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Abstract

Intrinsic reward functions are widely used to improve exploration in reinforcement
learning. We first examine the conditions and causes of catastrophic forgetting of
the intrinsic reward function, and propose a new method, FARCuriosity, inspired by
how humans and non-human animals learn. The method depends on fragmentation
and recall: an agent fragments an environment based on surprisal signals, and
uses different local curiosity modules (prediction-based intrinsic reward functions)
for each fragment so that modules are not trained on the entire environment.
At each fragmentation event, the agent stores the current module in long-term
memory (LTM) and either initializes a new module or recalls a previously stored
module based on its match with the current state. With fragmentation and recall,
FARCuriosity achieves less forgetting and better overall performance in games with
varied and heterogeneous environments in the Atari benchmark suite of tasks. Thus,
this work highlights the problem of catastrophic forgetting in prediction-based
curiosity methods and proposes a first solution1.

1 Introduction

Many real-world reinforcement learning tasks do not supply extrinsic rewards at every time-step,
making it difficult for the agent to assess the effectiveness of different actions: rewards might only
be available after a long sequence of observations and actions. This sparse reward setting makes
learning a policy challenging, and it can be helpful to add a dense and internally generated auxiliary
reward (called an intrinsic reward) that promotes exploration. Many works demonstrate the utility of
intrinsic rewards, and there are a variety of popular methods for generating such rewards [6, 8, 31].
Most count-based intrinsic reward functions [1, 6, 14, 41, 44] define the intrinsic reward of a state
proportional to the inverse square of the number of visits to that state. Other models use prediction
errors as a measure of novelty and thus intrinsic reward: Intrinsic Curiosity Module (ICM) [31]
employs a forward and an inverse model to predict future states and action consequences, and high
intrinsic rewards are given to transitions that result in high prediction error [38]. As the forward model
improves its predictions, the intrinsic reward decreases. RND (Random Network Distillation) [8]
learns to predict the next state via a random feature space. Count-and prediction-also based models
have been combined [33], and goal-based methods have been recently studied [9].

Models that depend on learning to generate intrinsic reward (e.g. prediction-based models including
RND and ICM) rely on the model not forgetting information about previously visited states (catas-
trophic forgetting [17, 36]). The issue of forgetting in prediction-based intrinsic reward models is
usually overlooked, possibly because of the standard reinforcement learning paradigm in which each
episode is reset to the same starting observation. However, as we show in Figure 1, the intrinsic
reward for the same starting observation on each episode computed by RND throughout training on
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Figure 1: Intrinsic reward generated by RND [8] and our proposed method during training at the
first observation in each episode of Jamesbond, which is the same across episodes. Rewards are
normalized separately using the average intrinsic reward across training, in order to directly compare
the magnitude of the change in intrinsic reward. Intrinsic reward from RND continues to increase at
the start location across training and repeated observations, rather than decreasing.

Jamesbond continues to increase. This suggests that the starting observation is gradually forgotten
over the course of learning within the episode, an indication of catastrophic forgetting.

We analyze when and why catastrophic forgetting happens even in the standard RL paradigm with
environment resets at each episode, and suggest one possible relaxation inspired by how natural agents
store information. The episodic memory of natural agents divides their continuous experience of the
world into multiple episodes (fragments) based on large changes in context [5, 16, 28, 35, 42, 50].
It plays an important role in learning and cognition [12, 15, 18, 19, 40]. Hence, we propose a
fragmentation-and-recall-based curiosity (FARCuriosity) to tackle catastrophic forgetting in the
prediction-based intrinsic reward functions. While an agent explores an environment, a curiosity
module generates an intrinsic reward (prediction error). Based on this, the agent decides to store the
current module in long-term memory (LTM) and initialize a new one (fragmentation). Alternatively,
the agent refers to LTM and recalls an existing curiosity module if the current observation is similar
to one when the fragmentation happened before. Consequently, each curiosity module does not train
from the entire space of an environment but trains from a similar subspace, and it reduces the hazard
of catastrophic forgetting. Experimental results show that FARCuriosity achieves better performance
than the baseline fragmentation-less curiosity module [8] on heterogeneous environments that have
diverse states, leading huge distribution shifts among standard Atari game benchmarks [7].

2 Catastrophic Forgetting in Prediction-Based Intrinsic Reward Function

2.1 Catastrophic Forgetting

Catastrophic forgetting denotes the phenomenon where neural networks lose previously learned
information while learning new information [17, 36]. This problem has surfaced as an important
issue in ‘continual learning’ task settings. In continual learning, the network is trained sequentially on
a set of tasks. Each task is typically composed of disjoint subsets (e.g. classes) of datasets which may
consist of a set of classes as in class-incremental learning [13, 30, 34]. On the other hand, Wołczyk et
al. [48] proposed a continual reinforcement learning (CRL) benchmark: an agent is sequentially
trained on multiple robot manipulation tasks in Meta-World [49] and catastrophic forgetting across
tasks is calculated. Catastrophic forgetting is measured as negative ‘backward transfer (BWT)’, which
quantifies the performance that drops on earlier tasks after training on later tasks [27].

2.2 Prediction-Based Intrinsic Reward Function

In reinforcement learning, the intrinsic reward is usually designed to encourage the agent to explore
novel states. It is especially important in a sparse reward environment that the agent is hard to get any
reward during training. There is a key assumption in intrinsic reward functions: The intrinsic reward
function is a monotonically decreasing function for a given state s:

rit1(s) ≤ rit2(s)⇐⇒ t1 > t2, (1)

where rit(s) denotes the intrinsic reward for a state s at time t. This leads the agent to explore novel
(unvisited) states instead of already visited states.

2



In count-based exploration methods [6, 41, 44], the intrinsic reward function is defined as the inverse
of the square root of the number of visits (or pseudo-count). However, prediction-based intrinsic
reward functions [8, 31, 32] define the prediction error of the neural network for the state (or state-
action pair) as an intrinsic reward. As the training goes on, the function generates lower rewards for
states that are visited multiple times. Consequently, it seems that prediction-based intrinsic reward
methods follow the assumption mentioned above. However, this is true only if the network does not
suffer from catastrophic forgetting that makes the network lose information about already visited
states. Standard reinforcement learning benchmarks [7, 24, 26, 43, 45, 46] usually allow resetting
the environment multiple times during training so that the agent can explore different subsets of the
observation space. This seems to prevent catastrophic forgetting (increment of intrinsic reward for
the previously visited states) since the agent has a chance to visit the same state (e.g., the starting
state) during training.

Nevertheless, catastrophic forgetting can occur especially in multi-stage environments such as
Jamesbond in Atari benchmark. In the games, the agent moves in one direction and cannot go back
during the episode. As the agent is trained, it visits more states and lives longer in each episode.
This can lead to an increase in prediction errors since the network is updated more times using
other observations before observing the same state. In other words, the non-i.i.d property of the
reinforcement learning environment causes catastrophic forgetting.

3 FARCuriosity

3.1 Overview

Intrinsic reward functions [8, 9, 31–33] are used for exploring novel spaces of an environment by
generating intrinsic rewards. The intrinsic reward can serve as the primary reward for training
policies in realistic scenarios where external rewards are sparse or absent. Since a curiosity module is
trained concurrently with the policy, it can suffer from catastrophic forgetting [17, 36] over large and
heterogeneous environments where the observation space has high variance such as having multiple
stages with different backgrounds as we mentioned in Appendix 2. Hence, generating intrinsic
rewards in these environments demands a larger model capacity to memorize what the model has
seen. The catastrophic forgetting of a curiosity module leads to high prediction errors (high intrinsic
rewards) for already explored states, only encouraging to visit those states.

We tackle this problem based on the notion of fragmentation and recall, the interaction between short-
term memory (STM) inside of an agent (e.g., RAM, VRAM) and long-term memory (LTM) outside
of an agent (e.g., external memory; SSD, flash memory). STM stores the current local curiosity
module that generates intrinsic rewards and is updated while an agent explores the environment. The
intrinsic reward (prediction error) is also used as a surprisal which is a criterion of fragmentation. On
the other hand, LTM stores unused curiosity modules.

When the surprisal (intrinsic reward) exceeds some threshold, this corresponds to a fragmentation
event. At a fragmentation event, the local model is written to long-term memory (LTM) to preserve
the local information without forgetting (Figure 2a). The current (abstracted) observation is also
stored and used as a key to recall the corresponding model, and the agent initializes an entirely new
local model. On the other hand, if the current observation is sufficiently similar to a stored observa-
tion (key) in LTM, the agent recalls the corresponding model fragment (local model) (Figure 2b).
Hence, the agent can preserve and reuse previously acquired information. We name this frame-
work fragmentation-and-recall curiosity (FARCuriosity). The goal of FARCuriosity is to overcome
catastrophic forgetting issues in heterogeneous environments to better explore states. We expect
this improved exploration to support improved performance on many tasks, above the performance
improvements provided by using the existing prediction-based intrinsic-reward approaches that suffer
from catastrophic forgetting [8].

3.2 Fragmentation

Fragmentation divides the input space into multiple subspaces and allocates a curiosity module to each
subspace. A fragmentation event occurs if the ratio of the current surprisal and the running average
of the surprisal within the local region is greater than a threshold, ρ. However, z-score can be used to
incorporate the variance of the surprisal in the subset of the environment. When the fragmentation
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Figure 2: Illustration of the proposed FARCuriosity framework. (a) Fragmentation. If the current
surprisal is out-of-distribution with a high value (gray arrows), the current curiosity module and its
input are stored in LTM and a new module is initialized. (b) Recall. If the current observation is
similar to an observation in LTM, the corresponding curiosity module is recalled and we update the
current module in LTM.

occurs, we store the current curiosity module and its input (usually the next observation) in LTM and
initialize a new module as shown in Figure 2a. Consequently, the previous module can preserve the
information of the local region without forgetting caused by learning from other spaces.

3.3 Recall

The recall is designed to load the previous curiosity module from LTM when an agent re-enters a
local space corresponding to the module. At every time step, the agent can search LTM to select a
curiosity module. The curiosity module’s input observation (or its encoded feature) is the key used
to select a module: Given the current input observation, oc, and the stored observation in LTM, of
which an element is of , and a fixed feature extractor ϕ(·) (e.g., target network in RND [8]), we define
a recall score srec

f as a cosine similarity between two (encoded) observations. If srec
f is equal to or

greater than a recall threshold ψ for any element of , we store the current module in LTM and recall
the module that corresponds to of .

4 Experiments

We analyze the catastrophic forgetting of RND and its cause in prediction-based intrinsic reward
approaches with a toy example and show performance degradation due to catastrophic forgetting in
the appendix.

4.1 Comparison with a Baseline

If the agent only explores a small portion of the environment, fragmentation is not needed although
the environment has hundreds of distinctive spaces. Therefore, we define heterogeneity of each Atari
environment as the average across all pixels of the standard deviation of each pixel in generated
trajectories by a trained policy:

(Heterogenity) =
1

H ×W
∑

(h,w)∈(H,W )

σ(I1≤t≤T,h,w), (2)

where σ(·) denotes standard deviation and I ∈ RT×H×W denotes a generated trajectory composed
of T frames with size H ×W . We use vanilla PPO [39] instead of RND to give a guideline for
choosing RND and FARCuriosirty in the environment.

Figure 3 measures the relative performance improvement on various Atari games which is defined as
below:

(Relative Improvement) =
RFARCuriosity −RRND

RRND
, (3)
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Figure 3: The relative performance improvement over RND performance (RRND) in various Atari
games. The average standard deviation is measured from each pixel in a trajectory generated by
trained RND. FARCuriosity is effective in visually high-variance (heterogeneous) games.

where RFARCuriosity and RRND denote the average extrinsic reward of FARCuriosity and RND, re-
spectively. Since both RFARCuriosity and RRND are negative in Tennis and Pitfall, we multiply the
improvement by -1 here. The negative improvement denotes that performance is worsened by FAR-
Curiosity. FARCuriosity generally improves performance in heterogeneous environments while
achieving similar or even worse performance in homogeneous games. FARCuriosity achieves worse
performance in Montezuma’s Revenge which might be due to its low heterogeneity since PPO could
not explore many rooms. In the least heterogeneous environment, Tennis where only players and a
ball are moving with a fixed background, FARCuriosity deteriorates compared to RND. We analyze
the relationship between the number of fragments and the performance in Appendix D and present
the average game score for each model in each environment in Table 2 and Figure 10 in the appendix.

5 Discussion

We shed light on the problem of catastrophic forgetting when using prediction-based intrinsic rewards
in reinforcement learning. Catastrophic forgetting happens not only in reset-free environments
but also in resetting environments as an agent explores more observation spaces and lives longer.
The forgetting leads to a collapse of the assumption in the intrinsic reward function: the function
is a monotonically decreasing function on the same observation over time. Consequently, it can
potentially yield a problem: the agent is prone to visit already-visited states. We also demonstrate the
hazard of catastrophic forgetting using count-based exploration with exponential decay in a minigrid
environment.

To alleviate the catastrophic forgetting problem, we propose a simple method inspired by how
natural agents explore space. Our FARCuriosity fragments the exploration space (i.e., observation
space) based on the surprisal, which is generated by a curiosity module [8] in short-term memory
(STM), in real-time. During fragmentation, an agent stores the current curiosity module in long-
term memory (LTM) and the stored module recalled when the agent returns to the state where the
fragmentation happened so that the agent can reuse the local information. Consequently, FARCuriosity
achieves better performance in heterogeneous environments while it has drawbacks in homogeneous
environments. However, we did not assess fragmentation quality and leave it for future study. Our
paper aims to highlight the catastrophic forgetting issue in prediction-based intrinsic reward, which is
potentially hazardous to RL agents by misguiding behavior.
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Appendix

(a) reset-free (b) fixed episode length (c) gradually increased episode length

Figure 4: Prediction error (intrinsic reward) of the starting observation in a 10× 10 grid environment
with (a) reset-free, (b) fixed episode length, and (c) gradually increased episode length. The prediction
error in reset-free environments is computed every 200 steps with the starting observation while
others are measured when the agent visits there. The error is increased in reset-free environments and
when the episode length is gradually increased, which means catastrophic forgetting happens.

A Related Work

A.1 Curiosity-Driven Reinforcement Learning

Motivated by the insufficiency of rewards alone to guide exploration in sparsely rewarded RL
environments, several works construct intrinsic rewards encouraging agents to explore unfamiliar
parts of an environment. Count-based methods provide intrinsic rewards for reaching infrequently
visited states. These methods have strong theoretical guarantees for multi-arm bandits [3] and can be
effective for reinforcement learning [6, 14, 41, 44]. Prediction-based methods estimate where the
agent cannot predict some aspect of the environment, and provide intrinsic rewards for visiting those
states [1, 8, 11, 21, 31, 33]. ICM [31], for instance, learns a forward model to predict the next state
given the current state-action pair and provides rewards scaling with the state’s prediction error. On
the other hand, Intelligent Adaptive Curiosity (IAC) [29] divides sensorimotor space (state and action
pairs) into multiple regions and allocates each expert module to the regions. Although IAC requires
memorizing all exemplars and directly using the similarity of exemplars as a fragmentation criterion,
FARCuriosity does not need to memorize them and use prediction error (surprisal) as the criterion.

A.2 Memory-Based Reinforcement Learning

Memory-based reinforcement learning aims to solve the long-term credit assignment problem.
Hung et al. [22] combine LSTM [20] with external memory along with an encoder and decoder for
the memory. HCAM [25] uses a hierarchical LTM with chunks and attention for long-term recall
inspired by Transformers [47]; however, its chunks are formed periodically rather than based on
content and are not used as intrinsic options for exploration. Memory is also used for improving
exploration: Go-Explore [14] remembers promising states so that it can directly visit those states,
where the definition of promising can include rewarded states. Episodic Curiosity [37] memorizes
visited states for calculating reachability to penalize an action that leads to reachable future states.
While earlier memory-based exploration methods use memory as a guide for evaluating the intrinsic
reward of a state, we augment existing exploration methods with memory, in combination with map
or model fragmentation, to more efficiently explore.

B Analysis of Catastrophic Forgetting

B.1 Cause of Catastrophic Forgetting

We illustrate when and why catastrophic forgetting can happen with a toy experiment. We generate
a 10 × 10 grid environment where the observation of each location is a randomly generated 32-
dimensional vector. The agent starts from the center of the environment and randomly moves up,
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Figure 5: (a) Intrinsic of the first observation in every episode, and (b) extrinsic reward in
MultiRoom-N6 in MiniGrid benchmark during training generated by four different models: PPO
and count-based exploration with various exponential decay γ. Even small forgetting (exponential
decay) dramatically degrades the performance.

down, left, and right. However, the agent is prohibited from visiting the start location. When the
environment is reset, the agent starts from the center of the environment again. We train RND [8]
module with random policy in this environment for one million steps sequentially. Please refer to
Section C.2 for the details.

Figure 4 presents the intrinsic reward (prediction error) changes of the starting point across the
training with various scenarios: reset-free, fixed episode length, and gradually increased episode
length. In the reset-free setting (Figure 4a), we store an observation of the starting position and
keep track of the corresponding intrinsic reward during training to compare with other settings.
The intrinsic reward in this setting increases since the model is not trained on the start observation
throughout training except for the first time step. On the other hand, the reward keeps decreasing in
fixed episode length (200) in Figure 4b, but if we increase the episode length, it will be the same as the
reset-free setting. Although the environment is reset, if the episode length is gradually increased, the
intrinsic reward increases as shown in Figure 4c. This is because as the episode length increases, the
network is updated using different observations, which leads to the network forgetting the observation
in the start position. Although this example only shows the starting observation for simplification, this
scenario can be generalizable to all observations that are hard to reach during episodes. Furthermore,
in most real-world environments, it is difficult to go back to the previously visited states; although we
can reset the agent, or it is impossible to reset the environment. Hence, catastrophic forgetting is an
issue that may need to be considered when training an agent using a prediction-based intrinsic reward
function.

B.2 Hazard of Catastrophic Forgetting

To investigate the risks of catastrophic forgetting, we study the relationship between forgetting and
performance drops. To manipulate the degree of catastrophic forgetting and reduce the variance
from the environment, we use count-based exploration rather than a prediction-based model in
MultiRoom-N6 of MiniGrid [10]. The intrinsic reward of count-based exploration is defined as
1/

√
Nvisit(o), where Nvisit(o) denotes the number of visits to the observation, o [41]. Here, we add

exponential decay to the number of visits with a factor of γ on every iteration:

Nvisit(o)← γ ·Nvisit(o) + b, (4)

where b is 1 if an agent visits o at that time, otherwise 0. This exponential decay presents a forgetting
effect that models the memory retention of short-term memory of natural agents [51]. Please refer to
Appendix C.3 for experimental details.

Figure 5 shows the mean cumulative extrinsic rewards of PPO with count-based exploration in
MultiRoom-N6. Count-based exploration without exponential decay achieves 0.6 within 10 million
steps while vanilla PPO cannot learn this task. Count-based exploration with γ as 0.9995 has already
worse performance than the model without forgetting. while an agent’s performance is almost 0 when
γ is 0.999. This means that even a mere 0.1% of forgetting in every iteration dramatically affects the
performance.
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Figure 6: The intrinsic rewards of RND in three different checkpoints during training (training on
20, 60, and 100 million frames, respectively) when an agent is about to die in a video generated by
RND trained on 20 million frames (RND@20m). Intrinsic reward for each frame is normalized by
the original intrinsic rewards generated by RND@20m. High intrinsic reward denotes that the agent
is misguided to die. In every moment, intrinsic rewards from RND training from 60 million frames
(RND@60m) are lower than RND@20m. However, the rewards are increased again at the end of
training (RND@100m).

B.3 Catastrophic Forgetting of RND

we conduct further analysis of RND [8] in Jamesbond where an agent starts from the same position
every episode and moves in one direction without return. We first generate a trajectory of an episode
from a policy after training 20 million frames and then, measure intrinsic rewards of RND at three
different checkpoints; after training 20, 60, and 100 million frames, when the agent is dead by
missiles, enemies, or obstacles. As shown in Figure 6, although the intrinsic rewards are decreased in
the middle of training, they subsequently increase This implies that training decreases the reward
but catastrophic forgetting happens between 60 million frames and 100 million frames. This might
be related to the agent more frequently going to the ocean which has a different background and
new enemies (e.g., frogman, mini-submarines) in the later stage of training. It leads to catastrophic
forgetting about the previous scene.

Moreover, we measure the intrinsic reward of the first observation in every episode generated by
RND during training in Jamesbond in Figure 1b. The intrinsic reward generated by RND increases
throughout training, implying that this method suffers from catastrophic forgetting. On the other
hand, the intrinsic reward of the FARCuriosity agent at the observation remains almost the same after
a short initial increase, regardless of how much subsequent learning the agent performs elsewhere in
the environment.

C Experimental Details

Our model is implemented on PyTorch and the experiments are conducted on Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz and a single NVIDIA Tesla V100 GPU for reinforcement learning
experiments.

C.1 Main Experiments

We implement our FARCuriosity method based on RND [8] and compare it against the vanilla RND
and Proximal Policy Optimization (PPO) [39]. Both FARCuriosity and the vanilla RND use PPO
for training a policy, as [8] suggested. The learning rate is 0.0001, the reward discount factor is 0.99
and the number of epochs is 4. For other parameters, we use the same values mentioned in PPO and
RND: we set the GAE parameter λ as 0.95, value loss coefficient as 1.0, entropy loss coefficient as
0.001, and clip ratio (ϵ in Eq. (7) in [39]) as 0.1.

10



Figure 7: Examples of MultiRoom-N6 in MiniGrid benchmark. The red triangle is an agent and the
green rectangular is the goal location. A rectangular with a dot is a door the agent needs to open.

We set the fragmentation parameter ρ to 10, and the recall parameter ψ is 0.99. The maximum size
of the LTM is 800, and the least recently used fragment (curiosity module) is substituted by a new
fragment if LTM is fully used. For fragmentation, we also add a cosine similarity constraint: if the
cosine similarity between features of the current input and any of in LTM is higher than 0.75, we
skip the fragmentation to avoid excessive fragmentation in high dimensional space. We use a fixed
random network in RND as a feature extractor ϕ(·) in Section 3.3 and all curiosity modules share the
same fixed network.

We run Atari experiments for 100 million frames with three different random trials, and we optimize
in batches of 128 frames per environment across 32 parallel environments with minibatch size, 4.
We use 16 Atari games: Amidar, Asteroids, Breakout, Freeway, Frostbite, Jamesbond, Montezuma’s
Revenge, River Raid, Pitfall, Pong, Private Eye, Seaquest, Space Invaders, Star Gunner, Tennis, and
Wizard of Wor as shown in Figure 11.

C.2 Toy Grid World

We conducted simple experiments on a toy grid environment to understand why catastrophic forgetting
happens even in an environment that is reset multiple times during training. The size of the grid
environment is 10× 10 and an observation of each location is a 32-dimensional vector sampled from
a uniform distribution, U(0, 1). In every episode, the agent starts from the center of the environment
(5, 5) and randomly explores the environment except the start position. The episode length is 200 in a
fixed length setting (Figure 4b) and 10n at n-th episode in the gradually increasing setting (Figure 4c).
Both fixed and training networks in RND are implemented as two fully connected layers with
Rectified Linear Unit (ReLU).

We use Adam [23] with a learning rate of 0.001 and RND is sequentially trained on the current
observation (the number of the parallel environments is 1 and the batch size is 1) for one million
steps. We used three different random seeds and calculate means and standard errors in Figure 4.

C.3 Count-Based Exploration in MiniGrid benchmark

MiniGrid [10] is a procedurally-generated grid world environment with various tasks. The observation
is 7× 7 egocentric view with three channels (cell types, cell colors, and door states). The number
of actions is seven: turn left, turn right, move forward, pick up an object, drop an object, toggle
(open/close a door), and done. MultiRoom-N6 is composed of six rooms. An agent needs to navigate
from the first room to the goal location in the last room passing other rooms as shown in Figure 7.
The agent needs to open (toggle) doors to enter the next room. The episode length tmax is 120 and
the extrinsic reward is defined as 1− 0.9t/tmax at time t.

We use MD5 hash for counting the number of visits of each observation and keep updating it across
multiple episodes during the training. Since the observation is 7 × 7 egocentric view following
previous works [9, 33], multiple locations can share the same observation and the same intrinsic
reward. We set the exponential decay factor, γ as 0.9990, 0.9995, and 1.0000, and run each model
with three different trials for 10 million steps. Other hyperparameters are the same as the main
experiments.
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Figure 9: The number of fragments is not related to the heterogeneity of the game.

D Effect of the Number of Fragments

Figure 8 shows the relation between the relative performance improvement and the average number
of fragments on multiple Atari games. In most games, the number of fragments is up to 200, but it
reaches the maximum capacity of LTM in Wizard of Wor. There is no clear global tendency between
performance improvement and the number of fragments. On the other hand, the number of fragments
is not related to the heterogeneity of games as shown in Figure 9. This is because we use a dynamic
threshold using running statistics of surprisal to avoid over-fragmentation in highly heterogeneous
environments. However, it triggers excessive fragmentation in low heterogeneous environments as a
trade-off.
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Table 1: Sensitivity analysis about fragmentation threshold, ρ and recall threshold, ψ in Jamesbond.

Model Average Score
PPO [39] 2022.9
RND [8] 1925.6

FARCuriosity (ρ = 5) 5339.8
FARCuriosity (ρ = 5, ours) 11917.5

FARCuriosity (ρ = 15) 10407.8

FARCuriosity (ψ = 0.95) 12719.5
FARCuriosity (ψ = 0.975) 11917.5

FARCuriosity (ψ = 0.99, ours) 10407.8

E Sensitivity Analysis

We conducted sensitivity analysis for fragmentation and recall thresholds for 50 million frames
in Jamesbond as shown in Table 1. While changing one threshold, we fix another threshold. A
small fragmentation threshold reduces the performance due to excessive fragmentations while
FARCuriosity is robust to the change of recall threshold. However, the proposed method still achieves
better performance than baselines.

F Individual Performance in Atari Games

Figure 10 presents the mean cumulative extrinsic rewards (also known as extrinsic return) and its
standard errors at varying numbers of training data (frames) over three different random trials in
sixteen games including three hard Atari games: Montezuma’s Revenge, Pitfall, and Private Eye. No
fragmentation occurs in Freeway and Star Gunner, which means that the difference between RND
and FARCuriosity in those environments is because of the randomness of reinforcement learning
and the environments. FARCuriosity outperforms RND in eight environments. These environments
mainly have high heterogeneity except Seaquest. Especially, Jamesbond and River Raid have much
more heterogeneity compared to other environments, and FARCuriosity achieves clearly better
performance. In Breakout, the performance gap is much smaller. This is because the observations in
those environments are more similar, and once the agent hits all bricks, the same bricks are revived.
Hence, RND does not suffer from catastrophic forgetting and achieves similar results to FARCuriosity.
FARCuriosity shows similar performance in Pitfall, Pong, Star Gunner, and Tennis. We believe this
is because the observation space is less visually diverse in those games. In Pong, for example, the
only visually dynamic features are the agent, the opponent, and the ball, all of which move over a
fixed monotone background. On the other hand, FARCuriosity shows worse performance compared
to RND in Montezuma’s Revenge. Montezuma’s Revenge is one of the most homogeneous games
according to our measurement since an agent is difficult to explore many rooms. We hypothesize that
this homogeneity can lead to wrong fragmentation, which degrades the performance. There are about
600 fragments in Tennis but it does not change the performance since the environment is easy while
Montezuma’s Revenge is not. We also calculate IQM [2] as aggregated human-normalized scores
across environments. FARCuriosity outperforms its baselines.
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Figure 10: Mean extrinsic reward of RNN-based policies: PPO, RND, and FARCuriosity with
extrinsic rewards on sixteen Atari games. The environments are sorted by the heterogeneity measured
in Section 4: from highest to lowest.

Table 2: The average score of each method in Atari games with their heterogeneity. The numbers in
parentheses are human-normalized scores where human performance is acquired by Badia et al. [4].

Game Heterogeneity PPO RND FARCuriosity
River Raid 30.4 9860.9 (54) 11659.3 (65.4) 15923.6 (92.4)
Jamesbond 30.4 3060.7 (1107.3) 2946.2 (1065.4) 13073.0 (4764.1)

Wizard of Wor 14.2 7392.0 (162.9) 6123.0 (132.6) 5782.3 (124.5)
Amidar 12.7 648.0 (37.5) 963.8 (55.9) 1012.9 (58.8)

Asteroids 11.5 1724.6 (2.2) 2028.5 (2.8) 2219.7 (3.2)
Frostbite 10.5 1444.7 (32.3) 2282.0 (51.9) 9392.1 (218.5)

Space Invaders 10.0 1088.7 (61.9) 1352.6 (79.2) 2347.9 (144.7)
Breakout 9.5 377.3 (1304.2) 478.5 (1655.6) 563.5 (1950.7)
Freeway 7.2 29.0 (98.0) 21.3 (72.0) 25.1 (84.8)

Private Eye 6.1 97.0 (0.1) 47.6 (0.0) 97.0 (0.1)
Star Gunner 6.0 25982.7 (264.1) 27063.7 (275.4) 26491.3 (269.4)

Seaquest 5.6 936.7 (2.1) 961.6 (2.1) 2218.8 (5.1)
Montezuma Revenge 4.2 0.0 (0.0) 210.3 (4.4) 0.0 (0.0)

Pitfall 3.3 -0.7 (3.4) -4.1 (3.4) -1.0 (3.4)
Pong 2.2 20.8 (117.6) 20.5 (116.7) 20.6 (117)

Tennis 1.6 7.8 (203.9) -5.1 (120.6) -8.0 (101.9)

IQM [2] 0.69 0.68 0.91
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(a) Amidar (b) Asteroids (c) Breakout (d) Freeway

(e) Frostbite (f) Jamesbond (g) Montezuma’s Revenge (h) Pitfall

(i) Pong (j) Private Eye (k) River Raid (l) Seaquest

(m) Space Invaders (n) Star Gunner (o) Tennis (p) Wizard of Wor

Figure 11: Various Atari environments used for comparing FARCuriosity and RND.
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