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Abstract

Binary code analysis is the foundation of cru-001
cial tasks in the security domain; thus building002
effective binary analysis techniques is more003
important than ever. Large language models004
(LLMs) although have brought impressive im-005
provement to source code tasks, do not directly006
generalize to assembly code due to the unique007
challenges of assembly: (1) the low informa-008
tion density of assembly and (2) the diverse009
optimizations in assembly code. To overcome010
these challenges, this work proposes a hierar-011
chical attention mechanism that builds atten-012
tion summaries to capture the semantics more013
effectively, and designs contrastive learning014
objectives to train LLMs to learn assembly op-015
timization. Equipped with these techniques,016
this work develops Nova, a generative LLM017
for assembly code. Nova outperforms existing018
techniques on binary code decompilation by019
up to 146.54%, and outperforms the latest bi-020
nary code similarity detection techniques by up021
to 6.17%, showing promising abilities on both022
assembly generation and understanding tasks.023

1 Introduction024

Binary code plays an irreplaceable role in the se-025

curity domain, being the foundation of crucial026

tasks including vulnerability detection (Güler et al.,027

2019; Duan et al., 2020; Chen et al., 2022b), mal-028

ware detection (Spensky et al., 2016; Aonzo et al.,029

2023; Xu et al., 2014), binary recovery (Su et al.,030

2024; Zhang et al., 2021; Chen et al., 2022c), and031

legacy software maintenance (Carbone et al., 2009;032

Carlini et al., 2015; Martin et al., 2010). For ex-033

ample, when performing tasks such as identifying034

attacks and malware, security analysts often only035

have access to assembly, i.e., the human-readable036

representation of binary code, which is extremely037

difficult to understand (Su et al., 2024; Zhang et al.,038

2021; Chen et al., 2022c). Thus, combined with the039

increasing sophistication of cybercrime that poses040

significant threats worldwide (e.g., cybercrime is041

predicted to cost the world $10.5 trillion annually 042

by 2025 (Sausalito, 2020)), effective binary analy- 043

sis techniques are in high demand. 044

Large language models pre-trained on source 045

code have brought improvement in various soft- 046

ware development domains (Chen et al., 2022a; 047

Liu et al., 2023; Chen et al., 2023; Le et al., 2022; 048

Jiang et al., 2023; Xia et al., 2023). However, these 049

LLMs are not designed for or trained with assembly 050

corpus, not achieving their full potential on binary 051

code analysis tasks such as binary code similar- 052

ity (Wang et al., 2022; Xu et al., 2023a), malware 053

detection (Su et al., 2024), and binary code decom- 054

pilation (Tan et al., 2024; Armengol-Estapé et al., 055

2024; Hosseini and Dolan-Gavitt, 2022). Exist- 056

ing work applying LLMs on assembly code mainly 057

piggybacks on encoder-style LLMs (Wang et al., 058

2022; Su et al., 2024; Xu et al., 2023a), unable to 059

benefit from the more extensive pre-training, up- 060

dated architectures, scaling of state-of-the-art gen- 061

erative LLMs. Other work using generative LLMs 062

for decompilation shows a low unit test passing 063

rate of the decompiled programs (Tan et al., 2024; 064

Armengol-Estapé et al., 2024). 065

The challenges of leveraging generative LLMs 066

for assembly code are twofold. First, compared to 067

source code, assembly code has a lower informa- 068

tion density. A short source-code sequence maps to 069

a much longer assembly-code sequence that is of- 070

ten several times longer. Thus, assembly semantics 071

span across a long sequence of tokens. Figure 1 (a) 072

shows an example of a source code function that 073

compares two integers, while Figure 1 (b) shows 074

its corresponding assembly code optimized with 075

O0 flag. In the O0-optimized assembly code, the 076

five instructions from 10: mov -0x8(%rbp),%rax to 077

1c: cmp %eax,%edx perform the checking whether 078

the value of x is smaller than the value of y (cor- 079

respond to if (*(int*)x < *(int*)y) in the source 080

code). A single assembly instruction alone rep- 081

resents little meaningful semantics in the source 082
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0:    endbr64 
4:    push   %rbp
5:    mov    %rsp,%rbp
8:    mov    %rdi,-0x8(%rbp)
c:    mov    %rsi,-0x10(%rbp)
10:   mov    -0x8(%rbp),%rax
14:   mov    (%rax),%edx
16:   mov    -0x10(%rbp),%rax
1a:   mov    (%rax),%eax
1c:   cmp    %eax,%edx
...

(b) Assembly (O0-Optimized) (c) Assembly (O1-Optimized)(a) Source Code Function

0:    endbr64 
4:    mov    (%rdi),%ecx
6:    mov    (%rsi),%edx
8:    mov    $0xffffffff,%eax
d:    cmp    %edx,%ecx
f:    jl     17
11:   setg   %al
14:   movzbl %al,%eax
17:   retq

#include <stdio.h>
#include <math.h>

int compare(int *x, int *y) {
    if (*(int*)x < *(int*)y)
        return -1;
    if (*(int*)x > *(int*)y)
        return 1;
    return 0;
}

Figure 1: Example that shows the semantics and diverse optimizations of assembly code.

code. It is the combinations of many instructions083

and the dependencies between them represent the084

semantics. Such combinations of instructions are085

long, which is hard for LLMs to learn.086

Second, assembly code is diverse due to com-087

piler optimization. The assembly code of the same088

source code function looks dramatically different089

with different compiler optimization. Figure 1 (c)090

shows the assembly of the same function compiled091

with O1 and O0 flags, which consists of a signifi-092

cantly different set of instructions. Such syntax di-093

versity is hard for LLMs to learn, preventing LLMs094

from obtaining consistently good performances on095

differently optimized assembly code.096

In this work, we develop Nova, a generative foun-097

dation LLM pre-trained for assembly code with two098

key novelties. First, to address the low-information-099

density and long-sequence challenge, we design a100

hierarchical self-attention, which contains three cat-101

egories of attention at different levels of granularity:102

intra-instruction attention, preceding-instruction at-103

tention, and inter-instruction attention. The key104

insight is to build attention summaries, i.e., we cre-105

ate per-statement attention labels, which act as the106

summary of a statement. We then use preceding-107

instruction attention to capture semantics between108

a token and its preceding instruction label and use109

inter-instruction attention for long dependencies.110

Besides, we design functionality contrastive learn-111

ing and optimization contrastive learning objec-112

tives to train Nova to learn the semantics behind113

the diverse syntax of assembly.114

This work makes the following contributions:115

• We propose a novel hierarchical attention mech-116

anism that captures the assembly’s low-density117

semantics at three granularity levels.118

• We design contrastive learning objectives to train119

LLMs to learn assembly with diverse optimiza-120

tions and encode assembly more efficiently.121

• We develop Nova, a generative foundation LLM122

with hierarchical attention and contrastive learn-123

ing for assembly. Nova outperforms state-of-the-124

art (SOTA) on binary decompilation by up to125

146.54% and on binary similarity detection by 126

up to 6.17%. 127

• We conduct a comprehensive analysis, illustrat- 128

ing the effectiveness of Nova’s novel designs: (1) 129

Nova’s embeddings of assemblies successfully 130

reflect code functionalities in the latent space, 131

and (2) Nova’s hierarchical attention comple- 132

ments standard attention by learning different 133

attention weight distributions, especially those 134

reflecting long sequence semantics. 135

2 Approach 136

Figure 2 presents the overall approach of Nova. 137

We build Nova on top of foundation models for 138

source code (Rozière et al., 2023; Li et al., 2023; 139

Guo et al., 2024) to utilize their source code and 140

natural language generation ability. We first collect 141

large assembly corpora (Section 2.1). Section 2.2 142

describes Nova’s hierarchical attention. With the 143

collected assembly corpora, we then pretrain Nova 144

with language modeling and contrastive learning 145

objectives (Section 2.3). Then, we fine-tune Nova 146

on two important downstream tasks, binary code 147

decompilation, and binary code similarity detection 148

(Sections 2.4 and 2.5), to prove Nova’s effective- 149

ness and benefits to the binary research domain. 150

Dataset

Language
Modeling

Functional
Contrastive Learning

Optimization
Contrastive Learning

Pre-Trained
LLM

Hierarchical
Attention

Nova

Figure 2: Overview of developing Nova

2.1 Data Collection 151

We build our assembly data sets on top of existing 152

source code datasets: The-Stack (Li et al., 2023) 153

and the AnghaBench (da Silva et al., 2021). We 154

compile the source code into executables with dif- 155

ferent optimization levels (i.e., O0, O1, O2 and O3), 156

strip the executables to remove debug information, 157

and disassemble them into assembly code. We treat 158

every assembly function as a separate data sample. 159
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The breakdown statistics are in Table 1.160

Datasets Source O0 O1 O2 O3 Total

AnghaBench 757.1K 743.1K 726.4K 718.7K 717.8K 3.7M
The-Stack 138.8K 125.1K 119.7K 116.9K 108.8K 609.3K

Table 1: Statistics (number of source code and assembly
functions) of the pre-training datasets.

We perform certain normalization on the assem-161

bly functions: (1) removing all the “%” and com-162

ments, (2) adding whitespace around “,”, “(”, “)”,163

(3) converting all the hexadecimal numbers to dec-164

imal numbers, and (4) replacing the address of165

each instruction with special labels (e.g., replac-166

ing “0” and “4” in Figure 1 (b) with “[INST-1]” and167

“[INST-2]”) placing at the end of each instruction.168

More details are in Appendix A.1.169

2.2 Hierarchical Self-Attention170

Nova uses hierarchical self-attention that is spe-171

cially designed to learn the low-information-density172

semantics in the long sequence of assembly code.173

Specifically, Nova learns the assembly code in an174

hierarchical way by providing a modified atten-175

tion mask. Different from standard token-level176

attentions (Vaswani et al., 2023; Radford and177

Narasimhan, 2018; Radford et al., 2019; Brown178

et al., 2020), our hierarchical self-attention contains179

three categories at different levels of granularity.180

mov eax , $1

mov ebx , $2

mov ecx , eax

add ecx , ebx

Tokenized Assembly Instructions with Attention Illustration

Full Hierarchical Attention Mask

mov e ax , $ 1 [INST-1]

mov e bx , $ 2

mov ec x , e ax

add ec x , e bx

[INST-2]

[INST-3]

[INST-4]

mov e ax , $ 1 [INST-1]

intra-instruction
attention

preceding-
instruction attention

inter-instruction
attention

Figure 3: Design of hierarchical attention

(1) Intra-Instruction Attention: Due to the low 181

information density in assembly, intra-instruction 182

attention is designed to capture the summary of 183

every instruction, which is the standard causal at- 184

tention but limited to tokens of each instruction 185

(the yellow part in Figure 3). Tokens in different 186

instructions have no attention weights. The “[INST]” 187

label at the end of the instruction has attention to all 188

the tokens in the instruction and thus captures the 189

semantics of the entire instruction (e.g., “[INST-1]” 190

captures the semantics of “mov eax, $1”). 191

(2) Preceding-Instruction Attention In addition 192

to the local semantics of each instruction, the use 193

of assembly instructions (such as the choice of reg- 194

isters) depends on the context. For example, after 195

the first instruction “mov eax, $1”, the second in- 196

struction should not reuse “eax” to store another 197

value “$2” immediately. To capture such context, 198

the preceding-instruction attention enables each to- 199

ken in an instruction to have attention to the “[INST]” 200

label of the preceding instruction (the light green 201

part in Figure 3). 202

(3) Inter-Instruction Attention To understand 203

function semantics (i.e., functionality), which lies 204

in the dependencies across different instructions, 205

the inter-instruction attention is designed to let the 206

“[INST]” label of each instruction have attention to 207

all the labels of previous instructions. For example, 208

“[INST-4]” has attention to “[INST-1]”, “[INST-2]”, 209

and “[INST-3]” (the dark green part in Figure 3). 210

The inter-instruction attention is only enabled for 211

“[INST]” labels, as they represent the semantics of 212

each instruction. 213

To sum up, the hierarchical self-attention breaks 214

the semantics of assembly code into three parts. 215

The intra-instruction attention captures the instruc- 216

tion summary, and the preceding-instruction atten- 217

tion captures the context with the preceding in- 218

struction. The inter-instruction attention learns the 219

long dependencies across instructions on top of 220

the “[INST]” labels that contain the instruction sum- 221

mary. Appendix A.2 shows how hierarchical self- 222

attention works with text and source code. 223

2.3 Contrastive Learning 224

The syntax gap between assembly code and source 225

code, and syntax diversity between differently- 226

optimized assembly code make LLMs struggle to 227

distinguish the semantics behind the syntax. Nova 228

adopts contrastive learning technique (Gao et al., 229

2021) during pre-training to train LLMs to encode 230

assembly code meaningfully w.r.t semantics. 231
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src4
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(b) Implementation of Functionality CL (d) Implementation of Optimization CL

func <cmp>

src

O0 asm

O1 asm
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(a) CL Across Functionalities

d(e*
cmp , e

*
cmp)

src

O0 asm

O1 asm

d(e*
sort , e

*
sort)

d(e*
cmp , e

*
sort)

src

O0 asm

O1 asm

O2 asm

O3 asm

(c) CL Across Optimizations

Figure 4: Design of functionality and optimization contrastive learning (CL). “asm” denotes assembly.

The standard pre-training objective is language232

modeling by minimizing the negative likelihood233

of code in the pre-training corpus (Radford and234

Narasimhan, 2018), notated as Llm. In addition,235

Nova is pre-trained with two new objectives, Lfcl236

for functionality contrastive learning and Locl for237

optimization contrastive learning.238

Functionality CL Functionality CL trains Nova to239

focus more on the functionalities of assembly code240

rather than the syntax. Code with the same func-241

tionality (assemblies from the same source code),242

should be encoded closer in the latent space. For243

instance, in Figure 4 (a), embeddings of source and244

assembly code of function “cmp” are closer to each245

other, and the same for function “sort”.246

Let esf be the embedding of function f in s form247

(s = −1 for source code, and s ∈ [0, 1, 2, 3] for248

O0 to O3 optimized assembly). For simplicity, let249

S = [−1, 0, 1, 2, 3] be the domain of s. We use250

the average of all the “[INST]” tokens’ embedding251

as the embedding of the whole assembly function,252

as each “[INST]” token is supposed to capture the253

semantics of that instruction by the design of hier-254

archical self-attention. Functionality CL optimizes255

Nova with the constraint:256

∀fi ∈ F, max
s,t∈S

(d(e
s
fi , e

t
fi)) < min

s,t∈S
fj ̸=fi∈F

(d(e
s
fi , e

t
fj ))257

, where d calculates the l2 distance between two258

embeddings and F is the full set of functions in the259

training corpus.260

Such constraints can be trained by optimizing261

the embeddings of a batch of functions, each262

function in two different forms. For the exam-263

ple in Figure 4 (b), there are two forms (source264

code and O0 assembly) of four functions. Once265

Nova encodes the batch of source code and as-266

sembly functions, we calculate the distance matrix267

{Dij}fi,fj∈F = {d(esfi , e
t
fj
)}, and minimize the loss:268

Lfcl = − log
∑
s,t∈S

∑
fi∈F

1−
exp

(
d(esfi , e

t
fi
)
)∑

fj∈F exp
(
d(esfi , e

t
fj
)
)
269

This objective minimizes the distance between 270

embeddings for the same function, i.e., the diagonal 271

in the distance matrix. 272

Optimization CL LLMs can be confused if being 273

asked to directly connect a source code function to 274

its O3-optimized assembly, due to their dramatically 275

different syntax. Such a huge gap can be filled 276

by learning how the source code is transformed 277

to O0, O1, O2 and eventually to O3 assembly, as the 278

optimization levels are ordered. 279

Higher-level optimization applies a super-set of 280

optimization rules compared to lower-level opti- 281

mization. Nova learns such order with the optimiza- 282

tion CL objective, encoding differently-optimized 283

assembly code orderly. Optimization CL optimizes 284

Nova with the constraint: 285

∀f ∈ F,∀s < t1 < t2 ∈ S, d(esf , e
t1
f ) ≤ d(esf , e

t2
f ) 286

Intuitively, this ensures that the more optimiza- 287

tions applied, the larger the difference between 288

embeddings of optimized and unoptimized code. 289

For instance, Figure 4 (c) and (d) illustrate that 290

for the same function “cmp”, the distance between 291

source code and assembly increases when the op- 292

timization level increases. Formally, optimization 293

CL minimizes the following loss: 294

Locl =
∑
f∈F

∑
s<t1<t2∈S

max
(
0, d(esf , e

t1
f )− d(esf , e

t2
f )

)
295

Overall, the final training loss combines the 296

three: L = Llm + λ(Lfcl +Locl), where λ is set to 0.1 297

to balance the losses in this work. 298

2.4 Task 1: Binary Code Decompilation 299

Binary code decompilation (BCD) helps develop- 300

ers to understand binary code by recovering binary 301

code into more readable high-level source code 302

(e.g., C programs) (Fu et al., 2019; Liang et al., 303

2021; Armengol-Estapé et al., 2024; Tan et al., 304

2024). The input to the model for BCD is formatted 305

as an instruction prompt (notated by p): # This is 306

the assembly code with {opt} optimization: {asm}, 307
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where “opt” is the optimization-level applied to308

the assembly and “asm” is the assembly code to309

decompile. Nova is fine-tuned to generate the ex-310

pected source code function src following the in-311

struction prompt. The fine-tuning objective is mini-312

mizing the loss: Lbcd = − log P (src|p).313

2.5 Task 2: Binary Code Similarity Detection314

Binary code similarity detection (BCSD) aims to315

measure the similarity between two binary code316

snippets (Wang et al., 2022; Su et al., 2024), which317

is the foundation of various applications such as318

plagiarism detection (Luo et al., 2014; Sæbjørnsen319

et al., 2009) and vulnerability detection (David and320

Yahav, 2014; David et al., 2018, 2017, 2016).321

A widely used setting is taking a query assem-322

bly of the function f q that is compiled with one323

optimization level (denoted by s), and a pool of324

candidate assembly of K functions (notated by fp
i ,325

1 ≤ i ≤ K) compiled with a different optimization326

level (denoted by t ̸= s). There exists a unique327

candidate assembly coming from the same source328

code as the query (∃!1 ≤ i ≤ K, fp
i = f q, called the329

positive candidate). Nova is fine-tuned to encode330

these binaries, so that the positive candidate has the331

highest similarity with the query assembly among332

the pool. The learning objective is:333

LBCSD = − log
∑

1≤j≤K
fq :=f

p
j

1−
exp

(
d(e

s
fq , etfq

j
)
)

∑
1≤i≤K

exp
(
d(esfq , etfp

i
)
)
334

, where we follow previous work (Su et al., 2024)335

to let s be O0-assembly and t be O3-assembly, which336

is the hardest setting.337

3 Experimental Setup338

3.1 Pre-Training339

We use the data collected from AnghaBench and340

The-Stack for pre-training. We pre-train Nova start-341

ing from DeepSeek-Coder (Guo et al., 2024), and342

the hierarchical attention is applied on half of the343

attention heads to balance between its effective-344

ness and the existing knowledge in the standard345

attention layers. Nova is pre-trained with language346

modeling for one epoch, followed by contrastive347

learning objectives for another epoch.348

3.2 Binary Code Decompilation349

Training Data We sample 2.16M assembly-to-350

source-code pairs (0.338B tokens) from the pre-351

training corpus to build the BCD fine-tuning data.352

Test Data We use HumanEval-Decompile (Tan 353

et al., 2024) as the test benchmark, which was 354

not used in training. HumanEval-Decompile is 355

derived from the C language adaptation of the Hu- 356

manEval (Chen et al., 2021) benchmark and pro- 357

vides test cases in evaluating functionality correct- 358

ness. HumanEval-Decompile contains 164 C func- 359

tions, each compiled with O0 – O3 optimization flags 360

and disassembled into X86-64 assembly. 361

Baselines Nova is compared with GPT-3.5, GPT- 362

4, and the previous SOTA LLM4Decompile (Tan 363

et al., 2024). LLM4Decompile trains DeepSeek- 364

Coder using the same AnghaBench corpus, and it is 365

the first LLM-based technique that aims to generate 366

executable decompilations. 367

Evaluation GPT-3.5 and GPT-4 are prompted with 368

three-shot examples, while LLM4Decompile and 369

Nova samples 20 decompilations per assembly, us- 370

ing the temperature of 0.2 and top_p of 0.95 (Chen 371

et al., 2021). The generated decompilations are 372

executed against the test cases and both Pass@1 373

and Pass@10 (Chen et al., 2021) are reported. 374

3.3 Binary Code Similarity Detection 375

Training Data To compare Nova with existing 376

works on BCSD fairly (Wang et al., 2022; Su et al., 377

2024), we use BinaryCorp-3M (Wang et al., 2022) 378

as the fine-tuning data for BCSD, which contains 379

the O0 and O3 assembly of 224,606 functions. 380

Test Data Following existing work (Su et al., 2024; 381

Xu et al., 2023a), we use real-world benchmarks, 382

Binutils, Curl, ImageMagick, SQLite, OpenSSL, 383

and Putty, as the test benchmarks, which are nonex- 384

istent in the training data. 385

Baselines Nova is compared with jTrans (Wang 386

et al., 2022), DiEmph (Xu et al., 2023a) and 387

CodeArt (Su et al., 2024). jTrans is a Trans- 388

former (Vaswani et al., 2023) encoder trained on 389

binaries with masked token prediction and jump 390

target prediction tasks. DiEmph uses an instruc- 391

tion deemphasis technique to prevent the model 392

from learning instruction distribution biases intro- 393

duced by compilers. CodeArt proposes a regular- 394

ized attention mask for encoder models to capture 395

instructional semantics and data dependencies. 396

Evaluation We randomly sample K source code 397

functions from each project, compile them into 398

binaries with O0 and O3 optimization flags, and dis- 399

assemble them into X86-64 assemblies. BCSD 400

techniques encode these assemblies into embed- 401

dings (Nova uses the average embeddings of all 402
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the “[INST]” tokens in an assembly as its embed-403

ding). Then each O0 assembly is used as the query404

to calculate their similarity with the K O3 candi-405

date assemblies (using cosine similarity). Metric406

Recall@1 is the ratio of queries for which the can-407

didate from the same source code has the highest408

similarity among all the candidates.409

Appendix A.3 contains additional details such410

as training hyper-parameters.411

4 Results412

4.1 Binary Code Decompilation413

4.1.1 Comparison with SOTA Techniques414

Table 2 shows the Pass@1 of the decompiled code415

from assemblies on the HumanEval-Decompile416

benchmark. The results are grouped by optimiza-417

tion level (i.e., the benchmark contains 164 assem-418

blies of each optimization level to decompile), and419

the average is also reported.420

Optimization O0 O1 O2 O3 Avg.

GPT-3.5 6.80 5.64 4.36 3.93 5.18
GPT-4 17.77 15.12 12.65 11.25 14.20

LLM4Decompile-1B 12.26 7.22 8.38 7.96 8.96
Nova-1B 31.19 17.29 18.72 15.58 22.09

LLM4Decompile-6B 23.01 15.95 16.95 14.79 17.68
Nova-6B 42.07 28.04 25.00 22.56 29.42

Table 2: Pass@1 on HumanEval-Decompile.

Optimization O0 O1 O2 O3 Avg.

GPT-3.5 8.95 7.77 5.93 5.12 6.94
GPT-4 25.64 20.65 18.70 18.03 20.76

LLM4Decompile-1B 17.95 12.05 13.90 12.51 14.10
Nova-1B 41.11 29.81 31.18 26.24 32.09

LLM4Decompile-6B 33.77 24.25 23.94 23.81 26.44
Nova-6B 51.06 37.83 35.79 34.63 39.83

Table 3: Pass@10 on HumanEval-Decompile.

Overall, Nova’s Pass@1 is higher than all421

SOTA binary decompilation techniques and gen-422

eral LLMs GPT-4 and GPT-3.5, which are or-423

ders of magnitude larger than Nova. Specifically,424

for each optimization level, Nova consistently de-425

compiles more assemblies into source code cor-426

rectly than LLM4Decompile, GPT-3.5, and GPT-4.427

With the same model size, Nova-1B outperforms428

LLM4Decompile-1B by 146.54%, i.e., averaged429

Pass@1 of 22.09% versus 8.96%. Nova-6B outper-430

forms LLM4Decompile-6B by 66.40%: the aver-431

aged Pass@1 is 29.42% versus 17.68%.432

Table 3 shows that Nova still outperforms SOTA433

techniques with a significant margin under the mea-434

surement of Pass@10. Examples of Nova’s correct435

decompilation are provided in Appendix A.4. 436

4.1.2 Ablation Study 437

We conduct an ablation study by comparing Nova- 438

1B with the following models: 439

• Nova−CL−HA: Removing contrastive learning 440

and hierarchical self-attention. This is simply 441

training DeepSeek-Coder-1.3B on the assembly 442

corpus using language modeling. 443

• Nova−HA: Removing the hierarchical self- 444

attention, training DeepSeek-Coder-1.3B on the 445

assembly corpus using both the language model- 446

ing and contrastive learning objectives. 447

Nova−CL−HA can be viewed as our reproduction 448

(retrain) of LLM4Decompile-1B. 449

Optimization O0 O1 O2 O3 Avg.

LLM4Decompile-1B 17.95 12.05 13.90 12.51 14.10

Nova−CL−HA 17.80 13.32 13.26 10.03 13.60
Nova−HA 25.12 15.64 16.07 12.71 17.39
Nova 31.19 17.29 18.72 15.58 22.09

Table 4: Ablation study of Nova-1B (Pass@1).

Table 4 shows the results of the ablation study, 450

reported by the Pass@1 on HumanEval-Decompile. 451

Nova−CL−HA shows comparable Pass@1, which 452

we considered as variance in reproducing the same 453

approach. With additional contrastive learning ob- 454

jectives, Nova−HA improves the Pass@1 on all 455

optimization levels over Nova−CL−HA, showing a 456

27.87% higher averaged Pass@1. Further apply- 457

ing the hierarchical self-attention boosts the overall 458

Pass@1 from 17.39% to 22.09%. 459

4.2 Binary Code Similarity Detection 460

4.2.1 Comparison with SOTA Techniques 461

Tables 5, 6, 7 and 8 show the Recall@1 of 462

Nova and existing BCSD techniques with pool 463

size K of 50, 100, 200 and 500 on the six bench- 464

marks. Underlined numbers indicates the best in 465

each benchmark, while
::::::
wavey

::::::::::
underlined numbers 466

denote the tied best (we only mark Nova-1B for 467

clearer illustration). 468

Overall, Tables 5, 6, 7 and 8 show that on av- 469

erage, Nova-1B and Nova-6B achieve the high- 470

est Recall@1 (in bold) under all four settings of 471

K. Nova-6B further outperforms Nova-1B and 472

achieves the highest averaged Recall@1 under all 473

four settings, ranking the ground-truth of 5%, 2%, 474

4%, and 3% more queries the most similar corre- 475

spondingly compared to CodeArt. 476
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Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.68 0.80 0.84 0.87 0.89
Curl 0.72 0.84 0.86 0.89 0.94
ImageMagick 0.53 0.71 0.78 0.86 0.90
SQLite 0.73 0.79 0.78 0.77 0.78
OpenSSL 0.70 0.83 0.88 0.90 0.92
Putty 0.63

:::
0.72 0.69

::
0.72 0.71

Avg. 0.67 0.78 0.81 0.84 0.86

Table 5: Recall@1 on benchmarks with K = 50.

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.60 0.63 0.81 0.79 0.79
Curl 0.63 0.80 0.82 0.86 0.88
ImageMagick 0.54 0.71 0.76 0.79 0.81
SQLite 0.62 0.72 0.74 0.73 0.72
OpenSSL 0.60 0.80 0.87 0.88 0.90
Putty 0.58 0.64 0.64 0.65 0.64

Avg. 0.60 0.72 0.77 0.78 0.79

Table 6: Recall@1 on benchmarks with K = 100.

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.51 0.64 0.74 0.73 0.73
Curl 0.57 0.77 0.78 0.83 0.84
ImageMagick 0.39 0.51 0.67 0.73 0.75
SQLite 0.56 0.65

:::
0.68

::
0.68 0.69

OpenSSL 0.54 0.71 0.82 0.84 0.88
Putty 0.49 0.58 0.55 0.55 0.58

Avg. 0.51 0.64 0.71 0.73 0.75

Table 7: Recall@1 on benchmarks with K = 200.

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.40 0.57 0.70 0.65 0.67
Curl 0.43 0.62 0.69 0.73 0.76
ImageMagick 0.25 0.42 0.58 0.61 0.65
SQLite 0.43 0.59 0.62 0.59 0.62
OpenSSL 0.43 0.61 0.76 0.78 0.82
Putty 0.38 0.50 0.49 0.47 0.51

Avg. 0.39 0.55 0.64 0.64 0.67

Table 8: Recall@1 on benchmarks with K = 500.

Nova-1B consistently outperforms existing tech-477

niques with higher Recall@1 when K is 50, 100,478

and 200, meaning it correctly ranks ground-truth of479

3%, 1%, and 2% more queries as the most similar.480

Under the setting of K = 500, Nova-1B ties with481

CodeArt with the same highest Recall@1. When482

looking into each individual benchmark, Nova-1B483

always wins on the most benchmarks under differ-484

ent settings of pool size K. For instance, Nova-1B485

wins on four benchmarks while DiEmph only wins486

on SQLite when K = 50.487

K Nova−CL−HA Nova−HA Nova

50 0.81 0.83 (+0.02) 0.84 (+0.01)
100 0.76 0.78 (+0.02) 0.78
200 0.70 0.70 0.73 (+0.03)
500 0.60 0.62 (+0.02) 0.64 (+0.02)

Table 9: Ablation study of Nova-1B (Recall@1)

4.2.2 Ablation Study488

Table 9 shows the averaged Recall@1 of489

Nova−CL−HA, Nova−HA (same as in Sec-490

tion 4.1.2), and Nova-1B under four pool size491

settings. With contrastive learning objectives,492

Nova−HA improves Nova−CL−HA under three set-493

tings (K = 50, 100, 200) with 2% higher Re-494

call@1. With hierarchical attention, Nova further495

outperforms Nova−HA under three settings (K =496

50, 200, 500). Detailed ablation study results on497

each benchmark are provided in Appendix A.5.498

4.3 Analytic Experiments499

4.3.1 How are Nova’s embeddings better?500

We use the widely-used PCA to analyze and visu-501

alize high-dimensional embeddings. We randomly502

sample seven coding problems from HumenEval-503

Decompile (task_id 19, 32, 34, 63, 119, 128, 143), 504

encode the O0 – O3 assemblies by Nova−CL−HA 505

and Nova-1B. Figure 5 shows the embeddings that 506

are visualized under the first two principal compo- 507

nents. Each color represents one task, and O0 – O3 508

assemblies are marked by ⃝, ▽, △, and □. 509

Figure 5 (b) shows that Nova encodes assemblies 510

into clusters of functionalities. The assemblies for 511

the same functionality (i.e., the same task) are en- 512

coded closer to each other than Nova−CL−HA does 513

in Figure 5 (b). The results show that our hierar- 514

chical attention and contrastive learning techniques 515

effectively group codes of similar functionalities 516

together for better assembly foundation models. 517

Embedding of Nova−HA and additional quantita- 518

tive analysis are shown in Appendix A.6. 519

O0 assemblies

O1 assemblies

O2 assemblies

O3 assemblies

Task 34

Task 32

Task 128

Task 63

Task 143

Task 119

Task 19

(b) Nova's Embeddings(a) Nova-CL-HA's Embeddings

Figure 5: PCA of embeddings calculated by
Nova−CL−HA and Nova, for HumanEval-Decompile
assemblies.

4.3.2 What does hierarchical attention learn? 520

We conduct quantitative analysis on the attention 521

weights produced by different models. 522

Entropy Figure 6 (a) shows the entropy of 523

attention-weight distributions in each layer. We 524

separate the attention heads as standard attention 525
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Figure 6: Quantitative analysis of attention weights.

(green line) and hierarchical attention (red line),526

since Nova applies hierarchical attention to half of527

the attention heads in each layer (Section 3.1).528

Nova’s hierarchical attention heads produce sig-529

nificantly lower entropy, suggesting its attention530

layer is more confident in learning specific rela-531

tionships than the other models’ attention layers.532

The standard attention heads in Nova show patterns533

similar to those of Nova−CL−HA and Nova−HA,534

allowing Nova learning the standard attention to535

capture the “soft” relationship between possible536

tokens pairs. The result suggests that hierarchi-537

cal attention complements standard attention with538

additional knowledge.539

[INST] Token Figure 6 (b) shows the attention540

weights paid to the “[INST]” tokens. Nova’s hier-541

archical attention heads pay more attention to the542

“[INST]” tokens than standard attention, which may543

be because these “[INST]” tokens contain instruc-544

tion summary and long dependencies and thus are545

more informative. Additional analysis and exam-546

ples are given in Appendix A.7.547

5 Related Work548

5.1 Binary Models549

Machine learning models are widely used in binary550

program analysis tasks. However, these models are551

typically designed for specific downstream tasks552

such as binary code similarity detection (Pei et al.,553

2020; Xu et al., 2023a; Wang et al., 2022), vari-554

able name prediction (Chen et al., 2022c; Xu et al.,555

2023b; Zhang et al., 2021), binary code type infer-556

ence (Pei et al., 2021), and are built from scratch.557

Recent techniques have started to pre-train foun-558

dation LLMs for binaries. CodeArt (Su et al.,559

2024) pre-trains encoder-style LLMs with a reg-560

ularized attention design to better encode assem-561

bly code semantics, showing good accuracy on562

binary code understanding tasks (e.g., binary code563

similarity detection and malware family classifi-564

cation). SLaDe (Armengol-Estapé et al., 2024) 565

trains BART (Lewis et al., 2019) models on as- 566

sembly, and LLM4Decompile (Tan et al., 2024) 567

trains DeepSeek-Coder with assembly for binary 568

code decompilation. However, CodeArt does not 569

generalize to generation tasks due to its encoder 570

architecture. SLaDe and LLM4Decompile are lim- 571

ited in performance due to a lack of special designs 572

for assembly. In contrast, Nova addresses both limi- 573

tations, by using the proposed hierarchical attention 574

and contrastive learning objectives, outperforming 575

existing techniques on both understanding (binary 576

code similarity detection) and generation (binary 577

code decompilation) tasks. 578

5.2 Large Source-Code Models 579

LLMs demonstrate promising results on many 580

code-related tasks, such as code generation (Chen 581

et al., 2022a; Liu et al., 2023; Chen et al., 2023; 582

Le et al., 2022; Yue et al., 2021; Chen et al., 2021; 583

Nijkamp et al., 2022; Fried et al., 2023; Rozière 584

et al., 2023; Guo et al., 2024), bug fixing (Jiang 585

et al., 2023; Xia et al., 2023) and vulnerability fix- 586

ing (Wu et al., 2023; Steenhoek et al., 2023; He and 587

Vechev, 2023). The advances in using LLMs are 588

attributed to the knowledge learned from massive 589

source code and natural language text in their train- 590

ing datasets (Touvron et al., 2023; OpenAI, 2023). 591

Nova is designed and trained for assembly, which 592

has unique challenges such as low information den- 593

sity and diverse optimization. 594

6 Conclusion 595

This work develops Nova, a generative founda- 596

tion LLM for assembly code, which incorporates 597

two key novelties (hierarchical attention and con- 598

trastive learning objectives) to address the unique 599

challenges of assembly code. Evaluation on down- 600

stream tasks shows the effectiveness of Nova, 601

which outperforms existing techniques on binary 602

code decompilation by up to 146.54% and outper- 603

forms the latest binary code similarity detection 604

techniques by up to 6.17%. We expect our hierar- 605

chical attention and contrastive learning techniques 606

to benefit source code and natural language foun- 607

dation models, which remains as future work. 608

7 Limitations 609

One limitation is that Nova is X86-specific, as we 610

only collect X86 assembly corpus for pre-training. 611

This design choice is mainly affected by two facts: 612
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(1) X86 assembly is used and explored in a wide613

range of binary tasks (Wang et al., 2022; Su et al.,614

2024; Xu et al., 2023a; Chen et al., 2022c) com-615

pared to other assembly languages, and (2) com-616

putation limitations. However, the proposed tech-617

niques are independent of X86 assembly. Low618

information density and compiler optimization are619

the common challenges of most assembly lan-620

guages such as X86, ARM, and MIPS. The pro-621

posed techniques can be applied to the future de-622

velopment of multi-lingual assembly LLMs.623

Another potential limitation is the scale of mod-624

els. We develop Nova-1B and Nova-6B. These two625

sized LLMs show impressive ability in assembly626

code decompilation and encoding. There might be627

potential benefit of developing larger Nova models.628

However, due to the computing resources limita-629

tion, we are unable to explore that in this work.630
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A Appendix968

A.1 Data Collection969

This section provides additional details of the data970

collection. To collect assemblies from The-Stack,971

we attempt to compile 4 million C programs, of972

which 138.8K is compiled successfully. We do973

not collect more due to the computation resource974

limitations.975

For the 757.1K and 138.8K source code that976

successfully compiled into executables (using gcc)977

from AnghaBench and The-Stack, we disassemble978

them using objdump. objdump was not able to suc-979

cessfully disassemble all the executables, resulting980

in some empty assembly code. Thus, the number981

of O0 – O1 we obtain from each corpus is different982

and smaller than the number of source codes as983

shown in Table 1.984

Figure 7 shows an example of preprocessing the985

raw assembly code as described in Section 2.1.986

0:    endbr64 
4:    push   %rbp
5:    mov    %rsp,%rbp
8:    mov    %rdi,-0x8(%rbp)
c:    mov    %rsi,-0x10(%rbp)
10:   mov    -0x8(%rbp),%rax
14:   mov    (%rax),%edx
16:   mov    -0x10(%rbp),%rax
1a:   mov    (%rax),%eax
1c:   cmp    %eax,%edx
...

endbr64                 [INST-0] 
push rbp                [INST-1]
mov  rsp , rbp          [INST-2]
mov  rdi , -8 ( rbp )   [INST-3]
mov  rsi , -16 ( rbp )  [INST-4]
mov  -8 ( rbp ) , rax   [INST-5]
mov  ( rax ) , edx      [INST-6]
mov  -16 ( rbp ) , rax  [INSt-7]
mov  ( rax ) , eax      [INST-8]
cmp  eax , edx          [INST-9]
...

(a) Raw Assembly (b) Normalized Assembly

Figure 7: Example of assembly code preprocessing

A.2 Hierarchical Self-Attention 987

The hierarchical self-attention is designed for as- 988

sembly code, yet the input to LLMs may still 989

contain text or source code. Figure 8 illustrates 990

how the hierarchical attention works with text or 991

source code in the input. As existing LLMs have 992

shown good performance on text and source code 993

using the standard self-attention, we keep the stan- 994

dard causal attention mask within and between any 995

chunks of text or source code in the input (the light 996

grey part shown in Figure 8). 997

The attention from text or source code to assem- 998

bly code (and vice versa) is only allowed for the 999

“[INST]” tokens as they are supposed to contain the 1000

assembly instruction summaries. 1001

# This is the assembly code:
mov eax , $1
mov ebx , $2
mov ecx , eax
add ecx , ebx
What is the source code?

Figure 8: Hierarchical attention with text input.

A.3 Training Details 1002

This section provides additional details of train- 1003

ing. We pre-train Nova starting from DeepSeek- 1004

Coder, using the language modeling objective (Llm) 1005

for one epoch on the AnghaBench and The-Stack 1006

corpora. This step uses a batch size of 128, with 1007

the input truncated by a 1,024 tokens limit. The 1008

model weights are updated using the AdamW opti- 1009

mizer. The learning rate is 5e−5, using 1000 steps 1010

of warm-up and a cosine decay to adjust the learn- 1011

ing rate. 1012

Then, the model is further pre-trained with the 1013

combination of language modeling and contrastive 1014
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Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.86 0.88 0.87
Curl 0.84 0.87 0.89
ImageMagick 0.79 0.80 0.86
SQLite 0.80 0.83 0.77
OpenSSL 0.90 0.92 0.90
Putty 0.68 0.66 0.72

Avg. 0.81 0.83 0.84

Table 10: Ablation study with K = 50.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.80 0.82 0.79
Curl 0.84 0.84 0.86
ImageMagick 0.70 0.72 0.79
SQLite 0.74 0.78 0.73
OpenSSL

::
0.89

::
0.89 0.88

Putty 0.59 0.60 0.65

Avg. 0.76
::
0.78

:::
0.78

Table 11: Ablation study with K = 100.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.71 0.74 0.73
Curl 0.80 0.73 0.83
ImageMagick 0.61 0.63 0.73
SQLite 0.68 0.71 0.68
OpenSSL 0.85 0.87 0.84
Putty 0.53 0.53 0.55

Avg. 0.70 0.70 0.73

Table 12: Ablation study with K = 200.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.62
::
0.65

:::
0.65

Curl 0.67 0.71 0.73
ImageMagick 0.46 0.51 0.61
SQLite 0.61 0.62 0.59
OpenSSL 0.77 0.79 0.78
Putty 0.46 0.46 0.47

Avg. 0.60 0.62 0.64

Table 13: Ablation study with K = 500.

learning objectives (L = Llm + λ(Lfcl + Locl)), with1015

λ set to 0.1. To train with the functionality con-1016

trastive learning objective, we discard any source1017

code that misses any one of O0 – O3 assemblies and1018

also discard the source code whose O2 assembly is1019

the same as its O3 assembly. As a result, this step is1020

only trained for 0.36M data samples for one epoch.1021

The batch size is 64, with the input truncated by a1022

1,024 tokens limit. The learning rate is 2e−5 using1023

the AdamW optimizer.1024

The fine-tuning of both BCD and BCSD uses1025

a batch size of 64, with the input truncated by a1026

2,048 token limit. Similarly, the learning rate is1027

2e−5 using the AdamW optimizer, and the model1028

is fine-tuned for one epoch.1029

Infrastructure The training are conducted on eight1030

NVIDIA RTX A100 GPUs, each with 40GB mem-1031

ory. Our implementation is based on Huggingface’s1032

implementation of DeepSeek-Coder 1, PyTorch 2,1033

and DeepSpeed 3.1034

A.4 Binary Code Decompilation Case Studies1035

Figure 9 shows an example from HumanEval-1036

Decompile (task_id 0). Given the O1-optimized1037

assembly code, GPT-4 fails to figure out the1038

number of function arguments correctly, missing1039

one important argument “float e”, and thus pro-1040

duces wrong functionality in the decompiled code.1041

LLM4Decompile-1B makes similar mistakes and1042

also misses the inner nested for loop. Nova-1B cor-1043

rectly decompiles the assembly into source code,1044

1https://huggingface.co/deepseek-ai/
deepseek-coder-1.3b-base

2https://pytorch.org/get-started/locally/
3https://github.com/microsoft/DeepSpeed

<func0>:
0:   endbr64
4:   test   %esi, %esi
6:   jle    48 <func0+0x48>
8:   lea    -0x1(%rsi), %ecx
b:   add    $0x1, %rcx
f:   mov    $0x1, %edx
14:  movss  0x0(%rip), %xmm3
1b:  00
1c:  cmp    %rcx, %rdx
1f:  je     4e <func0+0x4e>
21:  movss  -0x4(%rdi, %rdx, 4), %xmm2
27:  mov    %rdx,%rax
2a:  movaps %xmm2, %xmm1
2d:  subss  (%rdi, %rax, 4), %xmm1
32:  andps  %xmm3, %xmm1
35:  comiss %xmm1, %xmm0
38:  ja     54 <func0+0x54>
3a:  add    $0x1, %rax
3e:  cmp    %eax, %esi
40:  jg     2a <func0+0x2a>
42:  add    $0x1, %rdx
46:  jmp    1c <func0+0x1c>
48:  mov    $0x0, %eax
4d:  retq
4e:  mov    $0x0, %eax
53:  retq
54:  mov    $0x1, %eax
59:  retq

int func0(float *arr, int n) {
  for (int i = 1; i < n; i++) {
    for (int j = 0; j < i; j++) {
      if (fabs(arr[i] - arr[j]) < 1.0f)
        return 1;
      }
  }
  return 0;
}

int func0(float *a, int n, float e) {
  int i, j;
  for (i = 0; i < n; i++)
    for (j = i + 1; j < n; j++)
      if (fabs(a[i] - a[j]) < e)
        return 1;
  return 0;
}O1 Assembly Code

Nova's Correct
Decompilation

GPT-4's Incorrect
Decompilation

int func0(const float *x, int n) {
  int i;
  float diff = 1.0f;
  for (i = 1; i < n; i++) {
    if (fabs(x[i] - x[i-1]) > diff)
      return 0;
  return 1;
} LLM4Decompile's Incorrect

Decompilation

Figure 9: Nova-1B correctly decompiles HumanEval-
Decompile task 0, while GPT-4 and LLM4Decompile-
1B fail.

<func0>:
0:      endbr64
4:      movss  (%rdi), %xmm0
8:      movss  %xmm0, (%rdx)
c:      movss  0x4(%rdi), %xmm1
11:     movss  %xmm1, 0x4(%rdx)
16:     test   %esi, %esi
18:     jle    8b <func0+0x8b>
1a:     lea    -0x1(%rsi), %r9d
1e:     mov    $0x1, %r8d
24:     mov    %rdi, %rcx
27:     movss  0x0(%rip), %xmm2
2e:     00
2f:     add    $0x1, %r9
33:     movss  0x0(%rip), %xmm3
3a:     00
3b:     cmp    %r8, %r9
3e:     je     82 <func0+0x82>
40:     mov    %r8, %rax
43:     nopl   0x0(%rax, %rax, 1)
48:     movss  (%rcx), %xmm1
4c:     movaps %xmm1, %xmm0
4f:     subss  (%rdi, %rax, 4), %xmm0
54:     andps  %xmm3, %xmm0
57:     comiss %xmm0, %xmm2
5a:     jbe    6d <func0+0x6d>
5c:     movss  %xmm1, (%rdx)
60:     movss  (%rdi, %rax, 4), %xmm1
65:     movaps %xmm0, %xmm2
68:     movss  %xmm1, 0x4(%rdx)
6d:     add    $0x1, %rax
71:     cmp    %eax, %esi
73:     jg     48 <func0+0x48>
75:     add    $0x1, %r8
79:     add    $0x4, %rcx
...
99:     retq

void func0(float *a, int n, float
*minmax) {
  minmax[0] = a[0];
  minmax[1] = a[1];

  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
      float diff = fabs(a[i] - a[j]);
      if (diff < minmax[1] - minmax[0])
      {
        minmax[0] = a[i];
        minmax[1] = a[j];
      }
    }
  }

  if (minmax[0] > minmax[1]) {
    float temp = minmax[0];
    minmax[0] = minmax[1];
    minmax[1] = temp;
  }
}

void func0(float *a, int n, float *b) {
  int i, j;
  float min, max;

  min = max = a[0];
  for (i = 1; i < n; i++) {
    if (a[i] < min)
      min = a[i];
    else if (a[i] > max)
      max = a[i];
  }
  b[0] = min;
  b[1] = max;
}

O2 Assembly Code

Nova's Correct
Decompilation

LLM4Decompile's Incorrect
Decompilation

Figure 10: Nova-1B correctly decompiles HumanEval-
Decompile task 20, while LLM4Decompile-1B fail.
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Figure 11: PCA of embeddings calculated by Nova−CL−HA, Nova−HA, and Nova.
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Figure 12: t-SNE of embeddings cauclated by Nova−CL−HA, Nova−HA, and Nova.

where the ground truth is checking if any two ele-1045

ments in the given list *a (with size n) are close to1046

each other than a given threshold e.1047

Figure 10 shows another more complex exam-1048

ple, HumanEval-Decompile task_id 20. Nova-1B1049

correctly decompiles the source code, successfully1050

figuring that the function is trying to find the two1051

elements that are closest to each other in the given1052

array *a, with the result stored in minmax.1053

A.5 Binary Code Similarity Detection1054

Ablation Study1055

Table 10, 11, 12, 13 show the detailed ablation1056

study results of BCSD. Nova wins on the most1057

benchmarks when K = 100 or 500, and ties with1058

Nova−HA when K = 50, or 200.1059

A.6 Additional Analysis of Embedding1060

Additional Embedding Visualization Figure 111061

shows the full results of PCA of embeddings pro-1062

vided by Nova−CL−HA, Nova−HA, and Nova,1063

on randomly sampled seven examples. Com-1064

pared with Nova−CL−HA, Nova−HA including1065

contrastive learning objectives in the pre-training,1066

can separate the embeddings of assemblies with1067

different functionalities better. Nova−HA clearly1068

encode “Task 143” (orange points) away from the1069

others. Nova’s embeddings group the assemblies1070

by functionalities more precisely than Nova−HA,1071

suggesting that hierarchical attention enhances the1072

training of contrastive learning objectives to learn1073

more effective encoding. 1074

Figure 12 shows the results using another di- 1075

mensionality reduction technique, t-SNE (van der 1076

Maaten and Hinton, 2008), where Nova’s embed- 1077

dings are consistently more distinguishable by func- 1078

tionalities. 1079

L
2
 D

is
ta

n
c
e

(a) Same-functionality-di�erent-
formats code

(b) Same-format-di�erent-
functionalities code

Nova-CL-HA Nova-HA Nova

Figure 13: Distances between embeddings of different-
formats-same-functionality code and same-format-
different-functionalities code.

Quantitative Analysis We also perform quan- 1080

titative analysis to further support the conclusion 1081

from visualization. Figure 13 (a) shows the distri- 1082

bution of l2 distances between different-formats- 1083

same-functionality code in HumanEval-Decompile 1084

(“format” is defined as one of source code, O0, O1, 1085

O2, or O3 assembly). The figure shows five distribu- 1086

tions, (src, O0), (src, O1), (src, O2), and (src, O3). 1087

Each distribution calculates the distances between 1088

embeddings of two formats of code, e.g., src, O0 1089

refers to the source code and O0 assembly for the 1090

same task in HumanEval-Decompile. 1091
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Figure 14: Comparison of attention distribution among standard and hierarchical heads in the final layer.

Figure 13 (a) shows that Nova’s embeddings1092

for same-functionality-different-formats code are1093

closer to each other in the latent space. For the1094

same task, all the O0 – O3 assemblies’ embeddings1095

have a smaller l2 distance to the source code em-1096

bedding compared to that of Nova−CL−HA’s and1097

Nova−HA’s embeddings. Another interesting find-1098

ing is that for Nova, the distances between assem-1099

bly and source code increase with the optimization1100

level of assemblies increases. This trend matches1101

what the optimization CL tries to optimize for.1102

Figure 13 (b) shows the distribution of1103

l2 distance between same-format-different-1104

functionalities code from the HumanEval-1105

Decompile benchmark. With the same format1106

(source code or the same optimized assembly),1107

Nova encodes the assemblies with different func-1108

tionalities farther away from each other compared1109

to Nova−CL−HA. Nova−CL−HA’s embeddings1110

cannot significantly reflect the functionality1111

differences between assemblies, while Nova’s1112

embeddings can.1113

Nova−HA’s embeddings show high l2 distance 1114

in both Figure 13 (a) and (b), suggesting that 1115

Nova−HA tries to decentralize all the code in the 1116

embedding space even if they have the same func- 1117

tionality, which is not as desired as Nova. 1118

A.7 Additional Analysis of Attention 1119

Figure 14 shows the visualizations of attention 1120

weights in the final transformer layer of two se- 1121

lect heads with standard attention and two heads 1122

with learned hierarchical attention. Standard atten- 1123

tion exhibits two typical patterns, namely diagonal 1124

attention (i.e. tokens attending to themselves or 1125

nearby tokens, shown in Figure 14 (a)), and broad 1126

attention (i.e. a single token attending broadly 1127

to the entire sequence, shown in Figure 14 (b)). 1128

In contrast, in Nova’s hierarchical attention, atten- 1129

tion weights are allocated among distinct segments, 1130

each corresponding to an instruction (shown in Fig- 1131

ure 14 (c)), that focus on tokens comprising that 1132

instruction (e.g. opcodes and operands, shown in 1133

Figure 14 (d), attentions are paid to “push”, “mov”, 1134
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Figure 15: Learned per-instruction soft attention ob-
served in the lower layers

etc.).1135

Quantitatively, we have determined broad atten-1136

tion accounts for as much as 30% of all attention1137

in standard heads, especially in layers 1-8 (con-1138

sistent with the findings of (Clark et al., 2019)),1139

whereas in Nova’s hierarchical attention, no more1140

than 5% or all attention is allocated to each instruc-1141

tion segment. This validates our goal of learning1142

instruction-aware hierarchical attention in Nova.1143

In addition, in lower layers, we have ob-1144

served attention weights to be softly distributed1145

among tokens comprising each instruction (Fig-1146

ure 15), which suggests Nova initially models cross-1147

relations among operation codes and operands in1148

the first few layers, and later pools their summary1149

representation into the [INST] token in the later lay-1150

ers. This is also supported by Figure 6, where1151

the Nova’s hierarchical attention (red line) shows1152

a decreasing trend of entropy. This means the hi-1153

erarchical attention is softer in lower layers, and1154

becomes focused in higher layers.1155

A.8 Potential Risks1156

This work develops generative LLMs, Nova, for1157

assembly code, aiming to benefit the downstream1158

research domains in binary analysis. The training1159

corpora collected to develop the Nova are all open-1160

sourced and widely used by existing work. The1161

Nova models are built on top of open-sourced foun-1162

dation LLMs on natural language text and source1163

code. Thus, we think no special concerns need to1164

be highlighted here.1165
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