variance-reduced (Hanzely & Richtárik,
2019; Gorbunov et al., 2020a; Gower et al., 2020), so that it converges to an exact solution (with
exact gradients), and provably benefits from the two mechanisms: the convergence rate is doubly
accelerated, with a better dependency on the condition number of the functions and on the dimen-
sion of the model, in comparison with GD. In addition, TAMUNA handles partial participation of
the clients. In the remainder of this section, we formulate the setup, we propose a new model to
characterize the communication complexity, we present the state of the art, and we summarize our
contributions.

1.1 Formalism

We consider a distributed client-server setting, in which n ≥ 2 clients perform computations in
parallel and communicate back and forth with a server. We study the convex optimization problem:

minimize
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each function fi : Rd → R models the individual cost of client i ∈ [n] := {1, . . . , n}, based
on its underlying private data. The number n of clients, as well as the dimension d ≥ 1 of the
model, are typically large. This problem is of key importance as it is an abstraction of empirical risk
minimization, the dominant framework in supervised machine learning.

For every i ∈ [n], the function fi is supposed L-smooth and µ-strongly convex,1 for some L ≥
µ > 0 (a sublinear convergence result is derived in the Appendix for the merely convex case, i.e.
µ = 0). Thus, the sought solution x⋆ of (1) exists and is unique. We define κ := L

µ . We focus
on the strongly convex case, because the analysis of linear convergence rates in this setting gives
clear insights and allows us to deepen our theoretical understanding of the algorithmic mechanisms
under study; in our case, local training, communication compression, and partial participation. The
analysis of algorithms converging to a point with zero gradient in (1) with nonconvex functions
relies on significantly different proof techniques (Karimireddy et al., 2021; Das et al., 2022), so the
nonconvex setting is out of the scope of this paper.

To solve the problem (1), the baseline algorithm of Gradient Descent (GD) consists in the simple
iteration, for t = 0, 1, . . . ,

xt+1 := xt − γ

n

n∑
i=1

∇fi(x
t),

for some stepsize γ ∈ (0, 2
L ). That is, at iteration t, xt is first broadcast by the server to all clients,

which compute the gradients ∇fi(x
t) in parallel. These vectors are then sent to the server, which

averages them and performs the gradient descent step. It is well known that for γ = Θ( 1
L ), GD

1A function f : Rd → R is said to be L-smooth if it is differentiable and its gradient is Lipschitz continuous
with constant L; that is, for every x ∈ Rd and y ∈ Rd, ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥, where, here and
throughout the paper, the norm is the Euclidean norm. f is said to be µ-strongly convex if f− µ

2
∥·∥2 is convex.

We refer to Bauschke & Combettes (2017) for such standard notions of convex analysis.
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converges linearly, with iteration complexity O(κ log ϵ−1) to reach ϵ-accuracy. Since d-dimensional
vectors are communicated at every iteration, the communication complexity of GD in number of
reals is O(dκ log ϵ−1). Our goal is a twofold acceleration of GD, with a better dependency to both
κ and d in this complexity. We want to achieve this goal by leveraging the best of the two popular
mechanisms of local training and communication compression.

1.2 Asymmetric communication regime

Uplink and downlink communication. We call uplink communication (UpCom) the parallel trans-
mission of data from the clients to the server and downlink communication (DownCom) the broad-
cast of the same message from the server to all clients. UpCom is usually significantly slower than
DownCom, just like uploading is slower than downloading on the internet or cell phone network.
This can be due to the asymmetry of the service provider’s systems or protocols used on the com-
munication network, or cache memory and aggregation speed constraints of the server, which has to
decode and average the large number n of vectors received at the same time during UpCom.

Communication complexity. We measure the UpCom or DownCom complexity as the expected
number of communication rounds needed to estimate a solution with ϵ-accuracy, multiplied by the
number of real values sent during a communication round between the server and any client. Thus,
the UpCom or DownCom complexity of GD is O(dκ log ϵ−1)). We leave it for future work to
refine this model of counting real numbers, to take into account how sequences of real numbers
are quantized into bitstreams, achieving further compression (Horváth et al., 2022; Albasyoni et al.,
2020).

A model for the overall communication complexity. Since UpCom is usually slower than Down-
Com, we propose to measure the total communication (TotalCom) complexity as a weighted sum of
the two UpCom and DownCom complexities: we assume that the UpCom cost is 1 (unit of time per
transmitted real number), whereas the downCom cost is α ∈ [0, 1]. Therefore,

TotalCom = UpCom + α.DownCom. (2)

A symmetric but unrealistic communication regime corresponds to α = 1, whereas ignoring down-
Com and focusing on UpCom, which is usually the limiting factor, corresponds to α = 0. We will
provide explicit expressions of the parameters of our algorithm to minimize the TotalCom complex-
ity for any given α ∈ [0, 1], keeping in mind that realistic settings correspond to small values of α.
Thus, our model of communication complexity is richer than only considering α = 0, as is usually
the case.

1.3 Communication efficiency in FL: state of the art

Two approaches come naturally to mind to decrease the communication load: Local Training (LT),
which consists in communicating less frequently than at every iteration, and Communication Com-
pression (CC), which consists in sending less than d floats during every communication round. In
this section, we review existing work related to these two strategies and to Partial Participation (PP).

1.3.1 Local Training (LT)

LT is a conceptually simple and surprisingly powerful communication-acceleration technique. It
consists in the clients performing multiple local GD steps instead of only one, between successive
communication rounds. This intuitively results in “better” information being communicated, so that
less communication rounds are needed to reach a given accuracy. As shown by ample empirical
evidence, LT is very efficient in practice. It was popularized by the FedAvg algorithm of McMahan
et al. (2017), in which LT is a core component. However, LT was heuristic and no theory was
provided in their paper. LT was analyzed in several works, in the homogeneous, or i.i.d. data, regime
(Haddadpour & Mahdavi, 2019), and in the heterogeneous regime, which is more representative in
FL (Khaled et al., 2019; Stich, 2019; Khaled et al., 2020; Li et al., 2020b; Woodworth et al., 2020;
Gorbunov et al., 2021; Glasgow et al., 2022). It stands out that LT suffers from so-called client drift,
which is the fact that the local model obtained by client i after several local GD steps approaches
the minimizer of its local cost function fi. The discrepancy between the exact solution x⋆ of (1)
and the approximate solution obtained at convergence of LT was characterized in Malinovsky et al.
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(2020). This deficiency of LT was corrected in the Scaffold algorithm of Karimireddy et al. (2020)
by introducing control variates, which correct for the client drift, so that the algorithm converges
linearly to the exact solution. S-Local-GD (Gorbunov et al., 2021) and FedLin (Mitra et al., 2021)
were later proposed, with similar convergence properties. Yet, despite the empirical superiority of
these recent algorithms relying on LT, their communication complexity remains the same as vanilla
GD, i.e. O(dκ log ϵ−1).

Most recently, a breakthrough was made with the appearance of accelerated LT methods. Scaffnew,
proposed by Mishchenko et al. (2022), is the first LT-based algorithm achieving O(d

√
κ log ϵ−1)

accelerated communication complexity. In Scaffnew, communication is triggered randomly with a
small probability p at every iteration. Thus, the expected number of local GD steps between two
communication rounds is 1/p. By choosing p = 1/

√
κ, the optimal dependency on

√
κ instead

of κ (Scaman et al., 2019) is obtained. In this paper, we propose to go even further and tackle the
multiplicative factor d in the complexity of Scaffnew. Scaffnew has been extended in Malinovsky
et al. (2022), using calls to variance-reduced (Gorbunov et al., 2020a; Gower et al., 2020) stochastic
gradient estimates instead of exact gradients. It has also been analyzed in Condat & Richtárik (2023)
as a particular case of RandProx, a primal-dual algorithm with a general randomized and variance-
reduced dual update. Conceptually, TAMUNA is inspired by RandProx, with the dual update cor-
responding to the intermittent update of the control variates of the participating clients. TAMUNA
is not a particular case of RandProx, though, because the primal update of the model and the dual
update of the control variates are decoupled. Without compression and in case of full participation,
TAMUNA reverts to Scaffnew.

A different approach was developed by Sadiev et al. (2022a) with the APDA-Inexact algorithm,
and then by Grudzień et al. (2023) with the 5GCS algorithm: in both algorithms, the local steps
correspond to an inner loop to compute a proximity operator inexactly.

1.3.2 Partial Participation (PP)

PP, a.k.a. client sampling, is the property that not all clients need to participate in a given round,
consisting of a series of local steps followed by communication with the server. This is an important
feature for a FL method, since in practice, there are many reasons for which a client might be idle
and unable to do any computation and communication for a certain period of time. PP in SGD-type
methods is now well understood (Gower et al., 2019; Condat & Richtárik, 2022), but its combination
with LT has remained unconvincing so far. Scaffold allows for LT and PP, but its communication
complexity does not benefit from LT. The variance-reduced FedVARP algorithm with LT and PP
has been proposed Jhunjhunwala et al. (2022), for nonconvex problems and with a bounded global
variance assumption that does not hold in our setting. Scaffnew does not allow for PP. This was
the motivation for Grudzień et al. (2023) to develop 5GCS, which is, to the best of our knowledge,
the first and only algorithm enabling LT and PP, and enjoying accelerated communication. We
refer to Grudzień et al. (2023) for a detailed discussion of the literature of LT and PP. 5GCS is
completely different from Scaffnew and based on Point-SAGA (Defazio, 2016) instead of GD. Thus,
it is an indirect, or two-level, combination of LT and PP: PP comes from the random selection of the
activated proximity operators, whereas LT corresponds to an inner loop to compute these proximity
operators inexactly. TAMUNA is a direct combination of LT and PP as two intertwined stochastic
processes. TAMUNA reverts to Scaffnew in case of full participation (and no compression); in
other words, TAMUNA is the first generalization of Scaffnew to PP, and it fully retains its LT-based
communication acceleration benefits.

Throughout the paper, we denote by c ∈ {2, . . . , n} the cohort size, or number of active clients
participating in every round. We report in Table 1 the communication complexity of the two known
algorithms converging linearly to the exact solution, while allowing for LT and PP, namely Scaffold
and 5GCS. Scaffold is not accelerated, with a complexity depending on κ, and 5GCS is accelerated
with respect to κ but not d. Also, in 5GCS the number of local steps in each communication round
is fixed of order at least

(√
cκ
n + 1

)
log κ, whereas in TAMUNA it is random and typically much

smaller, of order
√

sκ
n + 1, where s can be as small as 2, see (14).

1.3.3 Communication Compression (CC)

To decrease the communication complexity, a widely used strategy is to make use of (lossy) com-
pression; that is, a possibly randomized mapping C : Rd → Rd is applied to the vector x that needs to
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Table 1: UpCom complexity (α = 0) of linearly converging algorithms with LT or CC and allowing
for PP (with exact gradients). The Õ notation hides the log ϵ−1 factor (and other log factors for
Scaffold). c ∈ {2, . . . , n} is the number of participating clients and the other notations are recalled
in Table 3.

Algorithm LT CC UpCom
DIANA-PP (a) ✗ ✓ Õ

(
(1 + d

c )κ+ dn
c

)
Scaffold ✓ ✗ Õ(dκ+ dn

c )

5GCS ✓ ✗ Õ
(
d
√
κ
√

n
c + dn

c

)
TAMUNA ✓ ✓ Õ

(√
d
√
κ
√

n
c + d

√
κ
√
n
c + dn

c

)
(a) using independent rand-1 compressors, for instance. Note that O(

√
d
√
κ
√

n
c
+ dn

c
) is better than

O(κ+ dn
c
) and O(d

√
κ

√
n
c

+ dn
c
) is better than O( d

c
κ+ dn

c
), so that TAMUNA has a better complexity than

DIANA-PP.

be communicated, with the property that it is much faster to transfer C(x) than the full d-dimensional
vector x. A popular sparsifying compressor is rand-k, for some k ∈ [d] := {1, . . . , d}, which mul-
tiplies k elements of x, chosen uniformly at random, by d/k, and sets the other ones to zero. If the
receiver knows which coordinates have been selected, e.g. by running the same pseudo-random gen-
erator, only these k elements of x are actually communicated, so that the communication complexity
is divided by the compression factor d/k. Another sparsifying compressor is top-k, which keeps
the k elements of x with largest absolute values unchanged and sets the other ones to zero. Some
compressors, like rand-k, are unbiased; that is, E[C(x)] = x for every x ∈ Rd, where E[·] denotes
the expectation. On the other hand, compressors like top-k are biased (Beznosikov et al., 2020).

The variance-reduced algorithm DIANA (Mishchenko et al., 2019) is a major contribution to the field,
as it converges linearly with a large class of unbiased compressors. For instance, when the clients
use independent rand-1 compressors for UpCom, the UpCom complexity of DIANA is O

(
(κ(1 +

d
n ) + d) log ϵ−1

)
. If n is large, this is much better than with GD. DIANA was later extended in

several ways (Horváth et al., 2022; Gorbunov et al., 2020a); in particular, DIANA-PP is a generalized
version allowing for PP (Condat & Richtárik, 2022). Algorithms converging linearly with biased
compressors have been proposed recently, like EF21 (Richtárik et al., 2021; Fatkhullin et al., 2021;
Condat et al., 2022b), but the theory is less mature and the acceleration potential not as clear as
with unbiased compressors. We summarize existing results in Table 2. Our algorithm TAMUNA
benefits from CC with specific unbiased compressors, with even more acceleration than DIANA.
Also, the focus in DIANA is on UpCom and its DownCom step is the same as in GD, with the full
model broadcast at every iteration, so that its TotalCom complexity can be worse than the one of
GD. Extensions of DIANA with bidirectional CC, i.e. compression in both UpCom and DownCom,
have been proposed (Gorbunov et al., 2020b; Philippenko & Dieuleveut, 2020; Liu et al., 2020;
Condat & Richtárik, 2022), but this does not improve its TotalCom complexity; see also Philippenko
& Dieuleveut (2021) and references therein on bidirectional CC. We note that if LT is disabled
(L(r) ≡ 1), TAMUNA is still new and does not revert to a known algorithm with CC.

1.4 Challenges and contributions

Our new algorithm TAMUNA builds upon the LT mechanism of Scaffnew and enables PP and CC,
which are essential features for applicability to real-world FL setups. In short,

TAMUNA = (S)GD+ LT︸ ︷︷ ︸
Scaffnew

+ PP + CC.

We focus on the strongly convex setting but we also prove sublinear convergence of TAMUNA in the
merely convex case in the Appendix. We emphasize that the problem can be arbitrarily heteroge-
neous: we do not make any assumption on the functions fi beyond smoothness and strong convexity,
and there is no notion of data similarity whatsoever. We also stress that our goal is to deepen our
theoretical understanding of LT, CC and PP, and to make these 3 intuitive and effective mechanisms,
which are widely used in practice, work in the best possible way when harnessed to (stochastic) GD.
Thus, we establish convergence of TAMUNA in Theorem 1 with stochastic GD steps of bounded
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Table 2: TotalCom complexity of linearly converging algorithms using Local Training (LT), Com-
munication Compression (CC), or both, in case of full participation and exact gradients. The Õ
notation hides the log ϵ−1 factor. The notations are recalled in Table 3.

Algorithm LT CC TotalCom TotalCom=UpCom when α = 0

DIANA (a) ✗ ✓ Õ
(
(1 + αd+ d+αd2

n
)κ+ d+ αd2

)
Õ
(
(1 + d

n
)κ+ d

)
EF21 (b) ✗ ✓ Õ(dκ) Õ(dκ)

Scaffold ✓ ✗ Õ(dκ) Õ(dκ)

FedLin ✓ ✗ Õ(dκ) Õ(dκ)

S-Local-GD ✓ ✗ Õ(dκ) Õ(dκ)

Scaffnew ✓ ✗ Õ(d
√
κ) Õ(d

√
κ)

5GCS ✓ ✗ Õ(d
√
κ) Õ(d

√
κ)

FedCOMGATE ✓ ✓ Õ(dκ) Õ(dκ)

TAMUNA ✓ ✓ Õ
(√

d
√
κ+ d

√
κ√
n
+ d+

√
αd

√
κ
)

Õ
(√

d
√
κ+ d

√
κ√
n
+ d

)
(a) using independent rand-1 compressors, for instance. Note that O(

√
d
√
κ+ d) is better than

O(κ+ d) and O(d
√

κ√
n
+ d) is better than O( d

n
κ+ d), so that TAMUNA has a better complexity than DIANA.

(b) using top-k compressors with any k, for instance.

Table 3: Summary of the main notations used in the paper.
LT local training
CC communication compression
PP partial participation (a.k.a. client sampling)
L smoothness constant
µ strong convexity constant

κ = L/µ condition number of the functions
d dimension of the model
n, i number and index of clients

[n] = {1, . . . , n}
α weight on downlink communication (DownCom), see (2)

σ2
i , σ2 :=

∑
i σ

2
i variance of the stochastic gradients, see (3)

c ∈ {2, . . . , n} number of active clients (a.k.a. cohort size). Full participation if c = n
Ω ⊂ [n] index set of active clients

s ∈ {2, . . . , c} sparsity index for compression. No compression if s = c
q = (qi)

c
i=1 random binary mask for compression, as detailed in Figure 1

r index of rounds
L, ℓ number and index of local steps in a round
p inverse of the expected number of local steps per round

t, T indexes of iterations
γ, η, χ stepsizes
xi local model estimate at client i
hi local control variate tracking ∇fi
x̄(r) model estimate at the server at round r
τ convergence rate

variance, which is more general than exact GD steps, but only to illustrate the robustness of our
framework. A thorough analysis would need to consider the general setting of possibly variance-
reduced (Gorbunov et al., 2020a; Gower et al., 2020) SGD local steps, as was done for Scaffnew in
Malinovsky et al. (2022). We leave it for future work, since we focus on the communication com-
plexity, and stochastic gradients can only worsen it. Reducing the computation complexity using
accelerated (Nesterov, 2004) or stochastic GD steps is somewhat orthogonal to our present study.

Let us elaborate on the double challenge of combining LT with PP and CC. Our notations are sum-
marized in Table 3 for convenience.
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Algorithm 1 TAMUNA
1: input: stepsizes γ > 0, η > 0; number of participating clients c ∈ {2, . . . , n}; sparsity index

for compression s ∈ {2, . . . , c}; initial model estimate x̄(0) ∈ Rd at the server and initial control
variates h(0)

1 , . . . , h
(0)
n ∈ Rd at the clients, such that

∑n
i=1 h

(0)
i = 0.

2: for r = 0, 1, . . . (rounds) do
3: choose a subset Ω(r) ⊂ [n] of size c uniformly at random
4: choose the number of local steps L(r) ≥ 1
5: for clients i ∈ Ω(r), in parallel, do
6: x

(r,0)
i := x̄(r) (initialization received from the server)

7: for ℓ = 0, . . . ,L(r) − 1 (local steps) do
8: x

(r,ℓ+1)
i := x

(r,ℓ)
i − γg

(r,ℓ)
i + γh

(r)
i , where g

(r,ℓ)
i is an unbiased stochastic estimate of

∇fi
(
x
(r,ℓ)
i

)
of variance σ2

i
9: end for

10: end for
11: UpCom: the server and active clients agree on a random binary mask q(r) =

(
q
(r)
i

)
i∈Ω(r) ∈

Rd×c generated as explained in Figure 1, and every client i ∈ Ω(r) sends the compressed

vector C(r)
i

(
x
(r,L(r))
i

)
to the server, where C(r)

i (v) denotes v multiplied elementwise by q
(r)
i .

12: x̄(r+1) := 1
s

∑
i∈Ω(r) C(r)

i

(
x
(r,L(r))
i

)
(aggregation by the server)

13: for clients i ∈ Ω(r), in parallel, do
14: h

(r+1)
i := h

(r)
i + η

γ

(
C(r)
i

(
x̄(r+1)

)
−C(r)

i

(
x
(r,L(r))
i

)) (
x̄(r+1) is received from the server

)
15: end for
16: for clients i /∈ Ω(r), in parallel, do
17: h

(r+1)
i := h

(r)
i (the client is idle)

18: end for
19: end for

1.4.1 Combining LT and PP

With the recent breakthrough of Scaffnew (Mishchenko et al., 2022), we now understand that LT is
not only efficient in practice, but also grounded in theory, and yields communication acceleration if
the number of local steps is chosen appropriately. However, Scaffnew does not allow for PP. It has
been an open and challenging question to know whether its powerful randomized mechanism would
be compatible with PP. In fact, according to Grudzień et al. (2023), the authors of Scaffnew “have
tried—very hard in their own words—but their efforts did not bear any fruit.” In this paper, we break
this lock: TAMUNA handles LT and PP, and fully benefits from the acceleration of LT, whatever the
participation level; that is, its communication complexity depends on

√
κ, not κ.

Combining LT and PP is difficult: we want PP not only during communication whenever it occurs,
but also with respect to all computations before. The simple idea of allowing at every round some
clients to be active and to proceed normally, and other clients to be idle with unchanged local vari-
ables, does not work. A key property of TAMUNA is that only the clients which participated in a
given round make use of the updated model broadcast by the server to update their control variates
(step 14). From a mathematical point of view, our approach relies on combining the two stochastic
processes of probabilistic communication and random client selection in two different ways, for up-
dating after communication the model estimates xi on one hand, and the control variates hi on the
other hand. Indeed, a crucial property is that the sum of the control variates over all clients always
remains zero. This separate treatment was the key to the success of our design.

1.4.2 Combining LT and CC

It is very challenging to combine LT and CC. In the strongly convex and heterogeneous case con-
sidered here, the methods Qsparse-local-SGD (Basu et al., 2020) and FedPAQ (Reisizadeh et al.,
2020) do not converge linearly. The only linearly converging LT + CC algorithm we are aware of
is FedCOMGATE (Haddadpour et al., 2021). But its rate is O(dκ log ϵ−1), which does not show
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(a) (b) (c) (d)

Figure 1: The random sampling pattern q(r) = (q
(r)
i )ci=1 ∈ Rd×c used for communication is gener-

ated by a random permutation of the columns of a fixed binary template pattern, which has the pre-
scribed number s ≥ 2 of ones in every row. In (a) with (d, c, s) = (5, 6, 2) and (b) with (d, c, s) =
(5, 7, 2), with ones in blue and zeros in white, examples of the template pattern used when d ≥ c

s :
for every row k ∈ [d], there are s ones at columns i = mod(s(k−1), c)+1, . . . ,mod(sk−1, c)+1.
Thus, there are ⌊ sd

c ⌋ or ⌈ sd
c ⌉ ones in every column vector qi. In (c), an example of sampling

pattern obtained after a permutation of the columns of the template pattern in (a). In (d) with
(d, c, s) = (3, 10, 2), an example of the template pattern used when c

s ≥ d: for every column
i = 1, . . . , ds, there is 1 one at row k = mod(i−1, d)+1. Thus, there is 0 or 1 one in every column
vector qi. We can note that when d = c

s , the two different rules for d ≥ c
s and c

s ≥ d for constructing
the template pattern are equivalent, since they give exactly the same set of sampling patterns when
permuting their columns. These two rules make it possible to generate easily the columns q

(r)
i of

q(r) on the fly, without having to generate the whole mask q(r) explicitly.

any acceleration. We note that random reshuffling, which can be seen as a kind of LT, has been
combined with CC in Sadiev et al. (2022b); Malinovsky & Richtárik (2022).

Like for PP, the program of combining LT and CC looks simple, as it seems we just have to “plug”
compressors into Scaffnew. Again, this simple approach does not work and the key is to have
separate stochastic mechanisms to update the local model estimates and the control variates. In
Condat et al. (2022a), a specific compression mechanism compatible with LT was designed and
CompressedScaffnew, which combines the LT mechanism of Scaffnew and this new CC mecha-
nism, was proposed. CompressedScaffnew is the first algorithm, to the best of our knowledge, to
exhibit a doubly-accelerated linear rate, by leveraging LT and CC. However, like Scaffnew, Com-
pressedScaffnew only works in case of full participation. We stress that this successful combination
of LT and CC does not help in combining LT and PP: a non-participating client does not participate
to communication whenever it occurs, but it also does not perform any computation before. There-
fore, there is no way to enable PP in loopless algorithms like Scaffnew and CompressedScaffnew,
where communication can be triggered at any time. Whether a client participates or not must be
decided in advance, at the beginning of a round consisting of a sequence of local steps followed by
communication. Our new algorithm TAMUNA is the first to solve this challenge. It works with any
level of PP, with as few as two clients participating in every round. TAMUNA relies on the same ded-
icated design of the compressors as CompressedScaffnew, explained in Figure 1 and such that the
messages sent by the different clients complement each other, to keep a tight control of the variance
after aggregation. We currently do not know how to use any other type of compressors in TAMUNA.

Thus, by combining LT and CC, TAMUNA establishes the new state of the art in communication
efficiency. For instance, with exact gradients, if α is small and n is large, its TotalCom complexity
in case of full participation is

O
((√

d
√
κ+ d

)
log ϵ−1

)
;

our general result is in Theorem 2. Thus, TAMUNA enjoys twofold acceleration, with
√
κ instead of

κ thanks to LT and
√
d instead of d thanks to CC.

2 Proposed algorithm TAMUNA

The proposed algorithm TAMUNA is shown as Algorithm 1. Its main loop is over the rounds, in-
dexed by r. A round consists of a sequence, written as an inner loop, of local steps indexed by ℓ
and performed in parallel by the active clients, followed by compressed communication with the
server and update of the local control variates hi. The c active, or participating, clients are selected
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randomly at the beginning of the round. During UpCom, every client sends a compressed version
of its local model xi: it sends only a few of its elements, selected randomly according to the rule
explained in Figure 1 and known by both the clients and the server (for decoding).

At the end of the round, the aggregated model estimate x̄(r+1) formed by the server is sent only to
the active clients, which use it to update their control variates hi. This update consists in overwriting
only the coordinates of hi which have been involved in the communication process; that is, for which
the mask q

(r)
i has a one. Indeed, the received vector x̄(r+1) does not contain relevant information to

update hi at the other coordinates.

The update of the local model estimates xi at the clients takes place at the beginning of the round,
when the active clients download the current model estimate x̄(r) to initialize their local steps. So,
it seems that there are two DownCom steps from the server to the clients per round (steps 6 and 14),
but the algorithm can be written with only one: x̄(r+1) can be broadcast by the server at the end of
round r not only to the active clients of round r, but also to the active clients of the next round r+1,
at the same time. We keep the algorithm written in this way for simplicity.

Thus, the clients of index i /∈ Ω(r), which do not participate in round r, are completely idle: they
do not compute and do not communicate at all. Their local control variates hi remain unchanged,
and they do not even need to store a local model estimate: they only need to receive the latest model
estimate x(r) from the server when they participate in the process.

In TAMUNA, unbiased stochastic gradient estimates of bounded variance σ2
i can be used: for every

i ∈ [n],

E
[
g
(r,ℓ)
i | x(r,ℓ)

i

]
= ∇fi

(
x
(r,ℓ)
i

)
, E

[∥∥∥g(r,ℓ)i −∇fi
(
x
(r,ℓ)
i

)∥∥∥2 | x(r,ℓ)
i

]
≤ σ2

i , (3)

for some σi ≥ 0. We have g
(r,ℓ)
i = ∇fi

(
x
(r,ℓ)
i

)
if σi = 0. We define the total variance σ2 :=∑n

i=1 σ
2
i . Our main result, stating linear convergence of TAMUNA to the exact solution x⋆ of (1), or

to a neighborhood if σ > 0, is the following:
Theorem 1 (fast linear convergence to a σ2-neighborhood). Let p ∈ (0, 1]. In TAMUNA, suppose
that at every round r ≥ 0, L(r) is chosen randomly and independently according to a geometric law
of mean p−1; that is, for every L ≥ 1, Prob(L(r) = L) = (1− p)L−1p. Also, suppose that

0 < γ <
2

L
(4)

and η := pχ, where

0 < χ ≤ n(s− 1)

s(n− 1)
∈
(
1

2
, 1

]
. (5)

For every total number t ≥ 0 of local steps made so far, define the Lyapunov function

Ψ
t
:=

n

γ

∥∥x̄t − x⋆
∥∥2 + γ

p2χ

n− 1

s− 1

n∑
i=1

∥∥∥h(r)
i − h⋆

i

∥∥∥2 , (6)

where x⋆ is the unique solution to (1), h⋆
i = ∇fi(x

⋆), r ≥ 0 and ℓ ∈ {0, . . . ,L(r) − 1} are such
that

t =

r−1∑
r̂=0

L(r̂) + ℓ, (7)

and
x̄t :=

1

s

∑
i∈Ω(r)

C(r)
i

(
x
(r,ℓ)
i

)
. (8)

Then, for every t ≥ 0,

E
[
Ψ

t
]
≤ τ tΨ

0
+

γσ2

1− τ
, (9)

where

τ := max

(
(1− γµ)2, (γL− 1)2, 1− p2χ

s− 1

n− 1

)
< 1. (10)

Also, if σ = 0, (x̄(r))r∈N converges to x⋆ and (h
(r)
i )r∈N converges to h⋆

i , almost surely.
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The complete proof is in the Appendix. We give a brief sketch here. The analysis is made for a
single-loop version of the algorithm, shown as Algorithm 2, with a loop over the iterations, indexed
by t, and one local step per iteration. Thus, communication does not happen at every iteration but
is only triggered randomly with probability p. Its convergence is proved in Theorem 3. Indeed, the
contraction of the Lyapunov function happens at every iteration and not at every round, whose size
is random. That is why we have to reindex the local steps to obtain a rate depending on the number
of iterations t so far. We detail in the Appendix how Theorem 3 on Algorithm 2 yields Theorem 1
on TAMUNA.

We note that in (8), x̄t is actually computed only if ℓ = 0, in which case x̄t = x̄(r). We also note
that the theorem depends on s but not on c. The dependence on c is hidden in the fact that s is upper
bounded by c.
Remark 1 (setting η). In the conditions of Theorem 1, one can simply set η = p

2 in TAMUNA, which
is independent of n and s. However, the larger η, the better, so it is recommended to set

η = p
n(s− 1)

s(n− 1)
. (11)

Also, as a rule of thumb, if the average number of local steps per round is L, one can replace p by
L−1.

We can comment on the difference between TAMUNA and Scaffold, when CC is disabled (s = c).
In TAMUNA, hi is updated by adding x̄(r+1) − x

(r,L(r))
i , the difference between the latest global

estimate x̄(r+1) and the latest local estimate x
(r,L(r))
i . By contrast, in Scaffold, x̄(r) − x

(r,L(r))
i

is used instead, which involves the “old” global estimate x̄(r). Moreover, this difference is scaled
by the number of local steps, which makes it small. That is why no acceleration from LT can be
obtained in Scaffold, whatever the number of local steps. This is not a weakness of the analysis in
Karimireddy et al. (2020) but an intrinsic limitation of Scaffold.

We can also note that the neighborhood size in (9) does not show so-called linear speedup; that is,
it does not decrease when n increases. The properties of performing LT with SGD steps remain
little understood (Woodworth et al., 2020), and we believe this should be studied within the general
framework of variance reduction (Malinovsky et al., 2022). Again, this goes far beyond the scope
of this paper, which focuses on communication.

3 Iteration and communication complexities

We consider in this section that exact gradients are used (σ = 0),2 since our aim is to establish a
new state of the art for the communication complexity, regardless of the type of local computations.
We place ourselves in the conditions of Theorem 1. In particular, p ∈ (0, 1] is the probability of
triggering communication.

We first remark that TAMUNA has the same iteration complexity as GD, with rate τ ♯ := max(1 −
γµ, γL − 1)2, as long as p and s are large enough to have 1 − χp2 s−1

n−1 ≤ τ ♯. This is remarkable:
LT, CC and PP do not harm convergence at all, until some threshold.

Let us consider the number of iterations (= total number of local steps) to reach ϵ-accuracy, i.e.
E
[
Ψ

t
]
≤ ϵ. For any s ≥ 2, p ∈ (0, 1], γ = Θ( 1

L ), and χ = Θ(1), the iteration complexity of
TAMUNA is

O
((

κ+
n

sp2

)
log ϵ−1

)
.

Thus, by choosing

p = min

(
Θ

(√
n

sκ

)
, 1

)
, (12)

which means that the average number of local steps per round is

E
[
L(r)

]
= max

(
Θ

(√
sκ

n

)
, 1

)
, (13)

2If σ > 0, it is possible to derive sublinear rates to reach ϵ-accuracy for the communication complexity, by
setting γ proportional to ϵ, as was done for Scaffnew in Mishchenko et al. (2022, Corollary 5.6).
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the iteration complexity becomes

O
((

κ+
n

s

)
log ϵ−1

)
.

We now consider the communication complexity. Communication occurs at every iteration with
probability p, and during every communication round, DownCom consists in broadcasting the full
d-dimensional vector x̄(r), whereas in UpCom, compression is effective and the number of real
values sent in parallel by the clients is equal to the number of ones per column in the sampling
pattern q, which is ⌈ sd

c ⌉ ≥ 1. Hence, the communication complexities are:

DownCom: O
(
pd

(
κ+

n

sp2

)
log ϵ−1

)
,

UpCom: O
(
p

(
sd

c
+ 1

)(
κ+

n

sp2

)
log ϵ−1

)
.

TotalCom: O
(
p

(
sd

c
+ 1 + αd

)(
κ+

n

sp2

)
log ϵ−1

)
.

For a given s, the best choice for p, for both DownCom and UpCom, is given in (12), for which

O
(
p

(
κ+

n

sp2

))
= O

(√
nκ

s
+

n

s

)
and the TotalCom complexity is

TotalCom: O
((√

nκ

s
+

n

s

)(
sd

c
+ 1 + αd

)
log ϵ−1

)
.

We see the first acceleration effect due to LT: with a suitable p < 1, the communication complexity
only depends on

√
κ, not κ, whatever the participation level c and compression level s.

Without compression, i.e. s = c, whatever α, the TotalCom complexity becomes

O
(
d

(√
nκ

c
+

n

c

)
log ϵ−1

)
.

We can now set s to further accelerate the algorithm, by minimizing the TotalCom complexity:
Theorem 2 (doubly accelerated communication). In the conditions of Theorem 1, suppose that
σ = 0, γ = Θ( 1

L ), χ = Θ(1), and

p = min

(
Θ

(√
n

sκ

)
, 1

)
, s = max

(
2,
⌊ c
d

⌋
, ⌊αc⌋

)
. (14)

Then the TotalCom complexity of TAMUNA is

O
((√

d
√
κ

√
n

c
+ d

√
κ

√
n

c
+ d

n

c
+

√
αd

√
κ

√
n

c

)
log ϵ−1

)
. (15)

As reported in Tables 1 and 2, TAMUNA improves upon all known algorithms using either LT or CC
on top of GD, even those working only with full participation.
Corollary 1 (dependence on α). As long as α ≤ max( 2c ,

1
d ,

n
κc ), there is no difference with the case

α = 0, in which we only focus on UpCom, and the TotalCom complexity is

O
((√

d
√
κ

√
n

c
+ d

√
κ

√
n

c
+ d

n

c

)
log ϵ−1

)
. (16)

On the other hand, if α ≥ max( 2c ,
1
d ,

n
κc ), the complexity increases and becomes

O
(√

αd
√
κ

√
n

c
log ϵ−1

)
, (17)
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(a) w8a, n = 1000, α = 0, c = n (b) w8a, n = 1000, α = 0.1, c = n

(c) w8a, n = 1000, α = 0, c = 0.1n (d) w8a, n = 1000, α = 0.1, c = 0.1n

Figure 2: Logistic regression experiment in the case n > d. The dataset w8a has d = 300 features
and n = 1000, so n ≈ 3d. The first row shows a comparison in the full participation regime, while
the second row shows a comparison in the partial participation regime with 10% of clients. On the
left, α = 0, while on the right, α = 0.1.

but compression remains operational and effective with the
√
α factor. It is only when α = 1 that

s = c, i.e. there is no compression, and that the Upcom, DownCom and TotalCom complexities all
become

O
(
d
√
κ

√
n

c
log ϵ−1

)
. (18)

Thus, in case of full participation (c = n), TAMUNA is faster than Scaffnew for every α ∈ [0, 1].

Corollary 2 (full participation). In case of full participation (c = n), the TotalCom complexity of
TAMUNA is

O
((√

d
√
κ+ d

√
κ√
n
+ d+

√
αd

√
κ

)
log ϵ−1

)
. (19)

4 Experiments

Our work is theoretical and studies the foundational properties of a class of algorithms. Nonetheless,
we carry experiments to illustrate our results using a practical logistic regression problem.

The global loss function is defined as

f(x) =
1

M

M∑
m=1

(
log
(
1 + exp

(
−bma⊤mx

))
+

µ

2
∥x∥2

)
, (20)

where the variables am ∈ Rd and bm ∈ {−1, 1} represent the data samples, and M denotes the
total number of samples. The function f in (20) is divided into n separate functions fi, with any
remainder from dividing M by n discarded.
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(a) real-sim, n = 1000, α = 0, c = n (b) real-sim, n = 1000, α = 0.1, c = n

(c) real-sim, n = 1000, α = 0, c = 0.1n (d) real-sim, n = 1000, α = 0.1, c = 0.1n

Figure 3: Logistic regression experiment in the case d > n. The dataset real-sim has d = 20, 958
features and n = 1000, so n ≈ d/20. The first row shows a comparison in the full participation
regime, while the second row shows a comparison in the partial participation regime with 10% of
clients. On the left, α = 0, while on the right, α = 0.1.

We select the strong convexity constant µ so that κ = 104.

For our analysis, we choose n = 1000 and examine two scenarios: in the first one, we have d > n
using the ‘real-sim’ dataset with d = 20958, and in the second one, we have n > d using the ‘w8a’
dataset with d = 300, from the widely-used LIBSVM library (Chang & Lin, 2011). Additionally,
we consider two cases for each scenario: α = 0 and α = 0.1, where α is the weight on DownCom
defined in (2).

We measure the convergence error f(x)− f(x⋆) with respect to TotalCom, i.e. the total number of
communicated reals, as defined in Section (1.2). Here, x denotes the model known by the server;
for TAMUNA, this is x̄(r). This error serves as a natural basis for comparing algorithms, and since f
is L-smooth, we have f(x) − f(x⋆) ≤ L

2 ∥x− x⋆∥2 for any x. Consequently, the error converges
linearly at the same rate as Ψ in Theorem 1..

We compare the performance of three algorithms allowing for PP, namely Scaffold, 5GCS, and
TAMUNA, for two participation scenarios: c = n and c = 0.1n (10% participation). In the full
participation case, we add Scaffnew to the comparison.

In order to ensure theoretical conditions that guarantee linear convergence, we set γ and η for
TAMUNA as

γ =
2

L+ µ
, η = p

n(s− 1)

s(n− 1)
,

where the remaining parameters s and p are fine-tuned to achieve the best communication com-
plexity. In our experimental setup, we found that using s = 40 and p = 0.01 resulted in excellent
performance. The conditions of Theorem 1 are met with these values, so linear convergence of
TAMUNA is guaranteed. We adopt the same values of γ and p for Scaffnew. For Scaffold, we
use p−1 local steps, which is the same, on average, as for TAMUNA and Scaffnew; the behavior
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of Scaffold changed marginally with other values. We also set γ to its highest value that ensures
convergence. In the case of 5GCS, we tune γ, τ , and the number of local steps to achieve the best
communication complexity.

The models in all algorithms, as well as the control variates in TAMUNA, Scaffnew and Scaffold, are
initialized with zero vectors.

The results are shown in Figures 2 and 3. Each algorithm is run multiple times with different
random seeds, depending on its variance (7 times for TAMUNA, 5 times for Scaffnew, and 3 times
for Scaffold and 5GCS). The shaded area in the plots shows the difference between the maximum
and minimum convergence error achieved over these runs. Additionally, the progress of the first run
for each algorithm is depicted with a thicker line and markers.

As can be seen, our proposed algorithm TAMUNA outperforms all other methods. In case of full par-
ticipation, Scaffnew outperforms Scaffold and 5GCS, which shows the efficiency of its LT mecha-
nism. TAMUNA embeds the same mechanism and also benefits from it, but it outperforms Scaffnew
thanks to CC, its second communication-acceleration mechanism. The difference between TAMUNA
and Scaffnew is larger for α = 0 than for α = 0.1, as explained by our theory; the difference would
vanish if α tends to 1. TAMUNA is applicable and proved to converge with any level of PP, whereas
Scaffnew only applies to the full participation case.

5 Conclusion

We have proposed TAMUNA, the first communication-efficient algorithm that allows for partial par-
ticipation (PP) and provably benefits from the two combined acceleration mechanisms of Local
Training (LT) and Communication Compression (CC), in the convex setting. Moreover, this is
achieved not only for uplink communication, but for our more comprehensive model of total com-
munication. These theoretical guarantees are confirmed in practice and TAMUNA communicates less
than existing algorithms to reach the same accuracy. An important venue for future work will be to
generalize our specific compression mechanism to a broad class of compressors including quanti-
zation (Horváth et al., 2022). Another venue consists in implementing internal variance reduction
for the stochastic gradients, as was done for Scaffnew in Malinovsky et al. (2022). Analyzing the
properties of TAMUNA on nonconvex problems should also be studied (Karimireddy et al., 2021;
Das et al., 2022).
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Algorithm 2
1: input: stepsizes γ > 0, χ > 0; probability p ∈ (0, 1]; number of participating clients

c ∈ {2, . . . , n}; compression index s ∈ {2, . . . , c}; initial estimates x0
1, . . . , x

0
n ∈ Rd and

h0
1, . . . , h

0
n ∈ Rd such that

∑n
i=1 h

0
i = 0, sequence of independent coin flips θ0, θ1, . . . with

Prob(θt = 1) = p, and for every t with θt = 1, a subset Ωt ⊂ [n] of size c chosen uniformly at
random and a random binary mask qt = (qti)i∈Ωt ∈ Rd×c generated as explained in Figure 1.
The compressed vector Ct

i (v) is v multiplied elementwise by qti .
2: for t = 0, 1, . . . do
3: for i = 1, . . . , n, at clients in parallel, do
4: x̂t

i := xt
i − γgti + γht

i, where gti is an unbiased stochastic estimate of ∇fi(x
t
i) of variance

σ2
i

5: if θt = 1 then
6: if i ∈ Ωt then
7: send x̂t

i to the server, which aggregates x̄t := 1
s

∑
j∈Ωt Ct

j(x̂
t
j) and broadcasts it to all

clients
8: ht+1

i := ht
i +

pχ
γ

(
Ct
i (x̄

t)− Ct
i (x̂

t
i)
)

9: else
10: ht+1

i := ht
i

11: end if
12: xt+1

i := x̄t

13: else
14: xt+1

i := x̂t
i

15: ht+1
i := ht

i
16: end if
17: end for
18: end for

A Proof of Theorem 1

We first prove convergence of Algorithm 2, which is a single-loop version of TAMUNA; that is, there
is a unique loop over the iterations and there is one local step per iteration. In Section A.2, we show
that this yields a proof of Theorem 1 for TAMUNA. We can note that in case of full participation
(c = n, Ωt ≡ [n]), Algorithm 2 reverts to CompressedScaffnew (Condat et al., 2022a).

To simplify the analysis of Algorithm 2, we introduce vector notations: the problem (1) can be
written as

find x⋆ = argmin
x∈X

f(x) s.t. Wx = 0, (21)

where X := Rd×n, an element x = (xi)
n
i=1 ∈ X is a collection of vectors xi ∈ Rd, f : x ∈

X 7→
∑n

i=1 fi(xi) is L-smooth and µ-strongly convex, the linear operator W : X → X maps
x = (xi)

n
i=1 to (xi − 1

n

∑n
j=1 xj)

n
i=1. The constraint Wx = 0 means that x minus its average is

zero; that is, x has identical components x1 = · · · = xn. Thus, (21) is indeed equivalent to (1). We
have W = W ∗ = W 2.

We also rewrite Algorithm 2 using vector notations as Algorithm 3. It converges linearly:

Theorem 3 (fast linear convergence). In Algorithm 3, suppose that 0 < γ < 2
L , 0 < χ ≤ n(s−1)

s(n−1) ,
ω = n−1

p(s−1) − 1. For every t ≥ 0, define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + γ(1 + ω)

pχ

∥∥ht − h⋆
∥∥2 , (22)

where x⋆ is the unique solution to (21) and h⋆ := ∇f(x⋆). Then Algorithm 3 converges linearly:
for every t ≥ 0,

E
[
Ψt
]
≤ τ tΨ0 +

γσ2

1− τ
, (23)

where

τ := max

(
(1− γµ)2, (γL− 1)2, 1− p2χ

s− 1

n− 1

)
< 1. (24)
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Algorithm 3
input: stepsizes γ > 0, χ > 0; probability p ∈ (0, 1], parameter ω ≥ 0; number of participating
clients c ∈ {2, . . . , n}; compression index s ∈ {2, . . . , c}; initial estimates x0 ∈ X and h0 ∈ X
such that

∑n
i=1 h

0
i = 0; sequence of independent coin flips θ0, θ1, . . . with Prob(θt = 1) = p,

and for every t with θt = 1, a subset Ωt ⊂ [n] of size c chosen uniformly at random and a random
binary mask qt = (qti)i∈Ωt ∈ Rd×c generated as explained in Figure 1. The compressed vector
Ct
i (v) is v multiplied elementwise by qti .

for t = 0, 1, . . . do
x̂t := xt − γgt + γht, where gt = (gti)

n
i=1 ≈ ∇f(xt)

if θt = 1 then
x̄t := (x̄t)ni=1, where x̄t := 1

s

∑
j∈Ωt Ct

j(x̂
t
j)

xt+1 := x̄t

dt := (dti)
n
i=1 with dti =

{
(1 + ω) (Ct

i (x̂
t
i)− Ct

i (x̄
t)) if i ∈ Ωt,

0 otherwise
else
xt+1 := x̂t

dt := 0
end if
ht+1 := ht − pχ

γ(1+ω)d
t

end for

Also, if σ = 0, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ht)t∈N converges to h⋆, almost surely.

Proof. We consider the variables of Algorithm 3. For every t ≥ 0, we denote by F t
0 the σ-algebra

generated by the collection of X -valued random variables x0,h0, . . . ,xt,ht, and by F t the σ-
algebra generated by these variables, as well as the stochastic gradients gt. dt is a random variable;
as proved in Section A.1, it satisfies the 3 following properties, on which the convergence analysis
of Algorithm 3 relies: for every t ≥ 0,

1. E[dt | F t] = W x̂t.

2. E
[∥∥dt −W x̂t

∥∥2 | F t
]
≤ ω

∥∥W x̂t
∥∥2 .

3. dt belongs to the range of W ; that is,
∑n

i=1 d
t
i = 0.

We suppose that
∑n

i=1 h
0
i = 0. Then, it follows from the third property of dt that, for every t ≥ 0,∑n

i=1 h
t
i = 0; that is, Wht = ht.

For every t ≥ 0, we define ĥt+1 := ht − pχ
γ W x̂t, wt := xt − γgt and w⋆ := x⋆ − γ∇f(x⋆). We

also define x̄t♯ := (x̄t♯)ni=1, with x̄t♯ := 1
n

∑n
i=1 x̂

t
i; that is, x̄t♯ is the exact average of the x̂t

i, of
which x̄t is an unbiased random estimate.

Let t ≥ 0. We have

E
[∥∥xt+1 − x⋆

∥∥2 | F t
]
= pE

[∥∥x̄t − x⋆
∥∥2 | F t, θt = 1

]
+ (1− p)

∥∥x̂t − x⋆
∥∥2 ,

Since E[x̄t | F t, θt = 1] = x̄t♯,

E
[∥∥x̄t − x⋆

∥∥2 | F t, θt = 1
]
=
∥∥x̄t♯ − x⋆

∥∥2 + E
[∥∥x̄t − x̄t♯

∥∥2 | F t, θ = 1
]
,

with ∥∥x̄t♯ − x⋆
∥∥2 =

∥∥x̂t − x⋆
∥∥2 − ∥∥W x̂t

∥∥2 .
To analyze E

[
∥x̄t − x⋆∥2 | F t, θt = 1

]
, where the expectation is with respect to the active sub-

set Ωt and the mask qt, we can remark that the expectation and the squared Euclidean norm are
separable with respect to the coordinates of the d-dimensional vectors. So, we can reason on the
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coordinates independently on each other, even if the the coordinates, or rows, of qt are mutually de-
pendent. Also, for a given coordinate k ∈ [d], choosing s elements at random among the c elements
x̂t
i,k with i ∈ Ωt, with Ωt chosen uniformly at random too, is equivalent to selecting s elements x̂t

i,k

among all i ∈ [n] uniformly at random in the first place. Thus, for every coordinate k ∈ [d], it is like
a subset Ω̃t

k ⊂ [n] of size s, which corresponds to the location of the ones in the k-th row of qt, is
chosen uniformly at random and

x̄t
k =

1

s

∑
i∈Ω̃t

k

x̂t
i,k.

Then, as proved in Condat & Richtárik (2022, Proposition 1),

E
[∥∥x̄t − x̄t♯

∥∥2 | F t, θt = 1
]
= n

d∑
k=1

EΩ̃t
k


1

s

∑
i∈Ω̃t

k

x̂t
i,k − 1

n

n∑
j=1

x̂t
j,k

2

| F t

 = ν
∥∥W x̂t

∥∥2 ,
where

ν :=
n− s

s(n− 1)
∈
[
0,

1

2

)
. (25)

Moreover,∥∥x̂t − x⋆
∥∥2 =

∥∥wt −w⋆
∥∥2 + γ2

∥∥ht − h⋆
∥∥2 + 2γ⟨wt −w⋆,ht − h⋆⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆,ht − h⋆⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆, ĥt+1 − h⋆⟩ − 2γ⟨x̂t − x⋆, ĥt+1 − ht⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆, ĥt+1 − h⋆⟩+ 2pχ⟨x̂t − x⋆,W x̂t⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆, ĥt+1 − h⋆⟩+ 2pχ
∥∥W x̂t

∥∥2 .
Hence,

E
[∥∥xt+1 − x⋆

∥∥2 | F t
]
= p

∥∥x̂t − x⋆
∥∥2 − p

∥∥W x̂t
∥∥2 + pν

∥∥W x̂t
∥∥2 + (1− p)

∥∥x̂t − x⋆
∥∥2

=
∥∥x̂t − x⋆

∥∥2 − p(1− ν)
∥∥W x̂t

∥∥2
=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆, ĥt+1 − h⋆⟩

+
(
2pχ− p(1− ν)

) ∥∥W x̂t
∥∥2 .

On the other hand, using the 3 properties of dt stated above, we have

E
[∥∥ht+1 − h⋆

∥∥2 | F t
]
≤
∥∥∥∥ht − h⋆ − pχ

γ(1 + ω)
W x̂t

∥∥∥∥2 + ωp2χ2

γ2(1 + ω)2
∥∥W x̂t

∥∥2
=

∥∥∥∥ht − h⋆ +
1

1 + ω

(
ĥt+1 − ht

)∥∥∥∥2 + ω

(1 + ω)2

∥∥∥ĥt+1 − ht
∥∥∥2

=

∥∥∥∥ ω

1 + ω

(
ht − h⋆

)
+

1

1 + ω

(
ĥt+1 − h⋆

)∥∥∥∥2 + ω

(1 + ω)2

∥∥∥ĥt+1 − ht
∥∥∥2

=
ω2

(1 + ω)2
∥∥ht − h⋆

∥∥2 + 1

(1 + ω)2

∥∥∥ĥt+1 − h⋆
∥∥∥2

+
2ω

(1 + ω)2
⟨ht − h⋆, ĥt+1 − h⋆⟩+ ω

(1 + ω)2

∥∥∥ĥt+1 − h⋆
∥∥∥2

+
ω

(1 + ω)2
∥∥ht − h⋆

∥∥2 − 2ω

(1 + ω)2
⟨ht − h⋆, ĥt+1 − h⋆⟩

=
1

1 + ω

∥∥∥ĥt+1 − h⋆
∥∥∥2 + ω

1 + ω

∥∥ht − h⋆
∥∥2 .
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Moreover,∥∥∥ĥt+1 − h⋆
∥∥∥2 =

∥∥∥(ht − h⋆) + (ĥt+1 − ht)
∥∥∥2

=
∥∥ht − h⋆

∥∥2 + ∥∥∥ĥt+1 − ht
∥∥∥2 + 2⟨ht − h⋆, ĥt+1 − ht⟩

=
∥∥ht − h⋆

∥∥2 + 2⟨ĥt+1 − h⋆, ĥt+1 − ht⟩ −
∥∥∥ĥt+1 − ht

∥∥∥2
=
∥∥ht − h⋆

∥∥2 − ∥∥∥ĥt+1 − ht
∥∥∥2 − 2

pχ

γ
⟨ĥt+1 − h⋆,W (x̂t − x⋆)⟩

=
∥∥ht − h⋆

∥∥2 − p2χ2

γ2

∥∥W x̂t
∥∥2 − 2

pχ

γ
⟨W (ĥt+1 − h⋆), x̂t − x⋆⟩

=
∥∥ht − h⋆

∥∥2 − p2χ2

γ2

∥∥W x̂t
∥∥2 − 2

pχ

γ
⟨ĥt+1 − h⋆, x̂t − x⋆⟩.

Hence,
1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | F t
]
+

γ(1 + ω)

pχ
E
[∥∥ht+1 − h⋆

∥∥2 | F t
]

≤ 1

γ

∥∥wt −w⋆
∥∥2 − γ

∥∥ht − h⋆
∥∥2 + (2pχ

γ
− p

γ
(1− ν)

)∥∥W x̂t
∥∥2

+ 2⟨x̂t − x⋆, ĥt+1 − h⋆⟩+ γ

pχ

∥∥ht − h⋆
∥∥2

− pχ

γ

∥∥W x̂t
∥∥2 − 2⟨ĥt+1 − h⋆, x̂t − x⋆⟩+ γω

pχ

∥∥ht − h⋆
∥∥2

=
1

γ

∥∥wt −w⋆
∥∥2 + (γ(1 + ω)

pχ
− γ

)∥∥ht − h⋆
∥∥2

+

(
pχ

γ
− p(1− ν)

γ

)∥∥W x̂t
∥∥2 . (26)

Since we have supposed

0 < χ ≤ 1− ν =
n(s− 1)

s(n− 1)
∈
(
1

2
, 1

]
,

we have
1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | F t
]
+

γ(1 + ω)

pχ
E
[∥∥ht+1 − h⋆

∥∥2 | F t
]

≤ 1

γ

∥∥wt −w⋆
∥∥2 + γ(1 + ω)

pχ

(
1− pχ

1 + ω

)∥∥ht − h⋆
∥∥2 .

Finally,
E
[∥∥wt −w⋆

∥∥2 | F t
0

]
≤
∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆

∥∥2 + γ2σ2,

and according to Condat & Richtárik (2023, Lemma 1),∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆
∥∥2 ≤ max(1− γµ, γL− 1)2

∥∥xt − x⋆
∥∥2 .

Therefore,

E
[
Ψt+1 | F t

0

]
≤ max

(
(1− γµ)2, (γL− 1)2, 1− pχ

1 + ω

)
Ψt + γσ2

= max

(
(1− γµ)2, (γL− 1)2, 1− p2χ

s− 1

n− 1

)
Ψt + γσ2. (27)

Using the tower rule, we can unroll the recursion in (27) to obtain the unconditional expectation of
Ψt+1.

If σ = 0, using classical results on supermartingale convergence (Bertsekas, 2015, Proposition
A.4.5), it follows from (27) that Ψt → 0 almost surely. Almost sure convergence of xt and ht

follows. Finally, by Lipschitz continuity of ∇f , we can upper bound ∥x̂t − x⋆∥2 by a linear combi-
nation of ∥xt − x⋆∥2 and ∥ht − h⋆∥2. It follows that E

[
∥x̂t − x⋆∥2

]
→ 0 linearly with the same

rate τ and that x̂t → x⋆ almost surely, as well.
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A.1 The random variable dt

We study the random variable dt used in Algorithm 3. If θt = 0, dt = 0. If, on the other hand,
θt = 1, for every coordinate k ∈ [d], a subset Ω̃t

k ⊂ [n] of size s is chosen uniformly at random.
These sets (Ω̃t

k)
d
k=1 are mutually dependent, but this does not matter for the derivations, since we

can reason on the coordinates separately. Then, for every k ∈ [d] and i ∈ [n],

dti,k :=

{
a
(
x̂t
i,k − 1

s

∑
j∈Ω̃t

k
x̂t
j,k

)
if i ∈ Ω̃t

k,

0 otherwise,
(28)

for some value a > 0 to determine. We can check that
∑n

i=1 d
t
i = 0. We can also note that dt

depends only on W x̂t and not on x̂t; in particular, if x̂t
1 = · · · = x̂t

n, dti = 0. We have to set a so
that E[dti] = x̂t

i− 1
n

∑n
j=1 x̂

t
j , where the expectation is with respect to θt and the Ω̃t

k (all expectations
in this section are conditional to x̂t). So, let us calculate this expectation.

Let k ∈ [d]. For every i ∈ [n],

E
[
dti,k
]
= p

s

n

ax̂t
i,k − a

s
EΩ:i∈Ω

∑
j∈Ω

x̂t
j,k

 ,

where EΩ:i∈Ω denotes the expectation with respect to a subset Ω ⊂ [n] of size s containing i and
chosen uniformly at random. We have

EΩ:i∈Ω

∑
j∈Ω

x̂t
j,k

 = x̂t
i,k +

s− 1

n− 1

∑
j∈[n]\{i}

x̂t
j,k =

n− s

n− 1
x̂t
i,k +

s− 1

n− 1

n∑
j=1

x̂t
j,k.

Hence, for every i ∈ [n],

E
[
dti,k
]
= p

s

n

(
a− a

s

n− s

n− 1

)
x̂i,k − p

s

n

a

s

s− 1

n− 1

n∑
j=1

x̂j,k.

Therefore, by setting

a :=
n− 1

p(s− 1)
, (29)

we have, for every i ∈ [n],

E
[
dti,k
]
= p

s

n

(
1

p

n− 1

s− 1
− 1

p

n− s

s(s− 1)

)
x̂i,k − 1

n

n∑
j=1

x̂j,k

= x̂i,k − 1

n

n∑
j=1

x̂j,k,

as desired.

Now, we want to find the value of ω such that

E
[∥∥dt −W x̂t

∥∥2] ≤ ω
∥∥W x̂t

∥∥2 (30)

or, equivalently,

E

[
n∑

i=1

∥∥dti∥∥2
]
≤ (1 + ω)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

We can reason on the coordinates separately, or all at once to ease the notations. We have

E

[
n∑

i=1

∥∥dti∥∥2
]
= p

s

n

n∑
i=1

EΩ:i∈Ω

∥∥∥∥∥∥ax̂t
i −

a

s

∑
j∈Ω

x̂t
j

∥∥∥∥∥∥
2

.
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For every i ∈ [n],

EΩ:i∈Ω

∥∥∥∥∥∥ax̂t
i −

a

s

∑
j∈Ω

x̂t
j

∥∥∥∥∥∥
2

= EΩ:i∈Ω

∥∥∥∥∥∥
(
a− a

s

)
x̂t
i −

a

s

∑
j∈Ω\{i}

x̂t
j

∥∥∥∥∥∥
2

=
∥∥∥(a− a

s

)
x̂t
i

∥∥∥2 + EΩ:i∈Ω

∥∥∥∥∥∥as
∑

j∈Ω\{i}

x̂t
j

∥∥∥∥∥∥
2

− 2

〈(
a− a

s

)
x̂t
i,
a

s
EΩ:i∈Ω

∑
j∈Ω\{i}

x̂t
j

〉
.

We have

EΩ:i∈Ω

∑
j∈Ω\{i}

x̂t
j =

s− 1

n− 1

∑
j∈[n]\{i}

x̂t
j =

s− 1

n− 1

 n∑
j=1

x̂t
j − x̂t

i



and

EΩ:i∈Ω

∥∥∥∥∥∥
∑

j∈Ω\{i}

x̂t
j

∥∥∥∥∥∥
2

= EΩ:i∈Ω

∑
j∈Ω\{i}

∥∥x̂t
j

∥∥2 + EΩ:i∈Ω

∑
j∈Ω\{i}

∑
j′∈Ω\{i,j}

〈
x̂t
j , x̂

t
j′
〉

=
s− 1

n− 1

∑
j∈[n]\{i}

∥∥x̂t
j

∥∥2 + s− 1

n− 1

s− 2

n− 2

∑
j∈[n]\{i}

∑
j′∈[n]\{i,j}

〈
x̂t
j , x̂

t
j′
〉

=
s− 1

n− 1

(
1− s− 2

n− 2

) ∑
j∈[n]\{i}

∥∥x̂t
j

∥∥2 + s− 1

n− 1

s− 2

n− 2

∥∥∥∥∥∥
∑

j∈[n]\{i}

x̂t
j

∥∥∥∥∥∥
2

=
s− 1

n− 1

n− s

n− 2

 n∑
j=1

∥∥x̂t
j

∥∥2 − ∥∥x̂t
i

∥∥2+
s− 1

n− 1

s− 2

n− 2

∥∥∥∥∥∥
n∑

j=1

x̂t
j − x̂t

i

∥∥∥∥∥∥
2

.
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Hence,

E

[
n∑

i=1

∥∥dti∥∥2
]
= p

s

n

n∑
i=1

∥∥∥(a− a

s

)
x̂t
i

∥∥∥2 + ps
a2

(s)2
s− 1

n− 1

n− s

n− 2

n∑
j=1

∥∥x̂t
j

∥∥2

− p
s

n

a2

(s)2
s− 1

n− 1

n− s

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2 + p
s

n

a2

(s)2
s− 1

n− 1

s− 2

n− 2

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

x̂t
j − x̂t

i

∥∥∥∥∥∥
2

− 2p
s

n

a

s

s− 1

n− 1

(
a− a

s

) n∑
i=1

〈
x̂t
i,

n∑
j=1

x̂t
j − x̂t

i

〉

=
(n− 1)2

psn

n∑
i=1

∥∥x̂t
i

∥∥2 + (n− 1)2

ps(s− 1)n

n− s

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2
+

1

ps

s− 2

s− 1

n− 1

n− 2

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

− 2
1

psn

s− 2

s− 1

n− 1

n− 2

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

+
1

psn

s− 2

s− 1

n− 1

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2 + 2
n− 1

psn

n∑
i=1

∥∥x̂t
i

∥∥2 − 2
n− 1

psn

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

=
(n− 1)(n+ 1)

psn

n∑
i=1

∥∥x̂t
i

∥∥2 + (n− 1)2

ps(s− 1)n

n− s

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2
− n− 1

psn

s

s− 1

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

+
1

psn

s− 2

s− 1

n− 1

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2
=

(n2 − 1)(s− 1)(n− 2) + (n− 1)2(n− s) + (s− 2)(n− 1)

ps(s− 1)n(n− 2)

n∑
i=1

∥∥x̂t
i

∥∥2
− n− 1

p(s− 1)n

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

=
n− 1

p(s− 1)

n∑
i=1

∥∥x̂t
i

∥∥2 − n− 1

p(s− 1)n

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

=
n− 1

p(s− 1)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

Therefore, (30) holds with

ω =
n− 1

p(s− 1)
− 1 (31)

and we have a = 1 + ω.

A.2 From Algorithm 2 to TAMUNA

TAMUNA is a two-loop version of Algorithm 2, where every sequence of local steps followed by
a communication step is grouped into a round. One crucial observation about Algorithm 2 is the
following: for a client i /∈ Ωt, which does not participate in communication at iteration t with
θt = 1, its variable xi gets overwritten by x̄t anyway (step 12 of Algorithm 2). Therefore, all local
steps it performed since its last participation are useless and can be omitted. But at iteration t with
θt = 0, it is still undecided whether or not a given client will participate in the next communication
step at iteration t′ > t, since Ωt′ has not yet been generated. That is why TAMUNA is written
with two loops, so that it is decided at the beginning of the round which clients will communicate
at the end of the round. Accordingly, at the beginning of round r, a client downloads the current
model estimate (step 6 of TAMUNA) only if it participates (i ∈ Ω(r)), to initialize its sequence of
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local steps. Otherwise (i /∈ Ω(r)), the client is completely idle: neither computation nor downlink or
uplink communication is performed in round r. Finally, a round consists of a sequence of successive
iterations with θt = 0 and a last iteration with θt = 1 followed by communication. Thus, the number
of iterations, or local steps, in a round can be determined directly at the beginning of the round,
according to a geometric law. Given these considerations, Algorithm 2 and TAMUNA are equivalent.
In TAMUNA, the round and local step indexing is denoted by parentheses, e.g. (r, ℓ), to differentiate
it clearly from the iteration indexing.

To obtain Theorem 1 from Theorem 3, we first have to reindex the local steps to make the equivalent
iteration index t in Algorithm 2 appear, since the rate is with respect to the number of iterations, not
rounds, whose size is random. The almost sure convergence statement follows directly from the one
in Theorem 3.

Importantly, we want a result related to the variables which are actually computed in TAMUNA,
without including virtual variables by the idle clients, which are computed in Algorithm 2 but not
in TAMUNA. That is why we express the convergence result with respect to x̄t, which relates only
to the variables of active clients; also, x̄t is the model estimate known by the server whenever
communication occurs, which matters at the end. Note the bar in Ψ in (6) to differentiate it from Ψ
in (22). Thus, we continue the analysis of Algorithms 2 and 3 in Section A, with same definitions
and notations. Let t ≥ 0. If θt = 0, we choose Ωt ⊂ [n] of size c uniformly at random and a
random binary mask qt = (qti)i∈Ωt ∈ Rd×c, and we define x̄t := 1

s

∑
j∈Ωt Ct

j(x̂
t
j) (in Theorem 1,

for simplicity, Ωt and qt are the ones that will be used at the end of the round; this choice is valid
as it does not depend on the past). Ωt, qt and x̄t are already defined if θt = 1. We want to study
E
[
∥x̄t − x⋆∥2 | F t

]
, where the expectation is with respect to Ωt and qt, whatever θt. Using the

derivations already obtained,

nE
[∥∥x̄t − x⋆

∥∥2 | F t
]
=
∥∥x̂t − x⋆

∥∥2 − ∥∥W x̂t
∥∥2 + ν

∥∥W x̂t
∥∥2

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆, ĥt+1 − h⋆⟩

+ (2pχ+ ν − 1)
∥∥W x̂t

∥∥2
≤
∥∥wt −w⋆

∥∥2 − γ2
∥∥ht − h⋆

∥∥2 + 2γ⟨x̂t − x⋆, ĥt+1 − h⋆⟩

+
(
2pχ− p(1− ν)

) ∥∥W x̂t
∥∥2 .

Hence,

n

γ
E
[∥∥x̄t − x⋆

∥∥2 | F t
]
+

γ(1 + ω)

pχ
E
[∥∥ht+1 − h⋆

∥∥2 | F t
]

≤ 1

γ

∥∥wt −w⋆
∥∥2 + γ(1 + ω)

pχ

(
1− pχ

1 + ω

)∥∥ht − h⋆
∥∥2

and

n

γ
E
[∥∥x̄t − x⋆

∥∥2 | F t
0

]
+

γ(1 + ω)

pχ
E
[∥∥ht+1 − h⋆

∥∥2 | F t
0

]
≤ max

(
(1− γµ)2, (γL− 1)2, 1− p2χ

s− 1

n− 1

)
Ψt + γσ2.

Using the tower rule,

n

γ
E
[∥∥x̄t − x⋆

∥∥2]+ γ(1 + ω)

pχ
E
[∥∥ht+1 − h⋆

∥∥2] ≤ τ tΨ0 +
γσ2

1− τ
.

Since in TAMUNA, x0
1 = · · · = x0

n = x̄0 = x̄(0), Ψ
0
= Ψ0. This concludes the proof of Theorem 1.

B Proof of Theorem 2

We suppose that the assumptions in Theorem 2 hold. s is set as the maximum of three values. Let
us consider these three cases.
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1) Suppose that s = 2. Since 2 = s ≥ ⌊αc⌋ and 2 = s ≥ ⌊ c
d⌋, we have α ≤ 3

c and 1 ≤ 3d
c . Hence,

O
(√

nκ

s
+

n

s

)(
sd

c
+ 1 + αd

)
= O

(√
nκ+ n

)(d

c
+

d

c
+

d

c

)
= O

(
d

√
nκ

c
+ d

n

c

)
. (32)

2) Suppose that s = ⌊ c
d⌋. Then sd

c ≤ 1. Since s ≥ ⌊αc⌋ and ⌊ c
d⌋ = s ≥ 2, we have αc ≤ s+ 1 ≤

c
d + 1 and d

c ≤ 1
2 , so that αd ≤ 1 + d

c ≤ 2. Hence,

O
(√

nκ

s
+

n

s

)(
sd

c
+ 1 + αd

)
= O

(√
nκ

s
+

n

s

)
.

Since 2s ≥ c
d , we have 1

s ≤ 2d
c and

O
(√

nκ

s
+

n

s

)(
sd

c
+ 1 + αd

)
= O

(√
d

√
nκ

c
+ d

n

c

)
. (33)

3) Suppose that s = ⌊αc⌋. This implies α > 0. Then s ≤ αc. Also, 2s ≥ αc and 1
s ≤ 2

αc . Since
s = ⌊αc⌋ ≥ ⌊ c

d⌋, we have αc+ 1 ≥ c
d and 1 ≤ αd+ d

c . Since s = ⌊αc⌋ ≥ 2, we have 1
c ≤ α

2 and
1 ≤ 2αd. Hence,

O
(√

nκ

s
+

n

s

)(
sd

c
+ 1 + αd

)
= O

(√
nκ

αc
+

n

αc

)
(αd+ αd+ αd)

= O
(√

αd

√
nκ

c
+ d

n

c

)
. (34)

By adding up the three upper bounds (32), (33), (34), we obtain the upper bound in (15).

C Sublinear convergence in the convex case

In this section only, we remove the hypothesis of strong convexity: the functions fi are only assumed
to be convex and L-smooth, and we suppose that a solution x⋆ ∈ Rd to (1) exists. Also, for
simplicity, we only consider the case of exact gradients (σ = 0). Then we have sublinear ergodic
convergence:
Theorem 4 (sublinear convergence). In Algorithm 2 suppose that σ = 0 and that

0 < γ <
2

L
and 0 < χ <

n(s− 1)

s(n− 1)
∈
(
1

2
, 1

]
. (35)

For every i = 1, . . . , n and T ≥ 0, let

x̃T
i :=

1

T + 1

T∑
t=0

xt
i. (36)

Then

E
[∥∥∇f(x̃T

i )
∥∥2] = O

(
1

T

)
. (37)
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Proof. A solution x⋆ ∈ Rd to (1), which is supposed to exist, satisfies ∇f(x⋆) =
1
n

∑n
i=1 ∇fi(x

⋆) = 0. x⋆ is not necessarily unique but h⋆
i := ∇fi(x

⋆) is unique.

We define the Bregman divergence of a L-smooth convex function g at points x, x′ ∈ Rd as
Dg(x, x

′) := g(x)− g(x′)− ⟨∇g(x′), x− x′⟩ ≥ 0. We have Dg(x, x
′) ≥ 1

2L∥∇g(x)−∇g(x′)∥2.
We note that for every x ∈ Rd and i = 1, . . . , n, Dfi(x, x

⋆) is the same whatever the solution x⋆.

For every t ≥ 0, we define the Lyapunov function

Ψt :=
1

γ

n∑
i=1

∥∥xt
i − x⋆

∥∥2 + γ

p2χ

n− 1

s− 1

n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 , (38)

Starting from (26), we have, for every t ≥ 0,

E
[
Ψt+1 | F t

]
=

1

γ

n∑
i=1

E
[∥∥xt+1

i − x⋆
∥∥2 | F t

]
+

γ

p2χ

n− 1

s− 1

n∑
i=1

E
[∥∥ht+1

i − h⋆
i

∥∥2 | F t
]

≤ 1

γ

n∑
i=1

∥∥(xt
i − γ∇fi(x

t
i)
)
−
(
x⋆ − γ∇fi(x

⋆)
)∥∥2

+

(
γ

p2χ

n− 1

s− 1
− γ

) n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 + p

γ
(χ− 1 + ν)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

,

with∥∥(xt
i − γ∇fi(x

t
i)
)
−
(
x⋆ − γ∇fi(x

⋆)
)∥∥2 =

∥∥xt
i − x⋆

∥∥2 − 2γ⟨∇fi(x
t
i)−∇fi(x

⋆), xt
i − x⋆⟩

+ γ2
∥∥∇fi(x

t
i)−∇fi(x

⋆)
∥∥2

≤
∥∥xt

i − x⋆
∥∥2 − (2γ − γ2L)⟨∇fi(x

t
i)−∇fi(x

⋆), xt
i − x⋆⟩,

where the second inequality follows from cocoercivity of the gradient. Moreover, for every x, x′,
Dfi(x, x

′) ≤ ⟨∇fi(x)−∇fi(x
′), x− x′⟩. Therefore,

E
[
Ψt+1 | F t

]
≤ Ψt − (2− γL)

n∑
i=1

Dfi(x
t
i, x

⋆)

− γ

n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 + p

γ
(χ− 1 + ν)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

Telescoping the sum and using the tower rule of expectations, we get summability over t of the three
negative terms above: for every T ≥ 0, we have

(2− γL)

n∑
i=1

T∑
t=0

E
[
Dfi(x

t
i, x

⋆)
]
≤ Ψ0 − E

[
ΨT+1

]
≤ Ψ0, (39)

γ

n∑
i=1

T∑
t=0

E
[∥∥ht

i − h⋆
i

∥∥2] ≤ Ψ0 − E
[
ΨT+1

]
≤ Ψ0, (40)

p

γ
(1− ν − χ)

n∑
i=1

T∑
t=0

E


∥∥∥∥∥∥x̂t

i −
1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2
 ≤ Ψ0 − E

[
ΨT+1

]
≤ Ψ0. (41)

Taking ergodic averages and using convexity of the squared norm and of the Bregman divergence,
we can now get O(1/T ) rates. We use a tilde to denote averages over the iterations so far. That is,
for every i = 1, . . . , n and T ≥ 0, we define

x̃T
i :=

1

T + 1

T∑
t=0

xt
i
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and

x̃T :=
1

n

n∑
i=1

x̃T
i .

The Bregman divergence is convex in its first argument, so that, for every T ≥ 0,
n∑

i=1

Dfi(x̃
T
i , x

⋆) ≤
n∑

i=1

1

T + 1

T∑
t=0

Dfi(x
t
i, x

⋆).

Combining this inequality with (39) yields, for every T ≥ 0,

(2− γL)

n∑
i=1

E
[
Dfi(x̃

T
i , x

⋆)
]
≤ Ψ0

T + 1
. (42)

Similarly, for every i = 1, . . . , n and T ≥ 0, we define

h̃T
i :=

1

T + 1

T∑
t=0

ht
i

and we have, for every T ≥ 0,
n∑

i=1

∥∥∥h̃T
i − h⋆

i

∥∥∥2 ≤
n∑

i=1

1

T + 1

T∑
t=0

∥∥ht
i − h⋆

i

∥∥2 .
Combining this inequality with (40) yields, for every T ≥ 0,

γ

n∑
i=1

E
[∥∥∥h̃T

i − h⋆
i

∥∥∥2] ≤ Ψ0

T + 1
. (43)

Finally, for every i = 1, . . . , n and T ≥ 0, we define

˜̂xT
i :=

1

T + 1

T∑
t=0

x̂t
i

and
˜̂xT :=

1

n

n∑
i=1

˜̂xT
i ,

and we have, for every T ≥ 0,

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 ≤
n∑

i=1

1

T + 1

T∑
t=0

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

Combining this inequality with (41) yields, for every T ≥ 0,

p

γ
(1− ν − χ)

n∑
i=1

E
[∥∥∥˜̂xT

i − ˜̂xT
∥∥∥2] ≤ Ψ0

T + 1
. (44)

Next, we have, for every i = 1, . . . , n and T ≥ 0,∥∥∇f(x̃T
i )
∥∥2 ≤ 2

∥∥∇f(x̃T
i )−∇f(x̃T )

∥∥2 + 2
∥∥∇f(x̃T )

∥∥2
≤ 2L2

∥∥x̃T
i − x̃T

∥∥2 + 2
∥∥∇f(x̃T )

∥∥2 . (45)
Moreover, for every T ≥ 0 and solution x⋆ to (1),∥∥∇f(x̃T )

∥∥2 =
∥∥∇f(x̃T )−∇f(x⋆)

∥∥2
≤ 1

n

n∑
i=1

∥∥∇fi(x̃
T )−∇fi(x

⋆)
∥∥2

≤ 2

n

n∑
i=1

∥∥∇fi(x̃
T )−∇fi(x̃

T
i )
∥∥2 + 2

n

n∑
i=1

∥∥∇fi(x̃
T
i )−∇fi(x

⋆)
∥∥2

≤ 2L2

n

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 + 4L

n

n∑
i=1

Dfi(x̃
T
i , x

⋆). (46)
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There remains to control the terms
∥∥x̃T

i − x̃T
∥∥2: we have, for every T ≥ 0,

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 ≤ 2

n∑
i=1

∥∥∥(x̃T
i − x̃T )− (˜̂xT

i − ˜̂xT )
∥∥∥2 + 2

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2
≤ 2

n∑
i=1

∥∥∥x̃T
i − ˜̂xT

i

∥∥∥2 + 2

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 . (47)

For every i = 1, . . . , n and t ≥ 0,
x̂t
i = xt

i − γ
(
∇fi(x

t
i)− ht

i

)
so that, for every i = 1, . . . , n and T ≥ 0,

x̃T
i − ˜̂xT

i = γ
1

T + 1

T∑
t=0

∇fi(x
t
i)− γh̃T

i

and ∥∥∥x̃T
i − ˜̂xT

i

∥∥∥2 = γ2

∥∥∥∥∥ 1

T + 1

T∑
t=0

∇fi(x
t
i)− h̃T

i

∥∥∥∥∥
2

≤ 2γ2 1

T + 1

T∑
t=0

∥∥∇fi(x
t
i)−∇fi(x

⋆)
∥∥2 + 2γ2

∥∥∥h̃T
i − h⋆

i

∥∥∥2
≤ 4Lγ2 1

T + 1

T∑
t=0

Dfi(x
t
i, x

⋆) + 2γ2
∥∥∥h̃T

i − h⋆
i

∥∥∥2 . (48)

Combining (45), (46), (47), (48), we get, for every T ≥ 0,
n∑

i=1

∥∥∇f(x̃T
i )
∥∥2 ≤ 2L2

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 + 2n
∥∥∇f(x̃T )

∥∥2
≤ 2L2

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 + 2L2
n∑

i=1

∥∥x̃T
i − x̃T

∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆)

= 4L2
n∑

i=1

∥∥x̃T
i − x̃T

∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆)

≤ 8L2
n∑

i=1

∥∥∥x̃T
i − ˜̂xT

i

∥∥∥2 + 8L2
n∑

i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆)

≤ 32L3γ2 1

T + 1

n∑
i=1

T∑
t=0

Dfi(x
t
i, x

⋆) + 16L2γ2
n∑

i=1

∥∥∥h̃T
i − h⋆

i

∥∥∥2
+ 8L2

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆).

Taking the expectation and using (39), (43), (44) and (42), we get, for every T ≥ 0,
n∑

i=1

E
[∥∥∇f(x̃T

i )
∥∥2] ≤ 32L3γ2 1

T + 1

n∑
i=1

T∑
t=0

E
[
Dfi(x

t
i, x

⋆)
]

+ 16L2γ2
n∑

i=1

E
[∥∥∥h̃T

i − h⋆
i

∥∥∥2]

+ 8L2
n∑

i=1

E
[∥∥∥˜̂xT

i − ˜̂xT
∥∥∥2]+ 4L

n∑
i=1

E
[
Dfi(x̃

T
i , x

⋆)
]
.

≤ 32L3γ2

2− γL

Ψ0

T + 1
+ 16L2γ

Ψ0

T + 1
+

8L2γ

p(1− ν − χ)

Ψ0

T + 1
+

4L

2− γL

Ψ0

T + 1

=

[
32L3γ2 + 4L

2− γL
+ 16L2γ +

8L2γ

p(1− ν − χ)

]
Ψ0

T + 1
.
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Hence, with γ = Θ
(
p
L

√
c
n

)
, χ satisfying δ ≤ χ ≤ 1 − ν − δ for some δ > 0, and h0

i = ∇fi(x
0),

for every i ∈ [n], then for every ϵ > 0, we have
n∑

i=1

E
[∥∥∇f(x̃T

i )
∥∥2] ≤ ϵ (49)

after

O

(
L2

p

√
n

c

∥∥x0 − x⋆
∥∥2

ϵ

)
(50)

iterations and

O

(
L2

√
n

c

∥∥x0 − x⋆
∥∥2

ϵ

)
(51)

communication rounds.

We note that LT does not yield any acceleration: the communication complexity is the same whatever
p. CC is effective, however, since we communicate much less than d floats during every communi-
cation round.

This convergence result applies to Algorithm 2. x̃T
i in (36) is an average of all xt

i, including the ones
for clients not participating in the next communication round. The result still applies to TAMUNA,
with, for every i ∈ [n], x̃T

i defined as the average of the x
(r,ℓ)
i which are actually computed, since

this is a random subsequence of all xt
i.
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