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Abstract

The reliability of probabilistic classifiers hinges on their calibration—the property that their
confidence accurately reflect the true class probabilities. The expected calibration error
(ECE) is a standard metric for quantifying the calibration of classifiers. However, its esti-
mation presumes access to ground-truth labels. In positive-unlabeled (PU) learning, only
positive and unlabeled data are available, which makes the standard ECE estimator inappli-
cable. Although PU learning has been extensively studied for risk estimation and classifier
training, calibration in this setting has received little attention. In this paper, we present
PU-ECE, the first ECE estimator for PU data. We provide non-asymptotic bias bounds
and prove convergence rates that match those of the fully supervised ECE with an optimal
bin size. Furthermore, we develop an information-theoretic generalization error analysis of
PU-ECE by formalizing the conditional mutual information (CMI) for a PU setting. Ex-
periments on synthetic and real-world benchmark datasets validate our theoretical analysis
and demonstrate that our PU-based ECE estimator achieves performance comparable to
that of the fully-labeled ECE estimator.

1 Introduction

Deep learning models achieve state-of-the-art accuracy in various classification tasks (Devlin et al., 2019;
Dosovitskiy et al., 2021; Radford et al., 2021). However, their deployment in safety-critical applications
requires more than just high prediction accuracy. For instance, in medical diagnosis (Jiang et al., 2012),
autonomous systems (Muthali et al., 2023), and financial decision-making (Bahnsen et al., 2014), the con-
fidence of the predictions provided by machine learning models must accurately reflect the true probability
of the predicted events. This property, known as calibration (Dawid, 1982; Guo et al., 2017), is essential for
reliable decision-making. The calibration error, or true calibration error (TCE) (Naeini et al., 2015; Guo
et al., 2017; Roelofs et al., 2022), is a widely used metric for evaluating the calibration of classifiers. The
TCE is typically estimated by partitioning the confidence score space into bins, followed by the calculation of
the average difference between the confidence score and the empirical probability of the true label given the
confidence score in each bin (Zadrozny & Elkan, 2001; Naeini et al., 2015). The resulting estimator is called
the expected calibration error (ECE)1 (Roelofs et al., 2022). Theoretical analysis of the ECE has also been
conducted, establishing bias bounds and the consistency of the ECE to the TCE as the number of samples
increases, with an appropriate binning strategy Gupta & Ramdas (2021); Futami & Fujisawa (2024). The
results show an O(n−1/3) convergence rate of the ECE, where n is the number of test samples. The naive
computation of the ECE requires a fully labeled dataset, where each sample has both confidence scores and
true labels.

However, in practice, fully labeled data may not be available or may be costly to obtain (Jaskie & Spanias,
2019; Li et al., 2022; Bepler et al., 2019). For instance, when identifying protein particles in microscopy
images, annotating negative data is costly due to diverse backgrounds (Bepler et al., 2019). In such cases,
positive-unlabeled (PU) learning, which aims to train a classifier from only positive and unlabeled data, is
a promising approach (Liu et al., 2002; Elkan & Noto, 2008; Natarajan et al., 2013; du Plessis et al., 2014).

1As some researchers have pointed out, both TCE and ECE are sometimes called "ECE". For clarity, we follow the convention
of Futami & Fujisawa (2024).
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Despite extensive research on PU learning methods, the majority of these methods have focused on maxi-
mizing classification accuracy (Elkan & Noto, 2008; du Plessis et al., 2015; Kiryo et al., 2017; Chen et al.,
2020; Xinrui et al., 2023). On the other hand, the critical issue of calibration in the PU setting has been
largely overlooked. As a key motivation for this paper, we first reveal a surprising phenomenon: in PU
learning, the standard binary cross-entropy loss, which is strictly proper in supervised learning (Good, 1952;
Savage, 1971), can lead to significantly worse calibration than a noise-robust loss that is not strictly proper
(Charoenphakdee et al., 2019) but often used in PU learning (Kiryo et al., 2017; Chen et al., 2020; Zhao et al.,
2022) (details in Section 5.2). However, evaluating calibration in the PU setting is challenging—the absence
of negative labels makes it impossible to apply the standard ECE estimator, which prevents practitioners
from evaluating the calibration of PU classifiers.

In this paper, we address the problem of estimating the calibration error in PU learning settings. We
introduce PU-ECE, a novel method for estimating the ECE using only PU data, without requiring negative
labels. The core idea is to reframe the ECE computation by leveraging the statistical properties of PU
datasets. By applying Bayes’ rule within each bin, we can estimate from PU data the conditional expectation
of the true label given the confidence score, which is necessary for the ECE computation. Our theoretical
analysis establishes non-asymptotic bias bounds of PU-ECE, which guarantee the precision of our estimator
from the TCE in a finite sample. With these bounds, we prove that with an optimal binning strategy, our
estimator achieves a convergence rate that matches the convergence rate of the ECE in fully-supervised
settings of O(n−1/3), where n is the number of test samples (Futami & Fujisawa, 2024). An information-
theoretic generalization error analysis of PU-ECE is also provided by formalizing the functional conditional
mutual information (fCMI) (Steinke & Zakynthinou, 2020; Hellström & Durisi, 2022) for a PU setting. In
addition, we demonstrate through extensive experiments on synthetic and benchmark datasets that our
approach achieves estimation biases comparable to those of the fully-supervised method.

The rest of this paper is organized as follows. In Section 2, we formally describe the problem setting and
define notations. In Section 3, we present the PU-ECE method and its theoretical properties, and in Section
4, we present its information-theoretic analysis. Section 5 provides experimental results to validate our
approach. Finally, we conclude the paper in Section 6.

2 Problem Formulation

We denote random variables by capital letters and their realizations by lowercase letters. Let X be the input
space and Y = {0, 1} be the label space. Let P (X, Y ) be the probability distribution over X × Y, P (X)
be the marginal distribution of X, P (X | Y = y) be the conditional distribution of X given Y = y ∈ Y,
and πP = P (Y = 1) be the class prior. The hypothesis space is denoted by H ⊆ RX and a classifier h ∈ H
outputs a real-valued score for a given input x ∈ X . The model’s confidence score is then obtained by
applying an output activation function σ : R → [0, 1], which we denote by f(x) := σ(h(x)). We assume
σ is measurable and monotone increasing. Examples include the sigmoid function and the probit function.
If the sigmoid function σsig(z) := (1 + e−z)−1 is used as σ, we refer to h(x) as the logit score. We define
F = {σ(h(·)) | h ∈ H} for a fixed σ. We denote the parameterized classifier and its confidence score function
by hw and fw with w ∈ W, where W is the parameter space. If the parameter w is fixed, we simply write
h and f . Let 1A be the indicator function, which returns 1 if the condition A is true and 0 otherwise. We
define [n] = {1, 2, . . . , n} for n ∈ N.

2.1 Supervised Learning

In supervised learning, the dataset is a set of independent and identically distributed (i.i.d.) samples drawn
from P (X, Y ). Let l : R×Y → R≥0 be the loss function, e.g., the 0-1 loss (Wald, 1945) for the misclassification
rate. Let SPN :=

{(
XPN

m , Y PN
m

)}nPN

m=1 be a dataset of nPN samples drawn from P (X, Y ). The expected risk of
h on P (X, Y ) is given by EX,Y [l(h(X), Y )]. The empirical risk on SPN is given by 1

n

∑n
m=1 l(h(XPN

m ), Y PN
m ).

Classifiers are trained by the empirical risk minimization (ERM) (Vapnik & Chervonenkis, 1971).
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2.2 Calibration Error Estimation

A classifier is said to be perfectly calibrated if its confidence score matches the true class probability (Murphy
& Epstein, 1967; Gupta & Ramdas, 2021). Mathematically, this means that for all confidence scores p ∈ [0, 1],
we have P (Y = 1 | f(X) = p) = p almost surely (Gupta & Ramdas, 2021). However, this ideal state is
rarely achieved in practice (Guo et al., 2017). To quantify the deviation from this perfect calibration, the
true calibration error (TCE) (Naeini et al., 2015; Gupta & Ramdas, 2021; Roelofs et al., 2022; Futami &
Fujisawa, 2024) is used as a calibration metric.

2.2.1 True Calibration Error (TCE)

The TCE of f on P (X, Y ) is defined as

TCE(f) = EX [|E [Y | f(X)] − f(X)|] .

This measures the average absolute difference between the true conditional expectation of Y given f(X) and
the confidence score f(X). It quantifies how well the confidence scores align with the true probabilities of
the positive class. A lower TCE indicates better calibration, meaning that the confidence scores are closer
to the true probabilities. However, calculation of TCE(f) requires access to the conditional distribution
P (Y | f(X)), which is usually unavailable.

2.2.2 Expected Calibration Error (ECE)

Instead, to estimate TCE(f), we often use a binning method (Zadrozny & Elkan, 2001; Guo et al., 2017;
Futami & Fujisawa, 2024). This method involves a set of B ∈ N bins (intervals), denoted by I = {Ib}B

b=1,
that covers the entire range of f . We define the true binned function as

fI(X) =
B∑

b=1
E [f(X) | f(X) ∈ Ib]1f(X)∈Ib

.

Then its TCE is calculated as follows (Futami & Fujisawa, 2024):

TCE(fI) :=
B∑

b=1
P (f(X) ∈ Ib) |E [Y | f(X) ∈ Ib] − E [f(X) | f(X) ∈ Ib]| .

TCE(fI) can be estimated from a supervised evaluation dataset Se := {(Xe
m, Y e

m)}ne
m=1 of size ne ∈ N, which

can be a validation dataset or a test dataset, by the plug-in method. The resulting empirical estimate is
called the expected calibration error (ECE):

ECE(f, Se) :=
B∑

b=1
pb

∣∣ȳb,Se − f̄b,Se

∣∣ , (1)

where pb :=
∑ne

m=1
1f(Xe

m)∈Ib

ne
is the fraction of samples in bin b, ȳb,Se :=

∑ne
m=1

1f(Xe
m)∈Ib

Y e
m∑ne

m=1
1f(Xe

m)∈Ib

is the average

true label in bin b, and f̄b,Se :=
∑ne

m=1
1f(Xe

m)∈Ib
f(Xe

m)∑ne
m=1

1f(Xe
m)∈Ib

is the average confidence score in bin b. We assume
ne ≥ 2B, where ne is the supervised evaluation dataset size and B is the number of bins.

For I, there are two common choices: uniform width binning (UWB) (Guo et al., 2017) and uniform mass
binning (UMB) (Zadrozny & Elkan, 2001). In UWB, the bins are defined as Ib =

(
b−1
B , b

B

]
for b ∈ [B]. In

UMB, the bins are defined as Ib = (ub−1, ub] for b ∈ [B], where u0 = 0, ub = f(kb) for b ∈ [B − 1], and
uB = 1. Here, kb = ⌊ neb

B ⌋, where ⌊·⌋ denotes the floor function that returns the greatest integer less than or
equal to the input value, and f(k) denotes the k-th order statistic of the set {f(Xe

m)}ne
m=1.

There are extensions of the TCE and ECE, such as Lp-TCE and Lp-ECE (Kumar et al., 2019; Wenger et al.,
2020; Popordanoska et al., 2022), which generalize the TCE and ECE by using the p-th power of the absolute
difference. In this paper, we focus on the case of p = 1, which is the most commonly used case (Guo et al.,
2017; Naeini et al., 2015).
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2.3 Positive-Unlabeled Learning

Positive-unlabeled (PU) learning is a classification problem where only positive and unlabeled data are
observed, but no negative data. Among various settings of PU learning (Elkan & Noto, 2008; Natarajan
et al., 2013; du Plessis et al., 2014; Kato et al., 2019; Bekker et al., 2020), we focus on the selected-completely-
at-random (SCAR) and case-control scenario. Concretely, we observe two independent sample sets: a set of
unlabeled samples Str,U :=

{
Xtr,U

m

}ntr,U

m=1
i.i.d.∼ P (X) and a set of positive samples Str,P := {Xtr,P

m }ntr,P
m=1

i.i.d.∼
P (X | Y = 1), with the full training data denoted by Str = (Str,U, Str,P) (du Plessis et al., 2014). This
SCAR and case-control scenario is commonly used in the PU learning literature (Natarajan et al., 2013;
du Plessis et al., 2014; Kiryo et al., 2017; Yao et al., 2021). Throughout the paper, we assume that the class
prior πP = P (Y = 1) is known—in practice, it can be estimated from data (Blanchard et al., 2010; Garg
et al., 2021; Zhu et al., 2023).

In PU learning, an unbiased risk estimator of h on Str is given as follows (Natarajan et al., 2013; du Plessis
et al., 2014; 2015):

LuPU(h) = πP

ntr,P

ntr,P∑
m=1

{
l(h(Xtr,P

m ), 1) − l(h(Xtr,P
m ), 0)

}
+ 1

ntr,U

ntr,U∑
m=1

l(h(Xtr,U
m ), 0). (2)

The estimator is suitable for estimating the expected risk E [l(h(X), Y )] or training simple classifiers
(du Plessis et al., 2014; 2015), but it does not work well for training more complex classifiers such as
deep neural networks due to the negative risk issue (Kiryo et al., 2017). To overcome this issue, non-negative
risk estimators were proposed (Kiryo et al., 2017; Lu et al., 2020). The non-negative risk estimator is given
by

LnnPU(h) = πP

ntr,P

ntr,P∑
m=1

l(h(Xtr,P
m ), 1) + lcc

(
1

ntr,U

ntr,U∑
m=1

l(h(Xtr,U
m ), 0) − πP

ntr,P

ntr,P∑
m=1

l(h(Xtr,P
m ), 0)

)
, (3)

where lcc : R → R≥0 is called a consistent-correction function. Several functions have been proposed for use
as lcc, e.g., max{x, 0} (Kiryo et al., 2017; Lu et al., 2020).

3 PU-ECE: An Estimator for Calibration Error in PU Learning

Conventional ECE estimation, as shown in Eq. (1), requires labeled data (both positive and negative), but in
the PU environment, negative data are unavailable, as introduced in Section 2.3. The main challenges are (i)
estimating the true positive rate within bins (ii) the data are not from a single distribution P (X, Y ) but from
P (X) and P (X|Y = 1). In this section, we propose a method to estimate the ECE in the PU environment.
The proposed method is based on the idea of using positive and unlabeled data to estimate E [Y | f(X) ∈ Ib].
We denote the PU evaluation data as SU := {XU

m}nU
m=1, SP := {XP

m}nP
m=1, and SPU := (SU, SP). The

evaluation data are independent of the training data and f , and can be a validation dataset or a test dataset
in practice.

3.1 Proposed Estimator

Since Y ∈ {0, 1}, the conditional expectation can be expressed as

E[Y | f(X) ∈ Ib] = P (Y = 1 | f(X) ∈ Ib) = P (Y = 1, f(X) ∈ Ib)
P (f(X) ∈ Ib) = πPP (f(X) ∈ Ib | Y = 1)

P (f(X) ∈ Ib) . (4)

In the PU learning setting, we have access to positive samples SP = {XP
m}nP

m=1 drawn i.i.d. from P (X|Y = 1)
and unlabeled samples SU = {XU

m}nU
m=1 drawn i.i.d. from P (X). The term P (f(X) ∈ Ib | Y = 1)

in Eq. (4) can be estimated by the empirical frequency of positive samples falling into bin Ib: pb,P :=
1

nP

∑nP
m=1 1f(XP

m)∈Ib
. Similarly, P (f(X) ∈ Ib) can be estimated by the empirical frequency of unla-

beled samples falling into bin Ib: pb,U := 1
nU

∑nU
m=1 1f(XU

m)∈Ib
. These estimators are unbiased, that is,
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E [pb,P] = P (f(X) ∈ Ib | Y = 1) and E [pb,U] = P (f(X) ∈ Ib). Let |Ib,P| =
∑nP

m=1 1f(XP
m)∈Ib

and
|Ib,U| =

∑nU
m=1 1f(XU

m)∈Ib
be the number of positive and unlabeled samples in bin Ib, respectively. Then

pb,P = |Ib,P|/nP and pb,U = |Ib,U|/nU. Using these estimates, an estimator for the conditional probability
P (Y = 1 | f(X) ∈ Ib) is naively obtained as ŷb,SPU := πPpb,P

pb,U
. The ECE for PU learning (PU-ECE) can then

be estimated as
B∑

b=1
pb,U

∣∣ŷb,SPU − f̄b,SPU

∣∣ ,
where f̄b,SPU :=

∑nU
m=1

1
f(XU

m)∈Ib
f(XU

m)
|Ib,U| is the average confidence score for unlabeled samples in bin Ib. If

|Ib,U| = 0, then pb,U = 0. In this case, ŷb,SPU would involve division by zero. However, this is a removable
singularity. For all cases where pb,U > 0, we can algebraically reformulate the estimator as follows:

ECEPU(f, SPU) =
B∑

b=1

∣∣∣∣∣πP

nP

nP∑
m=1

1f(XP
m)∈Ib

− 1
nU

nU∑
m=1

1f(XU
m)∈Ib

f(XU
m)
∣∣∣∣∣ .

This new form is mathematically equivalent for all pb,U > 0, and remains well-defined at pb,U = 0, and its
value at pb,U = 0 coincides with the limit of the estimator as pb,U → 0.

We define UWB and UMB for the PU setting as follows: in UWB, the bins are defined in the same way as
in supervised learning, while in UMB, the bins are defined by the unlabeled data; Ib = (ub−1, ub] for b ∈ [B],
where u0 = 0, ub = f(kb) for b ∈ [B − 1], and uB = 1. Here, kb = ⌊ nUb

B ⌋, and f(k) denotes the k-th order
statistic of the set

{
f(XU

m)
}nU

m=1, i.e., the k-th smallest value.

3.2 Bias Analysis of PU-ECE

We analyze the bias of the proposed estimator given the evaluation data. In the analysis, we assume the
following:
Assumption 1. The number of positive samples nP satisfies nP ≥ 1. The number of unlabeled samples nU
satisfies nU ≥ 2B for UMB and nU ≥ 1 for UWB.
Assumption 2. f(X) is absolutely continuous with respect to the Lebesgue measure, i.e., f(X) has a
probability density function.
Assumption 3. E [Y | f(X)] satisfies L-Lipschitz continuity with respect to f(X), i.e., |E [Y | f(X) = v] −
E [Y | f(X) = v′] | ≤ L|v − v′| for all v, v′ ∈ [0, 1].

The (total) bias of the PU-ECE estimator is defined as

Biastot(f, SPU) := |ECEPU(f, SPU) − TCE(f)| .

Then, we have the following theorem, which provides non-asymptotic bias bounds for the PU-ECE estimator.
Theorem 1. Under Assumptions 1, 2 and 3, we have

ESPU [Biastot(f, SPU)] ≤


1+L

B +
√

2
(

π2
P

nP
+ 1

nU

)
B log 2 (for UWB),

1+L
B + (3+2L)B

nU−B +
√

2B log 2
(

1+L√
nU−B

+
√

π2
P

nP
+ 1

nU−B

)
(for UMB).

Furthermore, for any δ ∈ (0, 1), with probability at least 1 − δ over SPU, we have

Biastot(f, SPU) ≤


1+L

B +
√

2
(

π2
P

nP
+ 1

nU

)
(B log 2 + log(1/δ)) (for UWB),

1+L
B + (3+2L)B

nU−B +
√

2(B log 2 + log(1/δ))
(

1+L√
nU−B

+
√

π2
P

nP
+ 1

nU−B

)
(for UMB).
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The proof of Theorem 1 is provided in Appendix A.1. Briefly, the proof is based on decomposing the total
bias into two parts: the bias due to binning and the bias due to the estimation by the empirical frequency,
and then bounding each part separately by concentration inequalities.

Minimizing the upper bound of the total bias with respect to B, we have the following upper bound orders:
Corollary 1. Under Assumption 1, the scale of the optimal B that minimizes the upper bound in Theorem 1
for both UWB and UMB is given by

B = Θ
((

π2
P

nP
+ 1

nU

)− 1
3
)

,

and the corresponding expected total bias convergence rate is given by

ESPU [Biastot(f, SPU)] = O

((
π2

P
nP

+ 1
nU

) 1
3
)

.

The proof can be found in Appendix A.2. In practice, this means that to minimize the bias of the PU-ECE
estimator, the number of bins B should be chosen according to the formula above, balancing the sample
sizes of the positive and unlabeled data. The result corresponds to the convergence rate of the supervised
setting; the optimal B is O(n 1

3 ) and the expected total bias is O(n− 1
3 ), where n is the size of the fully-labeled

evaluation data (Futami & Fujisawa, 2024). The term π2
P in these expressions is a constant factor that does

not depend on the sample size, but it indicates that a smaller class prior πP leads to a smaller expected bias.

In practical PU learning scenarios, the true class prior πP is often unknown and must be estimated from data
(Bepler et al., 2019; Ito & Sugiyama, 2023), which introduces additional estimation error into the calibration
process. It is therefore important to understand how inaccuracies in class prior estimation affect PU-ECE.
We also analyze how the class prior estimation error affects the PU-ECE estimation.
Theorem 2 (Error bound due to class prior estimation error). Let π̂P be an estimate of the class prior πP,
and define the PU-ECE estimator using π̂P as

ÊCEPU(f, SPU) =
B∑

b=1

∣∣∣∣∣ π̂P

nP

nP∑
m=1

1f(XP
m)∈Ib

− 1
nU

nU∑
m=1

f(XU
m)1f(XU

m)∈Ib

∣∣∣∣∣ .
Then, we have the following bound on the difference between the PU-ECE with the true prior and that with
the estimated prior: ∣∣∣ECEPU(f, SPU) − ÊCEPU(f, SPU)

∣∣∣ ≤ |πP − π̂P| .

The proof is provided in Appendix A.3. This inequality does not require expectation and holds for any f
and SPU. This theorem shows that when the class prior is unknown and must be estimated, the calibration
error estimation incurs an additional error of at most the class prior estimation error.

4 Information-Theoretic Generalization Analysis of PU-ECE

The previous analysis focused on the bias of the ECE estimation using evaluation data, which is independent
of the training data used for learning fw. However, in practice, we may recalibrate classifiers using a
recalibration dataset and then evaluate the PU-ECE on the same recalibration dataset (Kumar et al., 2019),
or we may calibrate classifiers using the training dataset (Futami & Fujisawa, 2024). In these cases, the data
used for PU-ECE evaluation and the classifier recalibration/training are no longer independent. Therefore,
analyzing the generalization error of the PU-ECE is crucial to ensure reliable model selection and evaluation
in practice. In this section, we extend the conditional mutual information (CMI) framework (Steinke &
Zakynthinou, 2020; Haghifam et al., 2021) used in supervised learning to the PU setting and analyze the
generalization error of PU-ECE using it.
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4.1 Information-Theoretic Generalization Error Analysis for Supervised Learning

A rigorous understanding of the generalization error is crucial for evaluating the reliability of machine learning
algorithms. Classical paradigms for assessing generalization include the concepts of Vapnik-Chervonenkis
(VC) dimension (Vapnik & Chervonenkis, 1968; Blumer et al., 1989) and metric entropy (Kolmogorov &
Tikhomirov, 1959; Dudley, 1974). The VC dimension quantifies how many points a hypothesis class can
shatter, while metric entropy measures how finely a function class can be approximated using a finite set
of representative functions at a given precision. Despite the established significance of these tools, recent
advances in information-theoretic perspectives, particularly those centered on CMI (Steinke & Zakynthinou,
2020; Haghifam et al., 2021), have provided new insights into generalization. Intuitively, CMI quantifies the
amount of information that a model retains about the training data after observing a test sample. This
offers an alternative view for analyzing the generalization of a learned model. By bounding this data-model
dependency, CMI-based analysis methods provide new insights into why certain learning algorithms exhibit
strong generalization performance. For instance, Futami & Fujisawa (2024) applied this approach to derive
non-asymptotic generalization error bounds for the ECE in the supervised setting.

4.2 Conditional Mutual Information (CMI) for PU Learning

To analyze the generalization error, we extend the conditional mutual information (CMI) framework to
the PU setting. We define the functional conditional mutual information (fCMI) for PU data, denoted
by fCMI, which measures the information between the model’s confidence score and the PU training
data. We also define a variant, fCMIU, which considers only the unlabeled training data. The formal
definitions of these quantities are technical and are detailed in Appendix B. By the data processing in-
equality (Cover & Thomas, 2006), we have fCMIU ≤ fCMI. The PU CMI metrics can be bounded
by data-independent model complexity measures. For instance, if the model has a VC dimension dVC,
fCMI ≤ max {(dVC + 1) log 2, dVC log(2e(ntr,U + ntr,P)/dVC)} (Steinke & Zakynthinou, 2020; Harutyunyan
et al., 2021). If fA(X̃M ,R) is a d-dimensional parametric function that is L-Lipschitz continuous on ∥ ·∥∞ and
whose domain is [0, 1]d and the function class has an ϵ-cover, then fCMI ≲ d log(L/ϵ) and fCMIU ≲ d log(L/ϵ)
(Wainwright, 2019; Futami & Fujisawa, 2024).

4.3 Generalization Bound for PU-ECE

This subsection analyzes the generalization error of PU-ECE using the fCMIs defined above. We follow
Futami & Fujisawa (2024) and use Biastot(fW , Str) := |TCE(fW ) − ECEPU(fW , Str)| as the generalization
error of ECEPU(fW , Str), where we denote by W = A(Str, R) ∈ W the parameters of fW learned by a
randomized algorithm A on the training data Str and the source of randomness R.
Theorem 3 (Expected generalization error bound of PU-ECE). Under Assumptions 2 and 3, we have

ER,Str [Biastot(fW , Str)]

≤


1+L

B +
√

8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2} (for UWB),

1+L
B +

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2} + (1 + L)

√
8

ntr,U
{fCMIU + B log 2} (for UMB).

The proof of Theorem 3 is provided in Appendix C.1. Briefly, the proof is similar to the proof of Theorem 1,
except the dependency on the training data is handled by fCMI.

Similar to Corollary 1, the optimal bin size to minimize the upper bound in Theorem 3 and the order of the
upper bound can also be derived if a learning algorithm has a sufficiently small fCMI. For instance, such an
assumption holds when H is a finite VC class since F is also a finite VC class, and hence fCMI is bounded
by O(log(ntr,P + ntr,U)) (Steinke & Zakynthinou, 2020). For such a case, we can derive the following result.
Corollary 2 (Total bias upper bound order). Under Assumption 2 and 3 and assuming fCMI =

O
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3
)

, the scale of the optimal B that minimizes the upper bound in Theorem 3 is given
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Dataset ntr,U πP Model Learning rate
MNIST (LeCun et al., 1998) 60,000 0.49 2-layer MLP (784-100-100-1) 1.0 × 10−3

CIFAR-10 (Krizhevsky, 2009) 50,000 0.40 ResNet-18 1.0 × 10−5

Table 1: Specification of benchmark datasets, models, and learning rates. ntr,U denotes the number of
unlabeled samples for training PU classifiers.

by

B = Θ
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3)
,

and the corresponding expected generalization error convergence rate is given by

ER,Str [Biastot(fW , Str)] = O

((
π2

P
ntr,P

+ 1
ntr,U

)1/3)
.

The proof is provided in Appendix A.2.

By Corollaries 1 and 2, ER,Str [Biastot(fW , Str)] ≪ ESPU [Biastot(fW , SPU)] if ntr,P ≫ nP and ntr,U ≫ nU
and the classifier generalizes well. This would actually happen in practice since the training dataset is often
much larger than the evaluation dataset. Such a property is also observed in the supervised setting (Futami
& Fujisawa, 2024). This represents an important future direction for PU learning to develop a method that
jointly optimizes the TCE and accuracy, although this is beyond the scope of this paper.

5 Experiments

In this section, we empirically evaluate the theoretical properties of the proposed PU-ECE estimator. We
first present a motivational study that highlights the unique challenges of calibration in PU learning (Section
5.2). We then empirically validate the theoretical bias and convergence properties of our proposed PU-ECE
estimator on both synthetic and real-world benchmark datasets (Section 5.3).

5.1 Common Setup

For all experiments, we used UMB since UMB has demonstrated smaller biases than UWB (Roelofs et al.,
2022). The sigmoid function was used as the output activation function. The code for all experiments was
implemented in Python and is available at https://github.com/<will-be-released>.

Synthetic data Following previous work (Vaicenavicius et al., 2019; Zhang et al., 2020; Futami & Fujisawa,
2024), we generated data from a logistic model where P (Y = 1 | X = x) = σsig(2x), with the conditional
probability densities p(X | Y = 1) = N (x; 1, 1) and p(X | Y = 0) = N (x; −1, 1). We evaluated a classifier
f(x) = σsig(β0 +β1x) under two settings: a less-calibrated case (β0 = −0.5, β1 = 1.5) and a better-calibrated
case (β0 = −0.2, β1 = 1.9). The ground-truth TCE(f) was computed by the trapezoidal rule. Further details
are provided in Appendix D.

Benchmark data We used the MNIST and CIFAR-10 datasets, with specifications detailed in Table
1. Since these datasets are multiclass, we converted them into binary classification tasks by selecting
a positive class and treating all other classes as negative. For MNIST, we used the digits 5-9 as the
positive class, while for CIFAR-10, we selected the vehicle class (airplane, automobile, ship, and truck)
as the positive class. Classifiers were trained using the standard ERM for supervised learning and the
nnPU learning method (Kiryo et al., 2017) for PU learning, and the outputs of the classifiers were used
as logit scores. The logistic loss (a.k.a. binary cross-entropy loss) log(σsig(−(2y − 1)f(x))) or sigmoid loss
σsig(−(2y − 1)f(x)) was used as the loss function, depending on the experiment. The logistic loss was
used as a strictly proper loss function in supervised learning (Zadrozny & Elkan, 2001). The sigmoid loss

8
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was used as a noise-robust loss function (Ghosh et al., 2017) and classification calibrated (Charoenphakdee
et al., 2019), and hence are widely used in weakly-supervised learning including PU learning (Kiryo et al.,
2017; Chen et al., 2020; Zhao et al., 2022; Ye et al., 2023). Although the sigmoid loss is not strictly proper
(Charoenphakdee et al., 2019), its confidence scores are conventionally interpreted as class-posterior prob-
abilities (Platt, 1999; Chen et al., 2020; Ye et al., 2023). The other details are provided in Appendix F.
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Figure 1: Comparison of ECE for super-
vised and PU learning on MNIST. The x-
axis represents the number of labeled sam-
ples used for training. For PU learning, this
corresponds to the number of positive sam-
ples. The y-axis is the ECE on the test set.
The lines represent the ECE values and the
shaded areas represent the standard error.

5.2 Motivational Study

We first conducted a controlled study to compare the ECE of
classifiers trained from fully-supervised data and PU data to
see how calibration evolves with the number of training sam-
ples. MNIST was used as the dataset. We evaluated the clas-
sifiers trained under four conditions: supervised learning with
logistic loss (PN-logistic), supervised learning with sigmoid loss
(PN-sigmoid), PU learning trained with the logistic loss (PU-
logistic), and PU learning with the sigmoid loss (PU-sigmoid).
Results are averaged over 100 trials, each with a different ran-
dom seed. The number of unlabeled samples is fixed at 60, 000.

As shown in Figure 1, supervised methods improve calibration
steadily with more data regardless of the loss function. As
expected, the logistic loss leads to better calibration than the
sigmoid loss in supervised learning. In contrast, PU learning
behaves very differently: PU-sigmoid is better calibrated than
PU-logistic.

This collapse is likely due to the non-negative correction in
the nnPU risk estimator (Eq. (3)). When the logistic loss is
used, the nnPU risk estimator tends to cram the logit scores of
positive samples into a small constant value so that the non-
negative correction has little effect for positive samples, which
leads to poor calibration. As shown in Figure 2, when trained with the logistic loss, the logit scores for positive
examples collapse toward a constant, yielding high ECE. These findings demonstrate that, in practice, PU
learning is considerably more prone to miscalibration than standard supervised learning, especially when
using the logistic loss, which is strictly proper in supervised learning.

5.3 Validation of Bias and Convergence

Let N denote an integer ranging from 10 to 10, 000. We evaluated the convergence behavior by varying N ,
comparing PU-ECE in settings with (nP = N, nU = ∞), (nP = ∞, nU = N), (nP = N, nU = 10N), and
standard ECE with n = N . For settings with either nU = ∞ or nP = ∞, the corresponding components
(e.g., P (f(X) ∈ Ib) when nU = ∞) were computed via numerical integration using the trapezoidal rule with
up to 10,000 points.

We also investigated the effect of fixing nP by comparing PU-ECE with (nP = 100, nU = N), (nP =
1, 000, nU = N), (nP = 10, 000, nU = N), and (nP = N, nU = ∞). The number of bins B was set to
⌈(π2

P/nP + 1/nU)−1/3⌉ for PU-ECE and n1/3 or (n/π2
P)1/3 for ECE, following the optimal order derived in

our analysis and in Futami & Fujisawa (2024).

We trained the classifiers on the PU training data with 10,000 positive and ntr,U unlabeled samples specified
in Table 1. Results are averaged over 100 trials, each with a different random seed.

To compute TCE(f) for these datasets, we first need to assume parametric models for the true conditional
probability densities. Fortunately, the TCE can be computed using the distribution of the logit score h(X)
or the confidence score f(X), without modeling the distribution of X, which would otherwise suffer from the
curse of dimensionality (see Appendix E for details). We observed that the confidence scores were heavily
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Figure 2: Histogram of logit scores for different training settings on MNIST test data. The x-axis is the logit
and the y-axis is the frequency.
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Figure 3: Histogram of the confidence scores for different training settings on MNIST test data. The x-axis
is the confidence score and the y-axis is the frequency.

saturated near 0 or 1, while the logit scores were spread out (Figure 2 and 3). Therefore, we modeled the logit
score h(X) instead of the confidence score f(X), specifically modeling the distributions of the logit score,
P (h(X) | Y = 1) and P (h(X) | Y = 0). The empirical logit histograms were multi-modal, so a single-mode
parametric family, such as the logistic-beta distribution used by Roelofs et al. (2022), is inadequate. For
instance, the MNIST logits (Fig. 2) exhibited two clear peaks. Instead, we fitted Gaussian Mixture Models
(GMMs) to P (h(X) | Y = 1) and P (h(X) | Y = 0), selecting the number of components for each GMM
from 1 to 10 via the Bayesian Information Criterion (BIC) (Schwarz, 1978). In MNIST, the GMMs with 4
positive class components and 3 negative class components were selected, while in CIFAR-10, the GMMs
with 2 positive class components and 2 negative class components were selected. With these estimated
densities, we sampled the logit scores from the GMMs. TCE(f) was calculated using the trapezoidal rule at
10, 000 points.

Figure 4 shows the total bias of PU-ECE and standard ECE (absolute bias compared to the TCE) on both
synthetic and benchmark datasets. This experiment is designed to validate the theoretical convergence rate
of our estimator. According to our analysis, the total bias of PU-ECE is expected to decrease at a rate of
O((π2

P/nP +1/nU)−1/3). When both nP and nU grow proportionally with N (or are set to ∞), this simplifies
to O(N−1/3).

The empirical results clearly exhibit this O(N−1/3) convergence, providing strong evidence in support of
our theoretical claims. Notably, this rate matches the known optimal convergence rate for standard ECE
(Futami & Fujisawa, 2024), demonstrating that PU-ECE can achieve competitive calibration performance
even without access to fully labeled data.

Figure 5 investigates the effect of fixing nP while increasing nU. We observe that PU-ECE converges to the
limiting case of PU-ECE with nP = N, nU = ∞ but not to the true TCE. This behavior is consistent with
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our theoretical prediction: even as nU → ∞, the bias remains bounded below by the term depending on nP.
This residual error creates an error floor that prevents convergence to the TCE when nP is finite.

These results highlight a key practical insight: sufficiently large sets of both positive and unlabeled samples
are therefore essential for effectively estimating the TCE.
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Figure 4: Total bias of ECE and PU-ECE, as a function of sample size N . Both axes are log-scale. The
lines represent the total bias, and the shaded areas represent the 90% percentile interval. The dashed lines
represent the theoretical convergence rate of O(N−1/3).
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Figure 5: Convergence of total bias of PU-ECE varying nP. Both axes are log-scale. The lines represent
the total bias, and the shaded areas represent the 90% percentile interval. The dashed lines represent the
theoretical convergence rate of O(N−1/3).

6 Conclusions

We proposed PU-ECE, the first ECE estimator that can be computed from PU data. Our theoretical analysis
provides non-asymptotic bias bounds for PU-ECE and shows that, with an optimal binning strategy, the bias
of our estimator converges to the TCE at a rate of O((π2

P/nP +1/nU)1/3). This rate matches the convergence
rate of the standard ECE in the supervised setting. We further extended the CMI framework to PU learning,
deriving generalization error bounds with the same convergence rate as the bias. Experiments on synthetic
and benchmark datasets corroborated the theory: PU-ECE performs comparably to the standard ECE,
despite lacking negative labels. They also revealed a practical caveat—if the number of positive samples is
fixed and the number of unlabeled samples increases, PU-ECE does not converge to the true TCE, which
highlights the importance of having sufficient positive data as well as unlabeled data for accurate estimation.
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A Proofs for Section 3.2

A.1 Proof of Theorem 1

First, we define three types of bias, statistical bias, total bias, and binning bias, as follows:

Biastot(f, SPU) := |TCE(f) − ECEPU(f, SPU)|
Biasbin(f, fI) := |TCE(f) − TCE(fI)|

Biasstat(f, SPU) := |TCE(fI) − ECEPU(f, SPU)| .

The biases satisfy the following relationship:

Biastot(f, SPU) ≤ Biasbin(f, fI) + Biasstat(f, SPU). (5)

By analyzing the binning bias and the statistical bias, we can derive a bound for the total bias, which
measures how PU-ECE is biased from the TCE. Theorem 3 of Futami & Fujisawa (2024) showed the binning
bias bound. We can straightforwardly apply it to the PU setting, taking into account that we use unlabeled
data for deciding the bin boundaries of UMB.

Lemma 1 (Binning bias analysis (Futami & Fujisawa, 2024)). Under Assumption 1, 2 and 3, we have

Biasbin(f, fI) ≤

{ 1+L
B (for UWB),

(1 + L)
(

1
B +

√
2B log 2
nU−B + 2B

nU−B

)
(for UMB).

Note that Lemma 1 holds without considering either expectation or probability, as it is a deterministic
bound. Next, we present the following statistical bias analysis.

Lemma 2 (Statistical bias analysis). Under Assumption 1 and 2, we have

TCE(fI) ≤ ESPU [ECEPU(f, SPU)] ,

ESPU [Biasstat(f, SPU)] ≤


√

2
(

π2
P

nP
+ 1

nU

)
B log 2 (for UWB),√

2
(

π2
P

nP
+ 1

nU−B

)
B log 2 + B

nU−B (for UMB).

For any δ ∈ (0, 1), with probability at least 1 − δ over SPU, we have

Biasstat(f, SPU) ≤


√

2
(

π2
P

nP
+ 1

nU

)
(B log 2 + log(1/δ)) (for UWB),√

2
(

π2
P

nP
+ 1

nU−B

)
(B log 2 + log(1/δ)) + B

nU−B (for UMB).

It is worth noting that for the L1-ECE, the proof can handle all B bins simultaneously, which leads to a
tighter high-probability bound than a naive union bound over the bins. An approach based on a union
bound would typically introduce a B log B term, whereas our method results in a dependency of B, which
is an improvement for a large B.
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Proof. The proof goes similarly to the proof of Theorem 2 in Futami & Fujisawa (2024). We first prove the
inequality TCE(fI) ≤ ESPU [ECEPU(f, SPU)].

TCE(fI) =
B∑

b=1
P (f(X) ∈ Ib) |E [Y | f(X) ∈ Ib] − E [f(X) | f(X) ∈ Ib]|

=
B∑

b=1
P (f(X) ∈ Ib)

∣∣∣∣∣πPP (f(X) ∈ Ib | Y = 1)
P (f(X) ∈ Ib) −

E
[
f(X) · 1f(X)∈Ib

]
P (f(X) ∈ Ib)

∣∣∣∣∣
=

B∑
b=1

∣∣πPP (f(X) ∈ Ib | Y = 1) − E
[
f(X)1f(X)∈Ib

]∣∣
=

B∑
b=1

∣∣∣∣∣ESP

[
πP

nP

nP∑
m=1

1f(XP
m)∈Ib

]
− ESU

[
1

nU

nP∑
m=1

f(XU
m)1f(XU

m)∈Ib

]∣∣∣∣∣ (6)

≤ ESPU [ECEPU(f, SPU)] .

The last inequality is obtained by Jensen’s inequality. Next, we prove the bound for ESPU [Biasstat(f, SPU)].

UWB: For convenience, denote by lP(t, b) := 1t∈Ib
and lU(t, b) := t1t∈Ib

. We also define L(SPU, b) :=
πP
nP

∑nP
m=1 lP(f(XP

m), b)− 1
nU

∑nU
m=1 lU(f(XU

m), b). Note that 0 ≤ lP(t, b) ≤ 1, 0 ≤ lU(t, b) ≤ t, and TCE(fI) =
ESPU [L(SPU, b)]. By the triangle inequality, we have

|TCE(fI) − ECEPU(f, SPU)| =
∣∣∣∣∣

B∑
b=1

|ESPU [L(SPU, b)]| −
B∑

b=1
|L(SPU, b)|

∣∣∣∣∣
≤

B∑
b=1

|ESPU [L(SPU, b)] − L(SPU, b)| . (7)

We use the following inequality derived from the Jensen’s inequality:

E [|X|] ≤ 1
t

logE
[
et|X|

]
(t > 0),

and let g(SPU, b) = L(SPU, b) − ESPU [L(SPU, b)]. Then we have

ESPU [|TCE(fI) − ECE(f, SPU)|] ≤ 1
t

logESPU

[
et
∑B

b=1
|g(SPU,b)|

]
= 1

t
logESPU

[
B∏

b=1
et|g(SPU,b)|

]

≤ 1
t

logESPU

[
B∏

b=1

{
etg(SPU,b) + e−tg(SPU,b)

}]

≤ 1
t

logESPU

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(SPU,b)

]
, (8)

where the summation
∑

v1,...,vB=0,1 ranges over all 2B possible binary vectors v = (v1, . . . , vB) ∈ {0, 1}B .
Let Zvb = (Zv

1 , . . . , Zv
nP+nU

) be a random variable vector defined as follows:

Zv
m :=

B∑
b=1

(−1)vb
πP

nP
lP(f(XP

m), b) (for m = 1, . . . , nP)

Zv
m := −

B∑
b=1

(−1)vb
1

nU
lU(f(XU

m), b) (for m = nP + 1, . . . , nP + nU).
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Then we can rewrite the expectation in Eq. (8) as:

ESPU

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(SPU,b)

]
= ESPU

[ ∑
v1,...,vB=0,1

e
t
(∑nP+nU

m=1
Zv

m−EZv

[∑nP+nU
m=1

Zv
m

])]
(9)

We calculate the bound of Zv
m so that we can apply the Hoeffding’s lemma to the above inequality.

Lemma 3 (Hoeffding’s lemma). Let Z1, . . . , Zn be independent random variables such that Zi ∈ [ai, bi] for
all i. Then

EZ1,...,Zn

[
exp

(
t

{
n∑

i=1
Zi − EZ1,...,Zn

[
n∑

i=1
Zi

]})]
≤

n∏
i=1

exp
(

t2(bi − ai)2

8

)
for any t > 0.

The interval length of Zv
m (m = 1, . . . , nP) is 2πP

nP
since the range of Zv

m (for m = 1, . . . , nP) is

−πP

nP
≤ Zv

m ≤ πP

nP
.

This follows from the fact that f(XP
m) falls into exactly one bin, which means lP(f(XP

m), b) = 1 for a single b
and is zero for all others. Similarly, the interval length of Zv

m+nP
(m = 1, . . . , nU) is 2

nU
. Applying Hoeffding’s

lemma yields:

ESPU

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(SPU,b)

]
≤

∑
v1,...,vB=0,1

e
t2
8

(
nP

4π2
P

n2
P

+nU
4

n2
U

)

= 2Be
t2
2

(
π2

P
nP

+ 1
nU

)
. (10)

Therefore, from Eq. (9),

ESPU [|TCE(fI) − ECE(f, SPU)|] ≤ 1
t

log
(

2Be
t2
2

(
π2

P
nP

+ 1
nU

))

= B log 2
t

+ t

2

(
π2

P
nP

+ 1
nU

)
≤

√
2
(

π2
P

nP
+ 1

nU

)
B log 2.

UMB: The proof is similar to the UWB case, but we need to consider the dependence of the bin boundaries
on the data. Let S(B) ⊂ SU be the set of B − 1 unlabeled samples used to determine the bin boundaries,
and let SU-B = SU \ S(B) be the remaining unlabeled samples and let SPU-B := (SU-B, SP). We have

|TCE(fI) − ECEPU(f, SPU)|

≤
B∑

b=1
|ESPU [L(SPU, b)] − L(SPU, b)|

≤
B∑

b=1
|ESPU-B

[L(b, SPU-B)] − L(b, SPU-B)|

+
B∑

b=1

∣∣∣∣∣∣ESU

 1
|SU-B|

∑
XU

m∈SU-B

lU(f(XU
m), b) − 1

nU

nU∑
m=1

lU(f(XU
m), b)

∣∣∣∣∣∣ . (11)
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The second term of Eq. (11) includes the bin boundary samples that are not i.i.d.; therefore, we have

ESU

 1
|SU-B|

∑
XU

m∈SU-B

lU(f(XU
m), b) − 1

nU

nU∑
m=1

lU(f(XU
m), b)


=

∣∣∣∣∣∣
(

1
nU − B + 1 − 1

nU

) ∑
XU

m∈SU-B

lU(f(XU
m), b) − 1

nU

∑
XU

m∈S(B)

lU(f(XU
m), b)

∣∣∣∣∣∣ .
Here, we use the following inequality:

1
nU − B + 1 − 1

nU
= nU − nU + B − 1

(nU − B + 1)nU

= B − 1
(nU − B + 1)nU

≤ B − 1
nU − B + 1 ,

which leads to

ESU

 1
|SU-B|

∑
XU

m∈SU-B

lU(f(XU
m), b) − 1

nU

nU∑
m=1

lU(f(XU
m), b)


≤ max

{
B − 1

nU − B + 1 ,
B − 1

nU

}
≤ B

nU − B
, (12)

where the first inequality is from Eq. (7) and the second is obtained by the triangle inequality. For the first
term of Eq. (11), we need to consider the dependence of the bin boundaries on the data, but we can still
apply Hoeffding’s lemma to it in the same manner as the UWB case thanks to Lemma 2 in Gupta & Ramdas
(2021); data points inside a bin are i.i.d. Therefore, we have

ESPU [|TCE(fI) − ECE(f, SPU)|] ≤ 1
t

logESPU

[
e

t
∑B

b=1
|g(b,SPU-B)|+ tB

nU−B

]

≤ 1
t

log
{

2Be
t2
2

(
π2

P
nP

+ 1
nU−B

)
+ tB

nU−B

}

= 1
t

{
B log 2 + t2

2

(
π2

P
nP

+ 1
nU − B

)
+ tB

nU − B

}
= B log 2

t
+ t

2

(
π2

P
nP

+ 1
nU − B

)
+ B

nU − B
. (13)

By minimizing the above expression with respect to t, we have

ER,X̃,M

[
B∑

b=1
∆P̂ (W, X̃, M, b)

]
≤ inf

t>0

I(fW (X̃); M |X̃) + EX̃

[
logER,M,M ′

[
et∆P̂ (W,X̃,M ′,b)

]]
t


≤ inf

t>0

 fCMIU + B log 2 + 2t2

2ntr,U

t


≤

√
8

ntr,U
{fCMIU + B log 2},

Finally, we prove the high probability bound. By the Chernoff bound, we have

P (Biasstat(f, SPU) > ϵ) ≤ inf
t>0

ESPU

[
et Biasstat(f,SPU)

]
e−tϵ.
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UWB: By using the Eq (7), (8) and (10), we have

inf
t>0

ESPU

[
et Biasstat(f,SPU)

]
e−tϵ ≤ inf

t>0
ESPU

[
et
∑B

b=1
|g(SPU,b)|

]
e−tϵ

≤ inf
t>0

ESPU

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(SPU,b)

]
e−tϵ

≤ inf
t>0

2Be
t2
2

(
π2

P
nP

+ 1
nU

)
e−tϵ

= e

− ϵ2

2

(
π2

P
nP

+ 1
nU

)+B log 2

.

Let δ := e

− ϵ2

2

(
π2

P
nP

+ 1
nU

)+B log 2

, then we have

ϵ =

√
2
(

π2
P

nP
+ 1

nU

)
(B log 2 + log(1/δ)).

Substituting this into the above inequality, we have

P

(
Biasstat(f, SPU) >

√
2
(

π2
P

nP
+ 1

nU

)
(B log 2 + log(1/δ))

)
≤ δ.

UMB: The proof is similar to the UWB case, but we need to consider the dependence of the bin boundaries
on the data similarly to the proof of the expected statistical bias. By using the Eq (11), (12) and (13), we
have

inf
t>0

ESPU

[
et Biasstat(f,SPU)

]
e−tϵ ≤ inf

t>0
2Be

t2
2

(
π2

P
nP

+ 1
nU−B

)
+ tB

nU−B
e−tϵ

= e
− 1

2

(
ϵ− B

nU−B

)2
(

π2
P

nP
+ 1

nU−B

)−1
+B log 2

.

Let δ := e
− 1

2

(
ϵ− B

nU−B

)2
(

π2
P

nP
+ 1

nU−B

)−1
+B log 2

, then we have

ϵ = B

nU − B
+

√
2
(

π2
P

nP
+ 1

nU − B

)
(B log 2 + log(1/δ)).

Substituting this into the above inequality, we have

P

(
Biasstat(f, SPU) >

B

nU − B
+

√
2
(

π2
P

nP
+ 1

nU − B

)
(B log 2 + log(1/δ))

)
≤ δ.

Applying Lemma 1 and 2 to Eq. (5), we have the total bias bound of Theorem 1.

A.2 Proof of Corollary 1

Proof. We first consider the UWB case and then the UMB case.
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UWB: We regard the total bias as a function of B, h(B) = ESPU [Biastot(f, SPU)]. The first derivative of
h(B) is given by

h′(B) = −1 + L

B2 + 1
2

√
2
B

(
π2

P
nP

+ 1
nU

)
log 2

=
−(1 + L) + B

3
2

√
log 2

2

(
π2

P
nP

+ 1
nU

)
B2 .

The optimal B is given by the solution of h′(B) = 0, i.e.

B =

 (1 + L)√
log 2

2

(
π2

P
nP

+ 1
nU

)


2
3

=
(

2(1 + L)2

log 2

) 1
3
(

π2
P

nP
+ 1

nU

)− 1
3

.

The corresponding total bias bound is given by

h(B) = (1 + L)
(

log 2
2(1 + L)2

) 1
3
(

π2
P

nP
+ 1

nU

) 1
3

+

√
2
(

2(1 + L)2

log 2

) 1
3
(

π2
P

nP
+ 1

nU

)− 1
3
(

π2
P

nP
+ 1

nU

)
log 2

= 3
{

(1 + L) log 2
2

} 1
3
(

π2
P

nP
+ 1

nU

) 1
3

.

UMB: We further upper-bound the total bias for simplicity

ESPU [Biastot(f, SPU)] ≤ 1 + L

B
+ (3 + 2L) B

nU − B
+
√

2B log 2

 1 + L√
nU − B

+

√
π2

P
nP

+ 1
nU − B

 .

By the assumption nU ≥ 2B, we have 1
nU−B ≤ 2

nU
. Therefore, we have

(1 + L)
√

1
nU − B

+

√
π2

P
nP

+ 1
nU − B

≤ (2 + L)
√

2

√
π2

P
nP

+ 1
nU

.

We also have

(3 + 2L) B

nU − B
≤ 4(2 + L)

√(
π2

P
nP

+ 1
nU

)
B.

Therefore, we have

ESPU [Biastot(f, SPU)] ≤ 2 + L

B
+ 4(2 + L)

√(
π2

P
nP

+ 1
nU

)
B + 2(2 + L)

√(
π2

P
nP

+ 1
nU

)
B log 2

= (2 + L)
{

1
B

+ 2(2 +
√

log 2)

√(
π2

P
nP

+ 1
nU

)
B

}
Denote the RHS by h(B). The first derivative of h(B) is given by

h′(B) = (2 + L)
{

− 1
B2 + (2 +

√
log 2)

√(
π2

P
nP

+ 1
nU

)
1
B

}

= 2 + L

B2

{
−1 + (2 +

√
log 2)B 3

2

√(
π2

P
nP

+ 1
nU

)}
.

22



Under review as submission to TMLR

The optimal B is given by the solution of h′(B) = 0, i.e.

B = (2 +
√

log 2)− 2
3

(
π2

P
nP

+ 1
nU

)− 1
3

.

The corresponding total bias bound is given by

h(B) = 3(2 + L)(2 +
√

log 2) 2
3

(
π2

P
nP

+ 1
nU

) 1
3

.

A.3 Proof of Theorem 2

Proof. The difference is:

∣∣∣ECEPU(f, SPU) − ÊCEPU(f, SPU)
∣∣∣ =

∣∣∣∣∣
B∑

b=1

∣∣∣∣∣πP

nP

nP∑
m=1

1f(XP
m)∈Ib

− 1
nU

nU∑
m=1

f(XU
m)1f(XU

m)∈Ib

∣∣∣∣∣
−

B∑
b=1

∣∣∣∣∣ π̂P

nP

nP∑
m=1

1f(XP
m)∈Ib

− 1
nU

nU∑
m=1

f(XU
m)1f(XU

m)∈Ib

∣∣∣∣∣
∣∣∣∣∣ .

By the reverse triangle inequality, we have

∣∣∣ECEPU(f, SPU) − ÊCEPU(f, SPU)
∣∣∣ ≤

B∑
b=1

∣∣∣∣∣πP − π̂P

nP

nP∑
m=1

1f(XP
m)∈Ib

∣∣∣∣∣
= |πP − π̂P|

nP

B∑
b=1

∣∣∣∣∣
nP∑

m=1
1f(XP

m)∈Ib

∣∣∣∣∣
= |πP − π̂P|

nP

B∑
b=1

nP∑
m=1

1f(XP
m)∈Ib

= |πP − π̂P| ,

where the third equality holds because the term inside the absolute value is non-negative.

B Details of CMI for PU Learning in Section 4.2

Denote by DKL(P ∥ Q) the Kullback-Leibler divergence of distribution P from distribution Q. We assume
that DKL(P ∥ Q) < ∞ in this paper; i.e., P is absolutely continuous with respect to Q. The CMI is defined
as I(X; Y |Z) := EZ [DKL(P (X, Y |Z) ∥ P (X|Z)P (Y |Z))].

In the CMI setting for PU learning, we consider a supersample X̃ = [X̃U; X̃P] ∈ X (ntr,U+ntr,P)×2, which
is a (ntr,U + ntr,P) × 2 array of samples. 2 This array is composed of two subarrays. The first subarray
is the unlabeled supersample X̃U ∈ X ntr,U×2, where each entry is drawn i.i.d. from P (X). The second
subarray is the positive supersample X̃P ∈ X ntr,P×2, where each entry is drawn i.i.d. from P (X | Y = 1).
Note that the standard CMI setting of supervised learning uses input-output data pairs as the supersample
(Steinke & Zakynthinou, 2020; Hellström & Durisi, 2022), while in our setting, we use only the input data
samples. For convenience, we use the 0-start-index for the columns of the arrays and the 1-start-index for
the rows of the arrays. We denote the i-th row of X̃U by X̃U

i and the i-th row of X̃P by X̃P
i . Analogous

to X̃, we collect positive and unlabeled membership indicators into a single supersample membership vector
2We use the term "array" for notational convenience, although each entry is an element of X , which can be a high-dimensional

vector rather than a scalar.
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M := [MU; MP] ∈ {0, 1}ntr,U+ntr,P , where MU ∈ {0, 1}ntr,U and MP ∈ {0, 1}ntr,P are the membership vectors
for the unlabeled and positive supersamples, respectively. Using the same index convention as above (i.e.,
rows are 1-start and columns are 0-start), the entry Mi specifies which column of the i-th row X̃i is retained
for the i-th data point: Mi = 0 selects the left column (index 0) and Mi = 1 selects the right column
(index 1). Similarly, MU

i and MP
i specify the column selection for the unlabeled and positive samples,

respectively. All entries are drawn independently as Mi ∼ Bern(1/2). We denote the training vector by
X̃M := [X̃U

MU ; X̃P
MP ] and the unused (test) vector by X̃M̄ := [X̃U

M̄U ; X̃P
M̄P ]. Let A : X ntr,U+ntr,P × R → Θ

be a randomized algorithm that maps the training samples to the parameters of a predictor fA(X̃M ,R) ∈ F ,
where R ∈ R is a randomness of an algorithm, independent of any other random variables.

We define the functional conditional mutual information (fCMI) for PU data as

fCMI := I(fA(X̃M ,R)(X̃); M |X̃),

where fA(X̃M ,R)(X̃) is the matrix calculated by the elementwise application of fA(X̃M ,R) to X̃. Similarly, we
also define fCMI on X̃U as

fCMIU := I(fA(X̃M ,R)(X̃U); M |X̃).
By the data processing inequality, we have fCMIU ≤ fCMI.

These PU CMI metrics differ slightly from the original definitions (Steinke & Zakynthinou, 2020; Hellström
& Durisi, 2022) because they consist of two data distributions, while the ordinary CMI metrics consist of
one data distribution. Due to this dependency on two distributions, existing CMI bounds that depend
on both the data and the model cannot be directly applied to the PU CMI metrics. Nevertheless, the
PU CMI metrics can be bounded by data-independent model complexity measures. For instance, if the
model has a VC dimension dVC, fCMI ≤ max {(dVC + 1) log 2, dVC log(2e(ntr,U + ntr,P)/dVC)} (Steinke &
Zakynthinou, 2020; Harutyunyan et al., 2021). If fA(X̃M ,R) is a d-dimensional parametric function that is
L-Lipschitz continuous on ∥ · ∥∞ and whose domain is [0, 1]d and the function class has an ϵ-cover, then
fCMI ≲ d log(L/ϵ) and fCMIU ≲ d log(L/ϵ) (Wainwright, 2019; Futami & Fujisawa, 2024).

C Proofs in Section 4

C.1 Proof of Theorem 3

We assume the PU CMI setting; we set nU = ntr,U and ntr,P = ntr,P, and consider Str = X̃M and SPU = X̃M̄ ,
which does not lose generality in the analysis.

The generalization error of the PU-ECE can be decomposed similarly to the Eq. (5)

Biastot(fW , Str) ≤ Biasbin(fW , fI) + Biasstat(fW , Str)

where

Biasbin(fW , fI) = |TCE(fW ) − TCE(fI)|
Biasstat(fW , Str) = |TCE(fI) − ECEPU(fW , Str)| .

First, we derive the bounds for Biasstat(fW , Str). Instead of directly analyzing it, we analyze an upper bound
of it, which is easier to analyze.
Lemma 4. The statistical bias is upper-bounded as follows:

Biasstat(fW , Str) ≤ ESPU

[
∆L(W, X̃, M)

]
where

∆L(W, X̃, M) =
B∑

b=1

∣∣L(W, X̃M , b) − L(W, X̃M̄ , b)
∣∣

L(W, X̃m, b) = πP

ntr,P

ntr,P∑
i=1

1fW (X̃P
i,mP

i

)∈Ib
− 1

ntr,U

ntr,U∑
m=1

fW (X̃U
i,mU

i
)1fW (X̃U

i,mU
i

)∈Ib
.
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The expectation of the statistical bias is upper-bounded as well:

ER,Str [Biasstat(fW , Str)] ≤ ER,X̃,M

[
∆L(A(X̃M , R), X̃, M)

]
.

Proof. We have

Biasstat(fW , Str) = |TCE(fI) − ECEPU(fW , Str)|

=
∣∣∣∣∣

B∑
b=1

|ESPU [L(W, SPU, b)]| −
B∑

b=1
|L(W, Str, b)|

∣∣∣∣∣
≤

B∑
b=1

|ESPU [L(W, SPU, b)] − L(W, Str, b)|

≤ ESPU

[
B∑

b=1
|L(W, SPU, b) − L(W, Str, b)|

]
= ESPU

[
∆L(W, X̃, M)

]
where the second line is obtained by the Eq((6)), the third line is obtained by the triangle inequality and the
fifth line is obtained by Jensen’s inequality. By taking the expectation over the training data Str, we have

ER,Str [Biasstat(fW , Str)] ≤ ER,X̃M ,X̃M̄

[
B∑

b=1

∣∣L(W, X̃M̄ , b) − L(W, X̃M , b)
∣∣]

= ER,X̃,M

[
∆L(W, X̃, M)

]
.

Using the above lemma, we can derive the statistical bias of the PU-ECE on the training data.
Lemma 5 (Statistical bias analysis on training data). Under Assumption 2, we have

EStr [Biasstat(fW , Str)] ≤

√
8 {fCMI + B log 2}

(
π2

P
ntr,P

+ 1
ntr,U

)
.

Proof. By Lemma 4 and using the Donsker-Varadhan lemma (Donsker & Varadhan, 1975; Steinke & Zakyn-
thinou, 2020), we have

ER,X̃,M

[
∆L(W, X̃, M)

]
≤ inf

t>0

I(fW (X̃); M |X̃) + EX̃

[
logER,M,M ′

[
et∆L(W,X̃,M ′)

]]
t


≤ inf

t>0


I(fW (X̃); M |X̃) + EX̃

[
logER,M,M ′

[
et
∑B

b=1|g(X̃,M,R,M ′,b)|
]]

t

 ,

where
g(X̃, M, R, M ′, b) = L(A(X̃M , R), X̃M̄ ′ , b) − L(A(X̃M , R), X̃M ′ , b),

and M ′ = (
(
MU)′

,
(
MP)′) is an independent copy of M , i.e.,

(
MU)′

i
∼ Bern(1/2) and

(
MP)′

i
∼ Bern(1/2)

independently. Similarly to the proof of Lemma 2, we upper-bound the second term.

EM ′

[
et
∑B

b=1|g(x̃,m,r,M ′,b)|
]

≤ EM ′

[
B∏

b=1

(
etg(x̃,m,r,M ′,b) + e−tg(x̃,m,r,M ′,b)

)]

= EM ′

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(x̃,m,r,M ′,b)

]
(14)
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We calculate the range of the exponent of the above expression w.r.t.
(
MU)′and

(
MP)′ in order to

apply Hoeffding’s lemma. We define lP(w, x, b) := 1fw(x)∈Ib
and lU(w, x, b) := fw(x)1fw(x)∈Ib

. Let
Zv = (Zv

1 , . . . , Zv
ntr,P+ntr,U

) be a random variable vector defined as follows:

Zv
i =

B∑
b=1

(−1)vb
πtr,P

ntr,P

{
lP(w, x̃P

i,(M̄P)′
i

, b) − lP(w, x̃P
i,(MP)′

i
, b)
}

(for i = 1, . . . , ntr,P)

Zv
i =

B∑
b=1

(−1)vb
1

ntr,U

{
lU(w, x̃U

i,(M̄U)′
i

, b) − lU(w, x̃U
i,(MU)′

i
, b)
}

(for i = ntr,P + 1, . . . , ntr,P + ntr,U).

Then we can write the Eq. (14) as:

EM ′

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(x̃,m,r,M ′,b)

]
= EZv

[ ∑
v1,...,vB=0,1

et
∑ntr,P+ntr,U

i=1
Zv

i

]
.

Note that E [Zv
i ] = 0 for all i. The interval length of Zv

i for i = 1, . . . , ntr,P is 4πtr,P
ntr,P

since the range of each
is

−2πtr,P

ntr,P
≤ Zv

i ≤ 2πtr,P

ntr,P
(i = 1, . . . , ntr,P).

Similarly, the interval length of Zv
i for i = ntr,P + 1, . . . , ntr,P + ntr,U is 2

ntr,U
. Unlike the proof of Lemma

2, since we consider independent membership vectors instead of the training samples themselves, we do not
need to account for the dependence of UMB on training samples. Therefore, by Hoeffding’s lemma, we
simply have

EZ

[ ∑
v1,...,vB=0,1

et
∑ntr,P+ntr,U

i=1
Zv

i

]
≤

∑
v1,...,vB=0,1

e
t2
8

(
ntr,P

16π2
P

n2
tr,P

+ntr,U
16

n2
tr,U

)

= 2Be
2t2
(

π2
P

ntr,P
+ 1

ntr,U

)
By substituting the above result into the previous equation, we have

ER,X̃,M

[
∆L(W, X̃, M)

]
≤ inf

t>0

I(fW (X̃); M |X̃) + log 2Be
2t2
(

π2
P

ntr,P
+ 1

ntr,U

)
t

≤

√
8 {fCMI + B log 2}

(
π2

P
ntr,P

+ 1
ntr,U

)

Note about Theorem 4 in Futami & Fujisawa (2024) Theorem 4 in Futami & Fujisawa (2024) states
that the statistical bias of the ECE is upper-bounded by the expected absolute difference of the ECE on
evaluation data and the ECE on training data. However, this is not true in general. The second last line
and the last line of the Eq.(98) should be not equal, but the last line should be ≤. This leads to the wrong
conclusion that the statistical bias of the ECE is bounded by eCMI of the absolute difference of the two
ECEs. Our proof shows that the statistical bias of the ECE is bounded by the expected absolute difference
of accuracy.

Furthermore, their "eCMI(l̃)" is actually not the eCMI of the original definition, since their l̃ depends on the
membership vector U directly.

We can also analyze the binning bias of PU-ECE on the training data. We can directly apply the binning
bias analysis in Futami & Fujisawa (2024). According to Theorem 8 in Futami & Fujisawa (2024), we have

26



Under review as submission to TMLR

Lemma 6 (Binning bias analysis on training data). Under Assumption 2 and 3, we have

ER,Str [Biasbin(fW , fI)] ≤

{ 1+L
B (for UWB)

(1 + L)
(

1
B +

√
8

ntr,U
(fCMIU + B log 2)

)
(for UMB)

Proof. The UMB case immediately follows from Lemma 1, thus we only need to prove the UWB case.

UMB: By Lemma 4 in Futami & Fujisawa (2024) and Assumption 3, we have

ER,Str [|TCE(fW ) − TCE(fI)|]
≤ ER,Str [EX [|E [Y | fW (X)] − E [Y | fI(X)]|] + EX [|fW (X) − fI(X)|]]
≤ (1 + L)ER,Str [EX [|fW (X) − fI(X)|]]

= (1 + L)ER,Str

[
B∑

b=1
P (fW (X) ∈ Ib)E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib]

]

≤ (1 + L)
B∑

b=1
ER,Str [|P (fW (X) ∈ Ib)|] ess sup

R,Str

|E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib]|(15)

where we use Hölder inequality in the last line. We first bound P (fW (X) ∈ Ib). The proof is similar to the
derivation of the Eq. (13). We define the empirical estimate of the average confidence score in bin Ib using
X̃M and X̃M̄ as

P̂ (W, X̃M , b) := 1
ntr,U

ntr,U∑
i=1

1fW (X̃U
i,MU

i

)∈Ib

P̂ (W, X̃M̄ , b) := 1
ntr,U

ntr,U∑
i=1

1fW (X̃U
i,M̄U

i

)∈Ib
.

Then, we have

ER,X̃,M [P (fW (X) ∈ Ib)] = ER,X̃,M

[
P̂ (W, X̃M̄ , b)

]
≤ ER,X̃,M

[
P̂ (W, X̃M , b) +

∣∣∣P̂ (W, X̃M̄ , b) − P̂ (W, X̃M , b)
∣∣∣]

The first term can be bounded by 1/B from the definition of UMB. For the second term, we consider the
sum over bins as an upper bound. We define

∆P̂ (W, X̃, M, b) :=
∣∣∣P̂ (W, X̃M̄ , b) − P̂ (W, X̃M , b)

∣∣∣ .
Then, by the Donsker-Varadhan lemma, we have

ER,X̃,M

[
B∑

b=1
∆P̂ (W, X̃, M, b)

]
≤ inf

t>0

I(fW (X̃U); M |X̃) + EX̃

[
logER,M,M ′

[
et∆P̂ (W,X̃,M ′,b)

]]
t


≤ inf

t>0


fCMIU + EX̃

[
logER,M,M ′

[
et
∑B

b=1|g(X̃,M,R,M ′,b)|
]]

t

 ,

where
g(X̃, M, R, M ′, b) = P̂ (A(X̃M , R), X̃M̄ ′ , b) − P̂ (A(X̃M , R), X̃M ′ , b),
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and M ′ = (
(
MU)′

,
(
MP)′) is an independent copy of M . Then, we can upper-bound the second term

similarly to the proof of Lemma 5.

EM ′

[
et
∑B

b=1|g(x̃,m,r,M ′,b)|
]

≤ EM ′

[
B∏

b=1

(
etg(x̃,m,r,M ′,b) + e−tg(x̃,m,r,M ′,b)

)]

= EM ′

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(x̃,m,r,M ′,b)

]
(16)

We calculate the range of the exponent of the above expression w.r.t.
(
MU)′ and

(
MP)′ in order to apply

Hoeffding’s lemma. Note that we only need to take into account
(
MU)′ because g does not depend on X̃P.

Let Zv = (Zv
1 , . . . , Zv

ntr,U
) be a random variable vector defined as follows:

Zv
i = 1

ntr,U

B∑
b=1

(−1)vb

{
1fw(x̃

i,(M̄U)′
i
)∈Ib

− 1fw(x̃
i,(MU)′

i
)∈Ib

}
.

Then we can rewrite the Eq. (16) as:

EM ′

[ ∑
v1,...,vB=0,1

et
∑B

b=1
(−1)vb g(x̃,m,r,M ′,b)

]
= EZv

[ ∑
v1,...,vB=0,1

et
∑ntr,U

i=1
Zv

i

]
.

We have E [Zv
i ] = 0 because of symmetry. For the interval length of Zv

i for all i, because MU
i is 0 or 1, we

have

sup
m,m′∈{0,1}

∣∣∣∣∣ 1
ntr,U

B∑
b=1

(−1)vb
{
1fw(x̃i,m)∈Ib

− 1fw(x̃i,1−m)∈Ib

}
− 1

ntr,U

B∑
b=1

(−1)vb

{
1fw(x̃i,m′ )∈Ib

− 1fw(x̃i,1−m′ )∈Ib

}∣∣∣∣∣ (17)

= sup
m∈{0,1}

2
ntr,U

∣∣∣∣∣
B∑

b=1
(−1)vb

{
1fw(x̃i,m)∈Ib

− 1fw(x̃i,1−m)∈Ib

}∣∣∣∣∣
≤ 4

ntr,U
.

Therefore, by Hoeffding’s lemma, we have

EZ

[ ∑
v1,...,vB=0,1

et
∑ntr,U

i=1
Zv

i

]
≤

∑
v1,...,vB=0,1

e
t2
8

(
ntr,U

16
n2

tr,U

)

= 2Be
2t2

ntr,U .

By substituting the above result into the previous equation, we have

ER,X̃,M

[
B∑

b=1
∆P̂ (W, X̃, M, b)

]
≤ inf

t>0

fCMIU + EX̃

[
logER,M,M ′

[
et∆P̂ (W,X̃,M ′)

]]
t

≤ inf
t>0

 fCMIU + B log 2 + 2t2

2ntr,U

t


≤

√
8

ntr,U
{fCMIU + B log 2},
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and for any b ∈ [B], we have

ER,X̃,M [P (fW (X) ∈ Ib)] ≤ P̂ (W, X̃M , b) + ∆P̂ (W, X̃, M, b)

≤ P̂ (W, X̃M , b) +
B∑

b=1
∆P̂ (W, X̃, M, b)

≤ 1
B

+
√

8
ntr,U

{fCMIU + B log 2}, (18)

where the first term at the last inequality is obtained from the definition of UMB. Substituting Eq. (18) into
Eq. (15), the term without the coefficient (1 + L) can be bounded as follows:

B∑
b=1

ER,Str [P (fW (X) ∈ Ib)] ess sup
R,Str

|E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib]|

≤
B∑

b=1

(
1
B

+
√

8
ntr,U

{fCMIU + B log 2}

)
ess sup

R,Str

|E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib]|

=
(

1
B

+
√

8
ntr,U

{fCMIU + B log 2}

)
B∑

b=1
ess sup

R,Str

|E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib]| .

Finally, we use the fact that E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib] ≤ ub − ub−1 holds by the
definition of UMB, where Ib = (ub−1, ub]. Therefore, we have

B∑
b=1

ess sup
R,Str

|E [|E [fW (X) | fW (X) ∈ Ib] − fW (X)| | fW (X) ∈ Ib]|

≤
B∑

b=1
(ub − ub−1) = uB − u0 = 1.

Thus, we can conclude that

ER,Str

[
Biasbin(fA(X̃M ,R), fI)

]
≤ (1 + L)

(
1
B

+
√

8
ntr,U

{fCMIU + B log 2}

)
for UMB 3

Combining Lemma 5 and 6, we can derive the total bias of the PU-ECE on the training data.

C.2 Proof of Corollary 2

UWB: We regard the generalization error as a function of B, h(B) = ER,Str [Biastot(fW , Str)]. The first
derivative of h(B) is given by:

h′(B) = −1 + L

B2 + 1
2

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
log 2

fCMI + B log 2

Setting h′(B) = 0 to find the minimum, we have:

B4 = 1 + L

2 log 2

(
π2

P
ntr,P

+ 1
ntr,U

)−1

(fCMI + B log 2)

3Different from our result, Theorem 8 in Futami & Fujisawa (2024) states that the coefficient of the term√
(fCMI + B log 2)/n (corresponding to

√
(fCMIU + B log 2)/ntr,U) is

√
2, but it should be

√
8. Although the proof in Futami

& Fujisawa (2024) was abbreviated, the technique should be the same as the proof of Lemma 5. More specifically, the equivalent
form to Eq. (17) should be used for calculating the bound of the bounded differences.
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Solving the above equation for an exact solution is complex. However, we can find the order of B for large
ntr,P and ntr,U. We analyze the order of B by considering three cases for the relationship between fCMI and
B log 2:

1. If fCMI ≫ B log 2, we can approximate the equation as:

B4 ≈ 1 + L

2 log 2

(
π2

P
ntr,P

+ 1
ntr,U

)−1

fCMI.

This gives:

B ≈

(
1 + L

2 log 2

(
π2

P
ntr,P

+ 1
ntr,U

)−1

fCMI
)1/4

≲

(
1 + L

2 log 2

(
π2

P
ntr,P

+ 1
ntr,U

)−4/3)1/4

= O

((
π2

P
ntr,P

+ 1
ntr,U

)−1/3)
.

2. If fCMI ≪ B log 2, the approximation becomes:

B4 ≈ 1 + L

2 log 2

(
π2

P
ntr,P

+ 1
ntr,U

)−1

B log 2.

Solving for B yields:

B ≈

(
1 + L

2 log 2

(
π2

P
ntr,P

+ 1
ntr,U

)−1

log 2
)1/3

= Θ
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3)
.

3. If fCMI ≈ B log 2, the analysis is similar to the second case, leading to:

B = Θ
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3)
.

In all cases, the order of the optimal B is B∗ = Θ
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3
)

. This implies there exists a constant
c > 0 such that:

B∗ ≤ c

(
π2

P
ntr,P

+ 1
ntr,U

)−1/3

.

Substituting the above inequality into the upper bound of the generalization error, we have:

h(B∗) ≤ 1 + L

c
(

π2
P

ntr,P
+ 1

ntr,U

)−1/3 +

√√√√8
(

π2
P

ntr,P
+ 1

ntr,U

){
fCMI + c

(
π2

P
ntr,P

+ 1
ntr,U

)−1/3

log 2
}

= O

((
π2

P
ntr,P

+ 1
ntr,U

)1/3)
.
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UMB: For UMB, h(B) can be upper-bounded by:

h(B) = 1 + L

B
+

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2} + (1 + L)

√
8

ntr,U
{fCMIU + B log 2}

≤ 1 + L

B
+

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2} + (1 + L)

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2}

= 1 + L

B
+ (2 + L)

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2},

where we use the fact that fCMIU ≤ fCMI in the second inequality. This upper-bound is the same as the
UWB case up to the coefficient of the second term. Therefore, we can follow the same analysis as the UWB
case. The order of the optimal B is B∗ = Θ

((
π2

P
ntr,P

+ 1
ntr,U

)−1/3
)

and there is a constant c such that

B∗ ≤ c

(
π2

P
ntr,P

+ 1
ntr,U

)−1/3

.

Substituting the above inequality into the upper bound of the generalization error, we have:

h(B∗) ≤ 1 + L

c
(

π2
P

ntr,P
+ 1

ntr,U

)−1/3 + (2 + L)

√√√√8
(

π2
P

ntr,P
+ 1

ntr,U

){
fCMI + c

(
π2

P
ntr,P

+ 1
ntr,U

)−1/3

log 2
}

= O

((
π2

P
ntr,P

+ 1
ntr,U

)1/3)
.

Therefore, we can conclude that the optimal number of bins B is Θ
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3
)

and the general-

ization error converges at a rate of O
((

π2
P

ntr,P
+ 1

ntr,U

)1/3
)

for both UWB and UMB.

D Synthetic Dataset Setup

Following Vaicenavicius et al. (2019); Zhang et al. (2020); Futami & Fujisawa (2024), we use the same logistic
model to generate synthetic data. The dataset is generated as follows:

• P (Y = 1) = 1/2

• The conditional probability density of X given Y = 1 is p(x | Y = 1) = N (x; 1, 1)

• The conditional probability density of X given Y = 0 is p(x | Y = 0) = N (x; −1, 1)

• P (Y = 1 | X = x) = 1/(1 + exp(−2x))

• f(x) = 1/(1 + exp(−β0 − β1x)).

Given the above setup, TCE can be reformulated as:

TCE(f) =
∫

x∈X
p(x) |P (Y = 1 | f(X) = f(x)) − f(x)| dx

=
∫

x∈X
p(x) |P (Y = 1 | X = x) − f(x)| dx

=
∫

x∈X
p(x)

∣∣∣∣ 1
1 + exp(−2x) − 1

1 + exp(−β0 − β1x)

∣∣∣∣ dx,
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where we use the fact that P (Y = 1 | f(X) = f(x)) = P (Y = 1 | X = x) = 1/(1 + exp(−2x)) since
f(x) is injective at the second line. Since the integrand can be analytically computed, we can compute
TCE with the trapezoidal rule. Compared to previous works (Zhang et al., 2020; Futami & Fujisawa, 2024)
that used Monte-Carlo integration, which converges at a rate of O(n−1/2) (Robert & Casella, 2010) where
n is the number of samples, the trapezoidal rule achieves a convergence rate of O(n−2) (Atkinson, 1989),
where n is the number of points within the interval of integration, making our experiment more efficient
and accurate. In addition, the trapezoidal rule is easier to calculate the case when one of nP or nU is ∞,
where MC integration has to use the time-consuming rejection method to calculate the binned probability,
e.g. P (f(X) ∈ Ib) We use two cases for the parameters β0 and β1:

• Case 1: β0 = −0.5 and β1 = 1.5 (less calibrated)

• Case 2: β0 = −0.2 and β1 = 1.9 (better calibrated)

E TCE Computation

For high-dimensional data X, directly modeling its probability density p(x) is difficult due to the curse of
dimensionality. However, TCE can be computed by modeling the one-dimensional probability density of the
logit score h(X) or the confidence score f(X). We denote the probability density functions of h(X) and f(X)
by ph(X)(v) and pf(X)(w), respectively. For simplicity, we use the notation p(h(X) = v) and p(f(X) = w).
Lemma 7. Under the Assumption 2, the Total Calibration Error (TCE) can be expressed as:

TCE(f) = EX [|P (Y = 1 | f(X) = f(x)) − f(x)|]

=
∫

v∈R
ph(X)(v) |P (Y = 1 | f(X) = σsig(v)) − σsig(v)| dv

=
∫

w∈[0,1]
pf(X)(w) |P (Y = 1 | f(X) = w) − w| dw.

Furthermore, TCE can also be expressed as:

TCE(f) =
∫

v∈R

∣∣πPP (h(X) = v | Y = 1) − σsig(v)ph(X)(v)
∣∣ dv

Proof. The first equality follows from the definition of TCE. The second equality follows from the law of
unconscious statistician, where we change the variable from x to v = h(x). The third equality follows from
the fact that σsig(v) = f(x). The last equality immediately follows from the Bayes rule.

F Benchmark Dataset Setup

Other than the explanation in the main text (Section 5.1), we provide more details about the benchmark
datasets used in our experiments. Training was performed for 100 epochs using AdamW with weight decay of
2.5 × 10−4, a cosine learning rate scheduler with warmup, and a batch size of 256. To select the best model,
10% of the training data was held out as validation data. At each epoch, we evaluated the misclassification
rate for supervised learning and the uPU (du Plessis et al., 2014) 0-1 risk for PU learning (Eq (2)) on the
validation data and selected the model with the lowest risk.

G Extension to Reliability Diagrams

Building on our core idea of estimating P (Y = 1 | f(X) ∈ Ib) from PU data by Bayes’ rule (Section 3,
Eq. (4)), we propose a method to construct reliability diagrams (Guo et al., 2017; Wilks, 2019) for PU
learning. This extends our method from a scalar summary (PU-ECE) to a diagnostic visualization, and
both share the same statistical foundation and convergence guarantees.
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Reliability diagrams are often discussed alongside ECE as its visual counterpart. They show, for each bin,
how the mean confidence score aligns with the empirical frequency of the positive class, i.e., the fraction of
positives, helping diagnose over- and under-confidence. Uniform Width Binning (UWB) is commonly used
for readability of the plots, whereas Uniform Mass Binning (UMB) is often preferable for lower empirical
bias in ECE estimation.

For each bin Ib = (ub−1, ub], we define

|Ib,U| :=
nU∑

m=1
1f(XU

m)∈Ib
, |Ib,P| :=

nP∑
m=1

1f(XP
m)∈Ib

, pb,U := |Ib,U|/nU, pb,P := |Ib,P|/nP.

For bins with |Ib,U| > 0, we compute

mb := ub−1 + ub

2

f̄b,SPU :=
∑nU

m=1 1f(XU
m)∈Ib

f(XU
m)

|Ib,U|
,

ŷb,SPU := πP pb,P

pb,U
=

πP
nP

∑nP
m=1 1f(XP

m)∈Ib

1
nU

∑nU
m=1 1f(XU

m)∈Ib

.

The reliability diagram is then constructed by plotting (f̄b,SPU , ŷb,SPU) (or (mb, ŷb,SPU)) together with the
y = x line as a reference for perfect calibration. If |Ib,U| = 0, the estimate ŷb,SPU is undefined because
the empirical mass in that bin is zero. In this case, we simply omit the point from the diagram, following
standard practice in the supervised setting. As nP, nU → ∞, the points on the diagram (f̄b,SPU , ŷb,SPU)
converge to the true counterparts, (E [f(X) | f(X) ∈ Ib] , P (Y = 1 | f(X) ∈ Ib)), respectively. Therefore,
our proposed diagram is consistent with the true reliability diagram. In finite samples, clipping ŷb,SPU to
[0, 1] and adding confidence intervals (e.g., bootstrap) improves interpretability.

Figure 6 illustrates the proposed PU reliability diagram on the less-calibrated case of the synthetic dataset
defined in Section D, using nP = 1000 positive and nU = 10000 unlabeled samples. As shown in the figure, the
reliability diagram constructed from PU data accurately approximates the true reliability diagram, without
access to full labels.
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Figure 6: PU reliability diagram on the synthetic dataset (less-calibrated case). The error bars represent
the standard deviation over 100 trials with different random seeds.

33



Under review as submission to TMLR

H Extension to Multiclass Calibration Metrics

Our proposed PU-ECE can be naturally extended to some multiclass calibration metrics. For example, it
can be easily adapted to classwise-ECE (Kull et al., 2019), which evaluates calibration per class. While other
multiclass metrics such as top-1 ECE (Guo et al., 2017), may not be directly compatible, they often reduce
the multiclass calibration problem to a one-dimensional evaluation based on the maximum predicted score.
In this sense, our research provides an essential first step toward calibration in multiclass PU settings.
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