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ABSTRACT

The fast simulation of dynamical systems is a key challenge in many scientific and
engineering applications, such as weather forecasting, disease control, and drug
discovery. With the recent success of deep learning, there is increasing interest
in using neural networks to solve differential equations in a data-driven manner.
However, existing methods are either limited to specific types of differential equa-
tions or require large amounts of data for training. This restricts their practicality
in many real-world applications, where data is often scarce or expensive to obtain.
To address this, we propose a novel multi-modal foundation model, named FMint
(Foundation Model based on Initialization), to bridge the gap between human-
designed and data-driven models for the fast simulation of dynamical systems.
Built on a decoder-only transformer architecture with in-context learning, FMint
utilizes both numerical and textual data to learn a universal error correction
scheme for dynamical systems, using prompted sequences of coarse solutions
from traditional solvers. The model is pre-trained on a corpus of 400K ODEs,
and we perform extensive experiments on challenging ODEs that exhibit chaotic
behavior and of high dimensionality. Our results demonstrate the effectiveness of
the proposed model in terms of both accuracy and efficiency compared to classical
numerical solvers, highlighting FMint’s potential as a general-purpose solver for
dynamical systems. Our approach achieves an accuracy improvement of 1 to 2 or-
ders of magnitude over state-of-the-art dynamical system simulators, and delivers
a 5X speedup compared to traditional numerical algorithms.

1 INTRODUCTION

Dynamical systems characterize the evolution of physical states over time. They are funda-
mental in describing the change of physical states across a wide range of disciplines, including
physics (Temam, 2012; Meiss, 2007; Blackmore et al., 2011), chemistry (Tél et al., 2005; Vidal &
Pacault, 2012), engineering (Marinca & Herisanu, 2012; Wiggins, 2005; Goebel et al., 2009), and
finance (Guegan, 2009; Dong et al., 1996). Typically, these systems are formulated as systems of
ordinary differential equations (ODEs):

du(t)

dt
= f [u(t)], u(0) = c0, (1)

where c0 denotes the initial condition of the system. To solve these systems numerically, one usually
employs a human-designed numerical integration algorithm such as the Euler method or Runge-
Kutta methods. These methods can be adapted easily to solve different types of ODEs that share the
same format with guaranteed accuracy. The implementation is given as

un+1 = un + S(f,un,∆tn), u0 = c0, n = 0, 1, · · · , (2)

where S represents the numerical integration scheme, ∆tn is the step size at the n-th time step, and
un ∈ Rn is the approximated solution at the cumulative time

∑n
i=0 ∆ti.

One obstacle of these human-designed algorithm is the trade-off between accuracy and efficiency.
This makes the large-scale simulation using these numerical schemes impossible. In fact, in many
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real-world scenarios, high-volume simulation that produces forecasts on a set of initial conditions
simultaneously plays a significant role in various applications. For example, simulations of virus
propagation during an epidemic given different circumstances are necessary for formulating health
regulations (Huang et al., 2023). In these scenarios, it is practical to standardize the time step
∆t := ∆t1 = ∆t2 = · · · across simulations, facilitating batch processing. Yet, this standardization
introduces a trade-off between accuracy and efficiency: a larger time step speeds up the simulation
at the cost of increased simulation error, while a smaller time step reduces the error but slows down
the simulation. Therefore, the long runtime makes these traditional algorithms unsuitable for wide
range simulations in many practical situations.

Recently, deep learning methods have demonstrated remarkable success across various scientific
domains, including solving partial differential equations (PDEs) (Karniadakis et al., 2021; Wang
et al., 2024a), learning operators (Li et al., 2010), and addressing inverse problems (Ongie et al.,
2020; Li et al., 2020a; Aggarwal et al., 2018). However, they typically underperform in data-scarce
environments and may lack essential domain knowledge. Therefore, we ask an important question:

Is it possible to combine the best of both worlds, leveraging the efficiency of human-designed algo-
rithms and the accuracy of data-driven methods?

To address this, we adopt a multi-modal approach to develop a foundation model, FMint
(Foundation Model based on Initialization), a pre-trained foundation model designed to speed up
large-scale simulations of dynamical systems with high accuracy via error correction. We integrate
human expertise i.e., traditional ODE solvers into modern data-driven methods and adapt the idea
of in-context learning to obtain refined solutions based on the initialization of coarse solutions that
are computed using human-designed integration method for various differential equations.

In the scientific computing field, most models use solely numerical data as input. However, we ask:
Can we integrate other data modalities in scientific computing to enrich the information available?
Various characteristic behaviors of dynamical systems can be generalized by textual descriptions,
providing more context to the systems. For example, for the Schrödinger equation

iℏ
∂

∂t
Ψ(x, t) = − ℏ2

2m
∇2Ψ(x, t) + V (x)Ψ(x, t), (3)

where Ψ(x, t) is the wave function, ℏ is the Planck constant, and V (x) is the potential energy, the
possible energy levels of the electron, its spatial distribution, and its interaction with the environ-
ment has been analyzed. We hence further incorporate textual modalities in our model that provide
guidance to the numerical data.

Modal 1: Numerical Data For the numerical modal data, we input the pairs of coarse solutions
from traditional numerical solver and the corresponding error correction term to the model. Based on
in-context learning, given prompted sequences of such pairs, the model is trained to predict the error
correction term for the query coarse solution to achieve high accuracy. Such a paradigm allows
the model to generalize to various downstream tasks with a short prompt of examples, making it
efficient and accurate in a data-scarce environment.

Modal 2: Textual Data (optional) FMint can also take textual information as supplemental input
to the model. It includes the descriptive information about the equations such as the mathematical
expression, or physical meaning of the parameters, etc. We would like to mention here that the
textual data is only served as an optional input and is not necessary if not available.

Through extensive experiments involving ODEs with qualitatively different behaviors (periodic,
chaotic, etc), we demonstrate the effectiveness of FMint in terms of both accuracy and efficiency
over classical numerical solvers and deep learning based methods.

We summarize our contributions as follows:

(1) To the best of our knowledge, FMint is the first multi-modal foundation model that synthe-
sizes human-designed algorithms and deep learning framework. Back-boned on the decoder-only
transformer with in-context learning scheme, FMint achieves competitive accuracy and efficiency in
simulating high-dimensional ODEs with qualitatively different behaviors.

(2) We obtained 10 to 100 times higher accuracy than state-of-the-art dynamical system simula-
tors, and 5X speedup compared to traditional numerical algorithms with remarkable generalization
ability.
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2 METHODOLOGY

2.1 MULTI-MODAL DATA PREPARATION

FMint is a multi-modal foundation modal that bridges human-designed algorithms and data-driven
methods. It takes two types of modalities: 1) Numerical Data and, 2) Textual data. The details of
the data preparation is summarized below.

Modality 1: Numerical Data In solving 1 for large-scale simulations, we consider selecting a
numerical integration scheme that utilizes a large time step size. This can be written in stride k ∈
{1, 2, ...} and step size ∆t that results in desired accuracy, denoted as k∆t. For illustrative purposes,
we consider the Euler method, which yields the following numerical simulation scheme:

û(t+ k∆t) = û(t) + f [û(t)] · k∆t. (4)

However, solving the dynamical system 1 with numerical scheme 4 and large step size k∆t unavoid-
ably causes large simulation errors. From the Taylor expansion

u(t+ k∆t) = u(t) + f [u(t)] · k∆t︸ ︷︷ ︸
For Euler method

+

∞∑
n=2

1

n!

dn

dtn
u(t) · [k∆t]n︸ ︷︷ ︸

errn(k,∆t,u(t))

, (5)

we see that the error term
∑∞

n=2 errn(k,∆t,u(t)) is non-negligible and this limits the fast simula-
tion of real-world dynamical systems. We therefore consider building a corrector foundation model
that approximates

∑∞
n=2 errn for various dynamical systems. We call solutions obtained by vanilla

numerical integration schemes 4 with time step k∆t as “coarse solutions”. With coarse solutions as
an initialization, our goal is to produce highly accurate solution with fast inference time on a diverse
set of dynamical systems, i.e.,

ûk(n+1) = ûkn + S (f, ûkn, k∆t) + FMint (ûkn; Θ) , û0 = c0, n = 0, 1, · · · , (6)

where Θ represents all the model parameters. We designed our model using a decoder-only trans-
former backbone (Vaswani et al., 2017). The model is trained to perform in-context learning such
that it predicts the error correction term in examples based on previous demonstrations. The training
is done in a similar manner to the next-token-prediction scheme.

Training Data Preparation. We construct FMint to learn the corrector from multiple demos from
the same ODE system, each consists of coarse solutions and their corresponding correction term.
To prepare for the training data, for i-th ODE equation, we first simulate using fine step size ∆t and
obtain ODE {ui

j}knj=1 where ui
j represents the fine-grained solution for i-th ODE system at time step

j∆t. Then using coarse step size k∆t, we generate ODE results {ûi
kj}nj=1 where we denote ûi

kj the
coarse solution for i-th ODE equation at time step kj∆t with predefined stride k. The corresponding
error correction term for each coarse solutions are computed from the difference

errûkj
= uk(j+1) − ûkj − S (f, ûkj , k∆t) . (7)

One pair of coarse solutions ûi = {ûi
kj}nj=1 and error term erri = {errûi

kj
}nj=1 composes one

demo. The model takes a collection of demos of size d, a query data sequence ût and outputs an
error correction term errt for the query data{

{û1, err1}, {û2, err2}, . . . , {ûd, errd}, ût
}
→ errt. (8)

All the demo information will be tokenized before passed into the FMint model. We describe the
tokenization in detail in Subsection 2.2.

Pretraining Data. We pretrain the FMint model with four types of ODEs that exhibit qualitatively
different characteristics to cover a wide range of diversity in data:

(1) Lorenz model. The Lorenz system is a 3D system, well-known for its chaotic behavior, originally
developed to model atmospheric convection. It is governed by three coupled, nonlinear differential
equations.
(2) Damped oscillator. A damped oscillator is a 2nd order system that describes a system where the
motion of the oscillator is subject to a force that reduces its amplitude over time. This leads to a
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decay in oscillation.
(3) Van der Pol oscillator. The Van der Pol oscillator is a 2nd-order nonlinear oscillator. It can
sustain oscillations indefinitely, known as limit cycles.
(4) Lotka-Volterra. The Lotka-Volterra system is a 2D system that describes the nonlinear interaction
between two species: the prey and the predator.

Modality 2: Textual Data. For the optional multi-modal training, we produced 30 descriptions per
ODE as supplemental textual data for training and testing. These data contains the mathematical
expression, exact parameters used for each ODEs, or behaviors under different parameter ranges.
These data are generated with the help of GPT-4. We provide the details of the textual data genera-
tion in Appendix A.5 and provide some examples listed in Appendix A.6.

2.2 MODEL DESIGN AND MODALITY FUSION

In this subsection, we describe the model architecture and the fusion of modalities.

Table 1: Input tokens for a 2D ODE demo.

Coarse solution Error term Query

key 0 . . . tn 0 . . . tn 0 . . . tq

value û(0) . . . û(tn) errû(0) . . . errû(tn) ûq(0) . . . ûq(tq)
v̂(0) . . . v̂(tn) errv̂(0) . . . errv̂(tn) v̂q(0) . . . v̂q(tq)

Tokenization FMint processes two modalities of data: numerical and textual. Like other language
models, FMint requires tokenization of the input data before passing them into the transformer. The
numerical data can be classified into three categories: coarse solutions, error corrections, and query
solutions. Query solutions consists of the coarse solution of the query trajectory. As previously
discussed, FMint employs in-context learning using pairs of coarse solutions and their associated
error corrections to predict the error corrections for the query locations. As shown in Table 1, each
column represents a token, with each token belonging to one of the three categories. To handle these
three categories, we utilize a shared embedding layer that maps them into embedding vectors. Ad-
ditionally, a learnable positional embedding is appended to the embedding vectors of each category.
Notably, the positional embeddings are consistent within each data category but differ across the
categories. For tokenizing textual data, we employ a separate embedding layer, and the resulting
embedding vectors are appended with positional embeddings.

Model architecture. Similar to language models, FMint is a decoder-only transformer model,
where the key design aspect lies in the appropriate masking of the attention mechanism. The mask
must satisfy the following requirements: (1) When predicting query locations, the model should be
invariant to the order of queries, allowing predictions to be made independently and in parallel. (2)
When predicting queries in the current example, the query tokens must have access to the tokens
of coarse solutions and error corrections from both previous and the current examples. To effec-
tively manage these constraints, we use a specialized masking technique introduced by Yang et al.
(2023b). In particular, the mask is designed such that when predicting the current queried error
correction, the model “sees” the prompt, all previous coarse solutions with error terms and queries
with the queried error terms, but not the current queried error term. After passing through multiple
attention blocks, FMint is connected to a head layer (multi-layer perceptron), which outputs the er-
ror correction predictions for the query locations of the system. The architecture of FMint is shown
in Figure 1.

Training and inference. We pretrain FMint on 400K ODE simulation data using an in-context
learning scheme. During training, ODE trajectories with the same parameters but different initial
conditions are passed to the model as demo pairs. The query tokens share the same time variables
as the error correction tokens, but their values are set to 0. The training loss function is the mean
squared error (MSE) 9, which minimizes the difference between the predicted error corrections for
the query data and the ground truth error. Thanks to the mask design, the model outputs predic-
tions in a language generation-like manner, using information from both the current and previous
examples.
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Coarse Sol Embedding

Error correction Embedding

Query Embedding

Prediction Embedding

Prompt Embedding

Figure 1: Work flow of FMint model.

MSE =
1

N

N∑
i=1

∥ẽrri − erri∥2 (9)

During inference, we provide FMint with a few demo pairs of coarse solutions and corresponding
error corrections. Once given the query locations, FMint accurately predicts the error corrections,
achieving high accuracy even from coarse, low-accuracy simulation data. The generation of query
locations is highly flexible and order-invariant, allowing users to perform data interpolation. No-
tably, for relatively simple dynamical systems, FMint can perform zero-shot or few-shot learning.
For more complex systems, FMint still achieves high accuracy with minimal fine-tuning, as shown
in the numerical results section 3.

3 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate the effectiveness of FMint and compare
its results with SOTA baslines (Chen et al., 2018; Huang et al., 2023; Yang et al., 2023a) on a wide
range of ODEs from 1D to 3D. We aim to answer the following research questions:

RQ1. How does FMint perform compared to baseline models in terms of accuracy and efficiency.

RQ2. How does FMint adapt to ODEs’ different behavior under various data generation coefficients.

RQ3. Whether the optional textual data improves the performance of FMint.

3.1 BASIC SET-UP

Pretraining data preparation. The pretraining data consists of 400K ODEs that are commonly
observed in important applications in engineering and science: (1) Lorenz model, (2) Damped os-
cillator, (3) Van der Pol oscillator, and (4) Lotka-Volterra (LV) dynamics. For each ODE system, we
created 1000 variations with different parameters and for each variation, we produce 100 trajectories
with different initial conditions. Consequently, our dataset comprises trajectories of 100,000 ODEs
for each dynamical system, differentiated by varying coefficients and initial conditions.

We have included more details on these ODE systems in Appendix A.1. For all four ODE systems,
the coefficients’ range are provided in Table 8; the time step size ∆t, the value of strides k, the
range of initial conditions (IC), and the numerical integration scheme used for data generation are
summarized in Table 7.

Implementation details. As a decoder-only transformer model, FMint is configured with ap-
proximately 15.8M parameters. The model features six heads for multi-head attention, with an
input/output dimension of 256 for each layer. The embedding vector dimensions for the coarse so-
lution, error correction, and query are set to 256, while the hidden dimension of the feed-forward
networks is set to 1024. Pretraining is conducted on a NVIDIA A100 GPU with 80 GB of memory

5
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and finetuning is conducted on a NVIDIA A6000 GPU with 48 GB of memory. We use AdamW op-
timizer with a warmup-cosine-decay schedule, with peak learning rate 1e-4 and 60 training epochs.
The Adam β1 and Adam β2 are 0.9 and 0.999, respectively, and the weight decay is set to 1e-4.
Demo number for training and testing is five.

Baselines and tasks. We compare FMint with three baseline models: Neural ODE (Chen et al.,
2018), NeurVec (Huang et al., 2023), and In-Context Operator Networks (ICON-LM) (Yang et al.,
2023b). Neural ODEs model continuous-time dynamics by parameterizing the derivative of the
hidden state with a neural network. This approach turns the forward pass into solving an initial
value problem, offering a memory-efficient way to capture temporal patterns in data. NeurVec is
a deep learning-based corrector aimed to compensate for integration errors and enable larger time
step sizes in simulations. ICON-LM is a foundation model for operator learning, achieving better
accuracy and data efficiency than Fourier Neural Operator (Li et al., 2020b) and DeepONet (Lu
et al., 2019).

Among them, ICON-LM is a multi-task model trained on a large collection of examples while both
Neural ODE and NeurVec fit one neural network per example. The configuration and training details
of Neural ODE and NeurVec are provided in Appendix A.3 and A.4, while the settings for ICON-LM
follow those outlined in the original work (Yang et al., 2023b).

Evaluation metrics. We use the mean absolute errors (MAE) and root mean square errors (RMSE)
compared to fine-grained ODE solutions as the evaluation metric:

MAE =
1

N

N∑
i=1

∥ũi − ui∥2, RMSE =

√√√√ 1

N

N∑
i=1

∥ũi − ui∥2, (10)

where ũi is the predicted ODE solution for the i-th equation. For FMint, it can be computed via
error correction ũi

k = ûi
k + êrri such that ûi

k is the coarse solution of the i-th equation, and êrri is
the model output by FMint.

3.2 RQ1. FMINT V.S. BASELINS MODELS

Here we show that FMint outperforms baseline methods on both in-distribution and out-of-
distribution data in terms of accuracy and efficiency.

In-distribution ODEs

Accuracy. We evaluate FMint on the test split of the pretraining dataset. This contains ODEs from
the same ODE families with the same parameter range, but with different random parameters within
the range and different initial conditions. For each ODE system, we finetuned our model for 1000
or 2000 epochs with trajectories of size 100. Details on the testing coefficient range and finetuning
epochs are included in Table 8.

Table 2: Performance for in-distribution ODEs via MAE and RMSE (lower is better)

MAE RMSE

Methods Lorenz Damped Osci Van der Pol LV Lorenz Damped Osci Van der Pol LV

ICON-LM 2.87 0.095 1.73 5.74 4.98 0.14 2.03 9.07
Neural ODE 17.9017 0.0865 1.8476 6.3497 22.6992 0.3907 2.2656 9.2982
NeurVec 6.6465 0.0919 1.7583 4.9032 10.5565 0.4499 2.0390 8.5570
FMint 0.159 0.0044 0.00878 0.0304 0.33 0.00695 0.0119 0.0433

MAE and RMSE results are shown in Table 2 for all in-distribution ODE families with the best re-
sult in bold and the second best with underline. Both metrics are averaged over 25 ODEs with initial
conditions from the same family and the number of demos is five during the inference stage. Exam-
ple visualization of FMint’s performance on Lorenz and Van der Pol is shown in Figure (2a) (2b).
The fine-grained solution uj is labeled as Fine ode, the coarse solution ûkj is labeled as coarse
ode and FMint result is labeled as FMint ode. For visualization of FMint on all tested ODEs, see
Appendix A.7.

We observe that FMint achieves an accuracy that is at least an order of magnitude higher than all
baseline models. For the relatively simple model of damped oscillators, we observe that all models
exhibit relatively small errors, with FMint achieving the highest accuracy. However, for the Lorenz
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model, where the dynamics are highly chaotic, Neural ODE completely fails to capture the dynamics
at large time steps. This underscores the importance of human-designed algorithms in stabilizing the
system, especially when the initial conditions vary. NeurVec performs better but remains unsatisfac-
tory, while ICON-LM achieves the best results among the baselines. These observations suggest that
pretraining on a diverse dataset is crucial; otherwise, variations in the initial conditions will cause
the model to fail, which explains NeurVec’s weaker performance in this case. FMint achieves the
best performance due to both its pretraining and the combination of data-driven and human-designed
algorithms.
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(b) Van der Pol
Efficiency. We further examined the runtime of FMint in comparison with fine solution generation
using RK4. The test is conducted on Lotka-Volterra system with 500 equations. To display the
runtime better, we use the runtime for obtaining coarse solutions using RK4 as one unit, and we
report the result in Figure 3. FMint is able to attain results with comparable accuracy to the fine
solutions (RK-FINE) using less than 20% of its time.

Figure 3: Normalized runtime for
Lotka-Volterra of reference solution
(RK4-FINE) coarse solution (RK4-
COARSE) and FMint.

Out-of-distribution (OOD) ODEs

To further demonstrate the performance of FMint on unseen
ODEs from different ODE families, we use data simulated
from the following dynamical systems: driven-damped pen-
dulum (2D), falling object with air resistence (2D), FitzHugh-
Nagumo systems (2D), Pendulum under gravity (2D), and
the Rössler dynamics (3D). These test ODEs are qualita-
tively different from the training data, thus convincing to vali-
date FMint’s capability as a foundation model for dynamical
systems. For more details about the OOD ODEs, see Ap-
pendix A.2. We evaluate the transfer performance of FMint
using trajectories of size N ∈ {25, 50, 200, 1000}. We fine-
tune the model for 1000 to 2000 iterations on the new data of
size N and report the RMSE and MAE on the test data. Details
on the coefficient range and finetuning epochs are included in
Table 8. As a comparison, RMSE and MAE are computed for NeurVec and Neural ODE using
training set of size 50K. The results are shown in Table 3

We observe that with only 25 training trajectories, FMint is able to outperform NeurVec and Neural
ODE trained on data with sample size 50000. Although increasing the training sample size may
improve the accuracy of FMint, finetuning with small sample size still gives us robust results. This
shows that FMint has great potential for large-scale simulations in many real-world scenarios where
data collection is expensive.

MAE v.s. training epochs. To better examine what factors may affect FMint’s performance for
unseen ODEs other than training sample size, we fine tuned our model on Lorenz equation with
unseen coefficient range ρ ∈ (100, 150). The system exhibits more complex chaotic dynamics
with larger attractor regions and more intricate patterns under this range. We plotted the MAE on
the testing split of trajectories of size 100 with respect to finetuning epochs in Figure 4 with one
standard deviation. As expected, we see that MAE decreases as training epochs increases but starts
to saturate after a certain point.
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Table 3: Performance of FMint on unseen ODEs in MAE.

Unseen ODE

Method #Samples Driven
damped

Falling Fitzhugh
Nagumo

Pendulum Rössler

FMint 25 1.06e-3 2.71e-3 9.53e-3 1.10e-3 1.61e-3
50 6.77e-4 2.99e-3 9.79e-3 1.26e-3 1.61e-3
200 9.32e-4 2.88e-3 7.67e-3 1.15e-3 1.53e-3
1000 9.02e-4 2.51e-3 6.01e-3 1.25e-3 1.43e-3

NeurVec 50000 0.0538 0.7068 0.2782 0.0666 0.0084
Neural
ODE

50000 0.5592 0.9743 0.9314 0.8519 0.0795

2000 4000 6000 8000 10000
Epochs

0

1

2

3

4

5

6

7

M
AE

Chaotic Lorenz model, MAE vs Epochs
MAE
std dev

Figure 4: MAE v.s. fine-tuning
epochs for Lorenz equation.

3.3 RQ2. UNIFORMITY OF FMINT’S PERFORMANCE

On dynamical systems with qualitatively different behaviors.

For the same dynamical systems, different parameter ranges can lead to vastly different behaviors.
For example, the Lorenz system is highly sensitive to initial conditions and parameter values, leading
to chaotic behavior under certain conditions. This is challenging for traditional numerical solvers
to simulate with large time steps, since even small errors introduced by large time steps can result
in significant deviations over time due to the sensitivity to initial conditions. In addition, chaotic
systems exhibit fine-scale behaviors, such as oscillations, sharp changes, or bifurcations. Large time
steps may skip over these critical behaviors, missing important features like turning points, sharp
gradients, or periodicity.

For example, in Lorenz system, when ρ ∈ [13, 24.74), the system exhibits converging oscillatory
behavior toward either of the two fixed points. But when ρ ∈ [24.74, 100), the system exhibits
chaotic behavior and sensitive to initial conditions. As ρ increases further e.g., ρ > 100, the chaotic
behavior becomes more complex. Figure 5 shows trajectories generated with σ = 12.69, β =
2.59, ρ = 24.33 under two initial conditions [1, 1, 1] and [20, 20, 20] (top) and trajectories generated
with σ = 12.69, β = 2.59, ρ = 78.06 under two initial conditions [1, 1, 1] and [20, 20, 20] (bottom).
Both trajectories are simulated for 10000 steps with ∆t = 0.004.

Table 4: Performance of FMint on systems ex-
hibiting qualitatively different behaviors, measured
in MAE and RMSE. Driven damped pendulum and
FitzHugh-Nagumo are shorten to DDP and FHN.

Name MAE RMSE

Lorenz oscillatory 0.067 0.114
Lorenz chaotic 0.129 0.209
Lorenz chaotic (complex) 0.29 0.614
DDP underdamped 1.35e-3 1.73e-3
DDP overdamped 5.66e-4 8.47e-4
DDP chaotic 1.39e-3 1.81e-3
FHN resting 1.63e-3 2.71e-3
FHN spikes 1.9e-3 2.97e-3
FHN bursting 6.95e-4 1.45e-3
FHN oscillatory 8.18e-4 1.60e-3
Rössler periodic 1.43e-3 2.36e-3
Rössler chaotic 1.44e-3 2.34e-3
Rössler hyperchaos 1.60e-3 2.70e-3
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Figure 5: Figures showing Lorenz attractors’ behavior
under two different sets of parameters.

Here we conduct extensive experiments of FMint in such cases to test its generalization ability.
Conretely, we test on three of Lorenz, three of Driven damped pendulum (DDP), four of FitzHugh-
Nagumo (FHN) and three of Rössler that exhibits various behaviors under different range of coeffi-
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cients. Results are reported in Table 4. For more details on the coefficient range for each behavior
category, see Appendix A.8.

On pretraining ODEs with different strides.

In addition, we test our pretrained model on test data simulated using different strides k than
the pretraining data. This examines how adaptable FMint is to handle realistic circumstances in
which the coarse solution simulation varies during the inference stage. For consistency over vari-
ous families, we generate test examples with new stride values proportional to the training strides:
αk, α = {0.5, 2.0}.

Table 5: MAE and RMSE of FMint under strides differs from
pretraining data.

Name k MAE RMSE k MAE RMSE

Lorenz model 50 4.5e-2 9.4e-2 200 3.15e-2 4.65e-2
Damped oscillator 50 3.58e-3 5.51e-3 200 4.03e-3 6.54e-3
Van der Pol 5 1.6e-3 2.11e-3 20 2.76e-3 3.60e-3
Lotka-Volterra 50 6.51e-3 1.01e-2 200 1.86e-2 2.64e-2

For each ODE system, we finetuned
our model for 1000 or 2000 epochs
with trajectories of size 100. Table 5
reports MAE and RMSE of FMint
for smaller or larger strides k. We
observe that the accuracy of all four
ODE families is consistent with the
accuracy of the training strides.

3.4 RQ3. MULTI-MODAL FMINT LEARNING

Performance of FMint with the supplemental textual data.

We further investigated the performance of FMint with the supplemental textual data for both pre-
training and out-of-distribution ODEs. We first pretrained the model on the pretraining data but
with prepared textual data for each ODEs. Then, the model is further finetuned on each ODEs for
1000 or 2000 epochs on trajectories of size 100. For consistency, we used the exact same numerical
dataset for both pretraining FMint without prompts and finetuning as in Section 3.2. For details on
the generation of the textual data, see Appendix A.5.

Table 6 shows the MAE and RMSE of FMint with and without the prompts. We observe that
FMint, combined with prompts, enhances performance in challenging dynamical systems such as
the Lorenz, Van der Pol, Lotka-Volterra, and Rössler systems. However, in relatively simpler cases
like the Damped Oscillator and Pendulum under gravity, the inclusion of prompts does not improve
performance, remaining comparable to baseline FMint results. This suggests that the multi-modal
foundation model is particularly advantageous when simulating complex and challenging systems.

Table 6: Compairson of FMint and FMint with textual data in MAE and RMSE

MAE

Methods Lorenz Damped
Osci

Van der
Pol

LV Driven
damped

Falling Fitzhugh
Nagumo

Pendulum Rössler

FMint 0.159 4.4e-3 8.78e-3 3.04e-2 6.77e-4 2.99e-3 9.79e-3 1.26e-3 1.61e-3
FMint + prompt 0.109 4.52e-3 4.29e-3 1.76e-2 8.12e-4 2.66e-3 9.90e-3 2.84e-3 1.40e-3

RMSE

Methods Lorenz Damped
Osci

Van der
Pol

LV Driven
damped

Falling Fitzhugh
Nagumo

Pendulum Rössler

FMint 0.33 6.95e-3 1.19e-2 4.33e-2 9.68e-4 5.26e-3 5.8e-2 1.7e-3 2.56e-3
FMint + prompt 0.224 6.97e-3 5.87e-3 2.54e-2 1.17e-3 4.35e-3 9.90e-3 2.78e-3 2.19e-3

4 RELATED WORK

Neural network for dynamical systems. In recent years, neural network-based solvers have been
widely applied to scientific problems such as solving ODEs, PDEs, operator learning, and inverse
problems. One common approach parameterizes PDE solutions using feed-forward neural networks
(Han et al., 2018; 2017; Karniadakis et al., 2021; Cui et al., 2024; De Florio et al., 2023; Sirignano
& Spiliopoulos, 2018; Yu et al., 2018; Yuan et al., 2024; Wang et al., 2024b), where physical laws
are enforced via hard or soft constraints in the loss function. The Finite Expression Method (FEX)
(Liang & Yang, 2022; Song et al., 2023; 2024) offers an interpretable alternative by representing
PDE solutions in computer algebra, capturing solution structure with high accuracy. Neural operator
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learning (Li et al., 2010; Ong et al., 2022; Cao, 2021; Li et al., 2022; Zhang et al., 2021; Lu et al.,
2021) maps varying parameters or initial conditions to solutions, achieving discretization invariance
but requiring large amounts of high-quality data and lacking generalization to unseen distributions.

Recent research has explored integrating traditional numerical algorithms with deep learning to im-
prove the accuracy of dynamical system simulations (Guo et al., 2022; Huang et al., 2023). For in-
stance, NeurVec (Huang et al., 2023) enables rapid ODE simulations with large time steps, achieving
decent accuracy on several classic systems. However, its limited generalization to out-of-distribution
systems restricts its practicality for large-scale real-world simulations.

Foundation model in scientific machine learning.

Large language models like GPT-4 (Achiam et al., 2023), DALL-E (Ramesh et al., 2021),
and Llama (Touvron et al., 2023) have achieved remarkable success across various do-
mains (Thirunavukarasu et al., 2023; Devlin et al., 2018; Sun et al., 2024; Qin et al., 2023; Hu et al.,
2024; Li et al., 2023; Bi et al., 2024; Jiang et al., 2024), including text-to-visual generation (Ji et al.,
2024; Ji & Liu, 2024) and information retrieval (Kang et al., 2024). These models leverage extensive
pre-training and adapt to downstream tasks via zero-shot or few-shot learning (Wang et al., 2023;
Yu et al., 2023), demonstrating impressive transfer learning capabilities. Inspired by these advances,
foundation models have gained traction in scientific machine learning. For example, Subramanian
et al. (2024) explored the Fourier Neural Operator (FNO) (Li et al., 2010) for solving classical PDEs,
while the Unified PDE Solver (UPS) (Shen et al., 2024) extended this approach to 1D and 2D PDEs
using pre-trained models. Additionally, McCabe et al. (2023) embedded PDEs with varying prop-
erties into a shared space, and Rahman et al. (2024) enhanced attention mechanisms for handling
PDEs with diverse dimensions.

A growing area in scientific machine learning is in-context learning (Dong et al., 2022; Xie et al.,
2021; Olsson et al., 2022; Wei et al., 2022; Xu et al., 2024), where models are prompted with ex-
ample pairs and trained to predict new queries based on observed patterns. The In-context Operator
Network (ICON) (Yang et al., 2023a; Yang & Osher, 2024; Yang et al., 2023b) applies this approach
to operator learning by leveraging example pairs with varying PDE parameters and solutions to
predict solutions for new query data.

5 CONCLUSION

In this paper, we presented FMint, a novel multi-modal foundation model that speeds up large-
scale simulations of dynamical systems. Based on the architecture of decoder-only transformer,
FMint takes textual and numerical data to deliver high-accuracy simulation based on initial solution
from traditional numerical solvers. FMint incorporates the in-context learning for a universal error
corrector for ODEs from given prompted sequences of coarse initialized solutions. It is pre-trained
using a diverse set of ODE families with qualitatively different behaviors.

We show that FMint achieves a significant improvement in accuracy over state-of-the-art dynami-
cal system simulators and accelerates traditional integration schemes. In comparison to direct ODE
solvers, we recognize the importance of integrating the strengths of human-designed algorithms
and data-driven methods for the simulation of dynamical systems. The in-context learning scheme
enables it to effectively interpolate to arbitrary time points, enhancing its versatility in handling tem-
poral dynamics. Furthermore, we propose a multi-modal foundation model perspective to address
scientific computing problems, challenging the mainstream numerical-data-only approach in the
field. Given FMint’s performance, it shows promise for scaling up to simulate even more complex
dynamics in real-world applications.
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A APPENDIX

A.1 PRETRAINING ODE DETAILS

• The Lorenz Model is described by

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

where x, y, and z represent the convection rate, horizontal temperature variation, and verti-
cal temperature variation, respectively. The Prandtl number, σ, is a dimensionless quantity
indicating the ratio of momentum diffusivity to thermal diffusivity, while the Rayleigh
number, ρ, quantifies the temperature gradient driving convection. The parameter β repre-
sents the geometric aspect ratio of the convective cells in the model.

• Damped oscillator equation is given by:

d2x

dt2
+ 2ζω

dx

dt
+ ω2x = 0,

where ζ is the damping ratio, and ω is the natural frequency.
• The Van der Pol Oscillator is given by the following equation:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0,

where µ controls the degree of nonlinearity and damping.
• The Lotka-Volterra system is given by the following equations:

dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

where x is the number of prey, y is the number of predator, α is the natural growing rate of
prey in the absense of predators, β is the natural dying rate of prey due to predation, γ is the
natural dying rate of predators in the absence of prey, and δ is the rate at which predators
increase by consuming prey.

A.2 TESTING ODE DETAILS

• Rössler attractor is a system of three nonlinear ODEs, which exhibits chaotic dynamics.
The equation is given by 

dx

dt
= −y − z,

dy

dt
= x+ ay,

dz

dt
= b+ z(x− c),

where x, y, z are state variables, a, b, c are parameters that control the behavior of the sys-
tem.

• FitzHugh-Nagumo model is used for neuron activity dynamics. It captures the essential
features of neuronal excitability, including the generation and propagation of action poten-
tials. The equation is given by 

dv

dt
= v − v3

3
− w + I,

dw

dt
= ϵ(v + a− bw),
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where v is membrane potential, w is a recovery variable, I is an external stimulus current.
Parameter ranges are listed as follows: ϵ, a, b and I .

• This equation describes the dynamics of the falling object with air resistance:
d2x

dt2
= g − c

dx

dt
,

where g represents the gravitational constant, and c is the coefficient of drag.
• This equation describes how the pendulum swings under the influence of gravity and damp-

ing:
d2x

dt2
= −g

l
sin(x)− b

dx

dt
,

where g represents the gravitational constant, and l is the length of pendulum, and b is the
damping coefficient.

• This is a classic problem in the study of dynamical systems and chaotic behavior, partic-
ularly under the influence of non-linear restoring forces and external driving forces. It is
written as:

d2θ

dt2
+ b

dθ

dt
+ c sin(θ) = A cos(ωt),

where θ represents the angular displacement from the vertical, b is the damping coefficient,
c is the gravitational constant times the length of the pendulum, A is the amplitude, and ω
is the angular frequency of the drive.

Table 7: Data generation setup

Name k ∆t IC (1st dim) IC (2nd dim) IC (3rd dim) Integration

Lotka-Volterra 100 0.001 (10, 100) (5, 10) NA RK4
Van der Pol 10 0.01 (−1.0, 1.0) (−0.5, 0.5) NA RK4

Damped Osci. 100 0.0001 (−2.0, 2.0) (−0.1, 0.1) NA RK4
Lorenz 100 0.0001 (−5, 5) (−5, 5) (0, 25) RK4

Fitzhugh Nagumo 100 0.005 (−1.0, 1.0) (−0.5, 0.5) NA RK4
Falling object 20 0.01 (0, 100) (0, 2) NA RK4

Pendulum gravity 20 0.01 (0, π
4
) (−π

4
, π
4
) NA RK4

Driven damped pendulum 20 0.01 (−π
4
, π
4
) (−0.5, 0.5) NA RK4

Rössler 100 0.001 (−1, 1) (−1, 1) (−1, 1) RK4

A.3 NEURAL ODE IMPLEMENTATION DETAILS

Neural ODE Architecture. The neural ODE model employed in our experiments consists of a fully
connected feedforward neural network with the following architecture:

• Input layer: The state dimension of the system (varies per system).
• Hidden layers: Two hidden layers, each with 1024 neurons and Tanh activation functions.
• Output layer: The derivative of the state with respect to time (same dimension as the input

state).

The model is formally described as:
fθ(t,x) = Linear(Tanh(Linear(x))).

Neural ODE Training Details. We trained the neural ODE models on various dynamical systems
using fine time step data and evaluated them on coarse time step data. The specific training parame-
ters were as follows:

• Learning Rate: 0.001
• Optimizer: Adam
• Learning Rate Decay: StepLR with a decay factor of 0.5 every 20 epochs
• Batch Size: 500
• Number of Epochs: 100
• Loss Function: Mean Squared Error (MSE)
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Table 8: Coefficient range for pre-training and testing and epochs for fine-tuning

Name pretraining testing finetuning
epochs

Lotka-Volterra α ∈ [0.1, 1.0] α ∈ [0.05, 1.2] 2000
β ∈ [0.01, 0.1] β ∈ [0.005, 0.15]
γ ∈ [0.1, 1.0] γ ∈ [0.05, 1.2]
δ ∈ [0.01, 0.1] δ ∈ [0.005, 0.15]

Van der Pol µ ∈ [0.1, 5] µ ∈ [0.05, 10] 1000
Damped Osci. ζ ∈ [0.1, 2.0] ζ ∈ [0.1, 7.0] 1000

ω ∈ [0.5, 5.0] ω ∈ [0.5, 8.0]
Lorenz σ ∈ [8, 12] σ ∈ [5, 15] 2000

ρ ∈ [20, 30] ρ ∈ [15, 35]
β ∈ [2, 3] β ∈ [1.5, 3.5]

Falling object NA c ∈ [0.01, 2.0] 1000
Fitzhugh Nagumo NA ϵ ∈ [0.005, 0.15] 2000

a ∈ [0.4, 1.2]
b ∈ [0.4, 1.2]
I ∈ [0.3, 2.0]

Pendulum gravity NA l ∈ [0.5, 2] 1000
b ∈ [0.05, 1]

Driven damped pendulum NA A ∈ [0.1, 2] 1000
b ∈ [0.1, 2]
c ∈ [1, 5]
ω ∈ [0.5, 3]

Rössler NA a ∈ [0.05, 0.35] 2000
b ∈ [0.05, 0.35]
c ∈ [3.0, 10.0]

A.4 NEURVEC IMPLEMENTATION DETAILS

NeurVec Model Architecture. The NeurVec model incorporates a multi-layer perceptron (MLP)
with a custom activation function, defined as follows:

• Input layer: The state dimension of the system .
• Hidden layer: 1024 neurons with a custom rational activation function.
• Output layer: The error correction term for the state update.

The rational activation function is defined by:

f(x) =
a3x

3 + a2x
2 + a1x+ a0

b2x2 + b1x+ b0
,

where the parameters are: a0 = 0.0218, a1 = 0.5000, a2 = 1.5957, a3 = 1.1915, b0 =
1.0000, b1 = 0.0000, and b2 = 2.3830.

NeurVec Training Details. We trained the NeurVec model on coarse time step data derived from
various dynamical systems. The training parameters were as follows:

• Learning Rate: 0.001
• Optimizer: Adam
• Learning Rate Decay: cosine annealing schedule
• Batch Size: 500
• Number of Epochs: 100
• Loss Function: Mean Squared Error (MSE)

A.5 TEXTUAL DATA GENERATION

We generated the supplemental textual data for each ODE systems with the assistance of GPT-4. For
any ODE systems that we are interested in, we use the following prompt for generation.
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Table 9: Performance of FMint on unseen ODEs in RMSE

Unseen ODE

Method # Samples Driven damped Falling Fitzhugh Nagumo Pendulum Rossler

FMint 25 1.64e-3 4.18e-3 5.59e-2 1.55e-3 2.57e-3
50 9.68e-4 5.26e-3 5.8e-2 1.7e-3 2.56e-3
200 1.34e-3 4.74e-3 5.3e-2 1.6e-3 2.5e-3
1000 9.02e-4 3.7e-3 4.7e-2 1.69e-3 2.4e-3

NeurVec 50000 0.0741 0.8351 0.3859 0.0974 0.0265
Neural ODE 50000 0.6667 1.3754 1.2139 1.0763 0.1571

Please use [numbers required] different ways to explain what [ODE
system], [mathematical formula] is, where it can be applied and what the
meaning of [parameters]. Also include what types of behavior will there
be for different ranges of its parameters.

Take Lorenz attractor as an example, we use the following prompt:

Please use 30 different ways to explain what Lorenz attractor,
$\frac{dx}{dt} = \sigma (y - x), \frac{dy}{dt} = x (\rho - z) - y,
\frac{dz}{dt} = xy - \beta$ is, where it can be applied and what the
meaning of $\sigma$, $\rho$ and $\beta$. Include what types of behavior
will there be for different ranges of its parameters.

We have generated 30 textual data for each ODE systems, with slight manual adjustments applied
after GPT-4 generation. For pretrained ODEs, we reserved placeholders for the actual parameters
used for training and testing. For out-of-distribution ODEs, we did not specify the exact parameters
used in our textual data.

During pretraining stage, the textual data is randomly selected from all the provided prompts that
correspond to the ODE system. The placeholders for parameters are replaced with the actual param-
eter values associated with the numerical data. During inference stage, textual data is also randomly
selected but only the pretraining ODE systems are filled with exact parameters.

A.6 TEXTUAL DATA EXAMPLE

Here we show several examples of the textual data for pretraining ODEs and out-of-distribution
ODEs: pretraining ODE Lorenz attractor and out-of-distribution ODE Rössler attractor:

• Prompts for Lorenz attractor:
It models the evolution of three variables|$x,y,z$ over
time, governed by three parameters: $\sigma = 12.69, \rho
= 34.297, \beta = 2.592$.
The Lorenz system of equations $\frac{dx}{dt} = \sigma (y
- x), \frac{dy}{dt} = x (\rho - z) - y, \frac{dz}{dt} =
xy - \beta$ serves as a classic example in chaos theory,
showing how a deterministic system can exhibit aperiodic,
non-repeating, and sensitive trajectories despite being
governed by simple rules.

• Prompts for Rössler attractor:
The Rössler system $\dot{x} = -y - z, \dot{y} = x + a y,
\dot{z} = b + z (x - c)$ is a set of three differential
equations used to model chaotic behavior. It has parameters
$a$, $b$ and $c$ which control the system’s dynamics.
When $c$ is low, oscillations are periodic; as $c$
increases, the system becomes chaotic, which can be used
to design chaotic communication systems.
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A.7 VISUALIZATION OF FMINT ON ALL ODES

A.8 DETAILS ON COEFFICIENT RANGE FOR EACH BEHAVIOR CATEGORY

Lorenz oscillatory. σ ∈ [5, 15], ρ ∈ [13, 24.74], β ∈ [1.5, 3.5].The system exhibits converging
oscillatory behavior toward either of the two fixed points.

Lorenz chaotic. σ ∈ [5, 15], ρ ∈ [24.74, 100], β ∈ [1.5, 3.5]. This is the famous region where the
Lorenz attractor forms, with characteristic of never repeating chaotic motion and sensitive depen-
dence on initial conditions.

Lorenz chaotic (complex). σ ∈ [5, 15], ρ ∈ [24.74, 150], β ∈ [1.5, 3.5]. It contains more compli-
cated chaotic dynamics with larger attractor regions and more intricate patterns.

Driven damped pendulum underdamped. b ∈ [0.01, 0.1], c ∈ [1.0, 2.0], A ∈ [0.1, 0.5], ω ∈
[0.5, 3.0]. In this parameter range, the underdamped pendulum may achieve steady oscillations.

Driven damped pendulum overdamped. b ∈ [0.5, 2.0], c ∈ [1.0, 2.0], A ∈ [0.1, 0.5], ω ∈
[0.5, 3.0]. It occurs when the damping is very strong. The pendulum returns to its equilibrium
position without oscillating.

Driven damped pendulum chaotic. b ∈ [0.1, 0.2], c ∈ [1.0, 2.0], A ∈ [1, 3.0], ω ∈ [0.5, 3.0]. The
chaotic behavior emerges and the system exhibits nonlinear and non-periodic motion. It is highly
sensitive to initial conditions.

FitzHugh-Nagumo resting. I ∈ [0.0, 0.1], ϵ ∈ [0.08, 0.1], a ∈ [0.5, 0.7], b ∈ [0.1, 0.2]. In this
parameter range, the membrane potential stays close to its equilibrium value.

FitzHugh-Nagumo spikes. I ∈ [0.1, 0.5], ϵ ∈ [0.01, 0.5], a ∈ [0.7, 1.0], b ∈ [0.2, 0.25]. The system
can exhibit a single action potential or spike and followed by recovery.

FitzHugh-Nagumo bursting. I ∈ [0.5, 1.5], ϵ ∈ [0.01, 0.02], a ∈ [0.9, 1.1], b ∈ [0.15, 0.2]. In
this state, the system may have transition between excitable and oscillatory behavior, with possible
periodic spiking.

FitzHugh-Nagumo oscillatory. I ∈ [0, 2], ϵ ∈ [0.01, 0.1], a ∈ [0.5, 1.2], b ∈ [0.1, 0.3]. The system
can exhibit bistability, or mixed mode oscillations.

Rössler periodic. a ∈ [0.1, 0.2], b ∈ [0.1, 0.2], c ∈ [4, 5]. The trajectory in phase space forms a
closed loop, and we may see that the system returns to the same state after a fixed period.

Rössler chaotic. a ∈ [0.2, 0.3], b ∈ [0.2, 0.25], c ∈ [5, 9]. In this state, the system exhibits unpre-
dictable behavior that is sensitive to the initial conditions.

Rössler hyperchaos. a ∈ [0.25, 0.4], b ∈ [0.25, 0.3], c ∈ [9, 13]. The system is chaotic under this
coefficient range in more than one direction, and may have even more complex and unpredictable
behavior than standard chaos.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

10 5 0 5 10 15X 10
0

10
20

Y

10
20
30

40

Z

Initial state: [1.0, 1.0, 1.0]

10
0

10
20X 20

10
0

10
20

Y

10

20

30
Z

Initial state: [20.0, 20.0, 20.0]

Figure 9: Lorenz attractors - oscillatory. Trajectories generated with σ = 12.69, β = 2.59, ρ =
24.33 under two initial conditions [1, 1, 1] and [20, 20, 20] for 10000 steps with ∆t = 0.004.
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Figure 10: Lorenz attractors - chaotic. Trajectories generated with σ = 12.69, β = 2.59, ρ = 78.06
under two initial conditions [1, 1, 1] and [20, 20, 20] for 10000 steps with ∆t = 0.004.
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Figure 11: Lorenz attractors - chaotic (complex). Trajectories generated with σ = 12.69, β =
2.59, ρ = 78.06 under two initial conditions [1, 1, 1] and [20, 20, 20] for 10000 steps with ∆t =
0.004.
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Figure 12: Driven damped pendulum - underdamped. Trajectories generated with b = 0.005, c =
1.0, A = 0.25, ω = 2.0 under two initial conditions [0.1, 0] and [1.0, 0] for 10000 steps with ∆t =
0.01.
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Figure 13: Driven damped pendulum - overdamped. Trajectories generated with b = 1.0, c =
1.0, A = 0.25, ω = 2.0 under two initial conditions [0.1, 0] and [1.0, 0] for 10000 steps with ∆t =
0.01.
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Figure 14: Driven damped pendulum - chaotic. Trajectories generated with b = 0.15, c = 1.0, A =
0.25, ω = 2.0 under two initial conditions [0.1, 0] and [1.0, 0] for 10000 steps with ∆t = 0.01.
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Figure 15: Rössler - periodic. Trajectories generated with a = 0.179, b = 0.159, c = 4.81 under
two initial conditions [1, 1, 1] and [5, 5, 5] for 10000 steps with ∆t = 0.01.

10
0

10
20X 20

15
10

5
0

5
10

Y

20
40
60
80

Z

Initial state: [1.0, 1.0, 1.0]

10
0

10
20X 20

15
10

5
0

5
10

Y

20
40
60
80

Z

Initial state: [5.0, 5.0, 5.0]

Figure 16: Rössler - chaotic. Trajectories generated with a = 0.368, b = 0.279, c = 12.24 under
two initial conditions [1, 1, 1] and [5, 5, 5] for 10000 steps with ∆t = 0.01.
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