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ABSTRACT

We propose a principled method for compositional image generation and manipu-
lation using diffusion probabilistic models. In particular, for any pre-trained gen-
erative model with a semantic latent space, we train a latent diffusion model and
auxiliary latent classifiers to help navigate latent representations in a non-linear
fashion. We show that such conditional generation achieved by latent classifier
guidance provably maximizes a lower bound of the conditional log-likelihood dur-
ing training, and can reduce to a simple latent arithmetic method with additional
assumption, which is surprisingly under-studied in the context of compositional-
ity. We then derive a new guidance term which is shown to be crucial for main-
taining the original semantics when doing manipulation. Unlike previous meth-
ods, our method is agnostic to pre-trained generative models and latent spaces,
while still achieving competitive performance on compositional image generation
as well as sequential manipulation of real and synthetic images.

1 INTRODUCTION

In recent years, the machine learning and computer vision communities have witnessed great
progress in the field of deep generative modeling. From variational autoencoders (VAEs) (Kingma
& Welling, 2013), normalizing flows (Rezende & Mohamed, 2015), and generative adversarial net-
works (GANs) (Goodfellow et al., 2014; Brock et al., 2018; Choi et al., 2020; Abdal et al., 2020;
Wu et al., 2021), to the very recent diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020a; Nichol & Dhariwal, 2021; Abstreiter et al., 2021; Rombach et al.,
2022) and score-based models (Song & Ermon, 2019; Song et al., 2020b), generating high-quality,
realistic images has become easier, if not impossible before. Despite the significant progress that
has been made, controlling the generation process using various conditions, such as class labels and
text descriptions, still remains challenging.

One major difficulty towards such controllable generation is compositionality. Compositionality in
generative modeling, or compositional generation, is the ability of a conditional generative model
to produce realistic outputs given multiple conditions and their relations. Broadly speaking, there
exist two types of methods for achieving such compositionality. The first type of methods focus on
the latent space of pre-trained generative models. Their goal is a rule that governs the manipulation
of latent codes so as to obtain outputs with desired properties. When the latent space is disentan-
gled as in StyleGAN (Karras et al., 2019; 2020), linear control is possible by carefully identifying
and combining the latent directions of each attribute (Shen et al., 2020; Wu et al., 2021; Härkönen
et al., 2020; Shen & Zhou, 2021). While this is not new, the feasibility of such linear control in the
context of compositionality is still under-explored. On the other hand, non-linear manipulations of
the latent space have also been proposed for finer control, in the sense that each modification will be
customized for each latent code. However, the previous non-linear methods are either not amend-
able for new attributes (Abdal et al., 2021) or not agnostic to various models and latent spaces (Nie
et al., 2021). The second type of methods tackle the problem in the image space, either relying on
energy-based models (EBMs) or borrowing ideas from them (Du et al., 2020; Liu et al., 2022). How-
ever, such methods can not leverage the nice properties of the latent space such as disentanglement
(Bengio et al., 2013), and training multiple sub-models in image space can be cumbersome.
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In this paper, we propose a principled method for compositional image generation and manipulation1

to alleviate previously mentioned problems. Our method leverages the latest advances with diffu-
sion probabilistic models to manipulate latent spaces in a non-linear way, but also allows a simplified
linear version resembling vector arithmetic-based manipulation. For compositional generation, we
train latent diffusion models and auxiliary latent classifiers for pre-trained generators, and use clas-
sifier guidance to sample in the latent space. For manipulating given synthetic or real images, an
additional guidance term is induced by formulating the problem as adding a source image condi-
tion to compositional generation. We show that such conditioning on multiple attributes achieved
by latent classifier guidance provably maximizes a lower bound of the conditional log-likelihood,
and reduces to simple linear vector arithmetic under additional constraints. Experiments show that
our method can generate realistic images with different attribute compositions, and can manipulate
attributes of both synthetic and real images in a coherent way. We also demonstrate that our linear
version based on vector arithmetic can serve as a strong baseline in many scenarios, despite of previ-
ous non-linear manipulation studies. Notably, unlike the previous method (Nie et al., 2021), we train
DDIM (Song et al., 2020a) to model latent space thus our method is latent-space-agnostic and thus
can be applied to any latent-variable generative models, meaning it works for different pre-trained
generative models with a compact latent space.

In summary, our contributions are as follows:

1. We leverage recent progress in conditional diffusion probabilistic models to achieve com-
positional generation and manipulation under a unified perspective, and connect the pro-
posed framework to vector arithmetic in latent spaces.

2. We show that our method is both model-agnostic and space-agnostic. This enables ma-
nipulation on new models such as (Preechakul et al., 2022) and expanded spaces such as
(Abdal et al., 2019), which is crucial for obtaining high-quality real image editing.

3. With state-of-the-art pre-trained generative models, we discuss the questions of why and
when linear manipulation can perform reasonably well, and the scenarios when non-linear
methods should be considered.

2 METHOD

In this section, we will describe how we leverage latent diffusion models and classifier guidance to
generate and manipulate images in a principled way.

2.1 LATENT DIFFUSION MODELING

A diffusion model is a deep latent variable model that maps a pre-defined noise distribution to
data distribution through smooth, iterative denoising steps. Formally, given a unknown data dis-
tribution p(x), a diffusion model approximates the distribution with the following form pθ(x0) =∫
pθ(x0:T )dx1:T , where x1:T are the latent variables of the same dimensionality as the data x0. The

forward diffusion process, resembling a parameter-free encoder, is a Markov chain q(x1:T |x0) =∏T
t=1 q(xt|xt−1), where each q(xt|xt−1) is typically a Gaussian distribution. The forward process

perturbs inputs according to a pre-defined schedule, and the transformed data distribution q(xt|x0)
will gradually converge to a standard Gaussian N (xT ; 0, I). The reverse process, resembling a hier-
archical decoder, is composed of a sequence of de-noising steps pθ(xt−1|xt), which is parameterized
by a deep neural network with parameter θ.

During training, the input images are corrupted by the forward process, and the diffusion model
is trained to convert the corrupted images back to the original inputs. For de-noising diffusion
probabilistic models (DDPM) (Ho et al., 2020), the training objective is derived as a re-weighted
variational bound by treating DDPMs as VAEs, and for scored-based generative models (Song &
Ermon, 2019), the objective is derived using score matching. To generate from the learned distribu-
tion, one first samples xT from a standard Gaussian and uses the reverse process to transform it into
the image space.

1For the sake of clarity, the term “compositional generation” will refer to generating images conditioning
only on attributes while the term “compositional manipulation” will specifically refer to conditioning on both
attributes and an original image.
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Here, we focus on the latent space of a pre-trained generative model. For a pre-trained generator G
that maps a latent space Z to the image space X , we train a diffusion model to approximate the latent
distribution p(z). One of the advantages of modeling the latent space rather than the image space
is that the latent space enjoys some properties that image space does not, such as disentanglement
(Bengio et al., 2013). Another advantage is the ability to use various guidance techniques in the
latent space, since training latent guidance terms is typically easier than training other manipulation
methods in image space (Shen et al., 2020).

2.2 CONDITIONAL AND COMPOSITIONAL GENERATION

Conditional generation with diffusion models relies on perturbing unconditional generation with
user-specified guidance terms, namely classifier guidance (Sohl-Dickstein et al., 2015; Song et al.,
2020b; Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans, 2022). Although
classifier-free guidance performs competitively in image space and is sometimes more favorable than
classifier guidance (Ho & Salimans, 2022; Liu et al., 2022), here we lean on classifier guidance in
our latent diffusion models for several reasons. We argue that the cause of classifier guidance falling
behind classifier-free guidance in the image space is that image classifiers tend to learn shortcuts
from suspicious correlations, while this problem is alleviated in a compact, even disentangled latent
space. Another benefit of using classifier guidance is that classifiers are usually easier to train than
classifier-free guidance. Finally, when the classifiers are linear, classifier guidance resembles linear
arithmetic methods, as we will show in Section 2.4.

The goal of conditional generation is to model the conditional distribution p(z|y) where y is the
conditions or attributes. By Bayes rules p(zt|y) = p(zt)p(y|zt)/p(y), the score of the conditional
probability ∇zt log p(zt|y) can be factorized as the unconditional score ∇zt log p(zt) and the gra-
dient flow ∇zt log p(y|zt). Therefore, one simply needs an unconditional latent diffusion model
and a latent classifier to model the conditional score, known as classifier guidance. In prac-
tice, the classifier guidance term is usually scaled by a factor α, such that ∇zt log p(zt|y) =
∇zt log p(zt)+α∇zt log p(y|zt). The factor α serves as a temperature parameter which adds another
layer of controllability to the sharpness of the posterior distribution p(y|zt).
Compositional generation can be considered as conditional generation with multiple conditions and
the relations among them. In this paper, we consider two relations, conjunction “AND” and negation
“NOT”. For the conjunction of attributes y1∧y2∧...∧yn, assuming the conditions to be independent
of each other, we can simply factorize the “compositional” log-probability as

∇zt log p(zt|y1, y2, ..., yn) = ∇zt log p(zt) +

n∑
i=1

αi
t∇zt log p(y

i|zt). (1)

And with attribute negations y1 ∧ ... ∧ ym−1 ∧ ym ∧ ... ∧ yn, without loss of generality, we can
factorize the log-probability similarly

∇zt log p(zt|y1, ..., yn) = ∇zt log p(zt) +

m−1∑
i=1

αi
t∇zt log p(y

i|zt)−
n∑

i=m

βi
t∇zt log p(y

i|zt). (2)

While classifier guidance is useful for compositional generation, there is no guarantee that those
results will be anything similar to the original image when doing manipulations. This is because the
generation is not conditioned on the original image. As there is no constraint on the specific form
of the posterior (Sohl-Dickstein et al., 2015), conditioning on the original image amounts to adding
a new guidance term γt∇z log p(ẑ|z), where ẑ is the latent of the image to be manipulated. For
conjunction relations as in Equation (1), the overall score function for manipulation then becomes

∇zt log p(zt|y1, y2, ..., yn, ẑ) = ∇zt log p(zt) +

n∑
i=1

αi
t∇zt log p(y

i|zt) + γt∇zt log p(ẑ|zt), (3)

similarly for Equation (2) with the presence of negation. When p(ẑ|zt) is modeled by a Gaussian
distribution, the new guidance term behaves as a regularization term ∇zt∥zt − ẑ∥22.
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2.3 MODEL TRAINING

We argue that a true compositional model should be able to easily include new attributes without
re-training the whole model. In our method, the training of the unconditional diffusion models and
the latent classifiers can be decoupled, and such training amounts to maximizing the evidence lower
bound (ELBO) of the conditional log-likelihood. This means that whenever the model is given new
attributes, our method simply requires training classifiers on these new attributes, and the latent
diffusion model as well as used classifiers can be recycled.

We take DDPM as our example and begin with unconditional generation.
Lemma 1. The unconditional ELBO of DDPM is given by the following equation

Luncond := Eq(z1:T |z0)

[
log

p(zT )

q(zT |z0)
+

T∑
t=2

log
p(zt−1|zt)

q(zt−1|zt, z0)
+ log p(z0|z1)

]
. (4)

See Ho et al. (2020) for the detailed proof.
Lemma 2 (Compositional generation and manipulation). The conditional ELBO of DDPM with
condition y is given by

Luncond + Eq(z1:T |z0)

[ T∑
t=1

log p(y|zt−1)

]
+ C, (5)

and with independent conditions {y1, y2, ..., yn} and ẑ

Luncond + Eq(z1:T |x0)

[
T∑

t=1

[ n∑
i=1

log p(yi|zt−1) + log p(ẑ|zt−1)

]]
+ C. (6)

The full derivation is shown in Section A.1. Lemma. 2 states that training unconditional diffusion
models and their latent classifiers is equivalent to maximizing the ELBO of joint log-likelihood of z
and y up to a constant.

2.4 CONNECTION TO LINEAR ARITHMETIC

Our regularized method manipulates a given latent ẑ in a non-linear fashion, but it degrades to
linear manipulation with additional assumptions. We take the case where there are only conjunction
relations as an example and consider Equation (3).
Lemma 3 (Compositional manipulation and linear arithmetic). When p(zt) is non-informative and
log p(y|zt) are linear, the proposed manipulation is endowed with an analytic solution

z0 = ẑ +
1

γ0

n∑
i=1

αi
0w

i. (7)

Proof. We first assume that p(zt) is a non-informative distribution where ∇ztp(zt) = 0. Then we
model each log p(yi|zt) with a linear classifier z 7→ wT z+b, so that the gradient ∇zt log p(y

i|zt) ∼
w up to a scale factor2. Now when the reverse process of latent diffusion model converges at t = 0,
the whole Equation (3) should converge to 0

n∑
i=1

αi
0w

i + γ0(z0 − ẑ) = 0, (8)

which leads to the above analytic solution.

For attribute negation, the solution perturbs ẑ towards the negative direction of the classifiers. This
is a natural multi-attributes generalization of the vector arithmetic method, and we refer it as the
linear version of our method in later comparisons.

2Let the scalar absorbed by αi
t.
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3 RELATED WORK

(Conditional) diffusion models Diffusion models have become increasingly favored over other
generative models such as GANs and VAEs due to their photo-realistic generation quality and ease
of training. Sohl-Dickstein et al. (2015) proposed the first working concept of diffusion models
from the perspective of thermodynamics, then this concept was followed by Song & Ermon (2019);
Song et al. (2020b); Ho et al. (2020); Song et al. (2020a) whose works established the foundation of
diffusion models that we see today. For the conditional generation with diffusion models, Dhariwal
& Nichol (2021) further formulated classifier guidance and lifted the generation quality of diffusion
models over previous state-of-the-art GANs. Ho & Salimans (2022) then proposed classifier-free
guidance which nowadays is used in many large-scale image generation engine (Nichol et al., 2021;
Ramesh et al., 2022; Saharia et al., 2022). Although most of these diffusion models work on the im-
age space, recently latent diffusion models have also drawn great attention and achieved remarkable
results (Vahdat et al., 2021; Abstreiter et al., 2021; Rombach et al., 2022).

Compositionality in latent space Due to the wide success of StyleGANs (Karras et al., 2019;
2020) in image generation, most efforts on conditional generation have been focusing on the latent
space of StyleGANs. To use linear arithmetic for manipulation, various ways of finding attribute
directions have been proposed. Shen et al. (2020) find a direction for each attribute by training
linear SVMs, then perturb the latent point along the orthogonal projection of these directions to
prevent unwanted semantic changes. Wu et al. (2021) detect latent channels that only allow local
changes for specific attributes. Such directions can also be identified in an unsupervised fashion,
using the PCA decomposition of the latent space Härkönen et al. (2020), or the SVD of the first
subsequent linear layer Shen & Zhou (2021). On the non-linear side, (Abdal et al., 2021) design a
framework to control a set of pre-decided attributes using conditional normalizing flow. (Nie et al.,
2021) use latent EBMs to control the style generation with non-linear classifiers. Note that none of
the linear methods explicitly discussed the composition of multiple attributes and their relations as
in the non-linear methods.

Compositionality in image space Some other methods tackle compositional generation in the im-
age space. These methods either directly use EBMs or use diffusion models that can be considered
as EBMs. Du et al. (2020) trains EBMs for each condition and composes them together by defining
new energy functions based on each individual energy function and their relations. Liu et al. (2022)
followed their proposal and adopted classifier-free guidance in diffusion models to multiple con-
ditions. However, these image space models can not leverage the disentanglement property of the
latent space, and training EBMs or diffusion models for each condition can be cumbersome. Note
that although some large-scale text-to-image generation engines (Nichol et al., 2021; Ramesh et al.,
2022; Saharia et al., 2022) claim compositionality in their methods, they do not model composition-
ality explicitly but rather rely on implicit composition by their language models, which leads to less
satisfying results when the set of conditions gets large (Liu et al., 2022).

4 EXPERIMENTS

We evaluate our method on two pre-trained models, StyleGAN2 (Karras et al., 2020) and Diffusion
Autoencoder (Preechakul et al., 2022). To use our methods in the intermediate latent space (Ws
space) of a pre-trained StyleGAN2, we first train latent DDIM (Song et al., 2020a) on 100,000 ws
vectors sampled from the pushforward distribution given by the style generation. We then train linear
classifiers on the Ws space using the latent-label pairs provided by Abdal et al. (2021). Note that
although Equation (5) requires classifiers to be time-dependent, we find that using the same linear
classifiers trained on clean ws vectors can still produce reasonable results. Details on the architecture
of the latent diffusion models and the performance of the classifiers can be found in Appendix A.2
and Appendix A.3. For Diffusion Autoencoder, we use their pre-trained latent diffusion model and
linear classifiers.

For real image manipulation, we also need to encode input images to the latent space. With Style-
GAN2, we use the optimization-based inversion method in (Karras et al., 2020) to get the initial
latent space Zs and intermediate Ws space encodings and use the pre-trained pSp encoder (Richard-
son et al., 2021) to get Ws+ space encodings, where Ws+ is a concatenation of 18 different 512-
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(a) LACE-LD (Nie et al., 2021) (b) LACE-ODE (Nie et al., 2021)

(c) Ours-Linear (d) Ours-Diffusion

Figure 1: Visual comparison on 1024×1024 compositional generation using StyleGAN2 generator.
The target attribute conditions are: female, smile, and 55 y/o. “y/o” means “years old”.

(a) Ours-Linear (b) Ours-Diffusion

Figure 2: Visual comparison on 256×256 compositional generation using Diffusion Autoencoder
generator. The target attribute conditions are: male, smile, and glasses.

dimensional ws vectors in StyleGAN2. With Diffusion Autoencoder, we can directly use their pre-
trained encoders to get semantic vectors.

Following Nie et al. (2021), we consider three metrics for our evaluation: Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017), face identity loss (ID) (Abdal et al., 2021) and conditional ac-
curacy (ACC). FID measures generation quality by comparing the Inception feature distribution of
generated outputs and real images. ID reflects the ability of a manipulation method to preserve the
identity of an input face. It uses a pre-trained face recognition model to generate embeddings of a
pair of input and manipulated face images and computes the distance between them. ACC measures
the efficacy of manipulation, which is the accuracy of classifying attributes of generated images with
randomly sampled target conditions using off-the-shelf image classifiers.

4.1 COMPOSITIONAL GENERATION

We first evaluate the ability of our methods to generate images with multiple desired attributes.
For high-resolution images (1024×1024), we select StyleGAN2 as our pre-trained generator; for
low-resolution images (256×256), we use Diffusion Autoencoder.

We compare our method with StyleFlow (Abdal et al., 2021) and LACE (Nie et al., 2021). Numbers
of StyleFlow are directly taken from (Nie et al., 2021) for the conjunction of “gender”, “smile” and
“age”, while it cannot handle the other compositional task where negation relations are involved. To
compare with LACE, we use their official implementation. Note that LACE is not applicable for
Diffusion Autoencoder as its semantic latent space is not endowed with a parameterized distribution
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Table 1: StyleGAN2 Compositional Generation

Method
gender, smile, age -gender, smile, -haircolor

FID ↓ ACC ↑ FID ↓ ACC ↑
gender smile age gender smile haircolor

StyleFlow (Abdal et al., 2021) 43.88 0.718 0.870 0.874 — — — —
LACE-LD (Nie et al., 2021) 22.34 0.953 0.954 0.925 22.86 0.678 0.958 0.924
LACE-ODE (Nie et al., 2021) 22.03 0.964 0.967 0.925 23.51 0.649 0.970 0.935
Ours-Linear 22.46 0.980 0.982 0.863 23.94 0.948 0.995 0.936
Ours-Diffusion 26.49 0.981 0.968 0.863 29.62 0.987 0.954 0.906

Table 2: Sequential Editing with StyleGAN2

Method FID ↓ ID ↓ ACC ↑
yaw smile age glasses

StyleFlow (Abdal et al., 2021) 44.13 0.549 0.947 0.773 0.817 0.876
LACE-ODE (Nie et al., 2021) 27.49 0.501 0.938 0.956 0.881 0.997
Ours-Linear 29.48 0.290 0.887 0.983 0.875 0.786
Ours-Diffusion 24.06 0.445 0.903 0.963 0.845 0.843

as the Zs or Ws space of StyleGAN2. However, our method which fits any latent distributions with
diffusion models can be applied.

The quantitative comparison is shown in Table 1 and the qualitative comparison shown in Figure 1
and Figure 2. While for the quantitative results target conditions are randomly sampled for each
attribute, for the qualitative results, we use fixed targets for the sake of visualization. As we can
see, both versions of our methods, based on linear arithmetic and latent diffusion models, perform
competitively against previous non-linear methods.

4.2 COMPOSITIONAL MANIPULATION

We evaluate our methods on manipulating both synthetic and real images.

Synthetic Images To evaluate synthetic image manipulation, we first sample latent codes in Zs
space and Ws space, then generate their corresponding output images. To ensure fair comparisons,
we use the style network of StyleGAN2 to generate ws vectors following (Nie et al., 2021) rather
than sample vectors from the latent diffusion model that we learn. We then sequentially edit each
synthetic image given the target conditions. Results are shown in Table 2. Note that both our linear
arithmetic based and latent diffusion model based method achieves competitive FID and ID scores
with most attributes successfully manipulated (except for “glasses”).

Real Images Manipulating real images can be much harder than manipulating synthetic images as
it sometimes involves inverting source images to their latent codes. Our method being space-agnostic
brings additional advantages when editing real images. It is well-known that not all real images can
be encoded into the Zs space and Ws space of StyleGAN, and expanded spaces such as Ws+ space
(Abdal et al., 2019) and S space (Wu et al., 2021) are better choices for real image editing. However,
LACE is restricted to the intermediate space of StyleGAN and thus cannot leverage the richness of
the expanded spaces. Moreover, it also requires inverting input images to Zs space, which is very
challenging. Our method, on the other hand, can be easily adapted to existing or new expanded
spaces, where the semantics are richer and the inversion is easier.

As shown in Figure 3, our method outperforms LACE in terms of real image editing. For LACE, the
identities of the manipulation change dramatically in all three cases. This is because it is generally
hard to invert real input images to Zs space, which is required for LACE’s manipulation. On the
other hand, our methods which only require inversion into Ws or Ws+ space can control attributes
better as well as preserves the identity more faithfully than LACE. Ws space manipulation controls
the attributes very well, but the image quality is sub-optimal due to the limited expressiveness of
Ws space. Ws+ space manipulation provides better image quality, but the attributes are harder
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glasses
smile
55 y/o

no glasses
smile
28 y/o

glasses
white hair
right face

(a) Original (b) LACE-ODE (c) Ours-Linear-Ws (d) Ours-Linear-Ws+

Figure 3: Visual comparison between different compositional manipulation methods on real image
inputs. Target attributes are shown on the left. “y/o” means “years old”.

to control, e.g. the “glasses” attribute in the second row. This is because Ws+ space has higher
dimensions and training well-behaved classifiers can be harder due to problems such as over-fitting.

5 DISCUSSION

5.1 WHY IS THE LINEAR METHOD COMPETITIVE?

Figure 4: Latent semantic correlations of Diffusion Autoen-
coder. Blue indicates positive correlations and red indicates
negative correlations.

One main challenge of manipulat-
ing multiple attributes is maintaining
the unrelated attributes. For com-
positional generation, these are the
out-of-scope attributes; for sequential
editing, these also include the pre-
viously manipulated attributes. To
tackle the challenge, previous meth-
ods either design a protection with
linear manipulation such as Inter-
faceGAN (Shen et al., 2020), or
use non-linear manipulation such as
StyleFlow and LACE. As we have
shown in previous sections, our lin-
ear method can be very competitive
against other non-linear methods de-
spite its simplicity.

To understand its power, we examine
the linear classifiers that are learned
for manipulation. Here we use the
heatmap to visualize the correlation
between each pair of linear classifiers
learned on the semantic latent space
of Diffusion Autoencoder, as shown
in Figure 4. As we can see, the se-
mantic latent space of Diffusion Au-
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toencoder is favorably disentangled and thus the linear classifiers show strong orthogonality fre-
quently. This means that even without a specific protection mechanism as in (Shen et al., 2020),
our linear method is still capable of preserving the identity in most cases. In Table 3, we list the
changes of conditional accuracy of other attributes when a single attribute is linearly manipulated.
The small changes indicate that the attributes are well disentangled in such generative models, and
further explain the efficacy of our linear method.

Table 3: Changes of conditional accuracy for each linear sequential edit

yaw smile age glasses
Edit-1 — -0.001 +0.001 -0.002
Edit-2 +0.003 — +0.001 +0.007
Edit-3 +0.001 +0.000 — -0.013
Edit-4 +0.000 -0.012 -0.005 —

5.2 WHEN IS THE NON-LINEAR METHOD PREFERRED?

Our linear method performing well does not diminish the value of non-linear manipulation methods.
Abdal et al. (2021) argue that linear manipulation often moves a latent code outside the latent dis-
tribution which leads to low-quality generation, which is often the main motivation for non-linear
methods. We agree that linear manipulation can generate sub-optimal results, but we argue that
such a scenario could only happen when the original input already lies in a low density region. For
most inputs, linear manipulation would satisfy as we have demonstrated; for novel combinations of
attributes that are out-of-domain, non-linear manipulation might be necessary for obtaining reason-
able, high-quality editions.

6 CONCLUSIONS

In conclusion, we propose a principled method for compositional generation and manipulation in
the vision domain. Our method, built on latent diffusion models, is agnostic to different generative
models and latent spaces. We show that our method performs competitively on various composi-
tionality tasks, and is especially advantageous in real image manipulation. Future work will focus
on modeling more complicated relations between attributes and achieving compositionality on more
challenging datasets.
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A APPENDIX

A.1 PROOF OF LEMMA 2

Proof. Lemma .2 can be proved using p(zt−1|zt, y) = Zp(zt−1|zt)p(y|zt−1) (Z is a normalizing
constant) and following the same routine as the proof of Lemma .1.

log p(z0, y) = log

∫
p(z0:T |y)p(y)dz1:T (9)

≥ Eq(z1:T |z0) log
p(z0:T |y)p(y)
q(z1:T |z0)

(10)

= Eq(z1:T |z0)

[
log

p(zT )

q(zT |z0)
+

T∑
t=2

log
p(zt−1|zt, y)
q(zt−1|zt, z0)

+ log p(z0|z1, y)
]
+ C1 (11)

= Eq(z1:T |z0)

[
log

p(zT )

q(zT |z0)
+

T∑
t=2

log
p(zt−1|zt)

q(zt−1|zt, z0)
+ log p(z0|z1) (12)

+

T∑
t=1

log p(y|zt−1)

]
+ C2 (13)

= Luncond + Eq(z1:T |z0)

[ T∑
t=1

log p(y|zt−1)

]
+ C2. (14)

For clarity purposes, we only show the proof with single condition y, but derivations can be easily
extended to multiple y for compositional generation, and the cases with ẑ for manipulation.

A.2 NETWORK ARCHITECTURE

We train a deep MLP with skip connections for our latent diffusion models, the same as the latent
DDIM used in Diffusion Autoencoder. The latent diffusion model is composed of 10 sequential
2-layer MLP blocks. The input and output dimensions of the MLP blocks are 512 (decided by
the latent dimension of StyleGAN2 and Diffusion Autoencoder), and all hidden dimensions in the
middle are 2048. After the output layer of each MLP block, the time embeddings are injected by
group normalization, followed by skip connections from the inputs of the first MLP block. The
activation function is SELU. The time-embedding network is a 2-layer MLP that transforms the 64
dimensional sinusoidals to 512 dimensional time embeddings. The hidden layer is 512 dimensional,
and the activation function is SELU.

A.3 TRAINING STRATEGIES

To train our latent diffusion models, we follow the same strategies as in (Nichol & Dhariwal, 2021;
Preechakul et al., 2022).

Attribute Validation Accuracy Test Accuracy
Smile 92.00 91.67

Gender 93.40 94.20
Glasses 92.60 91.30
Beard 93.40 91.60

Hair color 75.40 75.50
Yaw 98.07 98.13
Age 93.37 93.64

Table 4: Validation and test accuracy of linear latent classifiers of StyleGAN2.

We train linear classifiers on the Ws space of StyleGAN2 using the same data from StyleFlow and
LACE. We use the Adam optimizer to train each linear model for 200 epochs with an initial learning
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rate of 1e-4, which is decreased by a factor of 0.3 at the 160 and 180 epochs. Note that different
from LACE, we train binary classifiers for multi-class attributes. The training results are shown in
Table. 4. We use pre-trained latent classifiers for Diffusion Autoencoders.
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