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Abstract

Analyzing the long-term behavior of high-
dimensional nonlinear dynamical systems re-
mains a significant challenge. While the Koop-
man operator framework provides a powerful
global linearization tool, current methods for ap-
proximating its spectral components often face
theoretical limitations and depend on predefined
dictionaries. Residual Dynamic Mode Decom-
position (ResDMD) advanced the field by in-
troducing the spectral residual to assess Koop-
man operator approximation accuracy; however,
its approach of only filtering precomputed spec-
tra prevents the discovery of the operator’s com-
plete spectral information, a limitation known as
the ‘spectral inclusion’ problem. We introduce
ResKoopNet (Residual-based Koopman-learning
Network), a novel method that directly addresses
this by explicitly minimizing the spectral residual
to compute Koopman eigenpairs. This enables
the identification of a more precise and complete
Koopman operator spectrum. Using neural net-
works, our approach provides theoretical guaran-
tees while maintaining computational adaptabil-
ity. Experiments on a variety of physical and bio-
logical systems show that ResKoopNet achieves
more accurate spectral approximations than ex-
isting methods, particularly for high-dimensional
systems and those with continuous spectra, which
demonstrates its effectiveness as a tool for analyz-
ing complex dynamical systems.
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1. Introduction
In the analysis of complex dynamical systems, a fundamen-
tal challenge is accurately capturing and understanding the
long-term behavior of highly nonlinear systems, particu-
larly those with high dimensionality. Various data-driven
methods (Brunton & Kutz, 2019; Schetzen, 2006; Wiggins,
2003; Slotine & Li, 1991; Tu et al., 2014; Lan & Mezić,
2013; Mezić, 2005; Xu et al., 2025; Ishikawa et al., 2024)
have been developed to address this challenge. Among
these approaches, the Koopman operator framework (Koop-
man, 1931; Koopman & Neumann, 1932) has emerged as a
powerful tool due to its ability to globally linearize nonlin-
ear systems. Unlike local linearization methods (Hartman,
1960; Grobman, 1959), which only approximate dynamics
near fixed points, the Koopman operator transforms the en-
tire system into a linear form within an infinite-dimensional
function space, enabling the application of spectral analysis
techniques to study complex dynamics.

Despite its promise, practical computational challenges arise
from the infinite-dimensional nature of the Koopman opera-
tor. Numerical methods such as Extended Dynamic Mode
Decomposition (EDMD) have been developed to approxi-
mate the Koopman operator using a finite set of observables,
which makes it possible to extract dynamic modes from
data. Important convergence results for EDMD were estab-
lished by Korda & Mezić (2018), which proved that as the
number of samples increases, EDMD converges to the L2-
orthogonal projection of the Koopman operator on a finite-
dimensional subspace. They further showed convergence
in the strong operator topology as the dimension of the sub-
space increases, and that accumulation points of the spectra
of EDMD correspond to eigenvalues of the Koopman op-
erator with associated eigenfunctions converging weakly,
provided the weak limit is nonzero. However, despite these
theoretical advances, EDMD faces notable limitation in
spectral approximation. It suffers from spectral pollution,
where discretization introduces spurious eigenvalues unre-
lated to the true operator. Moreover, EDMD struggles to
accurately capture continuous spectra, which are crucial for
characterizing chaotic and complex systems. As a result,
EDMD can miss critical information about the underlying
dynamics, particularly in systems exhibiting rich, complex
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behavior.

To address these limitations, Residual Dynamic Mode De-
composition (ResDMD) (Colbrook & Townsend, 2024) was
introduced to offer convergence guarantees through a spec-
tral residual that measures how well the estimated Koopman
spectra are. By assessing convergence of spectral residual,
ResDMD eliminates spurious spectral components that do
not represent the system’s true dynamics, which enhances
the reliability of spectral estimation. ResDMD also intro-
duces the concept of pseudospectrum, regions where the
spectral content is significant even without discrete eigen-
values, which is particularly valuable for analyzing systems
with continuous spectra. However, ResDMD only filters
precomputed polluted spectra, which limits its ability to
independently refine spectral estimates.

In this paper, we propose Residual-based Koopman-learning
Network (ResKoopNet), which overcomes these limitations
by minimizing spectral residuals over eigenpairs while ex-
ploring the optimal dictionary space. ResKoopNet em-
ploys neural networks to optimize dictionary functions for
the Koopman invariant subspace, which enables both dis-
crete eigenvalue computation and pseudospectrum analysis.
Through experiments on both simulation models and high-
dimensional real-world systems, we demonstrate its superior
accuracy and scalability over other methods.

2. Preliminary on Koopman Operator
Consider a discrete-time dynamical system (Ω, µ) governed
by a map F : Ω → Ω, where Ω ⊆ Rd is the state space, and
µ is a probability measure. The evolution of the system is
described by:

xk+1 = F (xk), k ∈ Z+.

The Koopman operator K acts on observable g ∈ F as:

Kg = g ◦ F,

where the inner product and corresponding norm for F is
defined as ⟨f, g⟩µ :=

∫
Ω
f̄g dµ and ∥f∥µ :=

√
⟨f, f⟩µ,

respectively. Notice that K is linear even though F is non-
linear. Another key aspect of modern Koopman operator
theory is Koopman Mode Decomposition (KMD) (Mezić,
2005), which represents system dynamics through its spec-
tral components. In particular, for a given observable g,
KMD provides the expansion as following

g(xn) = [Kng](x0)

=
∑

λ∈σp(K)

cλλ
nφλ(x0)︸ ︷︷ ︸

discrete spectrum

+

∫
[−π,π]per

einθϕθ,g(x0) dθ︸ ︷︷ ︸
continuous spectrum

,

where φλ are the eigenfunctions of K, cλ are expansion
coefficients, and ϕθ,g represents the contribution from the

continuous spectrum. [−π, π]per denotes a periodic interval.
The discrete spectrum is particularly important for insights
into long-term behavior, such as periodicity and stability,
while the continuous spectrum characterizes complex be-
haviors such as mixing, chaos, and transport phenomena
(Arbabi & Mezic, 2017; Yang et al., 2022; Brunton et al.,
2017). Our analysis emphasizes finding these spectral com-
ponents including both discrete and continuous part from
KMD.

Extended Dynamic Mode Decomposition (EDMD)
(Williams et al., 2015) is a widely used data-driven method
for approximating the Koopman operator and its spectral
components in KMD. It selects a set of observables {ψi}NK

i=1

to form a subspace VNK
= span{ψi}NK

i=1. The method
constructs a finite-dimensional approximation of the
Koopman operator by solving a least-square problem based
on system snapshots and selected dictionary, allowing the
computation of eigenvalues, eigenfunctions, and Koopman
modes. While common dictionaries include polynomials,
Fourier basis, and RBF functions, selecting an optimal
dictionary remains system-dependent and challenging.
Given data snapshots {(xi, yi)}mi=1 with yi = F (xi) and
{xi}mi=1 i.i.d. by µ, two data matrices ΨX and ΨY are
formed by evaluating the dictionary on these data points:

ΨX :=

ψ1(x1) . . . ψNK
(x1)

...
. . .

...
ψ1(xm) . . . ψNK

(xm)

 ,

ΨY :=

ψ1(y1) . . . ψNK
(y1)

...
. . .

...
ψ1(ym) . . . ψNK

(ym)

 .
EDMD computes the approximated Koopman matrix repre-
sentation by

K = Ψ†
XΨY ,

where Ψ†
X is the pseudoinverse of ΨX . The eigenvalues

of K provide approximation of the Koopman operator’s
discrete spectrum, and the Koopman eigenfunctions ϕi are
approximated as ϕi = Ψvi, where vi ∈ CNK is the i-th
eigenvector of K and

Ψ := [ψ1, . . . , ψNK
]

is a (row) vector of observables from the dictionary.

3. Koopman Operator Learning
EDMD directly approximates the Koopman operator and its
spectral components from data but suffers from spectral pol-
lution, where discretization of the infinite-dimensional oper-
ator introduces spurious eigenvalues that have no relation

2



ResKoopNet

to the true spectrum. Residual Dynamic Mode Decompo-
sition (ResDMD) (Colbrook & Townsend, 2024) improves
spectral accuracy by filtering out these polluted eigenvalues
via spectral residual measurement. However, it only filters
precomputed spectra and cannot fully discover the Koop-
man operator’s complete spectral information, a limitation
known as the ‘spectral inclusion’ problem where parts of
the true spectrum may be missed entirely.

To address these issues, we propose Residual-based
Koopman-learning Network (ResKoopNet), which mini-
mizes spectral residual over eigenpairs while exploring the
optimal dictionary space. This approach identifies a more
precise and complete spectrum of the Koopman operator
while ensuring all learned dictionary functions satisfy small
spectral residual criteria. We note that while we employ
a simple neural network as our optimizer in this work, the
specific choice of optimization tool can be adapted based on
the data structure and properties of the dynamical system
being studied.

3.1. ResDMD Review

Now, suppose we have an estimated eigenvalue-
eigenfunction pair (λ, ϕ) of K where λ ∈ C and
ϕ = Ψv =

∑NK

i=1 ψivi ∈ VNK
is expressed in the

dictionary functions. Assuming ϕ is normalized, i.e.,
∥ϕ∥µ = 1, the spectral residual that measures the accuracy
of this eigenpair is defined as:

res(λ, ϕ)2 :=

∫
Ω
|Kϕ(x)− λϕ(x)|2 dµ(x)∫

Ω
|ϕ(x)|2 dµ(x)

=

NK∑
i,j=1

v̄i[⟨Kψi,Kψj⟩µ − λ⟨ψi,Kψj⟩µ

−λ̄⟨Kψi, ψj⟩µ + |λ|2⟨ψi, ψj⟩µ]vj ,

(1)

where v̄i, λ̄ denote the complex conjugates of vi, λ.

This spectral residual in Eq. (1) quantifies how far the esti-
mated eigenpair deviates from the true spectrum. In practice,
we can approximate this residual using data samples through
Galerkin methods (Boyd, 2013; Colbrook & Townsend,
2024); more specifically, the following convergence results
hold as the number of data points m→ ∞:

lim
m→∞

1

m
[Ψ∗

XΨX ]ij = ⟨ψi, ψj⟩µ,

lim
m→∞

1

m
[Ψ∗

XΨY ]ij = ⟨ψi,Kψj⟩µ,

lim
m→∞

1

m
[Ψ∗

Y ΨY ]ij = ⟨ψi,K∗Kψj⟩µ,

(2)

where ∗ denotes conjugate transpose of matrix or adjoint
operator. Using these relationships, the spectral residual in

Eq. (1) can be approximated as (see A.2 for more details):

r̂es(λ, ϕ)2 :=
1

m
v∗[Ψ∗

Y ΨY − λ(Ψ∗
XΨY )

∗

−λ̄Ψ∗
XΨY + |λ|2Ψ∗

XΨX ]v.
(3)

Notice that Eq. (3) is calculated only for precomputed eigen-
pairs. However, the spectral residual serving as a threshold
only filters polluted eigenpairs: it does not explore addi-
tional accurate eigenpairs or enhance the approximation.
For an extreme case, the spectrum of the approximated
Koopman operator could be trivial (Colbrook & Townsend,
2024, Example 3.1). This is precisely the spectral inclu-
sion problem we mentioned earlier, where the computed
spectrum is constrained to a subset of the true spectrum,
but could potentially omit critical spectral components. Ad-
dressing this fundamental limitation is a core objective of
our work.

Continuous Spectra and Pseudospectrum The concept
of pseudospectrum is particularly useful when studying the
continuous spectrum of the Koopman operator, as it captures
regions where the resolvent norm (i.e., ∥(K − λI)−1∥) is
large, even in the absence of discrete eigenvalues. In order
to compute the pseudospectrum, a set of grid points as
candidate spectrum values {z1, . . . znz

} is scanned in the
complex plane using the spectral residual; specifically, for
each grid point zj ∈ C, we compute the following SVD
problem

τj = min
vi∈CNk

r̂es(zj ,Ψvi), (4)

which uses the dictionary Ψ computed from our proposed
ResKoopNet method. The approximated ϵ-pseudospectrum
containing the continuous spectra is then given by {zj :
τj < ε}. More details on proof of convergence can be
found in Colbrook & Townsend (2024, Appendix B).

3.2. Residual-based Koopman-learning Network
(ResKoopNet)

General framework In this section, we present the
Residual-based Koopman-learning Network (ResKoopNet),
which minimizes spectral residual to address the spectral
inclusion problem and yield a more accurate and complete
Koopman spectrum. The overall pipeline is illustrated in
Figure 1. ResKoopNet optimizes the dictionary functions
by minimizing the total spectral residual J as following

J :=

NK∑
i=1

r̂es(λi, ϕi)2,

over all computed eigenpairs {(λi, ϕi)}NK
i=1. This loss di-

rectly influences the quality of the finite-dimensional Koop-
man approximation and ensures the learned dictionary cap-
tures essential spectral features without relying on precom-
puted spectra or post-processing.
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In this work, we parameterize the dictionary functions
Ψ(x; θ) using a simple feedforward neural network, as
shown on the right side of Figure 1, where θ denotes the
network parameters. Unlike EDMD, which minimizes pre-
diction error, our method explicitly targets spectral accuracy.
Remark 3.1. Notice that the neural network architecture can
be replaced by more advanced models or other optimizers
depending on the system and data structure.

Figure 1: The optimizer on the right searches for the optimal
dictionary by minimizing Eq. (3).

In ResDMD’s framework, the spectral residual in Eq. (3)
measures how well a computed eigenpair from the dataset,
in other words, ideally we want the total spectral residual
J =

∑NK

i=1 r̂es(λi, ϕi)2 approaches to zero, which implies
that we can treat J as a loss function. Moreover, minimizing
J is also equivalent to the following minimization problem:

min
K̃

J = min
K̃

1

m
∥(ΨY −ΨXK̃)V ∥2F , (5)

where each column of the matrix V is an (right) eigenvector
vi of the matrix K̃. Thus, with dictionary Ψ fixed, we can
obtain a closed form for the optimal Koopman matrix K̃ as
following

K̃ = G†A, (6)

where G = 1
mΨ∗

XΨX , A = 1
mΨ∗

XΨY (See A.3 for more
details on deriving the Eq. (5) and Eq. (6)).

Although Eq. (6) resembles the EDMD formulation for com-
puting the Koopman matrix representation K̃, ResKoopNet
and ResDMD fundamentally differ from EDMD in their
theoretical foundation. While they share a similar matrix
expression, this expression is derived from minimizing the
spectral residual in Eq. (3) rather than the prediction error
that EDMD minimizes, as shown in Appendix A.3. Specifi-
cally, our approach explicitly incorporates K∗K as shown
in Eq. (2), focusing on spectral accuracy rather than ob-
servable prediction. This distinction leads to significantly

different performance in capturing the spectral properties of
the Koopman operator.
Remark 3.2. To ensure the numerical stability when comput-
ingG†, we add a small perturbation, i.e., K̃ = (G+σI)−1A
for some small number σ > 0.

As shown in Eq. (6), ResKoopNet provides an explicit ex-
pression for the optimal Koopman matrix K̃ given a fixed
dictionary function Ψ. Although the formulation is sim-
ilar to EDMD, the key distinction between ResKoopNet
and EDMD lies in their loss functions; more specifically,
while EDMD minimizes the overall prediction error ∥ΨY −
ΨXK̃∥2F , ResKoopNet minimizes the residual projected
onto the estimated eigenspace, i.e., ∥(ΨY − ΨXK̃)V ∥2F .
This eigenspace projection fundamentally changes the op-
timization landscape by weighting errors along spectral di-
rections, ensuring that the learned Koopman matrix better
captures the underlying eigenstructure rather than merely
minimizing average prediction error. Therefore, they arise
from distinct theoretical foundation.

From Residual to Machine Learning This section explains
how a simple neural network is integrated into ResKoop-
Net. In the optimizer as shown in Figure 1, the neural
network parameterizes the dictionary Ψ(x; θ) and minimize
the parametrized total spectral residual J(θ) given in the
following:

J(θ) =
1

m
∥(ΨY (θ)−ΨX(θ)K(θ))V (θ)∥2F , (7)

where K(θ) and V (θ) depend on the parameters θ. The op-
timal Koopman matrix K̃(θ) is computed following Eq. (6):

K̃(θ) = G(θ)†A(θ). (8)

The algorithm alternates between updating K(θ) via Eq. (8)
and optimizing J(θ) w.r.t. θ by stochastic gradient descent
via Eq. (7). While it is possible to optimize both K(θ)
and J(θ) simultaneously, as done in Takeishi et al. (2017)
and Otto & Rowley (2019), our separate procedure ensures
computational efficiency and numerical stability (Li et al.,
2017).

Computing Algorithm In our neural network implementa-
tion, we include some non-trainable functions to enhance
the dictionary computation. Specifically, we add a vector
of constant one and the coordinates of the state space as
non-trainable basis in the output layer, which helps avoid
trivial solutions, i.e., J = 0 for some initial θ. For the
network architecture, we build a simple feedforward neural
network with three hidden layers, where each hidden layer
size can be specified during training. We use the hyperbolic
tangent (tanh) function as the activation function for the
hidden layers and employ the Adam optimizer for updating
the network parameters θ. Adam is particularly well-suited
for this task due to its ability to adapt the learning rate for
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Algorithm 1 ResKoopNet

Input: Dataset X,Y , number of observables NK , learn-
ing step δ, regularization parameter σ, loss function
threshold ϵ > 0, grid points {z1, . . . znz

}
1: Initialize θ, thus initializing Ψ(θ)
2: Compute K̃(θ) and its eigenvector matrix V (θ)
repeat

Update θ = θ − δ∇θJ(θ)
Compute G(θ) = 1

mΨ∗
XΨX , A(θ) =

1
mΨ∗

XΨY

Update K̃(θ) = (G(θ) + σI)−1A(θ) and V (θ)
until J(θ) < ϵ
Output: K̃(θ), eigenpairs {(λi, ϕi = Ψvi)}NK

i=1 and
ϵ-pseudospectrum {zj : τj < ε} (See Eq. (4)).

each parameter, which can lead to faster convergence in
the alternating optimization process between the network
parameters θ and the Koopman matrix K(θ) formulation.
The computing steps are illustrated in the following Algo-
rithm 1. ResKoopNet’s practical advantages come with
computational demands due to its iterative optimization.
Each gradient update scales linearly with system dimen-
sionality and network parameters. While individual steps
are lightweight, repeated least-squares optimizations make
convergence slower than standard numerical methods, with
stochastic gradient descent achieving an O(1/n) rate.

We also give a brief discussion on the convergence analysis
of ResKoopNet in Appendix A.4, which leverages exist-
ing results from approximation theory in the Barron space
(Haykin, 2009; Weinan et al., 2019).

4. Application in physical and biological
systems

In this section, we present three examples to demonstrate
ResKoopNet’s effectiveness in estimating key components
of Koopman Mode Decomposition: spectrum, eigenfunc-
tions, and Koopman modes. In the pendulum example, we
compare with EDMD, EDMD-DL, Hankel-DMD, and Res-
DMD, and show that ResKoopNet captures the full Koop-
man spectrum with significantly fewer dictionary observ-
ables than required by ResDMD, while other methods either
produce spectral pollution or miss the continuous spectrum.
Our turbulence analysis demonstrates ResKoopNet’s ability
to detect not only acoustic vibration and turbulent fluctua-
tion (as in ResDMD (Colbrook & Townsend, 2024, Section
4.3.1, Section 6.3)) but also to recover the fundamental pres-
sure field structure through the lowest-residual Koopman
mode, which is a feature not captured by Hankel-DMD us-
ing the same dataset. In the neural dynamics example, we
compare against three methods across five mice datasets,
with ResKoopNet achieving superior clustering of neural
states corresponding to different visual stimuli, as quantified

by the Davies-Bouldin index. Note that we include Hankel-
DMD (Arbabi & Mezic, 2017) as a consistent benchmark
across all experiments due to its theoretical guarantees and
applicability to both low and high-dimensional systems with-
out requiring predefined dictionaries. It uses time-delayed
state measurements by Takens Embedding Theorem (Tak-
ens, 2006) instead of using a pre-defined dictionary or ap-
plying Galerkin approximation as in EDMD and ResDMD
methods (see Appendix A.8.1 for more details).

4.1. Pendulum

The pendulum system is a measure-preserving Hamiltonian
system, which theoretically constrains its spectrum to the
unit circle. The system is governed by:

θ̈ = sin(θ), (θ, θ̇) ∈ [−π, π]per × [−15, 15],

where θ represents the angular displacement from equilib-
rium and θ̇ the angular velocity. The dynamics exhibit two
distinct regimes: oscillatory motion for low-energy initial
conditions, and rotational motion when the initial energy
exceeds the separatrix threshold (Lusch et al., 2018).

For our analysis, we sample 90 and 240 initial conditions
uniformly distributed in the domain, each evolving for 1000
time steps with ∆t = 0.5. This gives datasets of approxi-
mately 9× 104 and 2.4× 105 snapshots, respectively. We
choose 3 hidden layers and use 300 neurons and 350 neuron
in each hidden layer in both cases, respectively.

Figure 2: The four plots depict the spectrum of the Koopman
operator, constructed using varying dictionary sizes NK of
25, 50, 100, and 300. Each plot utilizes 90 initial points
to illustrate the impact of increasing the dictionary size on
approximating the spectrum of the Koopman operator.

As shown in Figure 2, ResKoopNet requires onlyNK = 300
observables to approximate the full spectrum. While the
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Figure 3: Same example as Figure 2 but with larger data
size, using 240 initial points to show the effect of increasing
dictionary size on the Koopman spectrum approximation.

EDMD: NK = 300 EDMD-DL: NK = 300

Hankel-DMD: NK = 300 ResDMD: NK = 300

Figure 4: Comparison with classical methods. Eigenvalue
spectra computed from a 300× 300 Koopman matrix using
EDMD, EDMD-DL, Hankel-DMD, and ResDMD.

original ResDMD work reported using 964 observables
(Colbrook & Townsend, 2024, Section 4.3.1), our additional
tests indicate that approximately 460 basis functions can pro-
duce reasonable circular approximations with ResDMD (see
Figure 7 in Appendix A.7.1). Nevertheless, ResKoopNet
still achieves comparable accuracy with significantly fewer
observables. This efficiency persists even with larger sizes

of data points (Figure 3), where NK = 350 observables
remain sufficient. Figure 4 compares ResKoopNet with four
classical methods using the 90-initial-point dataset. Both
EDMD and ResDMD employ Hermite functions (order 15)
for θ and Fourier functions (order 20) for θ̇, while Hankel-
DMD uses a time delay of 150. Though Hankel-DMD
produces eigenvalues near the unit circle, it only captures
the discrete point spectrum and cannot reconstruct the con-
tinuous spectral components. We include Hankel-DMD here
for consistency in benchmarking across all experiments, de-
spite its limitations in higher-dimensional systems examined
later. The shaded region in the ResDMD plot represents the
ϵ-pseudospectrum, which approximates regions where the
spectral residual is smaller than a threshold value; however,
with 300 basis functions, ResDMD fails to fully recover the
unit circle. Overall, this pendulum example demonstrates
that ResKoopNet achieves accurate and complete spectral
recovery using much fewer observables than other classical
methods.

4.2. Turbulence

Recovering spatial patterns is a typical goal of DMD-
based methods, especially in fluid dynamics (Schmid, 2022;
Mezić, 2013). Figure 5(a) shows the ground truth pressure
distribution, in which a clear asymmetry exists between the
upper and lower airfoil surfaces. This fundamental spatial
pattern is critical for analyzing aerodynamic performance
and structural integrity. While the original Kernel-ResDMD
method has successfully detected acoustic vibration and tur-
bulent fluctuation shown in Colbrook & Townsend (2024,
Section 6.3), it fails to recover the global spatial structure
of the pressure field. In contrast, ResKoopNet achieves a
significant improvement by accurately reconstructing this
dominant spatial pressure field structure itself from its lead-
ing Koopman mode as shown in Figure 5(b), which contains
essential information about the flow characteristics around
the airfoil.

The turbulent flow dataset from Colbrook & Townsend
(2024, Section 6.3) models a two-dimensional airfoil system
with Reynolds number 3.88× 105 and Mach number 0.07.
The data captures a pressure field at 295,122 spatial points
across 798 time steps, sampled every 2 × 10−5 seconds.
Given the extreme dimensionality of this X ∈ R798×295,122

matrix, we apply truncated SVD on the data matrix to re-
tain only the top 150 components and project the data via
XV = US ∈ R798×150. After computing Koopman modes
in this reduced state space using ResKoopNet, we map them
back to the original dimensions through multiplication with
V . To maintain consistency with the baseline, we use the
same number of observables NK = 250 as in Colbrook &
Townsend (2024, Section 6.3), including 99 trainable neural-
network-based functions, one constant function, and 150
principal components obtained from the truncated SVD.
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Figure 5(b) shows the first Koopman mode computed by
ResKoopNet, which corresponds to the mode whose eigen-
value has the largest absolute real part, and it also has the
smallest spectral residual among all computed modes. This
mode not only captures the most dominant dynamics in the
system but also closely resembles the original pressure field.
This correspondence demonstrates that ResKoopNet is able
to recover the principal spatial feature of the turbulent flow,
something that Kernel-ResDMD and Hankel-DMD could
not achieve, which also justifies that the proposed method
ResKoopNet can effectively address the spectral inclusion
problem where traditional methods often fail to recover the
complete spectrum of the Koopman operator. This mode
likely corresponds to the largest singular value observed in
the SVD, as shown in Figure 5(e) and (f). The dominant
singular value highlights the strongest spatial mode in the
data, which aligns with the physical air pressure field and
its global structure.

In addition to the first mode, Figure 5(c) and (d) show the
third and seventh Koopman modes computed by ResKoop-
Net, associated with the eigenvalues having the third and
seventh largest absolute values of their real parts. These two
modes have the second and third smallest spectral residuals
and correspond to acoustic vibration and turbulent fluctua-
tion, as also observed in the Kernel-ResDMD study (Col-
brook & Townsend, 2024, Section 6.3). The ordering of the
Koopman modes in Figure 5(b)–(d) is based on the ascend-
ing values of spectral residual, indicating how well each
mode aligns with the spectrum of the underlying Koopman
operator.

For further comparison, we include in Appendix A.8.2
four Koopman modes computed using Hankel-DMD with
a time delay of 5, selected similarly based on the small-
est spectral residual. These modes, however, do not re-
veal the global pressure pattern observed in ResKoopNet’s
first mode, which further validates the unique capability of
ResKoopNet to recover large-scale coherent structures in
turbulent systems.

4.3. Neural dynamics identification in mice visual cortex

Since ResKoopNet directly minimizes the spectral residuals
based on eigenfunctions, its estimated evolution of eigen-
functions over time should ideally capture latent dynamics.
To evaluate how effectively ResKoopNet reveals latent tem-
poral dynamics in real data, we apply it to a dataset of
high-dimensional neural signals and demonstrate its advan-
tages over a series of classical methods: the Hankel-DMD,
EDMD (combined with RBF basis) and Kernel-ResDMD.
These methods are selected as representative approaches for
handling high-dimensional data.

The dataset is part of the open dataset on mice from the com-
petition “Sensorium 2023” (Turishcheva et al., 2024b;a). In

(a) (b)

(c) (d)

(e) (f)

Figure 5: Turbulence detection using Koopman modes from
250 observables. (a) shows the original 2D pressure field.
(b) shows Koopman mode 1 which has the smallest residual
and closely matches the original pressure field. (c) and (d)
show the acoustic vibration and turbulent fluctuation by the
Koopman modes with the 2nd and 3rd smallest spectral
residual. (e) and (f) show the plot of all singular values
and first 150 singular values when applying truncated SVD
method, respectively.

the experiments, mice viewed natural videos while their
neural signals were recorded via calcium imaging in the
primary visual cortex, reflecting the activity of thousands
of neurons. Here, we focus on the state partitioning of neu-
ral signals. Specifically, in each mouse, six video stimuli
were repeatedly shown, creating ideal conditions to define
brain states. Neural activity during repeated trials with the
same stimuli is assumed to reflect the same underlying dy-
namic system, enabling Koopman decomposition methods
to uncover and separate these brain states.

The dataset consists of neural recordings from five mice,
each exposed to 6 video stimuli, repeated 9-10 times for a
total of around 60 trials. Each recording captures the activity
of over 7,000 neurons, with each 10-second video sampled
at 50 Hz, resulting in 300 data points per trial.

We applied ResKoopNet and three classical Koopman de-
composition methods (Hankel-DMD, EDMD with RBF ba-
sis, and Kernel-ResDMD) to this dataset, using different
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Figure 6: ResKoopNet outperforms Hankel-DMD in identifying latent dynamic structures in neural signals with a dictionary
size of 50. (A) (Top) 50 Koopman eigenfunctions estimated by ResKoopNet across 6 states characterized by different video
stimuli in an example mouse. Each trial contains 300 data points (10s at 50Hz). (Bottom) 50 Koopman eigenfunctions
approximated by Hankel-DMD, each 50 points long, reflecting the dimension of the Hankel matrix. (B) 2D representation of
Koopman eigenfunctions for all tested mice, computed by ResKoopNet and reduced via Multidimensional Scaling (MDS).
Trials of the same state cluster well. (C) Same as (B) but computed with Hankel-DMD, showing no clear state separation.
(D) 2D representation of Koopman eigenfunctions for the first mouse, computed by EDMD with an RBF basis. See
Appendix Figure 14 for full results. (E) Same as (D) but computed with Kernel-ResDMD. See Appendix Figure 15 for full
results. (F) Davies-Bouldin Indices (DBIs) evaluating clustering quality across four methods (ResKoopNet, Hankel-DMD,
EDMD+RBF, and Kernel-ResDMD) for five mice. Lower DBI values for ResKoopNet indicate better clustering.
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implementations and Koopman subspace dimensions. For
ResKoopNet, we trained dictionaries on all snapshots from
each mouse to avoid overfitting. We reduced the data to 24
dimension via truncated SVD, together with the constant
and 25 trainable bases, resulting in 50 eigenfunctions. The
neural network we use here consists of 3 hidden layers, each
with 200 neurons. The hyperparameter scanning results
are included in Appendix Figure 17, which demonstrates
that our parameter choice is within the robust range. The
decomposed eigenfunctions are shown in Figure 6A(top),
with markers indicating ground truth state separations. For
Hankel-DMD, we built a Hankel matrix with a delay of 50,
producing 50 eigenfunctions per trial. In EDMD with RBF
basis, we used the SVD-truncated 300 basis and 1000 RBF
functions, resulting in 1301 eigenfunctions. For Kernel-
ResDMD, we used normalized Gaussians as kernel func-
tions, setting the Koopman subspace dimension to 299
eigenfunctions based on Colbrook et al. (2023). See Ap-
pendix A.9.4 for method details and Appendix A.10 for
dictionary size justification. These eigenfunctions, shown
in Figure 6A(bottom), Appendix Figure 14A, and Appendix
Figure 15A, are compared to ground truth trial identities.

In this study, Koopman eigenfunctions are interpreted as
representing dynamical features corresponding to the video
stimuli. Consequently, their effectiveness in capturing these
key, stimulus-related dynamics is evaluated by assessing
how well eigenfunctions from trials with the same video
stimulus cluster together and remain distinguishable from
those associated with different video stimuli. This effec-
tively transforms the problem into a clustering task based on
the separability of eigenfunctions across different stimuli. It
is noteworthy that for the ResKoopNet case, averaged trial
differences are visibly clear. It is also worth clarifying that
clustering these processes is not biologically necessary, as
simple clustering of mean firing rates is sufficient (see Ap-
pendix Figures 10, 11, 12). However, this dataset provides
an ideal benchmark with clear ground truth labels, enabling
accurate comparison of Koopman eigenfunction estimation
methods. Effective estimation of Koopman eigenfunctions
can be valuable for more complex tasks, such as unsuper-
vised latent state identification or decoding object dynamics
from video stimuli, which offers promising directions for
future research.

We use Multi-dimensional Scaling (MDS) to visualize how
these eigenfunction-based features cluster according to
ground truth states. MDS reduces data dimensionality based
on similarities, making it ideal for visualizing clustering
performance. While Uniform Manifold Approximation and
Projection (UMAP) and t-distributed Stochastic Neighbor
Embedding (t-SNE) are alternative methods, we show MDS
results in 2D space (Figure 6B-E), with similar results for
UMAP and t-SNE in Appendix Figure 13, Appendix Fig-
ure 14C, D and Appendix Figure 15C, D.

The 2D MDS visualization reveals a clear separation of fea-
tures for all 5 mice using ResKoopNet (Figure 6B), whereas
no other method shows clear clustering (Figure 6C-E, Ap-
pendix Figure 14B, Appendix Figure 15B). To quantify this
clustering, we calculate the Davies-Bouldin index (DBI),
a measure of clustering quality that assesses how compact
and well-separated the clusters are. A lower DBI indicates
more compact clusters that are farther apart from each other,
which corresponds to better clustering. The DBI is signifi-
cantly lower for ResKoopNet (Figure 6F), suggesting that
it captures the latent dynamic structure more effectively
than all three other methods. Similar clustering patterns are
confirmed with UMAP and t-SNE (Appendix Figure 16).

5. Conclusion and future work
In this paper, we introduced ResKoopNet, a novel approach
that minimizes spectral residuals to accurately approximate
Koopman operators for complex dynamical systems. This
method successfully resolves the spectral inclusion prob-
lem while capturing both discrete and continuous spectra
with high accuracy. Our experiments across physical and
biological systems demonstrate that ResKoopNet signifi-
cantly outperforms existing methods in identifying coherent
structures and uncovering latent dynamics, particularly in
high-dimensional applications.

Despite these advantages, ResKoopNet has several limita-
tions. First, the use of neural networks increases compu-
tational cost compared to classical numerical algorithms
(see Appendix A.6). Second, unlike stochastic approaches
such as VAMP (Mardt et al., 2018) and SDMD (Xu et al.,
2025), ResKoopNet currently does not account for stochas-
ticity (see Appendix A.5 for comparison discussion). In
addition, its performance can vary depending on the neural
architecture and training configuration.

There are several promising directions to address these limi-
tations and extend ResKoopNet’s capabilities. Many physi-
cal laws, such as conservation principles or symmetry con-
straints, are inherently encoded in the spectral properties
of dynamical systems. Incorporating such domain knowl-
edge directly into the neural network architecture could
significantly enhance the learning of Koopman spectral in-
formation. Future work could explore physics-informed
neural network designs, develop efficient training strategies
to reduce computational costs, and extend the framework
to handle stochastic dynamics. Ultimately, ResKoopNet
and its future variants have the potential to become power-
ful tools for understanding and predicting the behavior of
complex dynamical systems across diverse scientific and
engineering applications, and bridge the gap between data-
driven methods and physical principles.
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A. Appendix
A.1. Source Code

For reproducibility, the source code is available at this link.

A.2. Calculation steps for Eq. (3)

Here we are going to show how spectral residual implies (3).

Consider ϕ = Ψv =
∑NK

i=1 ψivi with ∥ϕ∥µ = 1, then∫
Ω
|Kϕ(x)− λϕ(x)|2dµ(x)∫

Ω
|ϕ(x)|2dµ(x)

=

∫
Ω

|Kϕ(x)− λϕ(x)|2dµ(x)

= ⟨Kϕ− λϕ,Kϕ− λϕ⟩µ
= ⟨Kϕ,Kϕ⟩µ − ⟨λϕ,Kϕ⟩µ − ⟨Kϕ, λϕ⟩µ + ⟨λϕ, λϕ⟩µ
= ⟨KΨv,KΨv⟩µ − λ̄⟨Ψv,KΨv⟩µ − λ⟨KΨv,Ψv⟩µ + |λ|2⟨Ψv,Ψv⟩µ

= ⟨
NK∑
i=1

Kψivi,

NK∑
j=1

Kψjvj⟩µ − λ̄⟨
NK∑
i=1

ψivi,

NK∑
j=1

Kψjvj⟩µ − λ⟨
NK∑
i=1

Kψivi,

NK∑
j=1

ψjvj⟩µ + |λ|2⟨
NK∑
i=1

ψivi,

NK∑
j=1

ψjvj⟩µ

=

NK∑
i,j=1

v̄i⟨Kψi,Kψj⟩µvj − λ̄

NK∑
i,j=1

v̄i⟨ψi,Kψj⟩µvj − λ

NK∑
i,j=1

v̄i⟨Kψi, ψj⟩µvj + |λ|2
NK∑
i,j=1

v̄i⟨ψi, ψj⟩µvj

=

NK∑
i,j=1

v̄i

[
⟨Kψi,Kψj⟩µ − λ̄⟨ψi,Kψj⟩µ − λ⟨Kψi, ψj⟩µ + |λ|2⟨ψi, ψj⟩µ

]
vj

≈
NK∑
i,j=1

v̄i

[
1

m
[Ψ∗

Y ΨY ]ij − λ̄
1

m
[Ψ∗

XΨY ]ij − λ
1

m
[Ψ∗

Y ΨX ]ij + |λ|2 1

m
[Ψ∗

XΨX ]ij

]
vj

=
1

m
v∗ [Ψ∗

Y ΨY − λ(Ψ∗
XΨY )

∗ − λ̄Ψ∗
XΨY + |λ|2Ψ∗

XΨX

]
v(

= Eq. (3)
)
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A.3. Details for deriving (5)

J =

NK∑
i=1

r̂es(λi, ϕi)2

=

NK∑
i=1

1

m
v∗
i

[
Ψ∗

Y ΨY − λi(Ψ
∗
XΨY )

∗ − λ̄iΨ
∗
XΨY + |λi|2Ψ∗

XΨX

]
vi

=

NK∑
i=1

1

m

[
v∗
i (Ψ

∗
Y ΨY )vi − v∗

i (Ψ
∗
XΨY )

∗λivi − v∗
i λ̄i(Ψ

∗
XΨY )vi + v∗

iK
∗(Ψ∗

XΨX)Kvi

]
=

NK∑
i=1

1

m
[v∗

i (Ψ
∗
Y ΨY )vi − v∗

i (Ψ
∗
XΨY )

∗Kvi − v∗
iK

∗(Ψ∗
XΨY )vi + v∗

iK
∗(Ψ∗

XΨX)Kvi]

=

NK∑
i=1

1

m

(
⟨ΨY vi,ΨY vi⟩ − ⟨ΨY vi,ΨXKvi⟩

− ⟨ΨXKvi,ΨY vi⟩+ ⟨ΨXKvi,ΨXKvi⟩
)

=

NK∑
i=1

1

m
⟨ΨY vi −ΨXKvi,ΨY vi −ΨXKvi⟩

=

NK∑
i=1

1

m
∥ΨY vi −ΨXKvi∥2µ

=
1

m
∥(ΨY −ΨXK)V ∥2F .

Next, by matrix calculus with denominator layout convention, we try to find minimal of J :

0 =
dJ

dK
=
d tr(J)

dK
(since J is a scalar)

=
d

dK
tr

(
1

m

NK∑
i=1

v∗
i

[
Ψ∗

Y ΨY − (Ψ∗
XΨY )

∗K −K∗(Ψ∗
XΨY ) +K∗(Ψ∗

XΨX)K

]
vi

)

=

NK∑
i=1

d

dK
tr

(
v∗
i

[
L−A∗K −K∗A+K∗GK

]
vi

)

=

NK∑
i=1

d

dK
tr (v∗

iLvi) +
d

dK
tr (v∗

iA
∗Kvi) +

d

dK
tr (v∗

iK
∗Avi) +

d

dK
tr (v∗

iK
∗GKvi)

=

NK∑
i=1

−Aviv
∗
i −Aviv

∗
i + (G+G∗)Kviv

∗
i

=

NK∑
i=1

(−2A+ 2GK)viv
∗
i (G is symmetric)

where tr() is trace of a matrix and G = Ψ∗
XΨX , A = Ψ∗

XΨY , L = Ψ∗
Y ΨY .

Since eigenvector vi is not a zero vector, viv∗i is not a zero matrix. So

−2A+ 2GK = 0 ⇒ K = G†A.

Remark A.1. To solve d
dK tr (v∗

iK
∗GKvi) , we simply rewrite it as

d
dK tr (v∗

iK
∗GKvi) =

d
dK tr ((Kvi)

∗G(Kvi)) .
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A.4. Discussion on convergence analysis

To understand how neural networks enhance ResKoopNet and build up the theoretical framework of convergence, it is
important to first introduce Barron space (Pinkus, 1999; Cybenko, 1989; Haykin, 2009; Barron, 1993). Barron space
characterizes functions efficiently approximated by two-layer neural networks, which is central to ResKoopNet. By
leveraging networks that approximate functions within this space, ResKoopNet can flexibly optimize the dictionary functions
for Koopman operator approximation, making it highly effective for complex, high-dimensional systems.

A function f belongs to Barron space B if it can be represented as:

f(x) =

∫
Ω

aσ(wTx)ρ(da, dw),

where σ is the activation function, w is a weight vector, a is a coefficient, and ρ is a probability distribution. The complexity
of f is measured by the Barron norm ∥f∥B:

∥f∥B = inf
ρ∈Pf

(∫
Ω

|a|∥w∥1ρ(da, dw)
)
,

where Pf is the set of distributions for which f can be represented. This framework provides a foundation for analyzing
approximation errors in neural networks.

The following theorem (Weinan et al., 2020) discusses the approximation capabilities of two-layer neural networks within
this context, establishing a foundation for the subsequent analysis.

Theorem A.2 (Direct Approximation Theorem, L2-version). For any f ∈ B and r ∈ N, there exists a two-layer neural
network fr with r neurons {(ai,wi)} such that

∥f − fr∥µ ≲
∥f∥B√
r
.

This implies an approximation error decreasing at a rate of O(1/
√
r), where r is the number of neurons. In ResKoopNet, the

dictionary Ψ(x; θ) = {ψi(x; θ)}NK
i=1 is parameterized by a neural network with parameters θ. Assuming the true dictionary

functions ψi ∈ B, Theorem A.2 ensures that Ψ(x; θ) can approximate the optimal dictionary spanning the Koopman
invariant subspace BNK

⊂ F with error ϵ > 0, provided r is sufficiently large.
Remark A.3. Notice that, the “two-layer neural network” in the Theorem A.2 statement refers to a hidder layer + an output
layer, which is the most standard and general setting. Our implementation uses three hidden layers. This does not invalidate
the result, as deeper networks can achieve at least the same approximation power (Pinkus, 1999).

We want to show two convergence results here: (1) Ψ(x; θ) approaches the true invariant subspace of K; (2) The eigenpairs
(λi, ϕi) and pseudospectrum approximate K’s true spectrum as J(θ) → 0.

Assumption A.4. To formalize convergence, we make the following assumptions:

(a) The optimal dictionary functions {ψ∗
i }

NK
i=1 spanning K’s invariant subspace lie in B.

(b) The loss J(θ) is strongly convex and Lipschitz continuous in θ, and the neural network Ψ(x; θ) has bounded gradients,
facilitating gradient-based optimization.

Now, consider a Barron space B which is dense in F . Given NK fixed, let BNK
= span{ψ∗

i }
NK
i=1 be the true invariant

subspace. By Theorem A.2, for each ψ∗
i , there exists a neural network approximation ψi(x; θr) with r neurons such that:

∥ψ∗
i − ψi(·; θr)∥µ ≤ ∥ψ∗

i ∥B√
r

.

The total dictionary error is:

∥Ψ∗ −Ψ(·; θr)∥2F =

NK∑
i=1

∥ψ∗
i − ψi(·; θr)∥2µ ≤ 1

r

NK∑
i=1

∥ψ∗
i ∥2B =

CNK

r
,
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where CNK
=

∑NK

i=1 ∥ψ∗
i ∥2B is finite under Assumption A.4(a). As r → ∞, Ψ(x; θr) → Ψ∗ in the Frobenius norm, which

ensures the dictionary approximated by neural network can represent BNK
.

Algorithm 1 updates θ via stochastic gradient descent (SGD) with step size δ and computes K̃(θn) iteratively until J(θn) < ϵ
where θn represents n-th iteration of parameters θ. For a Lipschitz continuous J(θ) with constant L (by Assumption A.4(b))
and a strongly convex region near the optimum θ∗ (assumed locally for simplicity), SGD converges at a rate of O(1/n) in
expectation (Bottou et al., 2018):

E[J(θn)− J(θ∗)] ≤ L

2ηn
,

where η is the strong convexity constant and n is the iteration number. In practice, J(θ) is non-convex due to the neural
network, and the alternating update with K̃(θ) stabilizes the process. As iteration step n→ ∞ and amount of data points
m→ ∞, J(θn) → 0, which implies r̂es(λi, ϕi) → 0 for all i.

With J(θ) → 0, we now assess the spectral error: if r̂es(λi, ϕi) < ϵ, then ∥Kϕi − λiϕi∥µ/∥ϕi∥µ <
√
ϵ, indicating λi and

ϕi are approximate eigenpairs of K converges to K’s true spectrum as NK → ∞ and ϵ→ 0, as pointed out in (Colbrook &
Townsend, 2024, Theorem B.1). Uniform convergence on compact subsets of C follows from the density of BNK

in F and
Dini’s theorem, as pointed out in Colbrook & Townsend (2024, Lemma B.1).

The non-convexity and system complexity may slow the spectral approximation in practice. High-order convergence (e.g.,
polynomial) could arise for smooth dynamics (See Colbrook & Townsend (2024, Theorem 3.1) for more details), which is
useful for further study.
Remark A.5. The computational cost (Appendix A.6) scales with r, t, and m, which trades off with accuracy. Adaptive
selection of r and early stopping when J(θ) < ϵ can optimize this balance.

A.5. Highlights of ResKoopNet compared with typical existing neural network-based Koopman framework

Our ResKoopNet method takes a fundamentally different approach from existing deep learning methods by building upon
the residual-based framework of ResDMD rather than the different Koopman-approximating loss functions following the
variational principles of VAMPnets (Tian & Wu, 2021; Wu & Noé, 2020; Mardt et al., 2018) or the deep autoencoder
structure in (Lusch et al., 2018). By incorporating spectral residual measures into deep learning and introducing a structured
representation that captures dependencies among eigenvalues, we achieve more compact and interpretable models for
nonlinear systems with continuous spectra. This approach enables us to directly minimize Koopman spectral approximation
errors while avoiding the high-dimensional representations or point-spectrum limitations of previous methods.

If we take the VAMP framework as an example, here are the connections and differences. The proposed loss function and
the VAMP score share the goal of optimizing approximations of the Koopman operator’s spectral properties, establishing a
connection in their ultimate purpose. However, although they both depend on the covariance matrices (in our manuscript
Equation 3.2), their methodologies differ significantly. Our residual-based method directly minimizes the spectral approx-
imation error of the Koopman operator and accommodates both point and continuous spectra, while the VAMP score
follows a variational framework, maximizing the sum of singular values to approximate the point spectrum, primarily
for stochastic systems (though see an exception in Tian & Wu (2021)). Moreover, while VAMP is specifically designed
for Markov processes and requires the Koopman operator to be Hilbert-Schmidt, our approach focuses on deterministic
systems and enables a more comprehensive spectral analysis that incorporates continuous spectra. This distinction in scope
and methodology highlights how the two frameworks complement each other in addressing different aspects of spectral
estimation.

A.6. Discussion of computation costs

Despite the various advantages of the ResKoopNet framework, one significant limitation is its higher computational cost
compared to the original ResDMD and other classical methods.

Theoretical Perspective: The ResKoopNet algorithm’s computational demands stem primarily from its iterative optimization
process. Each iteration involves a gradient descent update with complexity scaling linearly with both system dimensionality
and neural network parameters. Though individual gradient steps are computationally lightweight for standard network
architectures, the algorithm’s efficiency issue lies in its repeated least-squares optimizations. Below we provide a detailed
comparison between computation costs of several methods we used in this paper.
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Comparison over methods: The computational costs of EDMD, ResDMD, EDMD-DL, Hankel-DMD, and ResKoopNet
vary significantly based on their core computational steps and specific configurations. For a dataset with m = 105 data
points and NK = 300 dictionary functions (for EDMD-based methods), the theoretical complexity and runtime differ
across methods. EDMD involves least squares and eigenvalue decomposition, with a complexity of O(N2

Km + N3
K),

making it the fastest method, and typically requiring only seconds to minutes for computation. ResDMD extends EDMD by
adding residual evaluation and pseudospectrum computation. The residual evaluation introduces an additional O(N3

K), and
pseudospectrum computation across nz grid points incurs O(nzN

3
K), resulting in a total complexity of O(N2

Km+ nzN
3
K).

This leads to runtimes ranging from minutes to hours, depending on the resolution of the pseudospectrum grid. EDMD-
DL incorporates dictionary learning through stochastic gradient descent (SGD), where each iteration involves matrix
construction (O(N2

Km)), Koopman matrix computation (O(N3
K)), and neural network forward/backward propagation

(O(|θ|), with |θ| representing the total network parameter size). With k SGD iterations, the total complexity becomes
O(k(N2

Km+N3
K + |θ|)), leading to runtimes also in the range of minutes to hours depending on k. ResKoopNet, which

builds on EDMD-DL, shares the same complexity, O(k(N2
Km +N3

K + |θ|)), but includes the explicit use of Koopman
matrix eigenvectors and optional pseudospectrum computation, making its runtime slightly longer than EDMD-DL for
high-resolution spectral analysis. Hankel-DMD, using a time delay embedding dimension T , constructs a Hankel matrix
(O(Tm)), performs singular value decomposition (SVD) (O(T 2m)), and computes the eigenvalues of a reduced T × T
matrix (O(T 3)). The total complexity is O(Tm + T 2m + T 3), and the runtime is heavily influenced by T , typically
ranging from minutes to hours. While EDMD is computationally the most efficient, ResDMD and Hankel-DMD provide
higher precision and robustness in spectral analysis at the expense of increased runtime, and EDMD-DL and ResKoopNet
offer flexibility and accuracy through dictionary learning, with additional SGD iterations and optional pseudospectrum
computation contributing to their computational burden.

Empirical Perspective: In our experiments, without computing the pseudospectrum, the computational cost of ResDMD
typically ranges from seconds to minutes. ResKoopNet, on the other hand, can require tens of minutes to several hours,
depending on factors such as data dimensionality, the number of snapshots, hidden layer configurations, dictionary sizes,
and training convergence criteria.

Trade-off Between Cost and Accuracy: While ResKoopNet’s additional computational steps introduce higher costs, they
enhance the accuracy and robustness of Koopman eigenpair estimation by allowing automatic dictionary learning and
minimizing spurious spectral components. This trade-off makes ResKoopNet particularly valuable in applications where
precision is critical. However, its computational demands render it less suitable for real-time or online Koopman model
learning tasks.

Detailed Analysis of Computational Bottlenecks: The complexity O(k(N2
Km+N3

K + |θ|)) arises from ResKoopNet’s
iterative optimization, alternating between updating the neural network parameters θ and computing the Koopman matrix
K̂(θ). The dominant term O(kN2

Km) reflects the cost of constructing data matrices ΨX(θ) and ΨY (θ) at each iteration,
followed by gradient computation. For high-dimensional systems (large m) or complex architectures (large |θ|), the number
of iterations k required for convergence increases, particularly if the loss J(θ) = 1

m∥(ΨY (θ) − ΨX(θ)K(θ))V (θ)∥2F
is non-convex or ill-conditioned. The term O(kN3

K) stems from solving K̂(θ) = (G(θ) + σI)−1A(θ), where matrix
inversion scales cubically with NK . The optional pseudospectrum computation, with complexity O(nzN

3
K), becomes

significant for systems with continuous spectra, as nz grid points are scanned to evaluate residuals τj = minvi res(zj ,Ψvi).
Comparatively, ResDMD’s lower cost (O(N2

Km+ nzN
3
K)) avoids iteration, but sacrifices dictionary adaptability.

To mitigate these costs, we will consider some methods: (1) We consider Mini-Batch SGD since it uses a batch size b≪ m
that reduces per-iteration complexity to O(N2

Kb + N3
K + |θ|), potentially lowering overall cost despite increased k, as

validated by Barron space convergence properties. (2) We can use preconditioning to improve the condition number of G(θ)
via diagonal scaling or incomplete Cholesky factorization could accelerate convergence, reducing k.

Theoretical Extensions: TheO(1/n) SGD rate assumes convexity, yet J(θ)’s non-convexity suggests sublinear convergence.
A bound like ∥K − KNK

∥ (Appendix A.4) could quantify accuracy, while determining minimal NK and k for spectral
completeness remains a future work. Extending ResKoopNet to stochastic systems (e.g., adding noise terms to spectral
residual) or embedding physical constraints (e.g., unitary spectra for Hamiltonian systems) could enhance its scope,
respectively, which also aligns with future work outlined in the Section 5.
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A.7. Extra tests for ResDMD and ResKoopNet

A.7.1. RESDMD WITH LESS DICTIONARY FUNCTIONS

While the original ResDMD implementation used 964 basis functions to capture the full spectrum of the nonlinear pendulum,
our additional tests demonstrate that the unit circle spectrum can be reasonably approximated by ResDMD with fewer
observables. Figure 7 shows the progressive improvement in spectral approximation as the dictionary size NK increases.
With nearly 500 basis functions, ResDMD begins to adequately reconstruct the unit circle structure, though still requiring
substantially more observables than the 300 basis functions needed by ResKoopNet.

(a) NK = 252 (b) NK = 356 (c) NK = 464 (d) NK = 860

Figure 7: Comparison across different dictionary sizes by ResDMD.

A.7.2. RESKOOPNET WITH DIFFERENT HYPERPARAMETERS

We test ResKoopNet on the dataset which has 90 initial points, as used in the Section 4.1. The Figure 8 shows that when
tunning the number of hidden layers from 1 to 4 and the number of neurons in each layer from 250 to 350, the results change
significantly. We can also tell that a suitable NN structure would be about 3 hidden layers with 300 neurons in each hidden
layer. More neurons and hidden layers would be fore help, but cost more computational resource. This result also shows that
our method is robust to hyperparameters tuning.

A.8. Hankel-DMD

A.8.1. JUSTIFICATION OF USING HANKEL-DMD AS COMPARISON IN ALL EXPERIMENTS

Hankel-DMD operates by constructing a Hankel matrix from time-delayed measurements of the system state, based on
Takens’ embedding theorem, which states that time-delayed coordinates can reconstruct the state space of dynamical systems.
Hankel-DMD also falls within the framework of Extended Dynamic Mode Decomposition (EDMD), as it effectively uses
time-delayed states as dictionary functions. This connection introduces convergence conditions specific to time-delay
embeddings, differing from those associated with standard EDMD implementations. This makes Hankel-DMD a natural
choice for comparison in the pendulum system. Specifically, the method enables a more detailed extraction of the system’s
modes and dynamics, with theoretical guarantees established in works like (Arbabi & Mezic, 2017), which proved its
convergence for ergodic systems.

Practically, the approach involves constructing a large matrix of time-shifted copies of measured data, where the number of
delays determines how many past states are considered. This theoretically grounded framework is particularly effective
when the system states have good temporal resolution and has shown strong performance in analyzing high-dimensional
dynamical systems. Consequently, we also apply Hankel-DMD to the turbulence and neural dynamics experiments to
evaluate its effectiveness in these representative high-dimensional settings.

As results, although its performance rivals ResKoopNet in the simple pendulum system by showing eigenvalues points near
the unit circle and containing some polluted eigenvalues, which are close to the ground truth unit circle, we would like to
emphasize that it capture the point spectrum and miss the full spectral information. When it comes to high-dimensional
systems, it fails to capture key dynamics in higher-dimensional systems, as seen in the later experiment (Section 4.2 and
Section 4.3).

A.8.2. APPLICATION IN TURBULENCE

Here we present the Koopman modes computed by Hankel-DMD for comparison with the ResKoopNet results. As shown
in Figure 9, despite having small residuals, these modes fail to clearly capture the fundamental pressure field structure
that was successfully identified by ResKoopNet’s first Koopman mode (see Figure 5). The discrepancy observed for
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1 hidden layer
250 neuron

1 hidden layer
275 neuron

1 hidden layer
300 neuron

1 hidden layer
325 neuron

1 hidden layer
350 neuron

2 hidden layers
250 neuron

2 hidden layers
275 neuron

2 hidden layers
300 neuron

2 hidden layers
325 neuron

2 hidden layers
350 neuron

3 hidden layers
250 neuron

3 hidden layers
275 neuron

3 hidden layers
300 neuron

3 hidden layers
325 neuron

3 hidden layers
350 neuron

4 hidden layers
250 neuron

4 hidden layers
275 neuron

4 hidden layers
300 neuron

4 hidden layers
325 neuron

4 hidden layers
350 neuron

Figure 8: Comparisons of neural network architectures. Each row corresponds to the number of hidden layers (from 1 to 4),
and each column shows the model with a different neuron count (250, 275, 300, 325, 350).

Hankel-DMD (Arbabi & Mezic, 2017) is due to its fundamentally different theoretical framework. While ResKoopNet
(and other EDMD-based methods) use a Galerkin framework with convergence guarantees established via minimizing
the spectral residual, the Hankel-DMD approach is based on Takens’ embedding theorem (Takens, 2006). Therefore, the
spectral residual metric, which is derived and justified within the Galerkin projection framework, does not fully extend to
the Hankel-DMD setting. Even if Hankel-DMD yields small residual, this does not ensure that its modes accurately capture
the underlying dynamics (such as the fundamental pressure field structure).

A.9. Practical details for neural data analysis

A.9.1. DATASET DETAILS AND EXPERIMENTAL SETUP

The dataset utilized in this study is part of the open dataset provided for the ‘Sensorium 2023’ competition (Turishcheva
et al., 2024b). The dataset consists of calcium imaging recordings from the primary visual cortex of mice. During the
experiments, the mice were presented with natural video stimuli while the activity of thousands of neurons was recorded.
The objective of the competition is to predict large-scale neuronal population activity in response to different frames of the
stimulus videos, based on the hypothesis that population dynamics in the primary visual cortex, driven by visual stimuli,
encode significant information about the dynamics of the videos (Basole et al., 2003; Onat et al., 2011; Hénaff et al., 2021).

A.9.2. TASK DEFINITION AND RATIONALE

In contrast to the competition’s prediction objective, our study focuses on the task of state partitioning of neural signals.
While prediction remains feasible, we aim to demonstrate that state partitioning is sufficient to highlight the superiority of
ResKoopNet over a series of other methods in uncovering the latent dynamics of the system. Specifically, in each experiment,
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Figure 9: The plots illustrate turbulence detection using the four Koopman modes computed by Hankel-DMD, which are
ranked with their corresponding spectral residual from the smallest, similar as in ResKoopNet case.

a set of six video stimuli was repeatedly presented to each mouse, creating ideal conditions for defining brain states. The
recording setup remained consistent for each mouse, ensuring that the neural activities could be interpreted as originating
from the same dynamical system, with the primary variable being the input stimulus.

We hypothesize that during repeated trials with identical visual stimuli, the underlying dynamics of the neural system remain
consistent. Consequently, the recurrence of the same brain state is expected during these trials. This provides a reliable basis
for testing the efficacy of Koopman decomposition methods in uncovering latent dynamics and distinguishing these states.

A.9.3. DATASET STRUCTURE AND DIMENSIONALITY

The dataset includes neural recordings from five mice, with each mouse responding to six distinct video stimuli, presented in
9-10 repeated trials (resulting in approximately 60 trials in total). Each trial involves recordings of over 7000 neurons. The
duration of each video stimulus is 10 seconds, with a sampling rate of 50 Hz, yielding 300 data points (299 snapshots) per
trial. Thus, the data to be analyzed consists of a high-dimensional time series with 7000+ observables per snapshot.

A.9.4. IMPLEMENTATIONS OF RESKOOPNET AND OTHER CLASSICAL METHODS

We compare here four methods: the proposed ResKoopNet and three classical Koopman decomposition methods for
high-dimensional systems: the Hankel-DMD, the EDMD with RBF basis, and the Kernel ResDMD. We applied them to the
5 datasets, although with slightly different implementations and different dimensions of approximated Koopman invariance
subspace.

For ResKoopNet, we train the dictionaries with all the snapshots recorded in each mouse such that the total snapshot

20



ResKoopNet

number is the product of the snapshot number in one trial and the number of all trials. This is to avoid overfitting with
the small snapshot numbers within a trial. The high-dimensional data is first reduced to 300 dimensions with Singular
Value Decomposition. The dimension of the Koopman subspace is chosen to be 50 (to be compared with Hankel DMD
fairly), consisting of 25 trained bases and 25 pre-chosen ones (constant and the first-degree polynomials of the SVD-ed
24 dimensions). One can find the decomposed eigenfunctions in Figure 6A(top), with a marker of the ground truth state
separations based on stimulus identity.

For Hankel-DMD, the Koopman eigenfunctions were approximated using the eigenvectors of the Hankel matrix. Specifically,
the Hankel matrix was formed as in Equation 53 from Arbabi & Mezic (2017), using all the observables from one trial of
each mouse with a delay of 50. Consequently, the snapshot size became 249 times the observable number, and the resulting
number of eigenfunctions was 50, each with a length of 50. The Hankel-DMD eigenfunctions for each trial of data are
shown in Figure 6A (bottom), alongside the ground truth trial identities for comparison.

For EDMD with RBF basis, the high-dimensional dataset is first reduced to 300 dimensions with SVD. Then RBF basis is
calculated with 1000 RBF functions. The choice of the basis number is decided based on classical experiments of using
RBF basis to estimate the Koopman operator of Duffing systems (Li et al., 2017).

For Kernel ResDMD, as it is a variant of Kernel EDMD (Kevrekidis et al., 2016), the dimension of the Koopman invariant
subspace should corresponds to the sample number (in time). Given the data size to be 300, we have 299 snapshots, resulting
in 299 Koopman bases. The detailed calculated is performed for each trial with the program provided in the original
ResDMD paper (Colbrook et al., 2023; Colbrook & Townsend, 2024). We chose the kernel function as the commonly-used
normalized Gaussian function in the calculation.

The Koopman eigenfunctions from both ResKoopNet and other methods represent dynamical features corresponding to one
of the six video stimuli. To evaluate how well the eigenfunctions capture the latent dynamics, we assess the similarity of the
features for trials with the same stimulus and their dissimilarity from those corresponding to different stimuli. Effectively,
this makes the problem a clustering task, where the separability of the Koopman eigenfunctions reflects how well they
capture the key dynamic components related to the stimuli.

A.10. Choice justification of dictionary sizes

In this section, we provide justifications for the use of different dictionary sizes (i.e., the number of Koopman eigenfunctions)
in the aforementioned four methods for the neural dynamics experiment.

First, the high-dimensional data was pre-processed using SVD to reduce its dimensionality to 300. Then, for the four
methods:

1. For ResKoopNet, we selected 25 trained basis functions and 24 first-order monomial basis functions as the dictionary
for the 24 reduced observables. This choice ensures the dictionary size is the same as Hankel DMD, making it a fair
comparison between the performance of these two methods. The last two methods uses higher dictionary sizes but still
remain ineffective in capturing temporal dynamics, thus not affecting the fairness of choosing 50 dictionaries here. The
size of the trained dictionary was set to be at least equal to the original observable size to ensure a sufficiently rich
dictionary for the Koopman invariant subspace.

2. For Hankel DMD, the number of delays (as dictionary size/number of eigenfunctions) is first constrained by the
temporal sample size (i.e., snapshot size) because it cannot exceed the maximum snapshot size. Therefore, it is
impossible to choose the same dictionary size as the ResKoopNet example. Choosing the delay too small will result in
an insufficient dictionary size to span the Koopman invariant subspace, and too large will reduce the actual snapshot
size to estimate the covariance matrices in the estimation of the Koopman matrix. Therefore, we chose a compromise
delay number of 50 that satisfies both needs.

3. For RBF basis, in principle, we can use the same dictionary size. However, our previous experience with a similar
dataset and the results of using the RBF basis for the EDMD method all suggest that the performance will be better
with more dictionary functions. Therefore, we chose 1000 RBF basis and the original 300 first-order monomial basis
as a better condition compared to the same dictionary size with ResKoopNet.

4. For Kernel ResDMD, the dictionary size is theoretically determined to be the number of snapshots. Therefore, we
cannot make the dictionary size consistent with the ResKoopNet example.
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Based on the above justifications, we believe our choices of dictionary sizes are reasonable and ensure a fair comparison
across the methods.

A.10.1. VISUALIZATION AND CLUSTERING PERFORMANCE

To visualize the clustering of high-dimensional Koopman eigenfunctions, we perform dimensionality reduction using
Multi-dimensional Scaling (MDS). MDS is particularly useful for visualizing high-dimensional data by preserving pairwise
similarities (Kruskal, 1964) (here we use correlation as a measure of similarities). While UMAP (McInnes et al., 2018)
and t-SNE (Van der Maaten & Hinton, 2008) are alternative visualization methods, with different emphasis on global-local
relationships, we primarily use MDS in this study and provide UMAP and t-SNE results in the supplementary materials
(see Appendix Figure 13A, B, Appendix Figure 14C, D and Appendix Figure 15C, D). UMAP in implementation is still
correlation-based. For t-SNE estimation we use the perplexity of 15, as a value for optimal separation.

By applying MDS, the high-dimensional eigenfunction-based features are reduced to a low-dimensional space. For
illustration, we present the results of reducing the feature space to two dimensions (Figure 6B-E). The ResKoopNet reduced
features for the six types of trials (corresponding to the six video stimuli) are well-separated for all five mice (Figure 6B).
In contrast, the Hankel-DMD features show no clear clustering structure (Figure 6C). Similarly, the features produced by
EDMD with an RBF basis and Kernel ResDMD do not show clear separability (Figure 6D-E, Appendix Figure 14B-D,
Appendix Figure 15B-D).

A.10.2. CLUSTERING QUALITY METRICS

We further quantified the clustering quality by calculating the Davies-Bouldin Index (DBI) for both Koopman decomposition
methods across all mice (Figure 6F). The DBI is designed to assess the compactness of clusters and the separability between
them. A lower DBI indicates better clustering performance. ResKoopNet features yield significantly lower DBI scores
compared to other methods, confirming that ResKoopNet produces more clearly defined clusters corresponding to the ground
truth trials. Similar clustering results are observed with UMAP and t-SNE (see Appendix Figure 16), further supporting the
superior performance of ResKoopNet in capturing the latent dynamic structure compared to the other classical methods.
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Figure 10: Trial-averaged neural responses to 6 video stimuli (marked by 6 states).
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Figure 11: (A) Mean firing rates (calcium spike) of each mouse in response to 6 video stimuli (marked as states). (B)
Clustering performance based on the mean firing rates of each mouse to 6 video stimuli, visualized with Multi-dimensional
Scaling (MDS). (C) Same as (B) but visualized with UMAP. (D) Same as (B) but visualized with t-SNE

.
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Figure 12: Comparison of clustering quality based on Davies-Bouldin Indices for clustering with mean firing rates and
Koopman eigenfunctions learned from ResKoopNet, visualized in 2D space with Multi-dimensional Scaling (A), UMAP
(B) and t-SNE (C).

Figure 13: State Partition performance with eigenfunctions for ResKoopNet (50 bases) and Hankel-DMD in 2D space
visualized with UMAP (A) and t-SNE (B).
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Figure 14: Full results of EDMD with RBF basis. (A) 1301 Koopman eigenfunctions estimated by EDMD with RBF basis
in 6 states characterized by 6 different video stimuli in an example mouse. Eigenfunctions in each trial of each state contain
300 data points (10s with a sampling rate of 50Hz). (B) 2-D representation of Koopman eigenfunctions for each trial of all
tested mice, calculated by EDMD with RBF basis and reduced by Multidimensional Scaling (MDS). No clear separation of
states can be seen from the reduced representation. (C) Same as (B) but visualized with UMAP. No clear separation of states
can be seen from the reduced representation. (D) Same as (C) but visualized with t-SNE. No clear separation of states can
be seen from the reduced representation.
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Figure 15: Same as Figure 14 but estimated with Kernel ResDMD, with 299 basis of the Koopman subspace, thus 299
eigenfunctions.
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Figure 16: Davies-Bouldin Indices evaluating the clustering performance of dynamical components learned by four methods
(ResKoopNet(50 bases), Hankel DMD, EDMD+RBF, and Kernel ResDMD) across five mice. Comparisons are shown using
UMAP (A) and t-SNE (B).

Figure 17: Davies-Bouldin Indices for different neural network hyperparameters in training ResKoopNet with 50 bases in an
example mouse. Note that lower values indicate better clustering performance. With small layer size and layer number, the
clustering performance is not stable but becomes robust when the layer size reached 200 and layer number reaches 3.
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