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Abstract—Alzheimer’s disease (AD) is a progressive neurologi-
cal disorder that primarily affects older adults, with amyloid-beta
accumulation serving as a key biomarker of early pathological
change. Timely detection of amyloid positivity is critical for
enabling early interventions and improving clinical outcomes.
However, current diagnostic tools such as PET imaging or CSF
analysis are expensive, invasive, and not scalable for widespread
screening. In this paper we present TADEC (Trip And Day
Level Explainable Classification), a novel data-driven classifi-
cation framework for automatically identifying amyloid-positive
and negative individuals based on their naturalistic driving
behaviors. TADEC employs two levels of behavioral modeling
Trip-Level, based on individual driving trips, and Day-Level,
which aggregates driving behaviors among all the trips taken
in the same day, and an explainable AI (XAI) component for
generating explanations of prediction results. A comprehensive
set of vehicular features categorized into acceleration and jerk
patterns, speed behavior, and turn dynamics were extracted. The
algorithms in TADEC were implemented, trained, and evaluated
using a data collected from 30 amyloid-positive and 35 amyloid-
negative consensus-diagnosed cognitively normal older adults.
The Trip-Level model achieved the highest classification accuracy
of 89.23%, while the Day-Level model reached 86.15%, indicating
strong predictive performance and demonstrating that both fine-
grained and broader behavioral patterns contribute effectively
to classification performances. For the Day-Level approach,
average lateral and longitudinal acceleration emerged as the most
impactful predictors, whereas trip distance and the number of
large negative jerk events were most influential in the Trip-Level
approach. TADEC offers a promising, non-invasive, and scalable
tool for early detection of preclinical Alzheimer’s disease using
naturalistic driving behavior.

Index Terms—Alzheimer’s disease, amyloid status, naturalis-
tic driving, Bayesian hyperparameter optimization, explainable
artificial intelligence.

I. INTRODUCTION

As the aging population in the United States continues
to grow, the prevalence of dementia is anticipated to rise

correspondingly. By 2050, the number of Americans aged
65 and older are expected to increase from approximately 58
million in 2022 to nearly 82 million [1]. Among the various
forms of dementia, Alzheimer’s disease (AD) is the most
prevalent, and represents a significant global public health con-
cern. AD is a progressive neurodegenerative disorder that first
presents with impairments in memory, gradually extending to
impact behavior, language, visuospatial abilities, and motor
coordination, and ultimately death. Projections suggest that
AD could affect up to 13.8 million individuals by 2060 [1],
highlighting the growing urgency for effective diagnostic and
intervention strategies.

A defining neuropathological feature of AD is the accumu-
lation of amyloid-beta (Aβ) plaques in the brain [1]. Individ-
uals are classified as amyloid-positive (Aβ+) if they exhibit
significant cerebral amyloid plaque accumulation, whereas
those without such deposits are categorized as amyloid-
negative (Aβ-). These amyloid plaques can begin to ac-
cumulate 15 to 20 years before the clinical symptoms of
AD manifest. Current methods for detecting amyloid burden,
such as positron emission tomography (PET) imaging and
cerebrospinal fluid (CSF) analysis, are invasive, expensive,
and typically limited to specialized clinical facilities in well-
resourced urban centers. Blood-based biomarkers have not yet
been consistently validated, and require laboratory services.
As a result, large-scale screening and early identification of at-
risk individuals remain challenging. This has created a critical
need for alternative, non-invasive, and scalable approaches
that can facilitate broader, more accessible early detection
of AD-related pathology. Subtle impairments in instrumental
activities of daily living (IADLs), such as managing finances,
medication adherence, and navigating environments may serve
as early indicators of neurodegenerative disease risk and
may precede noticeable cognitive decline [2]. These subtle



functional deficits may go undetected by traditional neuropsy-
chological assessments [3][4], yet they are strongly associ-
ated with underlying cognitive deterioration [5][6]. As such,
sensitive evaluation of complex IADLs presents a valuable,
non-invasive avenue for identifying individuals at elevated risk
for dementia [7]. Driving is a highly complex instrumental
activity of daily living (IADL) that requires continuous co-
ordination of cognitive domains such as spatial awareness,
working memory, attentional control, and higher-order execu-
tive processes. Early cognitive changes in AD and other neu-
rodegenerative conditions may impair critical driving-related
abilities [8], such as situational awareness, visual processing,
and response time, even before broader cognitive symptoms
become clinically evident [9][10]. These deficits may manifest
more prominently in cognitively taxing scenarios, such as
turning [11] or navigating complex intersections [12], where
rapid judgment and adaptive decision-making are essential.
Given the widespread reliance on driving for independence
among older adults, evaluation of driving performance offers
a promising, ecologically valid, and non-invasive approach
for detecting subtle cognitive changes at the earliest stages.
In this study, we investigate cognitively normal older adults
with elevated amyloid levels, reflecting early accumulation of
AD pathology, to understand if they exhibit distinct patterns
in naturalistic driving behavior compared to their cognitively
normal amyloid-negative counterparts. Using vehicle-based
metrics recorded from trips over a one-month period, we aim
to uncover subtle differences in driving performance that may
serve as early behavioral markers of AD risk, even among
those with normal cognition.

Supporting this perspective, several naturalistic driving stud-
ies have examined how changes in everyday driving be-
havior reflect cognitive decline, including early impairment.
For instance, Eby et al. [13] found that drivers with early-
stage dementia showed restricted patterns and got lost more
often, despite similar safety metrics. Roe et al. [14] tracked
driving behavior over 2.5 years and found that individuals
with preclinical AD took fewer trips, drove shorter distances,
and increasingly relied on others. In a year-long naturalistic
driving study, Babulal et al. [15] observed that older adults
with preclinical AD drove less, avoided night driving, and
showed fewer aggressive behaviors. Howcroft et al. [16] used
GPS data to examine trip complexity and destination patterns
and reported that metrics like mean trip distance helped dis-
tinguish cognitive decline. Bayat et al. [17] showed that GPS-
derived features effectively differentiated mobility patterns in
cognitively intact versus demented individuals. Doherty et al.
[18] found that preclinical AD was associated with increased
adverse driving behaviors, suggesting driving could serve as
an early behavioral marker. Di et al. [19] used random forests
to predict mild cognitive impairment (MCI) and dementia.
Driving-only models achieved an F1 score of 66%, and 88%
when combined with demographics. A custom classifier later
reached 96% accuracy [20].

While AI and ML have shown promise in detecting cogni-
tive impairment from driving data, the adoption of explainable

artificial intelligence (XAI) [21] remains limited. Most existing
studies employ black-box models such as artificial neural
networks or random forests, which offer limited interpretabil-
ity. Additionally, there is a need for intelligent systems that
incorporate naturalistic driving behavior across different time
granularities (e.g., trip-level vs. day-level) to improve predic-
tion accuracy and generalizability. Addressing these gaps, our
study employs interpretable ensemble classifiers and SHAP-
based explanation techniques to model amyloid positivity in
a cohort of cognitively normal older adults using naturalistic
driving data.

This work introduces a novel machine learning framework;
TADEC (Trip And Day Level Explainable Classification) dis-
tinguishes amyloid-positive from amyloid-negative individuals
using a comprehensive set of naturalistic trip features. We
employ XGBoost and Random Forest algorithms, optimized
through Bayesian hyperparameter tuning, to enhance classi-
fication performance. Notably, we introduce a fine-grained,
Trip-Level analytical approach, an innovation not previously
reported in the literature, that captures driving behavior at
a higher temporal resolution. This granularity enables the
detection of transient, context-specific deviations, which may
signal early cognitive changes but could be overlooked in
aggregated analyses (e.g., Day-Level data). The integration
of XAI methods further strengthens the framework by pro-
viding interpretability and identifying which features most
significantly influence model predictions. Collectively, this ap-
proach makes both methodological and practical contributions,
advancing efforts toward scalable, real-world monitoring of
cognitive health in aging populations.

II. METHODOLOGY

A. Participants and Data Collection

This study used data from 65 adults aged 65 or older,
who are consensus diagnosed, and cognitively normal. Based
on PET scans, participants were grouped as amyloid-positive
(Aβ+, n = 30, mean age = 74.1 years, 17 female, 25 white)
or amyloid-negative (Aβ-, n =35, mean age = 70.8 years,
20 female, 32 white) with similar demographic background.
Amyloid status was determined using centiloid values: ≤ 10
for Aβ- and ≥ 20 for Aβ+. All participants had a valid driver’s
license and drove at least twice per week.

Participants’ naturalistic driving behavior was continuously
recorded over a period of 30 days, allowing for the collection
of data during real-world, self-directed trips without experi-
mental manipulation. Unlike simulated or controlled environ-
ments, naturalistic driving captures spontaneous interactions
between drivers, vehicles, and their surroundings, offering
higher ecological validity and a more accurate representation
of everyday behavior. Critically, this type of data is especially
valuable for detecting subtle behavioral changes that may
reflect early signs of neurological or cognitive decline patterns
that often go unnoticed in structured or artificial settings. Ve-
hicular signals were collected at a sampling frequency of 100
Hz using a high-precision data logger, capturing features such
as speed, acceleration, distance traveled, and GPS coordinates.



Fig. 1. Overview of the proposed TADEC framework for amyloid positivity
classification using Naturalistic Driving Data

Only trips exceeding 0.5 miles in length were included in
the analysis to ensure data robustness and relevance. Our
study adhered to strict ethical guidelines approved by the
institutional review board (IRB). All participants provided
informed consent, and data were de-identified prior to analysis.

B. Trip And Day-Level Explainable Classification (TADEC)
Framework for Amyloid Positivity Prediction

This paper presents a data-driven computational framework,
TADEC (Trip And Day-Level Explainable Classification), for
identifying amyloid positivity in cognitively normal older
adults based on naturalistic driving behavior. TADEC (shown
in Figure 1) comprehensively captures individual variabil-
ity in driving patterns using two modeling strategies using
Trip-Level features, and Day-Level trip features, which en-
ables classification systems to learn both fine-grained and
composite-level assessments of driving behavioral patterns.

TADEC consists of two major computational stages: (1)
classification, which involves building two predictive models,
one is trained using Trip-Level features, another using Day-
Level trip features, and (2) explainability, which leverages
SHAP-based Explainable AI (XAI) method to interpret model
predictions and identify the most influential driving features.

The Trip-Level features are extracted from every individual
driving trip with the intention of capturing fine-grained behav-
ioral patterns. Let p ∈ P represent a participant from the study
cohort. Participant p completes a total of K trips across D
driving days. Let dpk denote the kth trip taken by the participant
p on day d, where k = 1, 2, . . . ,K and d = 1, 2, . . . , D. For
every trip dpk, a feature vector f(dpk) is extracted, capturing a
range of behavioral and contextual driving features, such as
average speed, trip distance, etc. These features characterize
fine-grained driving behaviors and capture moment-to-moment
variability, which may be indicative of subtle differences. A
total of 4,195 trips were included in the experiments, where
2,258 trips were recorded from Aβ+ participants and 1,937
from Aβ- participants.

The Day-Level trip features are generated from all trips
taken in the same day. Let pd be the set of all the trips
taken on the dth day by participant p, the Day-Level trip
feature is a vector g(pd) constructed by the statistics obtains
from all the trips in pd. Feature vector g(pd) encompass
spatial and temporal features, and behavioral indicators. More
details of these features are presented in Section C. The Day-
Level trip features characterize broader behavioral tendencies
and mitigates intra-individual variability, potentially enhancing
classification stability. A set of 1,167 days of driving trips were
analyzed, in which 544 days from Aβ+ participants and 623
days from Aβ- participants. A machine learning algorithm was
used to train two classification systems: F, a Trip-Level model
trained on individual trips, and G, a Day-Level model trained
on daily aggregated trip data.

During the prediction process all the feature vectors are sent
to their respective predictive models as illustrated in Figure 1.
The output from each predictive model is used to generate
the final participant prediction result using the Majority Vote
functions HTrip(p) and HDay(p).

HTrip(p) =

1,
1

K

K∑
k=1

ŷpk ≥ 0.5

0, otherwise

HDay(p) =

1,
1

D

D∑
d=1

ŷd ≥ 0.5

0, otherwise

In the second stage SHAP is used to generate beeswarm
plots for explanations that provides visualization of the con-
tribution of individual features to the model’s predictions and
also the direction of influence on the predicted class.

In cases where the Trip-Level and Day-Level classifiers
yield opposite predictions for the same participant, we adopt
a human-in-the-loop approach, where domain experts are
expected to review both predictions alongside their corre-
sponding SHAP based feature explanations. By comparing
short-term (Trip-Level) and aggregated (Day-Level) behavioral
patterns, clinicians or researchers can make informed judg-
ments about potential amyloid positivity. This hybrid decision
process emphasizes transparency and supports individualized
evaluation, especially in borderline or ambiguous cases.

C. Feature Extraction and Machine Learning Modeling for
Amyloid Classification

For this research, we designed a two-level driving fea-
ture extraction approach to capture drivers’ habitual patterns,
mobility range, risk-related tendencies, and detailed driving
dynamics such as speed, acceleration, and jerk. Day-Level
features are computed by aggregating driving behaviors across
all trips taken in a single day, resulting in 32 features grouped
into seven categories. Trip-Level features include 22 measures
categorized into five groups that reflect fine-grained driving
behavior within individual trips, enabling detection of transient
anomalies that may be overlooked in day-level summaries.



TABLE I
SUMMARY OF DAY-LEVEL AND TRIP-LEVEL DRIVING BEHAVIOR

FEATURES

Feature Category Day-Level Features Trip-Level Features

Acceleration & Jerk Patterns

Average Lateral Acceleration (g) Average Lateral Acceleration (g)
Average Longitudinal Acceleration (g) Average Longitudinal Acceleration (g)
Average Jerk Average Jerk
No. of Large Positive Jerk Events No. of Large Positive Jerk Events
No. of Large Negative Jerk Events No. of Large Negative Jerk Events
No. of Deceleration Events > 0.35 g No. of Deceleration Events > 0.35 g
No. of Deceleration Events > 0.40 g No. of Deceleration Events > 0.40 g
No. of Deceleration Events > 0.50 g No. of Deceleration Events > 0.50 g
No. of Deceleration Events > 0.75 g No. of Deceleration Events > 0.75 g

Speed

Average Speed (mph) Average Speed during Trip (mph)
Maximum Speed of the Day (mph) Maximum Speed Reached during Trip (mph)
Time Spent Above 60 mph (sec) Total Seconds Spent Above 60 mph
Time Spent Above 75 mph (sec) Total Seconds Spent Above 75 mph
Time Spent Above 80 mph (sec) Total Seconds Spent Above 80 mph

Trip Statistics

Average Trip Distance (miles) Distance of Trip (miles)
Average Trip Duration (minutes) Duration of Trip (minutes)
Total Number of Trips
Total Distance Driven (miles)
Total Driving Time (minutes)

Trip Length Categories

Trips < 5 miles
Trips Between 5.1–10 miles
Trips Between 10.1–15 miles
Trips Between 15.1–20 miles
Trips > 20.1 miles

Temporal Driving Patterns
Trips During Morning Rush Hour (6–10 am) Trip Occurred During Morning Rush Hour
Trips During Evening Rush Hour (3–7 pm) Trip Occurred During Evening Rush Hour
Overnight Trips (12–5 am) Trip Occurred Overnight (Yes/No)

Turning Behavior
Number of Left Turns Number of Left Turns during Trip
Number of Right Turns Number of Right Turns during Trip
Left-to-Right Turn Ratio Ratio of Left to Right Turns

Mobility Pattern Number of Unique Destinations
Radius of Gyration (miles)

This dual-level framework supports both comprehensive be-
havioral profiling and context-sensitive modeling of natural-
istic driving behavior. A detailed description of all extracted
features is provided in Table I.

In TADEC framework, two machine learning algorithms,
Random Forest (RF) and XGBoost (XGB) were investigated
to model the relationship between driving features and amyloid
status. RF, an ensemble learning method based on deci-
sion trees, was chosen for its robustness in handling high-
dimensional data and its ability to reduce variance through
bootstrap aggregation. By constructing multiple decision trees
and averaging their predictions, RF mitigates overfitting and
enhances generalizability, which is particularly important
given the complex and noisy nature of naturalistic driving data.

XGB, a gradient boosting framework, was selected for
its strong predictive performance and problems involving
complex, nonlinear interactions between features. Unlike RF,
which builds trees independently, XGB constructs trees se-
quentially, with each new tree learning to correct the errors
of the previous one. This boosting approach results in more
accurate and finely tuned models. XGB is also known for its
computational efficiency and scalability, making it well-suited
to this dataset with a large number of Trip and Day Level
records making it a valuable tool in the development of data-
driven diagnostic models.

For model training and evaluation, the data were split based
on participants rather than by trips or days to make sure the
results generalize well to new individuals. Participants’ trip
data were randomly partitioned into training and testing sets
in a stratified way, maintaining the proportion of Aβ+ and Aβ-
individuals balanced in both sets. Specifically, 70% (21 Aβ+,
24 Aβ-) of the participants from each group were used for
training, 10% (3 Aβ+, 4 Aβ-) for validation and the remaining
20%(6 Aβ+, 7 Aβ-) were used for testing.

The model training process begins with the initial training
on the training data, followed by a sequence of hyperparameter

tuning conducted using the validation set. This allows the
model to be fine-tuned and optimized for better generalization
before final testing. Once the best set of hyperparameters is
determined, the model is retrained using the combined training
and validation sets (80% of the data) and evaluated on the test
set to assess its final performance.

D. Hyperparameter tuning via Bayesian Optimization

Bayesian optimization enhances hyperparameter tuning by
efficiently navigating the search space using a probabilistic
surrogate model. It uses a Gaussian Process (GP) to estimate
the objective function while quantifying uncertainty [22]. This
approach reduces the number of evaluations required for
hyperparameter tuning by progressively refining the search
space, aiming to be “less wrong” with each iteration while con-
sistently identifying better-performing hyperparameter config-
urations. It is particularly advantageous for computationally
expensive models.

Bayesian hyperparameter optimization in this study follows
a Sequential Model-Based Optimization framework, conducted
independently for RF and XGB models. The process begins
with a few randomly sampled hyperparameter settings, each
evaluated based on model performance. A surrogate model
was then constructed to approximate the objective function
that maps hyperparameter settings to performance outcomes.
Using an acquisition function such as Expected Improvement,
the optimizer selects the next promising configuration, effec-
tively balancing the exploration of the search space with the
exploitation of high-performing regions. After each evaluation,
the surrogate model is updated with the newly obtained results.
This iterative process is repeated for up to 30 iterations or until
convergence was observed.

E. Explainable AI using SHapley Additive exPlanations

SHAP (SHapley Additive exPlanations), a state-of-the-art
explainable AI (XAI) method grounded in cooperative game
theory, was used to quantify the contribution of individual
Day-Level and Trip-Level features to classification perfor-
mance. SHAP assigns a Shapley value to each feature by
estimating its average marginal contribution across all pos-
sible feature subsets, comparing the model’s output with and
without each feature under various combinations. By applying
the SHAP Python library to the trained RF and XGB models,
we systematically interpreted how each feature influenced
predictions of Aβ+ vs. Aβ-. The results were visualized using
SHAP beeswarm plots, which depict the distribution of SHAP
values for each feature across all observations.

Each row in the beeswarm plot represents a feature, ordered
by mean absolute SHAP value (importance). Points are colored
by the actual feature value (blue = low, red = high) and
positioned along the x-axis based on their SHAP values. Pos-
itive SHAP values indicate contribution to the positive class,
negative values to the negative class, and values near zero
imply minimal effect. This dual encoding allows interpretation
of both feature importance and the directional impact of high
vs. low feature values on model predictions.



TABLE II
PERFORMANCE COMPARISON OF BASELINE AND OPTIMIZED ML

MODELS ACROSS TRIP-LEVEL AND DAY-LEVEL ANALYSIS

Metrics
Trip-level Analysis Day-level Analysis

Baseline Optimized Baseline Optimized
RF XGB RF XGB RF XGB RF XGB

Accuracy 76.92 81.54 86.15 89.23 73.85 80.00 84.62 86.15
Precision 77.78 82.14 86.21 89.66 74.07 79.31 81.25 83.87
Recall 70.00 76.67 83.33 86.67 66.67 76.67 86.67 86.67
F1 Score 73.68 79.29 84.75 88.13 70.18 77.93 83.82 85.25

III. RESULTS

This section presents a comprehensive analysis of the results
obtained from the proposed TADEC framework. Table II
presents the performance metrics of the ML models across
the two modeling strategies while highlighting the impact
of hyperparameter optimization. Tables III and IV detail the
ranges of hyperparameters explored during Bayesian optimiza-
tion. To assess the performance of the classifiers we use
four evaluation metrics, Accuracy, Precision, Recall, F1-Score.
Accuracy is the percentage of correct predictions. Precision
is the proportion of true positives among predicted positives,
while recall is the proportion of actual positives correctly
identified. The F1 score is the harmonic mean of precision
and recall. In this application, the positive class is the Aβ+
class and Aβ- is the negative class.

A. Machine Learning Modeling using Trip-level features

For the Trip-Level classification both RF and XGB classi-
fiers demonstrated strong performances in classifying the par-
ticipants. The baseline models achieved accuracies of 76.92%
and 81.54% for RF and XGB respectively, with XGB outper-
forming RF across all metrics. After Bayesian hyperparameter
optimization, notable improvements were observed in both
models. The optimized RF model achieved an accuracy of
86.15%, while the optimized XGB model further improved
to 89.23%. The Precision, recall, and F1-score also increased
substantially for both models following the optimization.
Specifically, the recall improved from 70% to 83.33% for RF
and from 76.67% to 86.67% for XGB, indicating enhanced
sensitivity to amyloid-positive cases.

B. Machine Learning Modeling using Day-level trip features

For the Day-Level classification, initially, baseline mod-
els achieved moderate classification performance, with RF
yielding an accuracy of 73.85% and XGB achieving 80%.
After optimization, the accuracy improved to 84.62% for RF
and 86.15% for XGB. Similar trends were observed across
other performance metrics. Precision increased from 74.07%
to 81.25% for RF and from 79.31% to 83.87% for XGB.
Notably, recall improved significantly, rising from 66.67% to
86.67% for RF and from 76.67% to 86.67% for XGB. The
F1 score reaching 83.82% for RF and 85.25% for XGB post-
optimization.

C. Interpretations of SHAP

To gain deeper insight into the model’s decision-making
process of classifying amyloid positivity, SHAP values were

TABLE III
HYPERPARAMETER SPACE FOR RANDOM FOREST ML MODEL

RF Hyperparameter Parameter
Range

Trip-Level
Optimal

Day-Level
Optimal

n_estimators 50–200 178 156
max_depth 3–10 8 9
max_features sqrt,

log2, none
sqrt sqrt

min_samples_leaf 1–10 3 3
min_samples_split 2–10 5 3

TABLE IV
HYPERPARAMETER SPACE FOR XGBOOST ML MODEL

XGB Hyperparame-
ters

Parameter
Range

Trip-Level
Optimal

Day-Level
Optimal

n_estimators 50–200 144 152
max_depth 3–10 9 7
learning_rate 0.01–0.2 0.14 0.20
colsample_bytree 0.5–1 0.62 1.00
gamma 0–1 0.10 0.10
alpha 0–1 0.30 0.30

employed to interpret feature contributions. The SHAP
beeswarm plots in Figures 2 and 3 show us that in the Day-
Level classification, average longitudinal acceleration, aver-
age lateral acceleration, radius of gyration, number of large
negative jerk events are the most important features for both
RF and XGB ML models. In the Trip-Level classification,
number of large negative jerk events, trip distance, average
longitudinal acceleration, average lateral acceleration are the
most important features for both RF and XGB ML models.

If we take a closer look at the SHAP beeswarm plots for
the Day-Level classification framework in Figure 2, radius
of gyration exhibited a clear directional pattern: lower values
(blue dots) contributed negatively and higher values (red dots)
contributed positively to the prediction of amyloid positivity
across both models. This suggests that individuals with a
broader spatial driving range were more likely to be classified
as Aβ+, potentially reflecting a tendency toward longer or
more dispersed trips. Number of large negative jerk events
showed that, higher values (red) pushed predictions toward
amyloid-negative, while lower values (blue) pushed predic-
tions toward Aβ+. This may indicate that Aβ+ individuals
tend to brake less suddenly, possibly due to increased caution.
Average duration also followed a consistent trend, where
shorter durations (blue) were associated with Aβ- predictions
and longer durations (red) with Aβ+. This may suggest that
Aβ+ individuals take longer to complete trips. Similarly, left,
and right turn counts: fewer turns (blue) were linked with
Aβ- predictions, whereas more frequent turning behavior (red)
aligned with Aβ+. This could reflect differences in route
complexity or navigational strategies, Aβ+ individuals may be
taking routes with more maneuvers due to unfamiliarity or
avoidance of high-speed roads.

In the SHAP beeswarm plots corresponding to the Trip-
Level classification framework (Figure 3), number of large
negative jerk events showed a clear trend, with lower values
contributing to amyloid-negative predictions and higher values
contributing positively toward Aβ+ predictions, indicating that



Fig. 2. SHAP Beeswarm Plots for Day-Level Classification Framework (RF-left, XGB-right).

Fig. 3. SHAP Beeswarm Plots for Trip-Level Classification Framework (RF-left, XGB-right).

frequent abrupt braking actions were more characteristic of
Aβ+ participants. A similar pattern was observed for trip
distance, where longer distances were associated with Aβ+
participants, and shorter trips aligned with Aβ- participants.
For average speed, higher values contributed negatively, while
lower values contributed positively to both models. This sug-
gests that Aβ+ individuals may be driving at relatively slower
speeds, potentially reflecting cautious or conservative driving
tendencies. Finally, both left and right turn count demonstrated
a directional influence where higher values pushed predictions
toward the amyloid-negative class and lower values toward the
Aβ+ class. This could suggest that Aβ+ drivers engage in fewer
maneuvering actions during trips, potentially reflecting simpler
routes or avoidance of complex intersections and decision-
making demands.

While several features were shared between the Trip-Level
and Day-Level classification frameworks, certain behavioral
metrics (e.g., turn counts, large negative jerk events) exhibited
opposite SHAP value directions. This divergence is not contra-
dictory but instead reflects differences in observational granu-
larity. Trip-Level models capture momentary driving behaviors
that may reveal in-the-moment compensatory strategies or
challenges. In contrast, Day-Level models aggregate multiple

trips to highlight broader driving patterns and routines. To-
gether, these perspectives offer a complementary view of driv-
ing behavior in preclinical Alzheimer’s disease, underscoring
the value of multi-scale analysis in behavioral monitoring.

IV. CONCLUSION

This paper presents TADEC, an innovative computational
framework for the automatic classification of Aβ+ and Aβ-
individuals based on naturalistic driving behavior. The core
of TADEC is a two-level classification approach that builds
predictive models using both Trip-Level and Day-Level driv-
ing features. We developed a set of 32 Day-Level features
and 22 Trip-Level features to comprehensively characterize
driving behavior at different temporal scales. Additionally,
TADEC incorporates a SHAP-based XAI module to provide
interpretable explanations of the model’s predictions.

To compare model performances, we employed two ma-
chine learning algorithms, RF and XGB, to learn the relation-
ship between two-level driving features and amyloid positivity.
These algorithms, combined with Bayesian hyperparameter
optimization, were used to develop classification models at
both levels. The final classification output was determined
through majority voting across predictions from the Day-Level
and Trip-Level classifiers. All the classifiers are trained and



evaluated using a set of naturalistic driving trips collected from
65 adults aged 65 or older who were consensus diagnosed
as cognitively normal. From this dataset, we extracted 1,167
days of driving trips for training and evaluating the Day-
Level models, and 4,195 individual trips for the Trip-Level
classification system.

XGB classifiers demonstrated strong performances in clas-
sifying Aβ+ from Aβ- participants. At both the Trip-Level and
Day-Level classifications, XGB consistently outperformed RF
across all evaluation metrics. Notably, XGB combined with
Bayesian optimization achieved an accuracy of 89.23% at
the Trip-Level, and 86.15% at the Day-Level classification.
Bayesian hyperparameter optimization led to substantial per-
formance gains. The optimized RF model improved by more
than 9 percentage points in accuracy, while the XGB model
obtained an improvement of over 4 percentage points in Trip-
Level classification accuracy. SHAP Beeswarm Plots offered
valuable insights into the relationship between the driving
features and classification decision processes in identifying
amyloid positivity. Notably acceleration and jerk pattern were
the most prominent features in distinguishing the two groups
at both levels of classification.

In conclusion, the research findings presented in this paper
suggest that the intelligent system developed using the TADEC
framework holds significant promise as a low-cost, non-
invasive diagnostic tool for detecting preclinical Alzheimer’s
disease. In future work, we plan to perform external valida-
tion, explore transfer learning and advanced deep learning
methodologies, alongside subgroup analyses, human-in-the-
loop evaluation to strengthen SHAP interpretation and clinical
usability.

This work was supported in part by the NIH/NIA Grant
R01AG068338 and P30AG072931.
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