
Under review as a conference paper at ICLR 2021

FEDERATED CONTINUAL LEARNING WITH
WEIGHTED INTER-CLIENT TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

There has been a surge of interest in continual learning and federated learning,
both of which are important in deep neural networks in real-world scenarios. Yet
little research has been done regarding the scenario where each client learns on
a sequence of tasks from a private local data stream. This problem of federated
continual learning poses new challenges to continual learning, such as utilizing
knowledge from other clients, while preventing interference from irrelevant knowl-
edge. To resolve these issues, we propose a novel federated continual learning
framework, Federated Weighted Inter-client Transfer (FedWeIT), which decom-
poses the network weights into global federated parameters and sparse task-specific
parameters, and each client receives selective knowledge from other clients by
taking a weighted combination of their task-specific parameters. FedWeIT mini-
mizes interference between incompatible tasks, and also allows positive knowledge
transfer across clients during learning. We validate our FedWeIT against existing
federated learning and continual learning methods under varying degrees of task
similarity across clients, and our model significantly outperforms them with a large
reduction in the communication cost.

1 INTRODUCTION

Continual learning (Thrun, 1995; Kumar & Daume III, 2012; Ruvolo & Eaton, 2013; Kirkpatrick
et al., 2017; Schwarz et al., 2018) describes a learning scenario where a model continuously trains
on a sequence of tasks; it is inspired by the human learning process, as a person learns to perform
numerous tasks with large diversity over his/her lifespan, making use of the past knowledge to learn
about new tasks without forgetting previously learned ones. Continual learning is a long-studied topic
since having such an ability leads to the potential of building a general artificial intelligence. However,
there are crucial challenges in implementing it with conventional models such as deep neural networks
(DNNs), such as catastrophic forgetting, which describes the problem where parameters or semantic
representations learned for the past tasks drift to the direction of new tasks during training. The
problem has been tackled by various prior work (Kirkpatrick et al., 2017; Lee et al., 2017; Shin
et al., 2017; Riemer et al., 2019). More recent works tackle other issues, such as scalability or
order-robustness (Schwarz et al., 2018; Hung et al., 2019; Yoon et al., 2020).

However, all of these models are fundamentally limited in that the models can only learn from its direct
experience - they only learn from the sequence of the tasks they have trained on. Contrarily, humans
can learn from indirect experience from others, through different means (e.g. verbal communications,
books, or various media). Then wouldn’t it be beneficial to implement such an ability to a continual
learning framework, such that multiple models learning on different machines can learn from the
knowledge of the tasks that have been already experienced by other clients? One problem that arises
here, is that due to data privacy on individual clients and exorbitant communication cost, it may
not be possible to communicate data directly between the clients or between the server and clients.
Federated learning (McMahan et al., 2016; Li et al., 2018; Yurochkin et al., 2019) is a learning
paradigm that tackles this issue by communicating the parameters instead of the raw data itself.
We may have a server that receives the parameters locally trained on multiple clients, aggregates
it into a single model parameter, and sends it back to the clients. Motivated by our intuition on
learning from indirect experience, we tackle the problem of Federated Continual Learning (FCL)
where we perform continual learning with multiple clients trained on private task sequences, which
communicate their task-specific parameters via a global server. Figure 1 (a) depicts an example

1

Under review as a conference paper at ICLR 2021

11 2 3 4 5 6 7 8 910
Epoch

76

78

80

82

84

Ac
cu
ra
cy
 (%

)

Target Client on SVHN

No Transfer (CL)
Positive Transfer (FCL)
Negative Transfer (FCL)

(a) Federated Continual Learning (b) Challenges of Federated Continual Learning

Figure 1: (a): Concept. A continual learner at a hospital which learns on sequence of disease prediction tasks
may want to utilize relevant task parameters from other hospitals. FCL allows such inter-client knowledge
transfer via the communication of task-decomposed parameters. (b): Challenge of FCL. Interference from
other clients, resulting from sharing irrelevant knowledge, may hinder an optimal training of target clients (Red)
while relevant knowledge from other clients will be beneficial for their learning (Green).

scenario of FCL. Suppose that we are building a network of hospitals, each of which has a disease
diagnosis model which continuously learns to perform diagnosis given CT scans, for new types of
diseases. Then, under our framework, any diagnosis model which has learned about a new type of
disease (e.g. COVID-19) will transmit the task-specific parameters to the global server, which will
redistribute them to other hospitals for the local models to utilize. This allows all participants to
benefit from the new task knowledge without compromising the data privacy.

Yet, the problem of federated continual learning also brings new challenges. First, there is not only the
catastrophic forgetting from continual learning, but also the threat of potential interference from
other clients. Figure 1 (b) describes this challenge with the results of a simple experiment. Here, we
train a model for MNIST digit recognition while communicating the parameters from another client
trained on a different dataset. When the knowledge transferred from the other client is relevant to the
target task (SVHN), the model starts with high accuracy, converge faster and reach higher accuracy
(green line), whereas the model underperforms the base model if the transferred knowledge is from a
task highly different from the target task (CIFAR-10, red line). Thus, we need to selective utilize
knowledge from other clients to minimize the inter-client interference and maximize inter-client
knowledge transfer. Another problem with the federated learning is efficient communication, as
communication cost could become excessively large when utilizing the knowledge of the other clients,
since the communication cost could be the main bottleneck in practical scenarios when working with
edge devices. Thus we want the knowledge to be represented as compactly as possible.

To tackle these challenges, we propose a novel framework for federated continual learning, Federated
Weighted Inter-client Transfer (FedWeIT), which decomposes the local model parameters into a dense
base parameter and sparse task-adaptive parameters. FedWeIT reduces the interference between
different tasks since the base parameters will encode task-generic knowledge, while the task-specific
knowledge will be encoded into the task-adaptive parameters. When we utilize the generic knowledge,
we also want the client to selectively utilize task-specific knowledge obtained at other clients. To this
end, we allow each model to take a weighted combination of the task-adaptive parameters broadcast
from the server, such that it can select task-specific knowledge helpful for the task at hand. FedWeIT
is communication-efficient, since the task-adaptive parameters are highly sparse and only need to be
communicated once when created. Moreover, when communication efficiency is not a critical issue
as in cross-silo federated learning (Kairouz et al., 2019), we can use our framework to incentivize
each client based on the attention weights on its task-adaptive parameters. We validate our method
on multiple different scenarios with varying degree of task similarity across clients against various
federated learning and local continual learning models. The results show that our model obtains
significantly superior performance over all baselines, adapts faster to new tasks, with largely reduced
communication cost. The main contributions of this paper are as follows:

• We introduce a new problem of Federated Continual Learning (FCL), where multiple mod-
els continuously learn on distributed clients, which poses new challenges such as prevention of
inter-client interference and inter-client knowledge transfer.
• We propose a novel and communication-efficient framework for federated continual learn-

ing, which allows each client to adaptively update the federated parameter and selectively utilize
the past knowledge from other clients, by communicating sparse parameters.

2

Under review as a conference paper at ICLR 2021

2 RELATED WORK

Continual learning While continual learning (Kumar & Daume III, 2012; Ruvolo & Eaton, 2013)
is a long-studied topic with a vast literature, we only discuss recent relevant works. Regularization-
based: EWC (Kirkpatrick et al., 2017) leverages Fisher Information Matrix to restrict the change of
the model parameters such that the model finds solution that is good for both previous and the current
task, and IMM (Lee et al., 2017) proposes to learn the posterior distribution for multiple tasks as a
mixture of Gaussians. Architecture-based: DEN (Yoon et al., 2018) tackles this issue by expanding
the networks size that are necessary via iterative neuron/filter pruning and splitting, and RCL (Xu &
Zhu, 2018) tackles the same problem using reinforcement learning. APD (Yoon et al., 2020) additively
decomposes the parameters into shared and task-specific parameters to minimize the increase in the
network complexity. Coreset-based: GEM variants (Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2019) minimize the loss on both of actual dataset and stored episodic memory. FRCL (Titsias et al.,
2020) memorizes approximated posteriors of previous tasks with sophisticatedly constructed inducing
points. To the best of our knowledge, none of the existing approaches considered the communicability
for continual learning of deep neural networks, which we tackle. CoLLA (Rostami et al., 2018) aims
at solving multi-agent lifelong learning with sparse dictionary learning, but it is not applicable to
federated learning or continual deep learning.

Federated learning Federated learning is a distributed learning framework under differential
privacy, which aims to learn a global model on a server while aggregating the parameters learned
at the clients on their private data. FedAvg (McMahan et al., 2016) aggregates the model trained
across multiple clients by computing a weighted average of them based on the number of data points
trained. FedProx (Li et al., 2018) trains the local models with a proximal term which restricts their
updates to be close to the global model. FedCurv (Shoham et al., 2019) aims to minimize the model
disparity across clients during federated learning by adopting a modified version of EWC. Recent
works Yurochkin et al. (2019); Wang et al. (2020) introduce well-designed aggregation policies
by leveraging Bayesian non-parametric methods. A crucial challenge of federated learning is the
reduction of communication cost. TWAFL (Chen et al., 2019) tackles this problem by performing
layer-wise parameter aggregation, where shallow layers are aggregated at every step, but deep layers
are aggregated in the last few steps of a loop. Karimireddy et al. (2020) suggests an algorithm for rapid
convergence, which minimizes the interference among discrepant tasks at clients by sacrificing the
local optimality. This is an opposite direction from personalized federated learning methods (Fallah
et al., 2020; Lange et al., 2020; Deng et al., 2020) which put more emphasis on the performance of
local models. FCL is a parallel research direction to both, and to the best of our knowledge, ours is
the first work that considers task-incremental learning of clients under federated learning framework.

3 FEDERATED CONTINUAL LEARNING WITH FEDWEIT

Motivated by the human learning process from indirect experiences, we introduce a novel continual
learning under federated learning setting, which we refer to as Federated Continual Learning (FCL).
FCL assumes that multiple clients are trained on a sequence of tasks from private data stream, while
communicating the learned parameters with a global server. We first formally define the problem in
Section 3.1, and then propose naive solutions that straightforwardly combine the existing federated
learning and continual learning methods in Section 3.2. Then, following Section 3.3 and 3.4, we
discuss about two novel challenges that are introduced by federated continual learning, and propose a
novel framework, Federated Weighted Inter-client Transfer (FedWeIT) which can effectively handle
the two problems while also reducing the client-to-sever communication cost.

3.1 PROBLEM DEFINITION

In the standard continual learning (on a single machine), the model iteratively learns from a sequence
of tasks {T (1), T (2), ..., T (T)} where T (t) is a labeled dataset of tth task, T (t) = {x(t)

i , y(t)i }
Nt
i=1,

which consists of Nt pairs of instances x(t)i and their corresponding labels y(t)i . Assuming the most
realistic situation, we consider the case where the task sequence is a task stream with an unknown
arriving order, such that the model can access T (t) only at the training period of task t which becomes
inaccessible afterwards. Given T (t) and the model learned so far, the learning objective at task t is as
follows: minimizeθ(t) L(θ(t);θ(t−1), T (t)), where θ(t) is a set of the model parameters at task t.

3

Under review as a conference paper at ICLR 2021

We now extend the conventional continual learning to the federated learning setting with multiple
clients and a global server. Let us assume that we have C clients, where at each client cc ∈
{c1, . . . , cC} trains a model on a privately accessible sequence of tasks {T (1)

c , T (2)
c , ..., T (t)

c } ⊆ T .
Please note that there is no relation among the tasks T (t)

1:c received at step t, across clients. Now
the goal is to effectively train C continual learning models on their own private task streams, via
communicating the model parameters with the global server, which aggregates the parameters sent
from each client, and redistributes them to clients.

3.2 COMMUNICABLE CONTINUAL LEARNING

In conventional federated learning settings, the learning is done with multiple rounds of local learning
and parameter aggregation. At each round of communication r, each client cc and the server s
perform the following two procedures: local parameter transmission and parameter aggregation
& broadcasting. In the local parameter transmission step, for a randomly selected subset of clients
at round r, C(r) ⊆ {c1, c2, ..., cC}, each client cc sends updated parameters θ(r) to the server. The
server-clients transmission is not done at every client because some of the clients may be temporarily
disconnected. Then the server aggregates the parameters θ(r)

c sent from the clients into a single
parameter. The most popular frameworks for this aggregation are FedAvg (McMahan et al., 2016)
and FedProx (Li et al., 2018). However, naive federated continual learning with these two algorithms
on local sequences of tasks may result in catastrophic forgetting. One simple solution is to use a
regularization-based, such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), which
allows the model to obtain a solution that is optimal for both the previous and the current tasks. There
exist other advanced solutions (Rusu et al., 2016; Nguyen et al., 2018; Chaudhry et al., 2019) that
successfully prevents catastrophic forgetting. However, the prevention of catastrophic forgetting at
the client level is an orthogonal problem from federated learning.

Thus we focus on challenges that newly arise in this federated continual learning setting. In the
federated continual learning framework, the aggregation of the parameters into a global parameter
θG allows inter-client knowledge transfer across clients, since a task T (q)

i learned at client ci at round
q may be similar or related to T (r)

j learned at client cj at round r. Yet, using a single aggregated
parameter θG may be suboptimal in achieving this goal since knowledge from irrelevant tasks may
not to be useful or even hinder the training at each client by altering its parameters into incorrect
directions, which we describe as inter-client interference. Another problem that is also practically
important, is the communication-efficiency. Both the parameter transmission from the client to the
server, and server to client will incur large communication cost, which will be problematic for the
continual learning setting, since the clients may train on possibly unlimited streams of tasks.

3.3 FEDERATED WEIGHTED INTER-CLIENT TRANSFER

How can we then maximize the knowledge transfer between clients while minimizing the inter-client
interference, and communication cost? We now describe our model, Federated Weighted Inter-client
Transfer (FedWeIT), which can resolve the these two problems that arise with a naive combination of
continual learning approaches with federated learning framework.

The main cause of the problems, as briefly alluded to earlier, is that the knowledge of all tasks learned
at multiple clients is stored into a single set of parameters θG. However, for the knowledge transfer
to be effective, each client should selectively utilize only the knowledge of the relevant tasks that is
trained at other clients. This selective transfer is also the key to minimize the inter-client interference
as well as it will disregard the knowledge of irrelevant tasks that may interfere with learning.

We tackle this problem by decomposing the parameters, into three different types of the parameters
with different roles: global parameters (θG) that capture the global and generic knowledge across all
clients, local base parameters (B) which capture generic knowledge for each client, and task-adaptive
parameters (A) for each specific task per client, motivated by Yoon et al. (2020). A set of the model
parameters θ(t)

c for task t at continual learning client cc is then defined as follows:

θ(t)
c = B(t)

c �m(t)
c + A(t)

c +
∑
i∈C\c

∑
j<|t|

α
(t)
i,jA(j)

i (1)

where B(t)
c ∈ {RIl×Ol}Ll=1 is the set of base parameters for cth client shared across all tasks in the

4

Under review as a conference paper at ICLR 2021

(a) Communication of General Knowledge (b) Communication of Task-adaptive Knowledge

Figure 2: Updates of FedWeIT. (a) A client sends sparsified federated parameter Bc �m(t)
c . After that, the

server redistributes aggregated parameters to the clients. (b) The knowledge base stores previous tasks-adaptive
parameters of clients, and each client selectively utilizes them with an attention mask.

client, m(t)
c ∈ {ROl}Ll=1 is the set of sparse vector masks which allows to adaptively transform B(t)

c

for the task t, A(t)
c ∈ {RIl×Ol}Ll=1 is the set of a sparse task-adaptive parameters at client cc. Here,

L is the number of the layer in the neural network, and Il, Ol are input and output dimension of the
weights at layer l, respectively.

The first term allows selective utilization of the global knowledge. We want the base parameter B(t)
c at

each client to capture generic knowledge across all tasks across all clients. In Figure 2 (a), we initialize
it at each round t with the global parameter from the previous iteration, θ(t−1)

G which aggregates the
parameters sent from the client. This allows B(t)

c to also benefit from the global knowledge about
all the tasks. However, since θ

(t−1)
G also contains knowledge irrelevant to the current task, instead

of using it as is, we learn the sparse mask m(t)
c to select only the relevant parameters for the given

task. This sparse parameter selection helps minimize inter-client interference, and also allows for
efficient communication. The second term is the task-adaptive parameters A(t)

c . Since we additively
decompose the parameters, this will learn to capture knowledge about the task that is not captured by
the first term, and thus will capture specific knowledge about the task T (t)

c . The final term describes
weighted inter-client knowledge transfer. We have a set of parameters that are transmitted from the
server, which contain all task-adaptive parameters from all the clients. To selectively utilizes these
indirect experiences from other clients, we further allocate attention α

(t)
c on these parameters, to

take a weighted combination of them. By learning this attention, each client can select only the
relevant task-adaptive parameters that help learn the given task. Although we design A(j)

i to be highly
sparse, using about 2− 3% of memory of full parameter in practice, sending all task knowledge is
not desirable. Thus we only transmit the task-adaptive parameter of the previous task (t− 1), which
we empirically find to achieve good results in practice.

Training. We learn the decomposable parameter θ(t)
c by optimizing for the following objective:

minimize
B(t)
c , m(t)

c , A(1:t)
c , α

(t)
c

L
(
θ(t)
c ; T (t)

c

)
+ λ1Ω({m(t)

c ,A(1:t)
c }) + λ2

t−1∑
i=1

‖∆B(t)
c �m(i)

c + ∆A(i)
c ‖22, (2)

where L is a loss function and Ω(·) is a sparsity-inducing regularization term for all task-adaptive
parameters and the masking variable (we use `1-norm regularization), to make them sparse. The
second regularization term is used for retroactive update of the past task-adaptive parameters, which
helps the task-adaptive parameters to maintain the original solutions for the target tasks, by reflecting
the change of the base parameter. Here, ∆B(t)

c = B(t)
c − B(t−1)

c is the difference between the base
parameter at the current and previous timestep, and ∆A(i)

c is the difference between the task-adaptive
parameter for task i at the current and previous timestep. This regularization is essential for preventing
catastrophic forgetting. λ1 and λ2 are hyperparameters controlling the effect of the two regularizers.

3.4 EFFICIENT COMMUNICATION VIA SPARSE PARAMETERS

FedWeIT learns via server-to-client communication. As discussed earlier, a crucial challenge here is
to reduce the communication cost. We describe what happens at the client and the server at each step.

5

Under review as a conference paper at ICLR 2021

Algorithm 1 Federated Weighted Inter-client Transfer

input Dataset {D(1:t)
c }Cc=1, and Global Parameter θG

output {Bc, m(1:t)
c , α

(1:t)
c , A(1:t)

c }Cc=1

1: Initialize Bc to θG for all c ∈ C ≡ {1, ..., C}
2: for task t = 1, 2, ... do
3: for round r = 1, 2, ..., R do
4: Transmit B̂

(t,r)

c and A(t−1,R)
c of client cc to server

5: Compute θ
(r)
G ← 1

|C|
∑

c∈C B̂
(t,r)

c

6: Distribute θ
(r)
G and {A(t−1,R)

j }j∈C to client c
7: Minimize Eq. (2) for solving each local CL problems
8: end for
9: end for

Figure 3: Configuration of task sequences:
We first split a datasetD into multiple sub-tasks in
non-IID manner ((a) and (b)). Then, we distribute
them to multiple clients (C#). Mixed tasks from
multiple datasets (colored circles) are distributed
across all clients ((c)).

Client: At each round r, each client cc partially updates its base parameter with the nonzero
components of the global parameter sent from the server; that is, Bc(n) = θG(n) where n is a
nonzero element of the global parameter. After training the model using Eq. (2), it obtains a sparsified

base parameter B̂
(t)

c = B(t)
c �m(t)

c and task-adaptive parameter A(t)
c for the new task, both of which

are sent to the server, at smaller cost compared to naive FCL baselines. While naive FCL baselines
require |C| ×R× |θ| for client-to-server communication, FedWeIT requires |C| × (R× |B̂|+ |A|)
where R is the number of communication round per task and | · | is the number of parameters.

Server: The server first aggregates the base parameters sent from all the clients by taking an
weighted average of them: θG = 1

C
∑
C B̂

(t)

i . Then, it broadcasts θG to all the clients. Task adaptive

parameters of t− 1, {A(t−1)
i }C\ci=1 are broadcast at once per client during training task t. While naive

FCL baselines requires |C| × R × |θ| for server-to-client communication cost, FedWeIT requires
|C| × (R × |θG| + (|C| − 1) × |A|) in which θG,A are highly sparse. We describe the FedWeIT
algorithm in Algorithm 1. For a detailed version of the algorithm, please see Section D in appendix.

4 EXPERIMENTS

We validate our FedWeIT under different configurations of task sequences against baselines which are
namely Overlapped-CIFAR-100 and NonIID-50. 1) Overlapped-CIFAR-100: We group 100 classes
of CIFAR-100 dataset into 20 non-iid superclasses tasks. Then, we randomly sample 10 tasks out of
20 tasks and split instances to create a task sequence for each of the clients with overlapping tasks. 2)
NonIID-50: We use the following eight benchmark datasets: MNIST (LeCun et al., 1998), CIFAR-
10/-100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011), Fashion-MNIST (Xiao et al.,
2017), Not-MNIST (Bulatov, 2011), FaceScrub (Ng & Winkler, 2014), and TrafficSigns (Stallkamp
et al., 2011). We split the classes in the 8 datasets into 50 non-IID tasks, each of which is composed
of 5 classes that are disjoint from the classes used for the other tasks. This is a large-scale experiment,
containing 280, 000 images of 293 classes from 8 heterogeneous datasets. After generating and
processing tasks, we randomly distribute them to multiple clients as illustrated in Figure 3.

Experimental setup We use a modified version of LeNet (LeCun et al., 1998) for the experiments
with both Overlapped-CIFAR-100 and NonIID-50 dataset. Further, we use ResNet-18 He et al. (2016)
with NonIID-50 dataset. We followed other experimental setups from Serrà et al. (2018) and Yoon
et al. (2020). For detailed descriptions of the task configuration and hyperparameters used, please see
Section B in appendix. Also, for more ablation studies, please see Section C in appendix.

Baselines and our model 1) STL: Single Task Learning at each arriving task. 2) Local-EWC: In-
dividual continual learning with EWC (Kirkpatrick et al., 2017) per client. 3) Local-APD: Individual
continual learning with APD (Yoon et al., 2020) per client. 4) FedProx: FCL using FedProx (Li
et al., 2018) algorithm. 5) Scaffold: FCL using Scaffold (Karimireddy et al., 2020) algorithm. 6)
FedCurv: FCL using FedCurv (Shoham et al., 2019) algorithm. 7) FedProx-[model]: FCL, that is
trained using FedProx algorithm with [model]. 8) FedWeIT: Our FedWeIT algorithm.

6

Under review as a conference paper at ICLR 2021

Table 1: Averaged Per-task performance on both dataset during FCL with 5 clients (fraction=1.0). We measured
task accuracy and model size after completing all learning phases over 3 individual trials. We also measured
C2S/S2C communication cost for training each task.

NonIID-50 Dataset (F=1.0, R=20) Overlapped CIFAR-100 (F=1.0, R=20)
Methods Accuracy Model Size C2S/S2C Cost Accuracy Model Size C2S/S2C Cost

STL 85.78 ± 0.17 0.610 GB N/A 57.15 ± 0.07 0.610 GB N/A
Local-EWC 74.30 ± 0.08 0.061 GB N/A 44.26 ± 0.43 0.061 GB N/A
Local-APD 81.42 ± 0.72 0.090 GB N/A 50.82 ± 0.33 0.073 GB N/A
FedProx 63.69 ± 1.75 0.061 GB 1.22 / 1.22 GB 33.83 ± 0.48 0.061 GB 1.22 / 1.22 GB
Scaffold 30.84 ± 1.41 0.061 GB 2.44 / 2.44 GB 22.80 ± 0.47 0.061 GB 2.44 / 2.44 GB
FedCurv 72.39 ± 0.32 0.061 GB 1.22 / 1.22 GB 40.36 ± 0.44 0.061 GB 1.22 / 1.22 GB
FedProx-EWC 68.18 ± 0.58 0.061 GB 1.22 / 1.22 GB 41.91 ± 0.47 0.061 GB 1.22 / 1.22 GB
FedProx-APD 81.20 ± 1.24 0.079 GB 1.22 / 1.22 GB 52.20 ± 0.41 0.075 GB 1.22 / 1.22 GB
FedWeIT 84.11 ± 0.27 0.078 GB 0.37 / 1.07 GB 55.16 ± 0.19 0.075 GB 0.37 / 1.07 GB

1 5 10 15 20
Communication Rounds

30

40

50

60

Te
st
 A
cc
. (
%
) 5 Clients

FedWeIT
APD

1 5 10 15 20
Communication Rounds

30

40

50

Te
st
 A
cc
. (
%
) 5 Clients

FedWeIT
APD

1 5 10 15 20
Communication Rounds

30

35

40

Te
st
 A
cc
. (
%
) 100 Clients

FedWeIT
APD

1 5 10 15 20
Communication Rounds

30

35

40

Te
st
 A
cc
. (
%
) 100 Clients

FedWeIT
APD

100 clients (F=0.05, R=20, 1,000 tasks in total)
Methods Accuracy Model Size C2S/S2C Cost

STL 32.96 ± 0.23 12.20 GB N/A
Local-APD 37.50 ± 0.17 4.01 GB N/A
FedProx 24.11 ± 0.44 1.22 GB 1.22 / 1.22 GB

FedCurv 29.11 ± 0.20 1.22 GB 1.22 / 1.22 GB

FedCurv-EWC 29.72 ± 0.20 1.22 GB 1.22 / 1.22 GB

FedWeIT 39.58 ± 0.27 4.03 GB 0.38 / 1.10 GB

Figure 4: Left: Averaged task adaptation during training last two (9th and 10th) tasks with 5 and 100 clients.
Right: Average Per-task Performance on Overlapped-CIFAR-100 during FCL with 100 clients.

4.1 EXPERIMENTAL RESULTS

We first validate our model on both Overlapped-CIFAR-100 and NonIID-50 task sequences against
single task learning (STL), continual learning (EWC, APD), federated learning (FedProx, Scaffold,
FedCurv), and naive federated continual learning (FedProx-based) baselines. Table 1 shows the
final average per-task performance after the completion of (federated) continual learning on both
datasets. We observe that FedProx-based federated continual learning (FCL) approaches degenerate
the performance of continual learning (CL) methods over the same methods without federated
learning. This is because the aggregation of all client parameters that are learned on irrelevant tasks
results in severe interference in the learning for each task, which leads to catastrophic forgetting and
suboptimal task adaptation. Scaffold achieves poor performance on FCL, as its regularization on the
local gradients is harmful for FCL, where all clients learn from a different task sequences. While
FedCurv reduces inter-task disparity in parameters, it cannot minimize inter-task interference, which
results it to underperform single-machine CL methods. On the other hand, FedWeIT significantly
outperforms both single-machine CL baselines and naive FCL baselines on both datasets. Even
with larger number of clients (C = 100), FedWeIT consistently outperforms all baselines (Figure 4).
This improvement largely owes to FedWeIT’s ability to selectively utilize the knowledge from
other clients to rapidly adapt to the target task, and obtain better final performance (Figure 4 Left).

Table 2: FCL results on NonIID-50
dataset with ResNet-18.

ResNet-18
Methods Acc. M Size

Local-APD 92.44 % 1.86 GB

FedProx-APD 92.89 % 2.05 GB

FedWeIT 94.86 % 1.84 GB

The fast adaptation to new task is another clear advantage of
inter-client knowledge transfer. To further demonstrate the
practicality of our method with larger networks, we experi-
ment on Non-IID dtaset with ResNet-18 (Table 2), on which
FedWeIT still significantly outperforms the strongest base-
line (FedProx-APD) while using fewer parameters. Also,
our model is not sensitive to the hyperparameters λ1 and λ2,
if they are within reasonable scales (Figure 6 Left).

Efficiency of FedWeIT We also report the accuracy as a function of network capacity in Table 1, 2,
which we measure by the number of parameters used. We observe that FedWeIT obtains much
higher accuracy while utilizing less number of parameters compared to FedProx-APD. This efficiency
mainly comes from the reuse of task-adaptive parameters from other clients, which is not possible
with single-machine CL methods or naive FCL methods. We also examine the communication cost
(the size of non-zero parameters transmitted) of each method. Table 1 reports both the client-to-server
(C2S) / server-to-client (S2C) communication cost at training each task. FedWeIT, uses only 30%

7

Under review as a conference paper at ICLR 2021

20 40 60 80 100
Communication Cost (%)

52

53

54

55

Ac
cu
ra
cy
 (%

)

Overlapped-CIFAR-100

FedWeIT (Ours)
FedAvg-APD
FedProx-APD

20 40 60 80 100
Communication Cost (%)

75

80

85

Ac
cu

ra
cy

 (%
)

NonIID-50

FedWeIT (Ours)
FedAvg-APD
FedProx-APD

0.8

0.6

0

0.4

0.2

MNIST (0)

A
tt

en
tio

n

0.8

0.6

0.2

0.4

CIFAR100 (10)

A
tt

en
tio

n 0.58
0.47

0.66

0.37

0.17

0.26
0.20

0.80

0.63

0.03

Source Parameters Source Parameters

(a) Accuracy over client-to-server cost (b) Inter-client Knowledge Transfer of FedWeIT

Figure 5: (a) Accuracy over C2S cost. We report the relative communication cost to the original network. All
results are averaged over the 5 clients. (b) Inter-client transfer for NonIID-50. We compare the scale of the
attentions at first FC layer which gives the weights on transferred task-adaptive parameters from other clients.

100 150 200 250 300 350
Capacity(%)

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

(%
)

1:1e-4
1:3e-4

1:3e-3

2:300
2:10

2:0.1

Non-IID 50

1 (2 = 100)
2 (1 = 1e 3)

Models BWT
Local-EWC -0.045395
Local-APD -0.004639
FedCurv -0.191676
FedCurv-EWC -0.186957
FedProx-EWC -0.080083
FedProx-APD -0.002015
FedWeIT -0.000655

Figure 6: Left: Performance of FedWeIT with different scale of hyperparameters on Non-iid 50. Middle:
Performance comparison about current task adaptation at 6th and 8th tasks during federated continual learning
on NonIID-50. Right: Forgetting measure using Backward Transfer (BWT).

and 3% of parameters for B̂ and A of the dense models respectively. We observe that FedWeIT is
significantly more communication-efficient than FCL baselines although it broadcasts task-adaptive
parameters, due to high sparsity of the parameters. Figure 5 (a) shows the accuracy as a function of
C2S cost according to a transmission of top-κ% informative parameters. Since FedWeIT selectively
utilizes task-specific parameters learned from other clients, it results in superior performance over
APD-baselines especially with sparse communication of model parameters.

Catastrophic forgetting Further, we examine how the performance of the past tasks change during
continual learning, to see the severity of catastrophic forgetting with each method. Figure 6 Left
shows the performance of FedWeIT and FCL baselines on the 6th and 8th tasks, at the end of training
for later tasks. We observe that naive FCL baselines suffer from more severe catastrophic forgetting
than local continual learning with EWC because of the inter-client interference, where the knowledge
of irrelevant tasks from other clients overwrites the knowledge of the past tasks. Contrarily, our
model shows no sign of catastrophic forgetting. This is mainly due to the selective utilization of
the prior knowledge learned from other clients through the global/task-adaptive parameters, which
allows it to effectively alleviate inter-client interference. FedProx-APD also does not suffer from
catastrophic forgetting, but they yield inferior performance due to ineffective knowledge transfer. We
also report Backward Transfer (BWT), which is a measure on catastrophic forgetting for all models
(more positive the better). We provide the details of BWT in the Section B in appendix.

Weighted inter-client knowledge transfer By analyzing the attention α in Eq. (1), we examine
which task parameters from other clients each client selected. Figure 5 (b), shows example of the
attention weights that are learned for the 0th split of MNIST and 10th split of CIFAR-100. We observe
that large attentions are allocated to the task parameters from the same dataset (CIFAR-100 utilizes
parameters from CIFAR-100 tasks with disjoint classes), or from a similar dataset (MNIST utilizes
parameters from Traffic Sign and SVHN). This shows that FedWeIT effectively selects beneficial
parameters to maximize inter-client knowledge transfer. This is an impressive result since it does not
know which datasets the parameters are trained on.

5 CONCLUSION

We tackled a novel problem of federated continual learning, whose goal is to continuously learn local
models at each client while allowing it to utilize indirect experience (task knowledge) from other
clients. This poses new challenges such as inter-client knowledge transfer and prevention of inter-
client interference between irrelevant tasks. To tackle these challenges, we additively decomposed
the model parameters at each client into the global parameters that are shared across all clients,
and sparse local task-adaptive parameters that are specific to each task. Further, we allowed each

8

Under review as a conference paper at ICLR 2021

model to selectively update the global task-shared parameters and selectively utilize the task-adaptive
parameters from other clients. The experimental validation of our model under various task similarity
across clients, against existing federated learning and continual learning baselines shows that our
model obtains significantly outperforms baselines with reduced communication cost. We believe
that federated continual learning is a practically important topic of large interests to both research
communities of continual learning and federated learning, that will lead to new research directions.

REFERENCES

Yaroslav Bulatov. Not-mnist dataset. 2011.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2019.

Yang Chen, Xiaoyan Sun, and Yaochu Jin. Communication-efficient federated deep learn-
ing with asynchronous model update and temporally weighted aggregation. arXiv preprint
arXiv:1903.07424, 2019.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. In Advances in
Neural Information Processing Systems (NIPS), 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated
learning. In Proceedings of the International Conference on Machine Learning (ICML), 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, pp.
201611835, 2017.

Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple layers of features from tiny images.
Technical report, Computer Science Department, University of Toronto, 2009.

Abhishek Kumar and Hal Daume III. Learning task grouping and overlap in multi-task learning. In
Proceedings of the International Conference on Machine Learning (ICML), 2012.

Matthias De Lange, Xu Jia, Sarah Parisot, Ales Leonardis, Gregory Slabaugh, and Tinne Tuytelaars.
Unsupervised model personalization while preserving privacy and scalability: An open problem.
In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems (NIPS), 2017.

9

Under review as a conference paper at ICLR 2021

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems (NIPS), 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In 2014
IEEE international conference on image processing (ICIP), pp. 343–347. IEEE, 2014.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In Proceedings of the International Conference on Learning Representations (ICLR), 2018.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference.
In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

Mohammad Rostami, Soheil Kolouri, Kyungnam Kim, and Eric Eaton. Multi-agent distributed
lifelong learning for collective knowledge acquisition. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2018.

Andrei Rusu, Neil Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In Advances in
Neural Information Processing Systems (NIPS), 2016.

Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In Proceedings of the
International Conference on Machine Learning (ICML), 2013.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In Proceedings of the International Conference on
Machine Learning (ICML), 2018.

Hanul Shin, Jung Kwon Lee, Jaehon Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems (NIPS), 2017.

Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron Mor-Yosef,
and Itai Zeitak. Overcoming forgetting in federated learning on non-iid data. arXiv preprint
arXiv:1910.07796, 2019.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, 2011.

Sebastian Thrun. A Lifelong Learning Perspective for Mobile Robot Control. Elsevier, 1995.

Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning with gaussian processes. In Proceedings of
the International Conference on Learning Representations (ICLR), 2020.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkluqlSFDS.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

10

https://openreview.net/forum?id=BkluqlSFDS

Under review as a conference paper at ICLR 2021

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information
Processing Systems (NIPS), 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. In Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. Proceedings
of the International Conference on Machine Learning (ICML), 2019.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

Organization The appendix is organized as follows: In Section B, we further describe the ex-
perimental details, including the network architecture, hyper-parameter configurations, forgetting
measures, and datasets. Also, we report additional experimental results in Section C about the
effect of the communication frequency (Section C.1) and an additional ablation studies for model
components on Overlapped-CIFAR-100 dataset (Section C.2). We include a detailed algorithm for
our FedWeIT in Section D.

B EXPERIMENTAL DETAILS

We further provide the experimental settings in detail, including the descriptions of the network
architectures, hyperparameters, and dataset configuration.

Network architecture We utilize a modified version of LeNet and a conventional ResNet-18 as
the backbone network architectures for validation. In the LeNet, the first two layers are convolutional
neural layers of 20 and 50 filters with the 5 × 5 convolutional kernels, which are followed by the
two fully-connected layers of 800 and 500 units each. Rectified linear units activations and local
response normalization are subsequently applied to each layers. We use 2 × 2 max-pooling after
each convolutional layer. All layers are initialized based on the variance scaling method. Detailed
description of the architecture for LeNet is given in Table 3.

Table 3: Base Network Architecture (LeNet) and Total
Number of Parameters of both FedWeIT and All Base-
line Models. T describes the number of arrived tasks in
continual learning.

Layer Filter Shape Stride Output
Input N/A N/A 32× 32× 3

Conv 1 5× 5× 20 1 32× 32× 20
Max Pooling 1 3× 3 2 16× 16× 20

Conv 2 5× 5× 50 1 16× 16× 50
Max Pooling 2 3× 3 2 8× 8× 50

Flatten 3200 N/A 1× 1× 3200
FC 1 800 N/A 1× 1× 800
FC 2 500 N/A 1× 1× 500

Softmax Classifier N/A 1× 1× 5× T
Total Number of Parameters 3,012,920

Configurations We use an Adam opti-
mizer with adaptive learning rate decay,
which decays the learning rate by a factor
of 3 for every 5 epochs with no consec-
utive decrease in the validation loss. We
stop training in advance and start learn-
ing the next task (if available) when the
learning rate reaches ρ. The experiment
for LeNet with 5 clients, we initialize
by 1e−3 × 1

3 at the beginning of each
new task and ρ = 1e−7. Mini-batch size
is 100, the rounds per task is 20, an the
epoch per round is 1. The setting for
ResNet-18 is identical, excluding the ini-
tial learning rate, 1e−4. In the case of
experiments with 20 and 100 clients, we set the same settings except reducing minibatch size from
100 to 10 with an initial learning rate 1e−4. We use client fraction 0.25 and 0.05, respectively, at
each communication round. we set λ1 = [1e−1, 4e−1] and λ2 = 100 for all experiments. Further,
we use µ = 5e−3 for FedProx, λ = [1e−2, 1.0] for EWC and FedCurv. We initialize the attention
parameter α(t)

c as sum to one, α(t)
c,j ← 1/|α(t)

c |.

Backward-transfer (BWT) Backward transfer (BWT) is a measure for catastrophic forgetting.
BWT compares the performance disparity of previous tasks after learning current task as follows:

BWT =
1

T − 1

∑
i<T

P
(T)
i − P (i)

i , (3)

where P (T)
i is the performance of task i after task T is learned (i < T). Thus, a large negative

backward transfer value indicates that the performance has been substantially reduced, in which case
catastrophic forgetting has happened.

For NonIID-50 dataset, we utilize 8 heterogenous datasets and create 50 non-iid tasks in total as
shown in Table 4. Then we arbitrarily select 10 tasks without duplication and distribtue them to 5
clients. The average performance of single task learning on the dataset is 85.78± 0.17(%), measured
by our base LeNet architecture.

12

Under review as a conference paper at ICLR 2021

Table 4: Detailed configuration of NonIID-50 Dataset.
NonIID-50

Dataset # Classes # Tasks # Classes (Task) # Train Set # Valid Set # Test Set
CIFAR-100 100 15 5 36,750 10,500 5,250
Face Scrub 100 16 5 13,859 3,959 1,979
Traffic Signs 43 9 5 (3) 32,170 9,191 4,595
SVHN 10 2 5 61,810 17,660 8,830
MNIST 10 2 5 42,700 12,200 6,100
CIFAR-10 10 2 5 36,750 10,500 5,250
Not MNIST 10 2 5 11,339 3,239 1,619
Fashion MNIST 10 2 5 42,700 12,200 6,100
Total 293 50 248 278,078 39,723 79,449

Datasets We create both Overlapped-CIFAR-100 and NonIID-50 datasets. For Overlapped-CIFAR-
100, we generate 20 non-iid tasks based on 20 superclasses, which hold 5 subclasses. We split
instances of 20 tasks according to the number of clients (5, 20, and 100) and then distribute the tasks
across all clients.

1 5 10
Epoch per Round

53.0

53.5

54.0

54.5

Ac
cu
ra
cy
 (%

)

FedWeIT
Overlapped-CIFAR-100

Methods Accuracy Model Size C2S/S2C Cost Epochs
/ Round

FedWeIT 55.16 ± 0.19 0.075 GB 0.37 / 1.07 GB 1
FedWeIT 55.18 ± 0.08 0.077 GB 0.19 / 0.53 GB 2
FedWeIT 53.73 ± 0.44 0.083 GB 0.08 / 0.22 GB 5
FedWeIT 53.22 ± 0.14 0.088 GB 0.02 / 0.07 GB 20

Figure 7: Average Per-task Performance with error bars over the number of training epochs per com-
munication rounds on Overlapped-CIFAR-100 for FedWeIT with 5 clients. All models transmit full of local
base parameters and highly sparse task-adaptive parameters. All results are the mean accuracy over 5 clients and
we run 3 individual trials. Red arrows at each point describes the standard deviation of the performance.

C ADDITIONAL EXPERIMENTAL RESULTS

We further include a quantitative analysis about the communication round frequency and additional
experimental results across the number of clients.

C.1 EFFECT OF THE COMMUNICATION FREQUENCY

Table 5: Experimental results on the Overlapped-CIFAR-100
dataset with 20 tasks. All results are the mean accuracies over
5 clients, averaged over 3 individual trials.

Overlapped-CIFAR-100 with 20 tasks
Methods Accuracy M Size C2S/S2C Cost
FedProx 29.76 ± 0.39 0.061 GB 1.22 / 1.22 GB

FedProx-EWC 27.80 ± 0.58 0.061 GB 1.22 / 1.22 GB

FedProx-APD 43.80 ± 0.76 0.093 GB 1.22 / 1.22 GB

FedWeIT 46.78 ± 0.14 0.092 GB 0.37 / 1.07 GB

We provide an analysis on the effect of
the communication frequency by compar-
ing the performance of the model, mea-
sured by the number of training epochs
per communication round. We run the
4 different FedWeIT with 1, 2, 5, and 20
training epochs per round. Figure 7 shows
the performance of our FedWeIT variants.
As clients frequently update the model pa-
rameters through the communication with the central server, the model gets higher performance while
maintaining smaller network capacity since the model with a frequent communication efficiently
updates the model parameters as transferring the inter-client knowledge. However, it requires much
heavier communication costs than the model with sparser communication. For example, the model
trained for 1 epochs at each round may need to about 16.9 times larger entire communication cost than
the model trained for 20 epochs at each round. Hence, there is a trade-off between model performance
of federated continual learning and communication efficiency, whereas FedWeIT variants consistently
outperform (federated) continual learning baselines.

13

Under review as a conference paper at ICLR 2021

1 5 10 15 20
Communication Round

40.0

42.5

45.0

47.5

50.0

52.5

Ac
cu
ra
cy
 (%

)
FedWeIT
APD

1 5 10 15 20
Communication Round

42.5

45.0

47.5

50.0

52.5

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

40.0

42.5

45.0

47.5

50.0

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

40.0

42.5

45.0

47.5

50.0

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

35

40

45

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

(a) Performance Comparison between FedWeIT and APD with 20 clients

1 5 10 15 20
Communication Round

25

30

35

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

30

35

40

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

30

35

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

30

35

40

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

1 5 10 15 20
Communication Round

30

35

40

Ac
cu
ra
cy
 (%

)

FedWeIT
APD

(b) Performance Comparison between FedWeIT and APD with 100 clients

Figure 8: (a) Comparison of adaption for tasks between FedWeIT and APD with 20 clients in federated continual
learning scenario (b) Comparison of adaptation for tasks between FedWeIT and APD with 100 clients in federated
continual learning scenario. We visualize the last 5 tasks out of 10 tasks per client. Overlapped-CIFAR-100
dataset are used after splitting instances according to the number of clients (20 and 100).

1 2 3 4 5 6 7 8 9 10
Task

60

70

80

90

Ac
cu
ra
cy
 (%

)

Forgetting of TASK #1

2 3 4 5 6 7 8 9 10
Task

60

70

80

Ac
cu
ra
cy
 (%

)

Forgetting of TASK #2

3 4 5 6 7 8 9 10
Task

60

80

Ac
cu
ra
cy
 (%

)

Forgetting of TASK #3

4 5 6 7 8 9 10
Task

70

80

Ac
cu
ra
cy
 (%

)

Forgetting of TASK #4

5 6 7 8 9 10
Task

60

70

80

90

Ac
cu
ra
cy
 (%

)

Forgetting of TASK #5

6 7 8 9 10
Task

60

70

80
Ac

cu
ra
cy
 (%

)

Forgetting of TASK #6

7 8 9 10
Task

60

70

80

Ac
cu

ra
cy
 (%

)

Forgetting of TASK #7

8 9 10
Task

75

80

85

Ac
cu

ra
cy
 (%

)

Forgetting of TASK #8

9 10
Task

70

80

Ac
cu

ra
cy
 (%

)

Forgetting of TASK #9

Local-EWC
Local-APD

FedAvg-EWC
FedProx-EWC

FedAvg-APD
FedProx-APD

FedWeIT (Ours)

Figure 9: Forgetting analysis. Performance change over the increasing number of tasks for all tasks except the
last task (1st to 9th) during federated continual learning on NonIID-50. We observe that our method does not
suffer from task forgetting on any tasks.

C.2 ABLATION STUDY FOR MODEL COMPONENTS

We perform an ablation study to analyze the role of each component of our FedWeIT. We
compare the performance of four different variations of our model. w/o B communica-
tion describes the model that does not transfer the base parameter B and only communi-
cates task-adaptive ones. w/o A communication is the model that does not communicate
task-adaptive parameters. w/o A is the model which trains the model only with sparse trans-
mission of local base parameter, and w/o m is the model without the sparse vector mask.

Table 6: Ablation studies to analyze the effectiveness of pa-
rameter decomposition on WeIT. All experiments performed
on NonIID-50 dataset.

NonIID-50
Methods Acc. M Size C2S/S2C Cost

FedWeIT 84.11% 0.078 GB 0.37 / 1.07 GB

w/o B comm. 77.88% 0.070 GB 0.01 / 0.01 GB

w/o A comm. 79.21% 0.079 GB 0.37 / 1.04 GB

w/o A 65.66% 0.061 GB 0.37 / 1.04 GB

w/o m 78.71% 0.087 GB 1.23 / 1.25 GB

As shown in Table 6, without communi-
cating B or A, the model yields signifi-
cantly lower performance compared to the
full model since they do not benefit from
inter-client knowledge transfer. The model
w/o A obtains very low performance due
to catastrophic forgetting, and the model
w/o sparse mask m achieves lower accu-
racy with larger capacity and cost, which
demonstrates the importance of performing
selective transmission.

14

Under review as a conference paper at ICLR 2021

D DETAILED ALGORITHM FOR FEDWEIT

Algorithm 2 Algorithm for FedWeIT

input Dataset {D(1:t)
c }Cc=1, and Global Parameter θG

output {Bc, m(1:t)
c , α

(1:t)
c , A(1:t)

c }Cc=1

1: Initialize Bc to θG for all c ∈ C ≡ {1, ..., C}
2: for task t = 1, 2, ... do
3: for round r = 1, 2, ..., R do
4: Select communicable clients C(r) ⊆ C
5: if r = 1 then
6: A(t−1,R)

c∈C(r) and B̂
(t,r)

c∈C(r) are transmitted from C(r) to the central server

7: Set a new knowledge base kb(t−1) = {A(t−1,R)
j }j∈C(1)

8: else
9: B̂

(t,r)

c∈C(r) are transmitted from C(r) to the central server
10: end if
11: Update θ

(r)
G ← 1

|C(r)|

∑
c∈C(r) B̂

(t,r)

c

12: Distribute θ
(r)
G and kb(t−1) to client c ∈ C(r) if cc meets kb(t−1) first, otherwise distribute only θ

(r)
G

13: Minimize Eq. (2) for solving each local CL problems
14: end for
15: end for

E FEDWEIT FOR ASYNCHRONOUS FEDERATED CONTINUAL LEARNING

Algorithm 3 Algorithm for Asynchronous FedWeIT

input Dataset {D(1:t)
c }Cc=1, and Global Parameter θG

output {Bc, m(1:t)
c , α

(1:t)
c , A(1:t)

c }Cc=1

1: Initialize Bc to θG for all c ∈ C ≡ {1, ..., C}
2: the knowledge base kb← {}
3: for round r = 1, 2, ... do
4: if all clients finished the training then
5: break
6: else
7: Select communicable clients C(r) ⊆ C
8: for c ∈ C(r) do
9: if new task t′ is arrived at the client cc then

10: Update the knowledge base kb← kb ∪ {A(t′−1)
c } at the central server

11: end if
12: B̂

(r)

c are transmitted from the client cc to the central server
13: end for
14: Update θ

(r)
G ← 1

|C(r)|

∑
c∈C(r) B̂

(r)

c

15: if a client cc∈C(r) still learn then
16: Distribute θ

(r)
G and kb′ ⊆ kb to the client cc if new task is arrived, otherwise distribute θ

(r)
G

17: Minimize Eq. (2) for solving local CL problems at the client cc
18: end if
19: end if
20: end for

Table 7: Averaged performance
of FedWeIT with synchronous and
asynchronous federated continual
learning scenario.

NonIID-50
FedWeIT Accuracy (%)

Synchronous 84.11 ± 0.27
Asynchronous 84.40 ± 0.41

We now consider FedWeIT under the asynchronous federated
continual learning scenario, where there is no synchronization
across clients for each task. This is a more realistic scenario since
each task may require different training rounds to converge during
federated continual learning. Here, asynchronous implies that
each task requires different training costs (i.e., time, epochs, or
rounds) for training. Under the asynchronous federated learning

15

Under review as a conference paper at ICLR 2021

1 20 40 60 80 100 120 140 160 180 200
Communication Round

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Synchronous Federated Continual Learning

client-0
client-1
client-2
client-3
client-4

1 20 40 60 80 100 120 140 160 180 200 220
Communication Round

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Asynchronous Federated Continual Learning

client-0
client-1
client-2
client-3
client-4

Figure 10: FedWeIT with asynchronous federated continual learning on Non-iid 50 dataset. We measure
the test accuracy of all tasks per client.

scenario, FedWeIT transfers any available task-adaptive parameters from the knowledge base (kb′)
to each client. We provide the detailed algorithm in Algorithm 3. In Table 7 and Figure 10, we
plot the average test accuracy over all tasks during synchronous / asynchronous federated continual
learning. As shown in Figure 10, different tasks across clients at the same timestep require the same
number of training rounds, receiving new tasks and task-adaptive parameters from the knowledge
base simultaneously with the synchronous FedWeIT. On the other hand, with asynchronous FedWeIT,
each task requires different training rounds and receives new tasks and task-adaptive parameters in an
asynchronous manner. The results in Table 7 shows that the performance of asynchronous FedWeIT
is almost similar to that of the synchronous FedWeIT.

16

	Introduction
	Related Work
	Federated Continual Learning with FedWeIT
	Problem Definition
	Communicable Continual Learning
	Federated Weighted Inter-client Transfer
	Efficient Communication via Sparse Parameters

	Experiments
	Experimental Results

	Conclusion
	Appendix
	Experimental Details
	Additional Experimental Results
	Effect of the Communication Frequency
	Ablation study for model components

	Detailed Algorithm for FedWeIT
	purpleFedWeIT for Asynchronous Federated Continual Learning

