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Abstract

Training even moderately-sized generative models with differentially-private stochastic gradient
descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply
too large. We advocate instead building off a good, relevant representation on an informative public
dataset, then learning to model the private data with that representation. In particular, we minimize
the maximum mean discrepancy (MMD) between private target data and a generator’s distribution,
using a kernel based on perceptual features learned from a public dataset. With the MMD, we can
simply privatize the data-dependent term once and for all, rather than introducing noise at each step of
optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images with ‘ ¥ 2
which capture distinctive features in the distribution, far surpassing the current state of the art, which
mostly focuses on datasets such as MNIST and FashionMNIST at a large ‘ ¥ 10. Our work introduces
simple yet powerful foundations for reducing the gap between private and non-private deep generative
models. Our code is available at https://anonymous.4open.science/r/dp-gfmn.

1 INTRODUCTION

The gold standard privacy notion, differential privacy (DP), is now ubiquitous in a diverse range of academic research,
industry products (Apple, 2017), and even government databases (National Conference of State Legislatures, 2021). DP
provides a mathematically provable privacy guarantee, which is its main strength and reason for its popularity. However,
one of the properties of DP is composability, meaning data can be accessed more than once – but the level of privacy
guarantee degrades each time. To guarantee a high level of privacy, one needs to limit access to data, a challenge in
applying DP with the usual iterative optimization algorithms used in machine learning.

Differentially private data generation solves this problem by creating a synthetic dataset that is similar to the private
dataset, in terms of some chosen similarity metric. While producing such a synthetic dataset incurs a privacy loss,
the resulting dataset can be used repeatedly without further loss of privacy. Classical approaches, however, typically
assume a certain class of pre-specified purposes on how the synthetic data can be used (Mohammed et al., 2011; Xiao
et al., 2010; Hardt et al., 2012; Zhu et al., 2017). If data analysts use the data for other tasks outside these pre-specified
purposes, the theoretical guarantees on its utility are lost.

To produce synthetic data usable for potentially any purpose, many papers on DP data generation have utilized the
recent advances in deep generative modelling. The majority of these approaches are based on the generative adversarial
network (GAN; Goodfellow et al., 2014) framework, where a discriminator and a generator play an adversarial game
to optimize a given distance metric between the true and synthetic data distributions. Most approaches under this
framework have used DP-SGD (Abadi et al., 2016), where the gradients of the discriminator (which compares generated
samples to private data) are privatized in each training step, resulting in a high overall privacy loss (Park et al., 2017;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Xie et al., 2018; Frigerio et al., 2019). Another challenge is that, as
the gradients must have bounded norm to derive the DP guarantee, the amount of noise for privatization in DP-SGD
increases proportionally to the dimension of the discriminator. Hence, these methods are typically bound to relatively
small discriminators, limiting the ability to learn data distributions beyond, say, MNIST (LeCun & Cortes, 2010) or
FashionMNIST (Xiao et al., 2017).

Given these challenges, the heavy machinery such as GANs and large-scale auto-encoder-based methods – capable of
generating complex datasets in a non-private setting – fails to model datasets such as CIFAR-10 (Krizhevsky, 2009) or
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CelebA (Liu et al., 2015) with a meaningful privacy guarantee (e.g., ‘ ¥ 2). Typical deep generative modeling papers
have moved well beyond these datasets, but to the best of our knowledge, currently there is no DP data generation
method that can produce reliable samples at a reasonable privacy level.

How can we reduce this huge gap between the performance of non-private deep generative models and that of private
counterparts? We argue that we can narrow this gap by using the abundant resource of public data, in line with the core
message of Tramer & Boneh (2021): We simply need better features for differentially private learning. While Tramer &
Boneh demonstrated this in the context of DP classification, we aim to show the applicability of this reasoning for the
more challenging problem of DP data generation, with a focus on high-dimensional image generation.

We propose to exploit public data to learn perceptual features (PFs) from public data, which we will use to compare
synthetic and real data distributions. Following dos Santos et al. (2019), we use “perceptual features” to mean the
vector of all activations of a pretrained deep network for a given data point, e.g. the hundreds of thousands of hidden
activations from applying a trained deep classifier to an image. Building on dos Santos et al. (2019), who use PFs
for transfer learning in natural image generation, our goal is to improve the quality of natural images generated with
differential privacy constraints.

We construct a kernel on images using these powerful PFs, then train a generator by minimizing the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) between distributions (as in Harder et al., 2021; Li et al., 2015; Dziugaite
et al., 2015; dos Santos et al., 2019). This scheme is non-adversarial, leading to simpler and more stable optimization;
moreover, it allows us to privatize the mean embedding of the private dataset once, using it at each step of generator
training without incurring cumulative privacy losses.

We observe in our experiments that as long as the public data contains more complex patterns than private data, e.g.,
transferring the knowledge learned from ImageNet as public data to generate CIFAR-10 images as private data, the
learned features from public data are useful enough to generate good synthetic data. We successfully generate reasonable
samples for CIFAR-10, CelebA, MNIST, and FashionMNIST in high-privacy regimes. We also theoretically analyze
the effect of privatizing our loss function, helping understand the privacy-accuracy trade-offs in our method.

The main point of our paper is that features from public data are a key tool for improved DP data generation, a point
we think our experiments make resoundingly; this may be “obvious”, but has not been explored for image generation.
Our proposed method, in particular, is a simple (which, we think, is a good thing) initial technique exploiting this idea,
which outperforms simple pretraining of DP-GAN and DP-Sinkhorn (see Section 6). We hope this work will inspire
future work on other ways to use public features for improving image generation with differential privacy.

2 BACKGROUND

We provide background information on maximum mean discrepancy and differential privacy.

Maximum Mean Discrepancy The MMD is a distance between distributions based on a kernel k„(x, y) =
È„(x), „(y)ÍH, where „ maps data in X to a Hilbert space H (Gretton et al., 2012). One definition is

MMDk„(P, Q) =
..Ex≥P [„(x)] ≠ Ey≥Q[„(y)]

..
H

,

where µ„(P ) = Ex≥P [„(x)] œ H is known as the (kernel) mean embedding of P , and is guaranteed to exist if
Ex≥P


k(x, x) < Œ (Smola et al., 2007). If k„ is characteristic (Sriperumbudur et al., 2011), then P ‘æ µ„(P ) is

injective, so MMDk„(P, Q) = 0 if and only if P = Q.

For a sample set D = {xi}m
i=1 ≥ P m, the empirical mean embedding µ„(D) = 1

m

qm
i=1 „(xi) is the “plug-in”

estimator of µ„(P ) using the empirical distribution of D. Given D̃ = {x̃i}n
i=1 ≥ Qn, we can estimate MMDk„(P, Q)

as the distance between empirical mean embeddings,

MMDk„(D, D̃) =
.....

1
m

mÿ

i=1
„(xi) ≠ 1

n

nÿ

i=1
„(x̃i)

.....
H

. (1)

We would like to minimize the distance between a target data distribution P (based on samples D) and the output
distribution Qg◊ of a generator network g◊. If the feature map is finite-dimensional and norm-bounded, following
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Step 1 Step 2 Step 3

Train a feature extractor 
using public data
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Figure 1: Three steps in differentially private mean embedding with perceptual features (DP-MEPF). Step 1: We train
a feature extractor neural network, f◊̂pub

, using public data. This is a function of public data, with no privacy cost to
train. A trained f◊̂pub

maps an input x to perceptual features (in green), the outputs of each layer. Step 2: We compute
the mean embedding of the data distributions using a feature map consisting of the first and second moments (in green)
of the perceptual features, and privatize it based on the Gaussian mechanism (see text). Step 3: We train a generator g◊,
which produces synthetic data from latent codes zi ≥ N (0, I), by minimizing the privatized MMD.

Harder et al. (2021); Vinaroz et al. (2022), we can privatize the mean embedding of the data distribution µ„(D) with a
known DP mechanism such as the Gaussian or Laplace mechanisms, to be discussed shortly. As the summary of the
real data does not change over the course of a generator training, we only need to privatize µ„(D) once.

Differential privacy A mechanism M is (‘, ”)-DP for a given ‘ Ø 0 and ” Ø 0 if and only if

Pr[M(D) œ S] Æ e‘ · Pr[M(DÕ) œ S] + ”

for all possible sets of the mechanism’s outputs S and all neighbouring datasets D, DÕ that differ by a single entry.
One of the most well-known and widely used DP mechanisms is the Gaussian mechanism. The Gaussian mechanism
adds a calibrated level of noise to a function µ : D ‘æ Rp to ensure that the output of the mechanism is (‘, ”)-DP:
Âµ(D) = µ(D) + n, where n ≥ N (0, ‡2�2

µIp). Here, ‡ is often called a privacy parameter, which is a function1

of ‘ and ”. �µ is often called the global sensitivity (dwo), which is the maximum difference in L2-norm given two
neighbouring D and DÕ, ||µ(D) ≠ µ(DÕ)||2. In this paper, we will use the Gaussian mechanism to ensure the mean
embedding of the data distribution is DP.

3 METHOD

In this paper, to transfer knowledge from public to private data distributions, we construct a particular kernel k� to use
in Equation 1 based on perceptual features (PFs).

3.1 MMD with perceptual features as a feature map

We call our proposed method Differentially Private Mean Embeddings with Perceptual Features (DP-MEPF), analogous
to the related method DP-MERF (Harder et al., 2021). We use high-dimensional, over-complete perceptual features
from a feature extractor network pre-trained on a public dataset, as illustrated in Step 1 of Figure 1. Given a vector input
x, the pre-trained feature extractor network outputs the perceptual features from each layer, where the jth layer’s PF is
denoted by ej(x). Each of the J layers’ perceptual features is of a different length, ej(x) œ Rdj ; the total dimension of
the perceptual feature vector is D =

qJ
j=1 dj .

As illustrated in Step 2 in Figure 1, we use those PFs to form our feature map �(x) := [„1(x), „2(x)], where the first
part comes from a concatenation of PFs from all the layers: „1(x) = [e1(x), · · · , eJ(x)], while the second part comes
from their squared values: „2(x) = [e2

1(x), · · · , e2
J(x)], where e2

j (x) means each entry of ej(x) is squared. Using

1The relationship can be numerically computed by packages like auto-dp (Wang et al., 2019), among other methods.
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this feature map, we then construct the mean embedding of a data distribution given the data samples D = {xi}m
i=1:

µP (D) =
C

µ„1
P (D)

µ„2
P (D)

D
=

C 1
m

qm
i=1 „1(xi)

1
m

qm
i=1 „2(xi)

D
. (2)

Lastly (Step 3 in Figure 1), we will train a generator g◊ that maps latent vectors zi ≥ N (0, I) to a synthetic data sample
x̃i = g◊(zi); we need to find good parameters ◊ for the generator. In non-private settings, we estimate the generator’s
parameters by minimizing an estimate of MMD2

k�
(P, Qg◊ ), using D̃ = {x̃i} in Equation 1, similar to Dziugaite et al.

(2015); Li et al. (2015); dos Santos et al. (2019). In private settings, we privatize D’s mean embedding to µ̃„(D) with
the Gaussian mechanism (details below), and minimize

M̂MD
2
k�(D, D̃) =

..µ̃„(D) ≠ µ„(D̃)
..2

. (3)

Extending our framework to generate both labels and input images is straightforward. As done by Harder et al. (2021),
we construct a mean embedding for each class-conditional input distribution, such that the size of the final mean
embedding is D (number of perceptual features) by the number of classes if we use only the first moment, or 2D by the
number of classes if we use the first two moments. This is exactly the conditional mean embedding with a discrete
kernel on the class label (Song et al., 2013).

A natural question that arises is whether the MMD using the PFs is a metric: if MMDk�(P, Q) = 0 only if P = Q.
As PFs have a finite-dimensional embedding, we in fact know this cannot be the case (Sriperumbudur et al., 2011).
Thus, there exists some pair of distributions which our MMD cannot distinguish. However, given that linear functions
in perceptual feature spaces can obtain excellent performance on nearly any natural image task (as observed in transfer
learning), it seems that PFs are “nearly” universal for natural distributions of images (dos Santos et al., 2019). Thus we
expect the MMD with this kernel to do a good job of distinguishing “natural” distributions from one another, though the
possibility of “adversarial attacks” perhaps remains.

A more important question in our context is whether this MMD serves as a good loss for training a generator, and
whether the resulting synthetic data samples are reasonably faithful to the original data samples. Our experiments in
Section 6, as well as earlier work by dos Santos et al. (2019) in non-private settings, imply that it is.

Privatization of mean embedding We privatize the mean embedding of the data distribution only once, and reuse
it repeatedly during the training of the generator g◊. We use the Gaussian mechanism to separately privatize the first
and second parts of the feature map. We normalize each type of perceptual features such that Î„1(xi)Î2 = 1 and
Î„2(xi)Î2 = 1 for each sample xi. After this change, the sensitivity of each part of the mean embedding is

max
D,DÕ s.t. |D≠DÕ|=1

Îµ„t(D) ≠ µ„t(DÕ)Î2 Æ 2
m , (4)

where µ„t(D) denotes the two parts of the mean embedding for t = 1, 2. Using these sensitivities, we add Gaussian
noise to each part of the mean embedding, obtaining

µ̃�(D) =
C

µ̃„1(D)
µ̃„2(D)

D
=

C 1
m

qm
i=1 „1(xi) + n1

1
m

qm
i=1 „2(xi) + n2

D
, (5)

where nt ≥ N (0, 4‡2

m2 I) for t = 1, 2.

Since we are using the Gaussian mechanism twice, we simply compose the privacy losses from each mechanism. More
precisely, given a desired privacy level ‘, ”, we use the package of Wang et al. (2019) to find the corresponding ‡ for the
two Gaussian mechanisms.

3.2 Differentially private early stopping

On some datasets (CelebA and Cifar10) we observe that the generated sample quality deteriorates if the model is trained
for too many iterations in high-privacy settings. This is indicated by a steady increase in FID score (Heusel et al., 2017),
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and likely due to overfitting to the static noisy embedding. Since the FID score is based on the training data, simply
choosing the iteration with the best FID score after training has completed would violate privacy.

Privatizing the FID score requires privatizing the covariance of the output of the final pooling layer in the Inception
network, which is quite sensitive. Instead, we privatize the first and second moment of data embeddings as in Equation 2,
but using only the output of the final pooling layer in the Inception network. We then use this quantity as a private
proxy for FID, and select the iteration with the lowest score. To minimize the privacy cost, we choose a larger noise
parameter than for the main objective: ‡stopping = 10‡, where ‡ is the noise scale for privatizing each part of the data
mean embeddings, works well. Again, we compose these ‡s with the analysis of Wang et al. (2019).

4 THEORETICAL ANALYSIS

We now bound the effect of adding noise to our loss function, showing that asymptotically our noise does not hurt the
rate at which our model converges to the optimal model.

Section A proves full finite-sample versions of all of the following bounds, which are stated here using OP notation for
simplicity. X = OP (An) essentially means that X is O(An) with probability at least 1 ≠ fl for any constant choice of
failure probability fl > 0.

The full version in the supplementary material is also ambivalent to the choice of covariance for the noise variable n,
allowing in particular analysis of DP-MEPF based either on one or two moments of PFs. (The full version gives a
slightly more refined treatment of the two-moment case, but the difference is typically not asymptotically relevant.)

To begin, we use standard concentration results on Gaussians to establish that the privatized MMD is close to the
non-private MMD:

Proposition 4.1. Given datasets D and D̃, the absolute difference between the privatized and non-

private squared MMDs, a random function of only n, satisfies

--M̂MD
2
k�(D, D̃) ≠ MMD2

k�
(D, D̃)

-- =
OP

1
‡2

m2 D + ‡
m MMDk�(D, D̃)

2
.

One key quantity in the bound is ‡/m, the ratio of the noise scale ‡ (inversely proportional to Á) to the number of
observed (private) data points m. Note that ‡ depends only on the given privacy level, not on m, so the error becomes
zero as long as m æ Œ. In the second term, ‡/m is multiplied by the (non-private, non-squared) MMD, which is
bounded for our features, but for good generators (where our optimization hopefully spends most of its time) this term
will also be nearly zero. The other term accounts for adding independent noise to each of the D feature dimensions;
although D is typically large, so is m2. Having m = 50K private samples, e.g. for CIFAR-10, allows for a strong error
bound as long as D‡2 π 625M.

The above result is for a fixed pair of datasets. Because we only add noise n once, across all possible comparisons, we
can use this to obtain a bound uniform over all possible generator distributions, in particular implying that the minimizer
of the privatized MMD approximately minimizes the original, non-private MMD:

Proposition 4.2. Fix a target dataset D. For each ◊ in some set �, fix a corresponding D̃◊; in particular, � = Rp

could be the set of all generator parameters, and D̃◊ either the outcome of running a generator g◊ on a fixed set of

“seeds,” D̃◊ = {g◊(zi)}n
i=1, or the full output distribution of the generator Qg◊ . Let Â◊ œ arg min◊œ� M̂MD

2
k�(D, D̃◊)

be the private minimizer, and ‚◊ œ arg min◊œ� MMD2
k�

(D, D̃◊) the non-private minimizer. Then MMD2
k�

(D, D̃Â◊) ≠
MMD2

k�
(D, D̃‚◊) = OP

1
‡2D
m2 + ‡

Ô
D

m

2
.

The second term of this bound will generally dominate; it arises from uniformly bounding the ‡
m MMDk�(D, D̃◊) term

of Proposition 4.1 over all possible D̃◊. This approach, although the default way to prove this type of bound, misses
that MMDk�(D, D̃◊) is hopefully small for Â◊ and ‚◊. We can in fact take advantage of this to provide an “optimistic”
rate (Srebro et al., 2010; Zhou et al., 2021) that achieves faster convergence if the generator is capable of matching the
target features (an “interpolating” regime):

Proposition 4.3. In the setting of Proposition 4.2, MMD2
k�

(D, D̃Â◊) ≠ MMD2
k�

(D, D̃‚◊) =
OP

1
‡2D
m2 + ‡

Ô
D

m MMDk�(D, D̃‚◊)
2

. Note that this bound implies the previous one, since MMDk�(D, D̃) is
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bounded. But in the case where the generator is capable of exactly matching the features of the target distribution, the
second term becomes zero, and the rate with respect to m is greatly improved.

In either regime, our approximate minimization of the empirical MMD is far faster than the rate at which minimizing
the empirical MMD(D, Qg◊ ) converges to minimizing the true, distribution-level MMD(P, Qg◊ ): the known results
there (e.g. Dziugaite et al., 2015, Theorem 1) give a 1/

Ô
m rate, compared to our 1/m or even 1/m2.

We show that minimizing DP-MEPF’s loss actually pays no asymptotic penalty for privacy (especially when a perfect
generator exists), with the privacy loss dwarfed by the statistical error for large datasets; this essentially agrees with
experiments (see Section 6). This is not the case for all DP methods, and other DP generation papers didn’t prove any
such guarantees: DP-Sinkhorn only proved privacy, and DP-MERF showed only a much weaker guarantee (its gradient
is asymptotically unbiased).

5 RELATED WORK

Initial work on differentially private data generation assumed strong constraints on the type of data and the intended use
of the released data (Snoke & Slavković, 2018; Mohammed et al., 2011; Xiao et al., 2010; Hardt et al., 2012; Zhu et al.,
2017). While these studies provide theoretical guarantees on the utility of the synthetic data, they typically do not scale
to our goal of large-scale image data generation.

Recently, several papers focused on discrete data generation with limited domain size (Zhang et al., 2017; Qardaji
et al., 2014; Chen et al., 2015; Zhang et al., 2021). These methods learn the correlation structure of small subsets
of features and privatize them in order to produce differentially private synthetic data samples. These methods often
require discretization of the data and have limited scalability, so are also unsuitable for high-dimensional image data
generation.

More recently, however, a new line of work has emerged that adopt the core ideas from the recent advances in deep
generative models for a broad applicability of synthetic data with differential privacy constraints. The majority of this
work (Xie et al., 2018; Torkzadehmahani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019; Chen et al., 2020) uses
generative adversarial networks (GANs; Goodfellow et al., 2014) along with some form of DP-SGD (Abadi et al.,
2016). Other works in this line include PATE-GAN based on the private aggregation of teacher ensembles (Papernot
et al., 2017) and variational autoencoders (Acs et al., 2018).

The closest prior work to the proposed method is DP-MERF (Harder et al., 2021), where the kernel mean embeddings
are constructed using random Fourier features (Rahimi & Recht, 2008). A recent variant of DP-MERF uses Hermite
polynomial-based mean embeddings (Vinaroz et al., 2022). Unlike these methods, we use the perceptual features from
a pre-trained network to construct kernel mean embeddings. Neither previous method applies to the perceptual kernels
used here, so their empirical results are far worse (as we’ll see shortly). Our theoretical analysis is also much more
extensive: they only proved a bound on the expected error between the private and non-private empirical MMD for a
fixed pair of datasets.

More recently, a similar work to DP-MERF utilizes the Sinkhorn divergence for private data generation (Cao et al.,
2021), which performs similarly to DP-MERF when the cost function is the L2 distance with a large regularizer.
Another related work proposes to use the characteristic function and an adversarial re-weighting objective (Liew et al.,
2022) in order to improve the generalization capability of DP-MERF.

A majority of these related methods were evaluated only on relatively simple datasets such as MNIST and FashionMNIST.
Even so, the DP-GAN-based methods mostly require a large privacy budget of ‘ ¥ 10 to generate synthetic data samples
that are reasonably close to the real data samples. Our method goes far beyond this quality with much more stringent
privacy constraints, as we will now see.

6 EXPERIMENTS

We will now compare our method to state-of-the-art methods for DP data generation.

6
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Table 1: Downstream accuracies by Logistic regression and MLP, evaluated on the generated data samples using
MNIST and FashionMNIST as private data and SVHN and CIFAR-10 as public data, respectively. In all cases, we set
‘ = 10, ” = 10≠5. In our method, we used both features „1, „2.

DP-MEPF DP-Sinkhorn GS-WGAN DP-MERF DP-HP
(Cao et al., 2021) (Chen et al., 2020) (Harder et al., 2021) (Vinaroz et al., 2022)

MNIST LogReg 83 83 79 79 81
MLP 90 83 79 78 82

F-MNIST LogReg 76 75 68 76 73
MLP 76 75 65 75 71

Datasets. We considered four image datasets2 of varying complexity. We started with the commonly used datasets
MNIST (LeCun & Cortes, 2010) and FashionMNIST (Xiao et al., 2017), where each consist of 60,000 28 ◊ 28 pixel
grayscale images depicting hand-written digits and items of clothing, respectively, sorted into 10 classes. We also
looked at the more complex CelebA (Liu et al., 2015) dataset, containing 202,599 color images of faces which we
scale to sizes of 32 ◊ 32 or 64 ◊ 64 pixels and treat as unlabeled. We also study CIFAR-10 (Krizhevsky, 2009), a
50,000-sample dataset containing 32 ◊ 32 color images of 10 classes of objects, including vehicles like ships and trucks,
and animals such as horses and birds.

Implementation. We implemented our code for all the experiments in PyTorch (Paszke et al., 2019), using the auto-dp
package3 (Wang et al., 2019) for the privacy analysis. Following Harder et al. (2021), we used the generator that
consists of two fully connected layers followed by two convolutional layers with bilinear upsampling, for generating
both MNIST and FashionMNIST datasets. For MNIST, we used the SVHN dataset as public data to pre-train ResNet18
(He et al., 2016), from which we took the perceptual features. For FashionMNIST, we used perceptual features from a
ResNet18 trained on CIFAR-10. For CelebA and CIFAR-10, we followed dos Santos et al. (2019) in using perceptual
features from a pre-trained VGG (Simonyan & Zisserman, 2014) on ImageNet, and a ResNet18-based generator. Further
implementation details are given in the supplementary material, which also studies how different public datasets and
feature extractors impact the performance.

Evaluation metric. Evaluating the quality of generated data is a challenging problem of its own. We use two conventional
measures. The first is the Frechet Inception Distance (FID) score (Heusel et al., 2017), which directly measures the
quality of the generated samples. The FID score correlates with human evaluations of visual similarity to the real
data, and is commonly used in deep generative modelling. We computed FID scores with the pytorch_fid package
(Seitzer, 2020), based on 5 000 generated samples, matching dos Santos et al. (2019). As discussed in Section 3.2, we
use a private proxy for FID for early stopping, while the FID scores we report in this section are non-DP measures
of our final model for fair comparison to other existing methods. The second metric we use is the accuracy of
downstream classifiers, trained on generated datasets and then test on the real data test sets (used by Chen et al., 2020;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Chen et al., 2020; Harder et al., 2021; Cao et al., 2021). This test
accuracy indicates how well the downstream classifiers generalize from the synthetic to the real data distribution and
thus, the utility of using synthetic data samples instead of the real ones. We computed the downstream accuracy on
MNIST and FashionMNIST using the logistic regression and MLP classifiers from scikit-learn (Pedregosa et al., 2011).
For CIFAR-10, we used ResNet9 taken from FFCV4 (Leclerc et al., 2022).

In all experiments, we tested non-private training and settings with various levels of privacy, ranging from ‘ = 10 (no
meaningful guarantee) to ‘ = 0.2 (strong privacy guarantee). We always set ” = 10≠5. In DP-MEPF, we also tested
cases based on embeddings with only the first moment, written („1), and using the first two moments, written („1, „2).
Each value in all tables is an average of 3 or more runs; standard deviations are in the supplementary material.

Since we are unaware of any prior work on DP data generation for image data using auxiliary datasets, we instead
mostly compare to recent methods which do not access auxiliary data. As expected, due to the advantage of non-private
data our approach outperforms these methods by a significant margin on the more complex datasets. As a simple

2Dataset licenses: MNIST: CC BY-SA 3.0; FashionMNIST:MIT; CelebA: see https://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html; Cifar10: MIT

3
https://github.com/yuxiangw/autodp

4
https://github.com/libffcv/ffcv/blob/main/examples/cifar/train_cifar.py
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Table 2: Downstream accuracies of our method for MNIST and FashionMNIST at varying values of ‘.

MNIST FashionMNIST
‘ = 5 ‘ = 2 ‘ = 1 ‘ = 0.2 ‘ = 5 ‘ = 2 ‘ = 1 ‘ = 0.2

MLP DP-MEPF („1, „2) 90 89 89 80 76 75 75 70
DP-MEPF („1) 88 88 87 77 75 76 75 69

LogReg DP-MEPF („1, „2) 83 83 82 76 75 76 75 73
DP-MEPF („1) 81 80 79 72 75 76 76 72

Real Data DP-MERF (✏ = 10)

Sinkhorn (✏ = 10)

Ours (✏ = 10)

Ours (✏ = 1)

Ours (✏ = 0.2)

pre-trained DP-GAN (✏ = 10)

pre-trained DP-GAN (✏ = 1)

pre-trained DP-GAN (✏ = 0.2)

Figure 2: Synthetic 32 ◊ 32 CelebA samples generated at different levels of privacy. Samples for DP-MERF and
DP-Sinkhorn are taken from Cao et al. (2021). The pre-trained GAN is our baseline utilizing public data. Even at
‘ = 0.2, DP-MEPF („1, „2) yields samples of higher visual quality than the comparison methods.

baseline based on public data, we also pretrain a GAN on a downscaled version of ImageNet, at 32 ◊ 32, and fine-tune
this model with DP-SGD on CelebA and Cifar10. We use architectures based on ResNet9 with group normalization
(Wu & He, 2018) for both generator and discriminator. As suggested by Anonymous (2023), we update the generator
at a lower frequency than the discriminator and use increased minibatch sizes. Further details can be found in the
supplementary material.

DP-MEPF

(✏ = 5)

DP-MEPF

(✏ = 1)

DP-MEPF

(✏ = 0.2)

Figure 3: Synthetic 64 ◊ 64 CelebA samples generated at different levels of privacy with DP-MEPF („1, „2).

MNIST and FashionMNIST. We compare DP-MEPF to existing methods on the most common settings used in
the literature, MNIST and FashionMNIST at ‘ = 10, in Table 1. For an MLP on MNIST, DP-MEPF’s samples far
outperform other methods for logistic regression and both classifiers on FashionMNIST, scores match or slightly exceed
those of existing models. This might be because the domain shift between public dataset (CIFAR-10, color images
of scenes) and private dataset (FashionMNIST, grayscale images of fashion items) is too large, or because the task is
simple enough that random features as found in DP-MERF or DP-HP are already good enough. This will change as we
proceed to more complex datasets.
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Table 3: CelebA FID scores (lower is better) for images of resolution 32 ◊ 32 and 64 ◊ 64.

‘ = 10 ‘ = 5 ‘ = 2 ‘ = 1 ‘ = 0.5 ‘ = 0.2

32
DP-MEPF („1, „2) 15.1 14.3 13.9 14.9 14.4 19.3
DP-MEPF („1) 11.7 12.1 12.6 13.2 14.4 18.1
DP-GAN (pre-trained) 40.3 49.8 57.5 53.3 72.8 148.2

64 DP-MEPF („1, „2) 13.0 13.1 13.2 13.5 15.5 24.8
DP-MEPF („1) 11.7 11.7 11.6 13.0 16.2 27.3

Table 4: Two examples of beneficial early stopping: For CelebA at 64 ◊ 64 resolution and labeled Cifar10, DP-MEPF
(„1) sample quality (measured in FID) degrades with long training in high privacy settings (here ‘ Æ 1). This makes
the final model at the end of training a poor choice. Our DP selection of the best iteration via proxy stays close to the
optimal choice.

‘ = 1 ‘ = 0.5 ‘ = 0.2

CelebA 64 ◊ 64
Best FID (not DP) 12.3 15.7 25.5
DP proxy for FID 13.0 16.2 27.3
At the end of training 12.6 17.6 97.3

Cifar10 (labeled)
Best FID (not DP) 38.0 78.4 350.3
DP proxy for FID 39.0 78.4 469.3
At the end of training 311.8 354.4 371.7

Table 2 shows that downstream test accuracy only starts to drop in high privacy regimes, ‘ < 1, due to the low sensitivity
of µ„. Samples for visual comparison between methods are included in the supplementary material.

CelebA Figure 2 shows that previous attempts to generate CelebA samples without auxiliary data using DP-MERF or
DP-Sinkhorn have only managed to capture very basic features of the data. Each sample depicts a face, but offers no
details or variety. DP-MEPF produces more accurate samples at the same 32 ◊ 32 resolution, which is also reflected
in improved FID scores of around 12, while DP-Sinkhorn achieves and FID of 190. As the dataset has over 200 000
samples, the feature embeddings have low sensitivity, and offer similar quality between ‘ = 10 and ‘ = 1, although
quality begins to drop at ‘ < 1. Samples for 64 ◊ 64 images are shown in Figure 3, with similar quality; Table 3 gives
FID scores for both resolutions at varying ‘.

We acknowledge that ” = 10≠5 is a bad choice for CelebA, as at n = 202, 599 samples, ”Õ = 1/203,000 is appropriate.
The main reason we stick to ” = 10≠5 in these experiments is that other existing methods were all tested at this level of
privacy guarantee. However, this change in ” will barely affect the DP guarantee. For („1, „2), (10, ”)-DP also implies
(10.21, ”Õ)-DP and (0.2, ”)-DP implies (0.21, ”Õ)-DP. Guaranteeing (10, ”Õ)-DP and (0.2, ”Õ)-DP requires a respective
increase in noise factor ‡ of 2.1% and 5%, which will have little effect.

Because DP-Sinkhorn is the best-performing method without public data, we perform experiments on DP-Sinkhorn,
pretraining it non-DP on ImageNet32 and fine-tuning with DP on CelebA (‘ = 10). After seeing no improvement, we
tested non-DP fine-tuning and still saw no improvements beyond what is shown in Figure 4; we tried both BigGan- and
ResNet18-based generators with hyperparameter grid searches. DP-Sinkhorn only compares features at image-level,
without domain-specific priors, and it appears that even non-DP the method is not powerful enough to model image
data beyond MNIST. (A DP-MEPF analogue that extracts features learned from public data might help, but this would
be a novel method beyond scope for comparison.) DP-MERF is similarly limited by its random features, not DP noise,
as shown by non-DP versions matching ‘ = 10 performance.

Figure 4: Samples from non-DP
Sinkhorn. Top: ImageNet32. Bot-
tom: CelebA after pretraining.

Differentially private early stopping. For CelebA and Cifar10, we use DP early
stopping as explained in Section 3.2 with a privacy parameter ten times larger than
the ‡ used for the training objective. Keeping (‘, ”) fixed, this additional release
results only in a small increase in ‡, and gives us a simple way for choosing the
best iteration. In Table 4, we compare the true best FID, the FID picked by our
private proxy, and the FID at the end of training to illustrate the advantage in high
DP settings. FID scores were computed every 5 000 iterations, while the model
trained for 200 000 iterations in total.
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Real Data

✏ = 10 ✏ = 5 ✏ = 2 ✏ = 1 ✏ = 0.5 ✏ = 0.2 ✏ = 1 ✏ = 10

DP-MEPF (ours) DP-MERF

Figure 5: Labeled samples from DP-MEPF („1, „2) and DP-MERF (Harder et al., 2021).

Figure 6: CIFAR-10 samples. Image quality degrades less with high privacy guarantees for unlabelled generation.

✏ = 10 ✏ = 5 ✏ = 2 ✏ = 1 ✏ = 0.5 ✏ = 0.2
DP-MEPF (ours)

✏ = 10 ✏ = 2

DP-GAN

Figure 7: Unlabeled CIFAR-10 samples from DP-MEPF („1, „2) and DP-GAN.

CIFAR-10 Finally, we investigate a dataset which has not been covered in DP
data generation. While CelebA depicts a centered face in every image, CIFAR-10
includes 10 visually distinct object classes, which raises the required minimum quality of samples to somewhat resemble
the dataset. At only 5 000 samples per class, the dataset is also significantly smaller, which poses a challenge in the
private setting.

Figure 5 shows that DP-MEPF is capable of producing labelled private data (generating both labels and input images
together) resembling the real data, but the quality does suffer in high privacy settings. This is also reflected in the FID
scores (Table 5): at ‘ Æ 1 labeled DP-MEPF scores deteriorate at a much quicker rate than the unlabeled counterpart. As
the unlabeled embedding dimension is smaller by a factor of 10 (the number of classes), it is easier to release privately
and retains some semblance of the data even in the highest privacy settings, as shown in Figure 7. The FID scores of
our pre-trained DP-GAN baseline consistently exceed our results by 10 or more points. These scores are better than the
DP-GAN results for CelebA, likely because 32 ◊ 32 ImageNet is very similar to Cifar10. Nonetheless, the high privacy
cost of DP-SGD makes DP-GAN a poor fit for a dataset of this complexity and limited size.

Table 5: FID scores for synthetic CIFAR-10 data; labeled generates both labels and images.

‘ = 10 ‘ = 5 ‘ = 2 ‘ = 1 ‘ = 0.5 ‘ = 0.2

unlabeled
DP-MEPF („1, „2) 27.1 24.9 26.0 27.2 34.8 56.6
DP-MEPF („1) 26.8 25.9 28.9 32.0 38.6 53.9
DP-GAN 37.8 39.0 40.6 54.1 60.3 63.0

labeled DP-MEPF („1, „2) 26.6 27.6 27.6 38.6 64.4 325.0
DP-MEPF („1) 27.1 27.7 28.7 39.0 78.4 469.3
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In Table 6 we show the test accuracy of models trained synthetic datasets applied to real data. While there is still a large
gap between the 88.3% accuracy on the real data and our results, DP-MEPF achieves nontrivial results around 50% for
‘ = 10, which slowly degrade as privacy is increased. While the drop in sample quality due to high privacy is quite
substantial, it is less of a problem in the unlabelled case, since our embedding dimension is smaller by a factor of 10
(the number of classes) and thus easier to release privately.

Table 6: Test accuracies (higher is better) of ResNet9 trained on CIFAR-10 synthetic data with varying privacy
guarantees. When trained on real data, test accuracy is 88.3%

‘ = 10 ‘ = 5 ‘ = 2 ‘ = 1 ‘ = 0.5 ‘ = 0.2
DP-MEPF („1) 51.0 48.5 42.5 29.4 19.4 13.8
DP-MEPF („1, „2) 48.9 47.9 38.7 28.9 19.7 12.4
DP-MERF 13.2 13.4 13.5 13.8 13.1 10.4

7 DISCUSSION

We have demonstrated the advantage of using auxiliary public data in DP data generation. Our method DP-MEPF takes
advantage of features from pre-trained classifiers that are readily available, and allows us to tackle datasets like CelebA
and CIFAR-10, which have been unreachable for private data generation up to this point.

There are several avenues to extend our method in future work, in particular finding better options for the encoder
features: the choice of VGG19 by dos Santos et al. (2019) works well in private settings, but a lower-dimensional
embedding that still works well for training generative models – perhaps based on some kind of pruning scheme – might
help reduce the sensitivity of µ„ and improve quality.

Training other generative models such as GANs or VAEs with pretrained components is also exploring further than our
initial attempt here. It may also be possible to take a “middle ground” and introduce some adaptation for features in
DP-MEPF, to allow for more powerful, GAN-like models, without suffering too much privacy loss. In the non-private
generative modelling community, this has proved important, but the challenge will be to do so while limiting the number
of DP releases to allow modelling with, e.g., ‘ Æ 2.
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