
A Demonstration is Worth a Million Exploration
Steps?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep reinforcement learning has proven an effective method to solve many intricate1

tasks, yet it still struggles in data efficiency and generalization to novel scenarios.2

Recent approaches to deal with this include (1) unsupervised pretraining of the3

agent in an environment without reward signals, and (2) training the agent using4

offline data coming from various possible sources. In this paper we propose5

to consider both of these approaches together and argue that this results in a6

more realistic setting where different types of data are available, and fast online7

adaptation to new tasks is required. Towards this goal we extend the Unsupervised8

RL Benchmark to include access to both unsupervised exploratory data, and offline9

expert demonstrations, when testing the agents online performance on novel tasks10

in the environment. Using this setup we solve unaddressed issues in previous work.11

Specifically, we show how to make unsupervised data more effective by using a12

reward predictor that is trained from a small amount of supervised offline and online13

data, and we demonstrate how world models can serve as a way to consolidate14

agent training from various types of data, leading to faster online adaptation.15

1 Introduction16

Deep reinforcement learning (RL) has achieved remarkable success in addressing complex control17

tasks, yet a significant challenge persists in its limited ability to generalize to novel tasks. While18

transfer learning practices excel in simpler supervised tasks, RL traditionally treats each task in19

isolation, hindering the utilization of knowledge from prior experiences.20

This creates two related big challenges: first, this setup is extremely inefficient because of the vast21

compute that is necessary to train policies from scratch, when even small changes in the task requires22

the agent to expose itself to millions of experiences in the environment; and second, this results in23

brittle policies that fail when facing perturbations to the task or environment.24

Two recent approaches try to deal with this problem, namely unsupervised pretraining and using offline25

data. In the first approach, an agent is first pretrained using interactions in a similar environment, but26

without access to a specific task and its reward function. The assumption is that this can lead to a27

better initialization of the network weights for the second phase, when the agent starts to receive a28

reward signal and uses it to finetune its weights towards the desired task.29

In the second approach, the agent first acquires offline data that contains demonstrations of interactions30

with the environment and the task reward. The agent can then use this data in different ways to extract31

the optimal policy for the task at hand.32

In this paper we propose to unify these two approaches. In our setup an agent has unlimited access to33

unsupervised data in the environment, and in addition has access to a small amount of expert offline34

data. The main question we ask is how can the agent use this data to learn a new task faster. We35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Figure 1: The proposed setup, and the two environments we use.

argue that (1) it is better to treat unsupervised data as offline data rather than a method to pretrain the36

agent’s weights, and (2) rather than measuring the ability to learn from offline data alone, it is better37

to measure its usefulness by the acceleration it provides to subsequent online reinforcement learning.38

Recent work [18] has already shown a step in the direction of unifying offline and unsupervised39

data, as it shows that for offline RL, using data that was acquired through unsupervised exploration40

has benefits over using the data from some reward maximizing policy. However the setting is not41

completely realistic as it assumes the ground truth reward function is known after the data was42

collected. Here we show how to get away from this assumption, by training a reward predictor using43

a few supervised offline expert demonstrations, and a small amount of supervised online interactions.44

To further explore possible methods for marrying unsupervised and offline data, we consider world45

models. A recent paper [13] showed that world models are effective in an unsupervised pretraining46

setup, achieving excellent results in the Unsupervised RL Benchmark (URLB) [8]. We claim that the47

reason for this is that unsupervised pretraining is best used as a source of exploratory data rather than48

a way to achieve better initialization of the policy weights. By extending the method in Rajeswar49

et al. [13], we show significant improvements in adapting to novel tasks in an order of magnitude50

less online steps. We also show that access to a few expert demonstrations further accelerates online51

training in the URLB.52

Following our findings, we propose this setup as an extension to the Unsupervised RL Benchmark that53

studies the unified space of using unsupervised exploratory data, supervised expert demonstrations,54

and supervised online interactions. We believe this is a natural setup to start benchmarking, as it55

represents the realistic setting where different possible data sources are available, and extremely56

rapid adaptation is required. Furthermore, our results on this setup suggests that a world model is a57

convenient method to fuse different data sources, leading to a method that effectively consolidates58

policy training using unsupervised exploratory data, expert demonstrations and online interactions.59

Our main contributions can be summarized as following:60

1. We propose to study a unified problem dealing with unsupervised pretraining, offline expert61

demonstrations, and online interactions in the environment. Towards this goal we publish an62

extension to the Unsupervised RL Benchmark, that can serve as an initial test-bed for this setup.63

2. Compared to previous work on unsupervised offline RL [18], we drop the assumption of a known64

ground-truth reward function, and propose a way to train a reward predictor using a small amount65

of supervised offline and online data. Furthermore, in contrast to previous work on state space66

only, we show results in pixel space, making the overall setup more realistic.67

3. Compared to previous work on using world models for unsupervised pretraining [13], we improve68

the training method, leading to better performance in fast adaptation, and we show how to69

incorporate offline data of a few expert demonstrations, leading to an even larger improvment of70

the results on the URLB. Our results suggest that world models are an effective tool to merge71

different types of data sources for RL, without loosing information in the way.72

All data and code implementing the benchmark and tested methods will be made available upon73

publication.74

2



2 Preliminaries and Related Work75

2.1 Unsupervised Reinforcement Learning Benchmark76

The Unsupervised Reinforcement Learning Benchmark (URLB) Laskin et al. [8] is a benchmark that77

compares the adaptation capabilities of different RL unsupervised exploration algorithms. The setup78

is separated into two stages: pretraining and fine-tuning. During the pretraining stage, a policy is79

trained on an intrinsic reward, which is specified by the tested exploration method. At the second80

stage, the resulted policy from the previous stage is used for fine-tuning on a specific task from the81

same domain as the one used during pre-training. The underlining RL algorithm is DrQv2 [17],82

which is a variant of DDPG [10].83

In the pretraining stage, the tested exploration methods are separated into knowledge based, data based84

and competence methods. Knowledge-based methods focus on maximizing the entropy of visited85

states. Competence methods focus on maximizing the entropy of the learned policy. Data-based86

methods learn an explicit skill vector w by maximizing the mutual information between the encoded87

observation and skill. For each exploration method, the pretraining stage is performed environments88

from the dm_control suit: Walker, Quadruped and Jaco. Here we focus on Walker and Quadruped, as89

they present a more interesting challenge of exploration vs. fast adaptation.90

In the finetuning stage, the exploration strategy used during pretraining is evaluated on set of tasks.91

First, the policy weights and part of the critic network are loaded from the pre-training stage. Then,92

the policy is trained on the task using the baseline RL algorithm DrQv2. The method is evaluated93

after 100K steps of finetuning, which is used as a measure of adaptation to a novel tasks.94

2.2 Intrinsic Reward Models95

Intrinsic reward method are used to facilitate better exploration in sparse reward environments. The96

idea is to use an additional reward to promote the visiting of novel states. Intrinsic reward methods97

are specially important when dealing with unsupervised environments, as they form the only source98

of reward. In this work we focus on four leading methods for exploration as used in Laskin et al. [7]99

and Rajeswar et al. [13]. The methods we consider are ICM [12], RND [1], RE3 [14], and Latent100

Bayesian Surprise (LBS) [11]. The latter is used in DreamerMPC [13], on which we base our method.101

2.3 ExORL102

ExORL [18] is a different benchmark that tests ways to utilize unsupervised exploration data from103

the perspective of offline RL. In URLB, the setup builds on pretraining a policy and later finetuning104

on a specific task. In contrast, ExORL assumes there is access to the reward function, that can be105

used to fix the unsupervised exploration buffer, which originally does not contain the reward signal.106

This is done without collecting any additional data. In this work, they argue that using the whole107

unsupervised buffer as the finetuning data source is more beneficial then using the policy that was108

used during the unsupervised data collection stage. All this, assuming the reward function is known109

and is easy to re-compute for each task.110

2.4 World Model Pretraining111

A major development in model based RL is the success of learned world models, which allow112

simulating environment transitions, and can facilitate sample efficient training. A learned world113

model is a data driven model that can estimate the distribution over the next state given a history of114

previous transitions:115

pθ(st+1, rt+1|st, at, st−1, . . . ). (1)

In essence, a well trained world model can replace a complex simulation of the environment. This,116

in turn, allows training the agent with almost no interaction with the actual environment, when the117

underlining environment dynamics stay the same. Additionally, planning techniques can be used by118

generating possible futures from the current states.119

An example of such an architecture for world models is Dreamer [3] which uses an RNN to learn120

the environment dynamics in a sequential way. In addition, it learns the reward model R(s, a). This121

allows generating partial trajectories, using some policy, and training an off-policy agent on the122

3



generated data. Recently, excellent results were achieved on the tasks tested in URLB. The method,123

which we call here DreamerMPC [13], uses the Dreamer architecture as a world model, where124

the data collected during the pretraining stage is used to train it, and LBS is used as the intrinsic125

reward. Additionally, during the fine-tuning stage, a planning strategy called Model Predictive126

Control (MPC) [4] is used to generate trajectories.127

In MPC, the planning policy consists of a network that predicts the value function Vξ(s) and Gaussian128

action sequence distribution estimator p(a1, a2, . . . , at|s0). For each state, several planning iterations129

are done, to gradually find the optimal trajectory and then the first planned action is used to proceed130

in the actual environment. For each planning iteration, given the sequence distribution, an expected131

return is estimated using the world model, and the value function. The return estimation is done in132

the following way:133

1. the state s0 is received from the environment134

2. an initialized Gaussian sequence distribution p(a1, a2, . . . , at|s0) is used to generate a135

sequence of actions.136

3. the world model pθ(st+1, rt+1|st, at) is used to predict the reward at each time step until st137

4. the rest of the expected return is calculated by Vξ(st+1)138

Top sampled sequences are used to update the distribution, and another set of sequences are sampled.139

This process continues for a set amount of iterations. DreamerMPC used a Dreamer based world140

model and MPC, and showed superior performance on a variety of tasks compared to standard RL141

policy optimization via SGD.142

2.5 Offline RL143

In offline RL, rather than collecting data by interacting with the environment, data is collected by a144

different, usually unknown method, and used by the agent as an dataset to learn the policy. Data can145

come from expert demonstrations, historical data, or simulated environments. The aim is to reduce146

the need of costly interaction with the environment. For an overview of the approach see Levine et al.147

[9], and for different datasets see Fu et al. [2].148

One of the main issues with offline RL relates to the ability to generalize from one setup to another.149

Several methods where developed to address this problem, such as CQL [6], IQL [5] and CRR [16].150

3 Motivation: Unsupervised vs. Offline Data151

The setup we use in this paper combines both unsupervised and offline data. We argue that this is a152

natural setup to consider, as it deals with related issues that arise in recent work, namely URLB [8],153

ExORL [18] and DreamerMPC [13]. In this section we discuss these issues based on experiments we154

performed on URLB, which serve as the motivation for the final setup we propose.155

The results shown in Fig. 2, and Fig. 3, demonstrate different ways in which unsupervised exploration156

can be used. The standard method, as proposed in the original benchmark of URLB, is to pretrain an157

agent in the unsupervised environment, using various possible exploration methods, and then use158

the weights as initial values before finetuning them using a reward function for some given task.159

This is denoted by Finetune in the figures, where the performance is measured for each task after160

100K environment steps including a reward signal. While finetuning a pretrained agent leads to some161

acceleration in training time for some of the tasks, it is not always significantly better than initializing162

the weights randomly and completely discard the output of the pretraining phase (baseline).163

We argue that this happens because the benefit of the pretrained agent does not necessarily come164

from the value of its weights, but rather from its behavior in the environment in the initial steps. In165

other words, not because its weights are already closer to their optimal values, but rather because the166

pretrained agent can start generating useful exploration trajectories from step one. To test this, we167

use a different method to exploit unsupervised exploration, where the exploration trajectories in the168

pretraining phase are stored in a buffer, and then used together with the online data while training the169

agent on a specific task.170

Essentially this means the pretraining exploration is treated as offline data, however because it171

comes from unsupervised exploration, the corresponding reward signal is not right. To correct this,172

4



ICM RND RE3

0.6

0.8

1

1.2

1.4

1.6

baseline

Walker Run States

V
al

ue
s

Finetune
Reward Model

ICM RND RE3

1

1.5

Walker Flip States
ICM RND RE3

0.8

1

1.2

1.4

1.6

1.8

2

Walker Walk States

ICM RND RE3

1

2

3

4

5

Quad Walk States

V
al

ue
s

ICM RND RE3

1

2

3

Quad Run States

ICM RND RE3

1

2

3

4

Quad Jump States

Figure 2: Average episodic returns (over 10 episodes) on the URLB benchmark with state observa-
tions after 100K training steps. We show two environments and three different tasks for each, and
values are normalized to a baseline that does not use any pretraining information. Results show that (1)
finetuning a pretrained agent (Finetune) is not always better than training from scratch; and (2) Using
the unsupervised pretraining to collect offline data (Reward Model) can lead to better performance.
This is implemented by training a reward model to predict the reward of the unsupervised data.

ICM RND RE3
0

0.5

1

1.5

2

2.5

baseline

Walker Run Pixels

V
al

ue
s

Finetune
Reward Model

ICM RND RE3
0

0.5

1

1.5

2

Walker Flip Pixels
ICM RND RE3

0

5

10

Walker Walk Pixels

ICM RND RE3

0.5

1

1.5

Quad Walk Pixels

V
al

ue
s

ICM RND RE3

1

2

3

Quad Run Pixels
ICM RND RE3

1

2

3

Quad Jump Pixels

Figure 3: Average episodic returns (over 10 episodes) on the URLB benchmark for pixel observations
after 100K training steps (normalized to a baseline with no pretraining). The behavior is similar to
state observation in Fig. 2, namely (1) finetuning a pretrained agent is not always beneficial (Finetune),
and (2) using the unsupervised pretraining as an offline buffer (where the reward signal is predicted
by a learned reward model) can lead to better results (Reward Model).

5



we implement a reward-model component, that uses the online supervised data, to learn a reward173

predictor. In turn, the reward model can be used to predict the reward in each step of the exploratory174

trajectories in the pretrained buffer. The results in Fig. 2 and Fig. 3 show this method (Reward175

Model) outperforms simple finetuning of the agent weights. For more details on the implementation176

of this method see the appendix.177

It is interesting to note the relation between the Reward Model method and two recently proposed178

approaches, namely ExORL [18], and DreamerMPC [13] (see Sec. 2 for their description). The179

ExORL approach claims that unsupervised exploratory data can serve as better data for offline RL,180

provided that the ground truth reward function can be used in the offline training phase. Our proposed181

Reward Model method differs from ExORL in two different ways: (1) it does not rely on access182

to the true reward function and instead it learns it from the few supervised online steps, and (2) its183

performance is measured after a few online steps in the environment rather than using the offline data184

only.185

In DreamerMPC, an agent based on planning with a world model is shown to significantly outperform186

all other methods in URLB. While this can be a result of the general efficiency of planning in RL,187

we argue that the reasons for the favorable performance of DreamerMPC are related to the results188

discussed above, because training a world model on unsupervised exploration can be viewed as a smart189

way to store the exploration trajectories. The world model is essentially a buffer of the exploration190

trajectories that also allows generalization and planning. We show results with DreamerMPC in later191

sections.192

4 URLB10K: A Benchmark for Fast Adaptation193

Table 1: Average episodic return (over 10 episodes) after 10K training steps: we compare learning
the reward model from 10K online steps vs. replacing 2K with expert steps (4 episodes). In both
cases results are comparable or better than ExORL which uses a GT reward function.

Task/Method ExORL RewardModel RewardModel+Expert
Walker Walk 260 238 375
Walker Run 121 96 106
Walker Flip 207 236 285
Quadruped Walk 250 298 402
Quadruped Run 279 299 412
Quadruped Jump 324 640 630

Motivated by the results and the points discussed above, we propose a new setup to test fast adaptation194

to novel tasks. The idea is to use different sources of information to achieve even faster adaptation195

than what is tested in URLB. We base our setup on the following:196

1. The agent has access to a very large number of unsupervised interaction with the environment.197

This is similar to the URLB setup, however this can be used either for pretraining an agent,198

populating a buffer, or training a world model.199

2. The agent has access to a few expert trajectories, containing the task’s reward. This data200

can serve two purposes. First, it can be used as initial information about the task, e.g201

to train a reward predictor. Second, it can disentangle the problem of exploration in the202

environment, as using this data is somewhat equivalent to a successful exploration that203

ensures the important states in the environment were covered.204

3. Given the above data, the agent is assessed on its performance after a small amount of super-205

vised online interactions with the environment, measuring its capacity for fast adaptation.206

Specifically, we use the URLB with the DeepMind Control Suite environments [15], and we propose207

to use 2M unsupervised exploration steps and 2K supervised expert demonstration steps (4 episodes),208

and then measure the performance of the agent after 10K online supervised steps. This is an order of209

magnitude less steps then what is tested in URLB.210

Compared to URLB, the only addition are 4 episodes of supervised expert demonstration (2K steps)211

that we provide for each task. These episodes are achieved by training the DreamerMPC model on212

6



ExoRL RewardModel DreamerMPC+
0

2

4

6

baseline

Walker Run Pixels

V
al

ue
s

0 Demos
4 Demos

ExoRL RewardModel DreamerMPC+
0

1

2

3

4

Walker Flip Pixels
ExoRL RewardModel DreamerMPC+

0

5

10

15

Walker Walk Pixels

ExoRL RewardModel DreamerMPC+
0

1

2

3

Quad Walk Pixels

V
al

ue
s

ExoRL RewardModel DreamerMPC+
0

1

2

3

Quad Run Pixels

ExoRL RewardModel DreamerMPC+
0

1

2

3

4

Quad Jump Pixels

Figure 4: Results for the main methods on URLB10K. Average epidodic return (over 10 episodes).
ExORL uses a GT reward function and no online data, RewardModel and DreamerMPC+ are trained
on 10K online steps with/without 2K expert demonstrations, and all results are normalized relative to
a baseline that was trained on 100K online steps. The results show: (1) Fast adaptation is possible (2)
The method based on a world model significantly outperforms other methods. (3) Using expert data
is not always beneficial, but can lead to significant improvements.

a supervised environment for 2M steps. We use a random 4 episodes from the last 100 episodes of213

training.214

The capacity of fast adaptation can be seen in the results in table 1, presenting episode rewards after215

10K supervised steps for two different environments, and three different tasks in each. For this we216

implemented a method that uses a reward model to predict the reward of the unsupervised steps. The217

unsupervised steps are collected using LBS exploration [11] (see Sec. 2), and the method then trains218

the reward model on data from the online supervised trajectories. We test this method both with and219

without extra trajectories coming from the offline expert demonstrations, where the first option uses220

8K online steps and 2K offline expert steps, and the second uses 10K online steps only.221

The method is compared ExORL [18], which relies on the same unsupervised buffer, but instead222

of using offline expert data and online interactions, it fixes the unsupervised reward signal using223

privileged knowledge of the ground-truth reward function.224

The first thing to note in the results in table 1 is the value of replacing 4 episodes from the online225

interactions with expert demonstrations, when training the reward model. This generally leads to a226

significant improvement, although it is not always the case. The second thing to note is the comparable227

and sometimes favorable results of the learned reward model compared to ExORL. This shows that228

in this realistic setup, learning the reward from very few episodes is possible, demonstrating the229

potential for developing methods that exhibit extremely fast adaptation. Results can be viewed also in230

the bar-plots in figure 4. Details of the implementation of the method can be found in the appendix.231

5 Using a World Model232

Following the results of training a reward predictor for URLB10K, a natural next step is to consider a233

full world model. While DreamerMPC [13] showed excellent results on the original URLB, we set to234

test it on the fast adaptation setup we propose. In addition, we make modifications to the training235

method, based on the approach that the model should treat unsupervised exploration as offline data236

rather than pretraining data.237

7



The modifications we make are: (1) Utilize the exploration buffer directly, sampling batches similarly238

to the method of Reward Model; (2) make offline updates after the online steps collection is finished;239

(3) increase the environment steps to network update ratio from 10 to 5; and (4) add a few finetuning240

updates to the world model on the online episodes and the optional expert episodes. We denote this241

modified model as DreamerMPC+, and use DreamerMPC+Expert when the method is also using242

expert demonstrations for training. Additional information on the method implementation can be243

found in the appendix.244

Table 2 shows the results after 10K supervised online steps, or 8K online and 2K offline expert245

steps (marked as Expert). Comparing the modified method (DreamerMPC+) to the vanilla method246

(DreamerMPC), shows a significant improvement in all tested tasks. Moreover, replacing 4 episodes247

with expert demonstrations leads to a further increase in performance for almost all tasks. These248

results show that our training method leads a new state of the art on the URLB with or without expert249

data, outperforming all previous methods to date.250

A summary of results on the URLB10K benchmark are presented in table 3 and figure 4, comparing251

our methods based on a world model and reward model that use 10K online steps, to ExORL that uses252

privileged information of the reward function, and to the baseline of training on 100K online steps.253

These results highlight the potential for fast adaptation methods, and demonstrate the superiority of254

world models in merging data of various types into an adaptable policy.255

Table 2: Fast adaptation in DreamerMPC. Average episodic return (over 10 episodes) after 10K train-
ing steps. Our updates to the DreamerMPC model (DreamerMPC+) lead to significant improvements
in fast adaptation, and can be even further improved by incorporating 4 expert demonstration episodes
(DreamerMPC+Expert).

Task/Method DreamerMPC DreamerMPC+ DreamerMPC+Expert
Walker Walk 630 896 918
Walker Run 328 594 585
Walker Flip 607 841 889
Quadruped Walk 339 401 540
Quadruped Run 200 324 446
Quadruped Jump 449 539 915
Normalized Score 1.0 1.4 1.7

Table 3: Results for the main methods on URLB10K. Average episodic returns after 10K training
steps. DreamerMPC+Expert effectively combines unsupervised data and expert demonstration and
significantly outperforms other methods.

Task/Method Pix ExORL (GT reward) RM+Expert DreamerMPC+Expert
Walker Walk 260 375 918
Walker Run 121 106 585
Walker Flip 207 285 889
Quadruped Walk 250 402 540
Quadruped Run 279 412 446
Quadruped Jump 324 630 915

6 Discussion256

In this paper we proposed to test fast adaptation to novel tasks, using only 10K online interactions257

with the environment. In order to achieve this, we argue that a natural setup is when the agent258

has access to a large amount of unsupervised experience, and a small amount of supervised expert259

episodes, demonstrating the desired task.260

Towards this goal we presented an extension to the URLB benchmark, and studied methods that261

treat the pretraining data as offline data, specifically using world models. We show this approach262

can be related to previous work, and develop training methods that demonstrate the capacity of fast263

adaptation in such models.264

We believe that the proposed setup can serve as an initial benchmark to study and develop methods265

that can efficiently process various types of available data, and improve fast adaptation in RL.266

8



References267

[1] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random268

Network Distillation, October 2018.269

[2] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for270

deep data-driven reinforcement learning, 2021.271

[3] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with272

Discrete World Models, February 2022.273

[4] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal Difference Learning for Model274

Predictive Control, July 2022.275

[5] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit276

q-learning. arXiv preprint arXiv:2110.06169, 2021.277

[6] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning278

for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:279

1179–1191, 2020.280

[7] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.281

Reinforcement Learning with Augmented Data, November 2020.282

[8] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,283

Lerrel Pinto, and Pieter Abbeel. URLB: Unsupervised Reinforcement Learning Benchmark,284

October 2021.285

[9] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:286

Tutorial, review, and perspectives on open problems, 2020.287

[10] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval288

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,289

July 2019.290

[11] Pietro Mazzaglia, Ozan Catal, Tim Verbelen, and Bart Dhoedt. Curiosity-Driven Exploration291

via Latent Bayesian Surprise, February 2022.292

[12] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven Explo-293

ration by Self-supervised Prediction, May 2017.294

[13] Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron Courville,295

and Alexandre Lacoste. Mastering the Unsupervised Reinforcement Learning Benchmark from296

Pixels, May 2023.297

[14] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State298

Entropy Maximization with Random Encoders for Efficient Exploration, June 2021.299

[15] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,300

Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and301

tasks for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. URL302

https://www.sciencedirect.com/science/article/pii/S2665963820300099.303

[16] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E304

Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized305

regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.306

[17] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering Visual Continuous307

Control: Improved Data-Augmented Reinforcement Learning, July 2021.308

[18] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro309

Lazaric, and Lerrel Pinto. Don’t Change the Algorithm, Change the Data: Exploratory Data for310

Offline Reinforcement Learning, April 2022.311

9

https://www.sciencedirect.com/science/article/pii/S2665963820300099


Figure 5: Left: Baseline off-policy RL, where we sample only from the replay buffer. Right: PT
Buffer & Reward Model, where we additionally sample from the PT buffer and predict the task
oriented reward using the reward model.

A Additional Details of Methods312

A.1 Reward Model313

When using the reward model approach, we base the model on the Q network architecture, but instead314

of training it on Q values, we train it to output R(s, a). After collecting the seed frames, we start with315

200 batch updates to train the model using the optional expert episodes and the seed frames.316

Next, when starting the online training stage, we intermittently sample online data with the true317

reward, and train the world model, or when we sample from the unsupervised buffer we use the318

reward model to get the estimated task reward.319

Training an agent for 10K online steps, including sampling from the exploration buffer takes about 2320

hours and about 10 hours for additional 400K offline updates on a single A100 GPU.321

A.2 DreamerMPC+322

Here we do the same sampling and seed frames pre-finetuning as done in the reward model. The323

difference here is that instead of just learning R(s, a), we learn a world model. The world model324

is based on Dreamer and is learned in a supervised fashion from the exploration buffer. During the325

task training stage, the world model is finetuned to correct its reward head, as done in [13]. One326

difference, is that as we include expert data, we do additional 10 pre-finetuning updates on the world327

model just after collecting the seed frames.328

Training an agent for 10K online steps, including sampling from the exploration buffer takes about 5329

hours and about 20 hours for additional 300K offline updates, on a single A100 GPU.330

10



Algorithm 1 Finetuning With a Reward Model on Unsupervised Data

Require: Unsupervised data U , replay buffer D
Require: Reward model Rθ, pretrained policy πϕ, initialized critic Qξ

Require: number of seed steps Ns, finetune steps Nft, offline updates steps Nol

Require: reward model pre-train steps Npt

Require: offline batches counter c = 0
1: for t← 1 to Ns do
2: D ← D ∪ (s, a, s′, r)
3: end for
4: for t← 1 to Npt do
5: Update Rθ using mini-batches from D
6: end for
7: for t← 1 to Nft +Nol do
8: sample batch b ∼ Pbs(U,D + c)
9: if b ⊂ U then ▷ we sampled from the unsupervised data

10: c← c+ 1
11: (s, a, s′, r)← b
12: r′ ← Rθ(s)
13: Update πϕ and Qξ using the mini-batch (s, a, s′, r′)
14: continue
15: else if b ⊂ D then ▷ we sampled from the replay buffer
16: Update πϕ and Qξ using b
17: Update Rθ using b
18: if t < Nft then
19: a′ ← πϕ(s

′) ▷ collect next transition from the environment
20: o, r ∼ P (.|s′, a′)
21: D ← D ∪ (s′, a′, o, r)
22: end if
23: end if
24: end for

11



Figure 6: DreamerMPC architecture with additional information from expert demonstration

12


	Introduction
	Preliminaries and Related Work
	Unsupervised Reinforcement Learning Benchmark
	Intrinsic Reward Models
	ExORL
	World Model Pretraining
	Offline RL

	Motivation: Unsupervised vs. Offline Data
	URLB10K: A Benchmark for Fast Adaptation
	Using a World Model
	Discussion
	Additional Details of Methods
	Reward Model
	DreamerMPC+


