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Abstract
Transformer achieves promising results on vari-
ous tasks. However, self-attention suffers from
quadratic memory requirements with respect to
the sequence length. Existing work focuses on
reducing time and space complexity from an al-
gorithm perspective. In this work, we propose
sequence parallelism, a memory-efficient paral-
lelism to solve this issue from system perspec-
tive instead. With sequence parallelism, we no
longer require a single device to hold the whole
sequence. Besides, using efficient attention with
linear complexity, our sequence parallelism en-
ables us to train transformer with infinite long
sequence. Experiments show that sequence par-
allelism performs well when scaling with batch
size and sequence length. Compared with ten-
sor parallelism, our approach achieved 13.7× and
3.0× maximum batch size and sequence length
respectively when scaling up to 64 NVIDIA P100
GPUs. With efficient attention, sequence can han-
dle sequence with over 114K tokens, which is
over 27× longer than existing efficient attention
works holding the whole sequence on a single
device.

1. Introduction
Transformer-based language models (Radford et al., 2019;
Brown et al., 2020; Devlin et al., 2018) have achieved im-
pressive performance on various natural language under-
standing and generation tasks (e.g., Q&A (Qu et al., 2019;
Yang et al., 2020), relation extraction (Xue et al., 2020b;a;
Zhou et al., 2020) and dialogue system (Ni et al., 2021)).
Recently, Transformer also achieved promising results on
computer vision tasks (Dosovitskiy et al., 2020; Zhang et al.,
2020; 2021) and even on bioinformatics tasks (Elnaggar
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et al., 2020; Wang et al., 2021). These Transformer-based
models learn powerful context-aware representation by ap-
plying self-attention to all pairs of tokens from the input
sequence. This mechanism captures long-term dependen-
cies at the token level for sequence modeling. However,
self-attention suffers from quadratic memory requirements
with respect to sequence length. Existing works focusing
on long sequence modeling devote to solve this problem
from algorithm perspective. That is, these works mainly try
to reduce the time and space complexity of attention. In
this paper, we focus on solving the long sequence training
problem from system perspective. Existing system requires
us to hold the whole sequence in one GPU, which limits the
length of input sequence. Unfortunately, the long sequence
is common in real-world applications. For instance, when
we train Transformer for medical image classification, each
image is much larger than it is in usual (e.g., 512×512×512
vs 256×256×3). Then, each medical image has much more
tokens (i.e., over 512×). Each input sequence is much
longer than usual. In this case, it is challenging to hold the
whole sequence within single GPU.

In this paper, we designed and implemented sequence paral-
lelism, which aims at breaking the limitation that we must
store the whole sequence in one GPU. The proposed system
can train transformer-based models with longer sequences
and a larger batch size. Specifically, we first split the input
sequence into multiple chunks along the sequence dimen-
sion and feed each sub-sequence chunk to one correspond-
ing GPU. Each GPU thus only holds a part of the full se-
quence, i.e., a sub-sequence. To apply self-attention to the
tokens from different chunks, the main challenge is to com-
pute attention scores and outputs across GPUs efficiently.
To tackle this problem, we proposed Ring Self-Attention
(RSA), which circulates key and value embeddings across
GPUs in a ring manner. In this case, each device is just
required to keep the attention embeddings corresponding to
its own sub-sequence. As a result, our sequence parallelism
is memory-efficient, especially for long input sequences.

To model long sequences, existing works mainly focus on
efficient attention (e.g., (Zaheer et al., 2020)) with linear
instead of quadratic space complexity. In this paper, we
aim to solve the long sequence modeling problem from the
distributed system perspective. We evaluated our system
on both vanilla attention to verify our system is a general
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(b) Transmitting value embeddings among devices to calculate the output of attention layers.

Figure 1: Ring Self-Attention.

solution, and evaluated on efficient attention setting to show
the upper bound sequence length. Existing pipeline paral-
lelism (Huang et al., 2018) and tensor parallelism (Shoeybi
et al., 2019)) are designed to cope with a larger model size
instead of longer sequences. However, when the sequence
is long, the challenge is, existing parallelism must keep
the whole sequence on one single device. Even if split-
ting model along hidden and attention-head dimension (i.e.,
tensor parallelism) or depth dimension (i.e., pipeline paral-
lelism) can still process longer sequences to some extent, the
attention-head and depth are much smaller than sequence
length (e.g., 12 vs 512), which limits the training scalability
and the maximum length of the input sequence. In con-
trast, our approach splits the whole sequence into multiple
devices, enabling it to fit longer input data.

Contributions (1) Our system breaks the length limitation
of Transformer model training. Sequence parallelism splits
long sequences into multiple chunks and feeds them into
different devices. With linear space complexity attention,
sequence parallelism can help us train the attention model
with infinite long sequences. (2) To our best knowledge,
our work first proposed to use distributed system to handle
long sequence training for attention-based models. Our im-
plementation is fully based on PyTorch and is compatible
with data parallelism, pipeline parallelism, and tensor paral-
lelism without any extra compiler or library. This makes it
possible to integrate sequence parallelism with data paral-
lelism, pipeline parallelism and tensor parallelism into 4D
parallelism, and pave the way to train large-scale models
with long sequences.

2. Sequence parallelism
We propose sequence parallelism for training Transformer
with longer sequences. Input sequences are split into multi-
ple chunks and the sub-sequences are fed to different corre-
sponding devices. All devices are holding the same trainable
parameters but different sub-sequence input chunks. We will
introduce and analyze sequence parallelism in detail below.
We use the following notation in this section: (1) B: batch
size; (2) L: sequence length; (3) H: hidden size of linear
layers; (4) A: attention head size; (5) Z: number of attention
heads; (6) N: number of GPUs.

To distribute sub-sequences to multiple devices, the main
challenge is calculating attention scores across devices.
Therefore, we propose Ring Self-Attention (RSA) to com-
pute attention output in a distributed setting. There are two
steps in RSA to obtain the final output. Please note, we only
consider bidirectional self-attention here to introduce RSA
succinctly. We treat all heads equally so it can be extended
to multi-head attention directly.

Given query embeddings {q11 , q12 , ..., qNL }, key embeddings
{k11, k12, ..., kNL } and value embeddings {v11 , v12 , ..., vNL },
where qns represents the key embedding of the sth token
in the the sequence which is on nth device. We define
all key embeddings on nth device as Kn. In RSA, nth

device holds the corresponding query embeddings Qn,
key embeddings Kn and value embeddings V n. The
embeddings on nth device correspond to the nth chunk
whose sub-sequence length is L/N . Our goal is to obtain
Attentionn(Qn,K, V ) which is the self-attention layer out-
put on nth device. To this end, as shown in Figure 1(a), we
first transmit the key embeddings among devices to calcu-
late the attention scores QKT in a circular fashion. Such
communication needs to be conducted N − 1 times to make
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sure the query embeddings of each sub-sequence can mul-
tiply all the key embeddings. To be more specific, each
device will compute the partial attention scores based on
its local query and key embeddings first. Then, it will re-
ceive different key embeddings from the previous device
and calculate the partial attention scores with respect to the
new key embeddings for each ring-style communication. As
a result, all query embeddings {Q1, Q2, ..., QN} collected
their corresponding attention scores {S1, S2, ..., SN} on
their own devices.

In the second stage of RSA, we can calculate the
self-attention layer output {O1, O2, ..., ON} based on
{S1, S2, ..., SN} and {V 1, V 2, ..., V N}. Since computing
On requires Sn and all value embeddings, as we described
in Figure 1(b), we transmit all value embeddings instead
of key embeddings in a similar way. For On, we calculate
SnV by On = SnV =

∑N
i=1 S

n
i Vi, where Vi = V n, Sn

i is
Sn after column splitting, which means Sn

i ∈ RL/N×L/N

but Sn ∈ RL/N×L.

3. Experiments
3.1. Experimental setup

We conducted our experiments on the Piz Daint supercom-
puter provided by Swiss National Supercomputing Center
(CSCS). The Piz Daint supercomputer provides one P100
GPU (16GB GPU RAM) for each compute node and the
compute nodes are connected by a high-bandwidth network.
We chose two bidirectional language models, namely BERT
Base and BERT Large, to evaluate our sequence parallelism.
We also verified the convergence performance of sequence
parallelism (see Appendix E). Since we are using the origi-
nal model but different systems, the accuracy should be the
same. The slight differences are from randomness.

3.2. Maximum batch size

Since our sequence parallelism is memory-efficient to han-
dle larger batch sizes, we first investigated the maximum
batch size we can reach with sequence parallelism. In this
section, for a comprehensive comparison, we scaled with
tensor or sequence parallelism on BERT Base and BERT
Large. We also fixed the tensor or parallel size and then
scale them with pipeline parallelism to evaluate the verify
the compatibility with pipeline parallelism. We used tokens
per second as the metric for throughput. To this end, we
trained BERT Base and BERT Large for 150 iterations in
total, and then we calculate the mean tokens processed per
second within the last 100 iterations.

Scaling with sequence/tensor parallelism We fixed all
hyper-parameters except the batch size and the tensor paral-
lelism or sequence parallelism size. We trained the model
with a sequence length of 512 and no pipeline parallelism
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Figure 2: Scaling with sequence/tensor parallelism

is used. The tensor parallelism size in Megatron is limited
by the number of attention heads and hidden size, because
these two hyper-parameters are required to be divisible by
the tensor parallelism size. Among them, the number of
attention heads is small so it limits the tensor parallelism.
Thus, tensor parallelism size is a maximum of 12 for the
BERT Base model in Megatron. In contrast, for our se-
quence parallelism, only the sequence length is required to
be divisible by the sequence parallelism size, so that we can
scale sequence parallelism to a larger size since it is a much
larger hyper-parameter than the number of attention heads.

For BERT Base, our sequence parallelism outperforms ten-
sor parallelism in terms of memory consumption. Fig-
ure 2(a) shows that our system on 64 GPUs can achieve
13.7× larger batch size than Megatron on 12 GPUs. Even if
we combine data parallelism and tensor parallelism to scale
up to 64 GPUs for Megatron, our system would still support
a larger batch size. In Figure 2(b), we can observe sequence
parallelism achieved comparable throughput with the same
parallel size, and our system can extend to a larger parallel
size to achieve better performance. For the results on BERT
Large, please see Appendix F for details.

Scaling with pipeline parallelism To verify the compatibil-
ity with pipeline parallelism, we fixed the tensor parallelism
and sequence parallelism size as 4 and scale the pipeline
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Figure 3: Scaling with pipeline parallelism

parallel size. For BERT Base, we can observe that sequence
parallelism outperforms tensor parallelism on the maximum
batch size in Figure 3(a). It can be noted that sequence
parallelism also achieved higher throughput when using
more pipeline stages as shown in Figure 3(b). This is be-
cause Megatron incurs extra communication costs between
pipeline stages. Megatron holds the activation for the full
sequence on each device. Thus, it needs to split the activa-
tion, transmit the partial activation to the next device, and
gather back the partial activation when sending the activa-
tion between pipelines. This incurs less communication
overhead compared to transmitting the whole activation
between pipelines. However, this still brings more com-
munication costs than ours, as no splitting and all-gather
operation is required for our sub-sequence intermediate acti-
vation. Therefore, our sequence parallelism achieved better
throughput when scaling along with pipeline parallel size.

3.3. Maximum sequence length

Sequence parallelism is designed for training Transformer-
based models with longer input sequences, so we investi-
gated the maximum sequence length it can handle. Similarly,
we still compared tensor parallelism without pipeline paral-
lelism.

Compared with tensor parallelism We fixed batch size as
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Figure 4: Scaling with sequence length.

64 for BERT Base and no pipeline parallelism was used. We
show the maximum sequence length in Figure 4(a). If we
scale up to 64 GPUs, we can achieve around 3× maximum
sequence length on BERT Base. Another observation is
splitting along the number of attention heads limits the input
sequence length of tensor parallelism in Megatron, but our
sequence parallelism can scale easily by splitting a sequence
into multiple chunks. When using the same 16 GPUs, our
sequence parallelism still can achieve 1.4× larger sequence
length than tensor parallelism. The gap is expected to widen
if we use 32GB GPUs instead of 16GB GPUs.

Sequence length upper bound To investigate the maximum
sequence length our system can handle on the cluster with
32 P100 GPUs. we set both data and pipeline parallel size as
1 and global batch size as 4. As efficient attention is widely
used in long sequence training, we adapt Linformer (Wang
et al., 2020), i.e., one low-rank attention algorithm with
linear time and space complexity. Our sequence parallelism
is compatible with the efficient attention. More importantly,
as shown in Table 3, for memory usage in efficient attention
block, all terms including sequence length L is divided by
number of devices N , which means we can scale the se-
quence length to infinite long if we use efficient attention
with linear complexity. To investigate the sequence length
upper bound of sequence length on the efficient attention
setting, we conduct experiments with both efficient and full
attention. As shown in Figure 4(b), if we use efficient atten-
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tion on sequence parallelism, we can almost achieve ideal
scaling. With 32 P100 GPUs, our sequence parallelism
with efficient attention can handle the sequence with 114K
tokens, which is over 27× longer than recent sparse atten-
tion papers holding the whole sequence on a single device
(Zaheer et al., 2020; Wang et al., 2020).

4. Conclusion
In this paper, we proposed sequence parallelism for training
transformer with longer sequence. Sequence parallelism
is designed to break the limitation of sequence length on a
single device. We have shown that sequence parallelism can
handle longer sequence and is more memory-efficient than
SoTA. In particular, sequence parallelism achieves 3.0×
maximum sequence length and 13.7× maximum batch size
than tensor parallelism when scaling up to 64 GPUs. Unlike
both tensor and pipeline parallelism, sequence parallelism is
not limited by the smaller hyper-parameters (e.g., number of
attention heads, number of layers). Therefore, our sequence
parallelism can be adapted as long as the sequence length is
divisible by sequence parallel size. With efficient attention,
sequence parallelism can handle sequence with over 114K
tokens, which is over 27× longer than existing efficient
attention works holding the whole sequence on a single
device. We used a language model (i.e., BERT) to evaluate
our system, but it can also be adapted to vision tasks. This
work paves the way to process large images (Hou et al.,
2019) by ViT (Dosovitskiy et al., 2020) as a larger image
means more patches or longer sequences.
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A. Limitations
In order to perform communication between sub-sequences
during training, the use of sequence parallelism can re-
sult in increased communication costs, which in turn can
slow down the training process. However, by combining
sequence parallelism with pipeline parallelism, this issue
can be alleviated and the communication cost can be made
comparable to advanced forms of model parallelism such
as tensor parallelism. Nonetheless, sequence parallelism
still incurs higher communication costs than vanilla data
parallelism.

While sequence parallelism is effective for training of unidi-
rectional attention models as well as training and inference
of bidirectional attention models, it poses a challenge for
unidirectional attention models inference due to the autore-
gressive decoding process. This means that different devices
cannot compute in parallel, resulting in reduced throughput
and decreased GPU utilization.

B. Discussion
Although there are other related works including Deep-
Speed (Rasley et al., 2020), GShard (Lepikhin et al., 2020),
GSPMD (Xu et al., 2021), etc., they are not our direct base-
line in experiments. DeepSpeed is an efficient method to
optimize memory footprint in data parallel training by us-
ing ZeRO Optimizer (Rajbhandari et al., 2021) and ZeRO-
Offload (Ren et al., 2021). DeepSpeed and our method
optimize training in different dimensions and they are actu-
ally compatible with each other. Our method is orthogonal
to DeepSpeed just as how DeepSpeed can be integrated with
Megatron. Thus, Megatron should be our baseline.

GShard and GSPMD are two libraries built for the Ten-
sorFlow community to partition model parameters in dis-
tributed training. GSPMD is developed based on GShard.
These two methods rely on the static computation graph
of TensorFlow to train larger models while we provide a
plug-and-play tool based on PyTorch’s dynamic computa-
tion graph to train on longer sequences. The difference in
the computation paradigms makes them unsuitable as our
baseline.

We also highlight again that, although sequence parallelism
can perform decent on large model training, a more highly
important use case is training mid-scale but very long se-
quence. One example is AlphaFold (Jumper et al., 2021),
which uses only 86M parameters but is required to be trained
with very long sequence (from 1K to 4K).

C. Multi-head attnetion
Multi-head attention is designed to jointly consider the infor-
mation from different subspaces of embedding. Compared
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with self-attention below, multi-head attention has h query,
key and value embeddings instead of the single one, where
h denotes the number of heads. We obtain these embed-
dings with identical shapes by linear transformations. The
multi-head attention can be described as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (1)

where headi = Attention(Qi,Ki, Vi) and W denotes the
linear transformations. All heads are concatenated and fur-
ther projected by linear transformation WO.

D. Modeling
We analyzed and compared our sequence parallelism with
tensor parallelism in both theoretical modeling and experi-
ments, although tensor parallelism is not our direct baseline.
To our best knowledge, sequence parallelism is the first sys-
tem designed for breaking the length limitation of sequence,
so there is actually no direct baseline for sequence paral-
lelism. Therefore, as a distributed training system designed
for attention-based models, we compare it with a SoTA
model parallelism. Tensor parallelism (Narayanan et al.,
2021) is compatible with data parallelism, pipeline paral-
lelism. Our sequence parallelism is also compatible with
them. We expect our system can outperform tensor paral-
lelism with and without pipeline parallelism. We leave inte-
grating sequence parallelism with data parallelism, pipeline
parallelism and tensor parallelism into 4D parallelism as our
future work. Here, we mainly focus on memory usage and
communication cost of tensor parallelism and our sequence
parallelism.

D.1. Memory usage

For memory usage, according to the architecture of Trans-
former, the comparison is divided into two parts, MLP block
and attention block. In this part, we consider multi-head
attention instead of self-attention for a fair and accurate
comparison. We assume the optimizer is Adam used in
Megatron.

MLP block As shown in Table 1, for the MLP blocks, tensor
parallelism stores the matrices after row or column-style
splitting of the whole sequence. Our sequence parallelism
stores the matrices without row or column-style splitting of
only one single sub-sequence on each GPU. If we assume
that our sequence parallelism is more memory-efficient:

32H2

N
+

4BLH

N
+ BLH > 32H2 +

5BLH

N
(2)

We can find that, in MLP blocks, sequence parallelism is
more memory-efficient when BL > 32H.

Multi-head attention block We compared the memory
usage of multi-head attention block in Table 2. Tensor par-
allelism splits the attention heads here, but our sequence
parallelism still splits the length dimension of the sequence
data. By comparing the memory usages of multi-head at-
tention block of the two parallelisms, we can find sequence
parallelism is more memory-efficient if BL > 16AZ. As
for communication, tensor parallelism needs an all-reduce
operation in both the forward pass and backward pass when
calculating the attention output. In our RSA, to facilitate
tensor exchange between devices, our communication is
equivalent to 2 all-reduce operations in the forward pass
and 4 all-reduce operations in the backward pass. The extra
communication cost of RSA can be offset by the lack of
communication cost in the MLP block.

In both MLP block and multi-head attention block, sequence
parallelism is more memory-efficient when we train Trans-
former with a longer sequence and a larger batch size.

D.2. Communication cost

Megatron-LM uses all-reduce in its MLP layer and self-
attention layer while the communication overhead in se-
quence parallelism mainly lies in the self-attention layer.
Using the same notation as given above, we are able to cal-
culate the amount of data transferred in sequence parallelism
and tensor parallelism.

In sequence parallelism, there is no communication in the
MLP layer and communication only occurs in the self atten-
tion module. There are two ring-style P2P communication
in the forward pass for calculating the attention score and
attention output respectively. In the backward pass, there
are two all-reduce collective communication and two ring-
style P2P communication. The amount of data transferred
is 2(N − 1) ∗B ∗ Z ∗ (L/N) ∗A in the forward pass and
6(N − 1) ∗B ∗ Z ∗ (L/N) ∗A in the backward pass. The
combined amount of data transferred in calculating QKT

and AV will be 8(N − 1) ∗B ∗ Z ∗ (L/N) ∗A.

In tensor parallelism of Megatron-LM, the amount of data
transferred in the forward pass and backward pass is the
same as given by 2(N−1)∗B ∗Z ∗(L/N)∗A. Since there
are 4 collective communication in the forward and backward
passes of the MLP layer and self-attention layer, the total
communication cost will be 8(N − 1) ∗B ∗Z ∗ (L/N) ∗A.

Thus, sequence parallelism has the same communication
overhead compared with tensor parallelism in Megatron-
LM. However, please note sequence parallelism has better
compatibility with pipeline parallelism, which would further
reduce the communication budget of sequence parallelism.
In tensor parallelism, to save the communication bandwidth
between pipeline stages which are often over different nodes,
the tensor is split before transmitting to the next stage and

7
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Table 1: MLP block memory usage comparison. M1 means the matrix before linear layer, and M2 is the trainable matrix of
linear layer.

GEMM M1 M2 output Memory

Tensor parallelism 1st linear (B,L,H) (H,
4H

N
) (B,L,

4H

N
) 32H2

N
+

4BLH

N
+ BLH

2nd linear (B,L,
4H

N
) (

4H

N
,H) (B,L,H)

Sequence parallelism 1st linear (B,
L

N
,H) (H, 4H) (B,

L

N
, 4H)

32H2 +
5BLH

N
2nd linear (B,

L

N
, 4H) (4H,H) (B,

L

N
,H)

Table 2: Multi-head attention block memory usage comparison

Operation M1 M2 output Memory

Tensor
parallelism

Q/K/V (B,L,H) (H,
ZA

N
) (B,

Z

N
,L,A)

QKT (B,
Z

N
,L,A) (B,

Z

N
,L,A) (B,

Z

N
,L,L)

16AZH

N
+

4BLZA

N

AV (B,
Z

N
,L,L) (B,

Z

N
,L,A) (B,

Z

N
,L,A) +

BZL2

N
+ BLH

Linear (B,
Z

N
,L,A) (

AZ

N
,H) (B,L,H)

Sequence
parallelism

Q/K/V (B,
L

N
,H) (H,AZ) (B,Z,

L

N
,A)

Ring-QKT (B,Z,
L

N
,A) (B,Z,

L

N
,A) (B,Z,

L

N
,L) 16AZH +

4BZLA

N

Ring-AV (B,Z,
L

N
,L) (B,Z,

L

N
,A) (B,Z,

L

N
,A) +

BZL2

N
+

BLH

N

Linear (B,Z,
L

N
,A) (AZ,H) (B,

L

N
,H)

all-gathered after transmission. As tensor has already been
split along the sequence dimension in sequence parallelism,
there is no need to split and all-gather between pipeline
stages. Thus, sequence parallelism can have one less all-
gather operation per pipeline stage.

D.3. Memory Usage of Efficient Attention

E. Convergence performance
We verified the convergence performance of sequence paral-
lelism. Since sequence parallelism is just a distributed im-
plementation of long sequence training, there is no change
in model architecture, We expect sequence parallelism can
achieve the same accuracy and convergence performance
as training without sequence parallelism. We used the
Wikipedia dataset (Devlin et al., 2018) and evaluated Mega-
tron and our model on the development set every 1k itera-
tions. We trained the BERT Large model for 50k iterations
with the default hyper-parameters used by Megatron. Our
goal here is to verify the correctness of our implementation
so we trained the model for fewer steps. We set parallel size
as 4 for tensor parallelism in Megatron and sequence paral-
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mance of MLM loss
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Figure 5: Convergence performance comparison between
tensor parallelism and ours

lelism in our model. No pipeline was used for both models.
In Figure 5, Our sequence parallelism shows good conver-
gence on both the masked language modeling (MLM) loss
and the sentence order prediction (SOP) loss. Compared
with Megatron, sequence parallelism has a similar trend in
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Table 3: Efficient attention block memory usage. K is the projection dimension in Linformer (Wang et al., 2020)

Operation M1 M2 output Memory

Linformer
Sequence
parallelism

Q/K/V (B,
L

N
,H) (H,AZ) (B,Z,

L

N
,A)

Projection (B,Z,
L

N
,A) (

L

N
,K) (B,Z,K,A) 2AZH +

2BZLA

N

Ring-QKT (B,Z,
L

N
,A) (B,Z,K,A) (B,Z,

L

N
,K) +

BZLK

N
+

BLH

N

Ring-AV (B,Z,
L

N
,K) (B,Z,K,A) (B,Z,

L

N
,A) +2BZKA

Linear (B,Z,
L

N
,A) (AZ,H) (B,

L

N
,H)

convergence and achieved lower values for both MLM loss
and SOP loss for 50k iterations.

F. Scaling with sequence/tensor parallelism
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Figure 6: Scaling with sequence/tensor parallelism
Compared with BERT Base setting, the only difference is,
the tensor parallel size is a maximum of 16 for the BERT
Large model in Megatron-LM. In Figure 6(a), our method
achieved 2.7 times larger batch size for BERT Large on 16
GPUs, and the batch size of sequence parallelism on 64

GPUs is 10.2 times larger than that of tensor parallelism
on 16 GPUs. In Figure 6(b), observe that our sequence
parallelism achieved comparable throughput with the same
parallel size, and more importantly, our system can extend
to a larger parallel size to achieve better performance.

G. Scaling with pipeline parallelism
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Figure 7: Scaling with pipeline parallelism
For BERT Large, sequence parallelism achieved higher max-
imum batch size than tensor parallelism in Figure 7(a). Se-
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quence parallelism also performs better on throughput when
using more pipeline stages as shown in Figure 7(b).

H. Maximum sequence length
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Figure 8: Maximum sequence length on BERT Large

BERT Large Similarly, we compared tensor parallelism
without pipeline parallelism. We fixed batch size as 16
for BERT Large and did not use pipeline parallelism. As
shown in Figure 8. When we scale up to 64 GPUs, we can
achieve around 2× maximum sequence length and scale
better through splitting a sequence into multiple chunks on
BERT Large.

I. Weak scaling
Strong scaling limits the upper bound of batch size and se-
quence length within a single device, so we mainly discuss
weak scaling in this section. We scale the batch size and
sequence length separately when increasing the number of
nodes. We fixed the pipeline parallelism size as 8. In Table 4,
sequence parallelism achieved almost constant memory us-
age when scaling along with the global batch size, which
outperforms tensor parallelism by a large margin. As for
weak scaling along the sequence length, our method still
uses much less memory with comparable throughput.

10



Sequence Parallelism: Long Sequence Training from System Perspective

Table 4: Weak scaling results. Parallel size is the tensor or sequence parallel size. Batch size denotes global batch size,
respectively. Memory and Token/sec denote max allocated memory/MB and tokens processed per second. OOM means that
CUDA out of memory occurs.

Parallel size Batch size Sequence length Tensor parallelism Sequence parallelism

Memory Token/sec Memory Token/sec

1 64 512 8477.28 9946.15 8477.53 9261.04
2 128 512 9520.47 15510.19 8478.76 13938.22
4 256 512 12232.52 20701.96 8481.26 21269.91
8 512 512 OOM OOM 8490.75 26401.64

1 64 256 3707.39 9752.61 3707.01 9340.13
2 64 512 4993.43 14195.17 4670.64 13144.16
4 64 1024 8175.93 19879.27 6601.88 18243.82
8 64 2048 14862.09 22330.5 10536.38 21625.51
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