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Abstract

The reliability of probabilistic classifiers hinges on their calibration—the property that their
confidence accurately reflects the true class probabilities. The expected calibration error
(ECE) is a standard metric for quantifying the calibration of classifiers. However, its esti-
mation presumes access to ground-truth labels. In positive-unlabeled (PU) learning, only
positive and unlabeled data are available, which makes the standard ECE estimator inappli-
cable. Although PU learning has been extensively studied for risk estimation and classifier
training, calibration in this setting has received little attention. In this paper, we present
PU-ECE, the first ECE estimator for PU data. We provide non-asymptotic bias bounds
and prove convergence rates that match those of the fully supervised ECE with an optimal
bin size. Furthermore, we develop an information-theoretic generalization error analysis of
PU-ECE by formalizing the conditional mutual information (CMI) for a PU setting. Ex-
periments on synthetic and real-world benchmark datasets validate our theoretical analysis
and demonstrate that our PU-based ECE estimator achieves performance comparable to
that of the fully-labeled ECE estimator.

1 Introduction

Deep learning models achieve state-of-the-art accuracy in various classification tasks (Devlin et al., 2019;
Dosovitskiy et al., 2021; Radford et al., 2021). However, their deployment in safety-critical applications
requires more than just high prediction accuracy. For instance, in medical diagnosis (Jiang et al., 2012),
autonomous systems (Muthali et al., 2023), and financial decision-making (Bahnsen et al., 2014), the con-
fidence of the predictions provided by machine learning models must accurately reflect the true probability
of the predicted events. This property, known as calibration (Dawid, 1982; Guo et al., 2017), is essential for
reliable decision-making. The calibration error, or true calibration error (TCE) (Naeini et al., 2015; Guo
et al., 2017; Roelofs et al., 2022), is a widely used metric for evaluating the calibration of classifiers. The
TCE is typically estimated by partitioning the confidence score space into bins, followed by the calculation of
the average difference between the confidence score and the empirical probability of the true label given the
confidence score in each bin (Zadrozny & Elkan, 2001; Naeini et al., 2015). The resulting estimator is called
the expected calibration error (ECE)1 (Roelofs et al., 2022). Theoretical analysis of the ECE has also been
conducted, establishing bias bounds and the consistency of the ECE to the TCE as the number of samples
increases, with an appropriate binning strategy Gupta & Ramdas (2021); Futami & Fujisawa (2024). The
results show an O(n−1/3) convergence rate of the ECE, where n is the number of test samples. The naive
computation of the ECE requires a fully labeled dataset, where each sample has both confidence scores and
true labels.

However, in practice, fully labeled data may not be available or may be costly to obtain (Jaskie & Spanias,
2019; Li et al., 2022; Bepler et al., 2019). For instance, when identifying protein particles in microscopy
images, annotating negative data is costly due to diverse backgrounds (Bepler et al., 2019). In such cases,
positive-unlabeled (PU) learning, which aims to train a classifier from only positive and unlabeled data, is
a promising approach (Liu et al., 2002; Elkan & Noto, 2008; Natarajan et al., 2013; du Plessis et al., 2014).

1As some researchers have pointed out, both TCE and ECE are sometimes called "ECE". For clarity, we follow the convention
of Futami & Fujisawa (2024).
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Despite extensive research on PU learning methods, the majority of these methods have focused on maximiz-
ing classification accuracy (Elkan & Noto, 2008; du Plessis et al., 2015; Kiryo et al., 2017; Chen et al., 2020;
Xinrui et al., 2023). On the other hand, calibration in the PU setting has been largely overlooked. This gap
is partly because evaluating calibration itself is challenging in the PU setting—the absence of negative labels
makes the standard ECE estimator inapplicable, which prevents practitioners from assessing the reliability
of their PU classifiers.

In this paper, we address the problem of estimating the calibration error in PU learning settings. We
introduce PU-ECE, a novel method for estimating the ECE using only PU data, without requiring negative
labels. The core idea is to reframe the ECE computation by leveraging the statistical properties of PU
datasets. By applying Bayes’ rule within each bin, we can estimate from PU data the conditional expectation
of the true label given the confidence score, which is necessary for the ECE computation. Our theoretical
analysis establishes non-asymptotic bias bounds of PU-ECE, which guarantee the precision of our estimator
from the TCE in a finite sample. With these bounds, we prove that with an optimal binning strategy, our
estimator achieves a convergence rate that matches the convergence rate of the ECE in fully-supervised
settings of O(n−1/3), where n is the number of test samples (Futami & Fujisawa, 2024). An information-
theoretic generalization error analysis of PU-ECE is also provided by formalizing the functional conditional
mutual information (fCMI) (Steinke & Zakynthinou, 2020; Hellström & Durisi, 2022) for a PU setting. In
addition, we demonstrate through extensive experiments on synthetic and benchmark datasets that our
approach achieves estimation biases comparable to those of the fully-supervised method.

The rest of this paper is organized as follows. In Section 2, we formally describe the problem setting and
define notations. In Section 3, we present the PU-ECE method and its theoretical properties, and in Section
4, we present its information-theoretic analysis. Section 5 provides experimental results to validate our
approach. Finally, we conclude the paper in Section 6.

2 Problem Formulation

We denote random variables by capital letters and their realizations by lowercase letters. Let X be the input
space and Y = {0, 1} be the label space. Let P (X, Y ) be the probability distribution over X × Y, P (X)
be the marginal distribution of X, P (X | Y = y) be the conditional distribution of X given Y = y ∈ Y,
and πP = P (Y = 1) be the class prior. The hypothesis space is denoted by H ⊆ RX and a classifier h ∈ H
outputs a real-valued score for a given input x ∈ X . The model’s confidence score is then obtained by
applying an output activation function σ : R → [0, 1], which we denote by f(x) := σ(h(x)). We assume
σ is measurable and monotone increasing. Examples include the sigmoid function and the probit function.
If the sigmoid function σsig(z) := (1 + e−z)−1 is used as σ, we refer to h(x) as the logit score. We define
F = {σ(h(·)) | h ∈ H} for a fixed σ. We denote the parameterized classifier and its confidence score function
by hw and fw with w ∈ W, where W is the parameter space. If the parameter w is fixed, we simply write
h and f . Let 1A be the indicator function, which returns 1 if the condition A is true and 0 otherwise. We
define [n] = {1, 2, . . . , n} for n ∈ N. Let I (X; Y | Z) denote the conditional mutual information between
random variables X and Y given Z.

2.1 Supervised Learning

In supervised learning, the dataset is a set of independent and identically distributed (i.i.d.) samples drawn
from P (X, Y ). Let l : R × Y → R≥0 be the loss function, e.g., the 0-1 loss (Wald, 1945) for the mis-
classification rate. Let SPN :=

{(
XPN

m , Y PN
m

)}nPN

m=1 be a dataset of nPN samples drawn from P (X, Y ).
The expected risk of h on P (X, Y ) is given by EX,Y [l(h(X), Y )]. The empirical risk on SPN is given by

1
nPN

∑nPN
m=1 l(h(XPN

m ), Y PN
m ). A standard approach for training classifiers is to minimize this quantity, a

principle known as Empirical Risk Minimization (ERM) (Vapnik & Chervonenkis, 1971).

2.2 Calibration Error Estimation

A classifier is said to be perfectly calibrated if its confidence score matches the true class probability (Murphy
& Epstein, 1967; Gupta & Ramdas, 2021). Mathematically, this means that for all confidence scores p ∈ [0, 1],
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we have P (Y = 1 | f(X) = p) = p almost surely (Gupta & Ramdas, 2021). However, this ideal state is
rarely achieved in practice (Guo et al., 2017). To quantify the deviation from this perfect calibration, the
true calibration error (TCE) (Naeini et al., 2015; Gupta & Ramdas, 2021; Roelofs et al., 2022; Futami &
Fujisawa, 2024) is used as a calibration metric.

2.2.1 True Calibration Error (TCE)

The TCE of f on P (X, Y ) is defined as

TCE(f) = EX [|E [Y | f(X)] − f(X)|] .

This measures the average absolute difference between the true conditional expectation of Y given f(X) and
the confidence score f(X). It quantifies how well the confidence scores align with the true probabilities of
the positive class. A lower TCE indicates better calibration, meaning that the confidence scores are closer
to the true probabilities. However, calculation of TCE(f) requires access to the conditional distribution
P (Y | f(X)), which is usually unavailable.

2.2.2 Expected Calibration Error (ECE)

Instead, to estimate TCE(f), we often use a binning method (Zadrozny & Elkan, 2001; Guo et al., 2017;
Futami & Fujisawa, 2024). This method involves a set of B ∈ N bins (intervals), denoted by I = {Ib}B

b=1,
that covers the entire range of f . We define the true binned function as

fI(x) =
B∑

b=1
E [f(X) | f(X) ∈ Ib]1f(x)∈Ib

.

Then its TCE is calculated as follows (Futami & Fujisawa, 2024):

TCE(fI) :=
B∑

b=1
P (f(X) ∈ Ib) |E [Y | f(X) ∈ Ib] − E [f(X) | f(X) ∈ Ib]| .

TCE(fI) can be estimated from a supervised evaluation dataset Se := {(Xe
m, Y e

m)}ne
m=1 of size ne ∈ N, which

can be a validation dataset or a test dataset, by the plug-in method. The resulting empirical estimate is
called the expected calibration error (ECE):

ECE(f, Se) :=
B∑

b=1
pb

∣∣ȳb,Se − f̄b,Se

∣∣ , (1)

where pb :=
∑ne

m=1
1f(Xe

m)∈Ib

ne
is the fraction of samples in bin b, ȳb,Se :=

∑ne
m=1

1f(Xe
m)∈Ib

Y e
m∑ne

m=1
1f(Xe

m)∈Ib

is the average

true label in bin b, and f̄b,Se :=
∑ne

m=1
1f(Xe

m)∈Ib
f(Xe

m)∑ne
m=1

1f(Xe
m)∈Ib

is the average confidence score in bin b. We assume
ne ≥ 2B, where ne is the supervised evaluation dataset size and B is the number of bins.

For I, there are two common choices: uniform width binning (UWB) (Guo et al., 2017) and uniform mass
binning (UMB) (Zadrozny & Elkan, 2001). In UWB, the bins are defined as Ib =

(
b−1
B , b

B

]
for b ∈ [B]. In

UMB, the bins are defined as Ib = (ub−1, ub] for b ∈ [B], where u0 = 0, ub = f(kb) for b ∈ [B − 1], and
uB = 1. Here, kb = ⌊ neb

B ⌋, where ⌊·⌋ denotes the floor function that returns the greatest integer less than or
equal to the input value, and f(k) denotes the k-th order statistic of the set {f(Xe

m)}ne
m=1.

2.3 Positive-Unlabeled Learning

Positive-unlabeled (PU) learning is a classification problem where only positive and unlabeled data are
observed, but no negative data. Among various settings of PU learning (Elkan & Noto, 2008; Natarajan
et al., 2013; du Plessis et al., 2014; Kato et al., 2019; Bekker et al., 2020), we focus on the selected-completely-
at-random (SCAR) and case-control scenario. Concretely, we observe two independent sample sets: a set of
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unlabeled samples Str,U :=
{

Xtr,U
m

}ntr,U

m=1
i.i.d.∼ P (X) and a set of positive samples Str,P := {Xtr,P

m }ntr,P
m=1

i.i.d.∼
P (X | Y = 1), with the full training data denoted by Str = (Str,U, Str,P) (du Plessis et al., 2014). This
SCAR and case-control scenario is commonly used in the PU learning literature (Natarajan et al., 2013;
du Plessis et al., 2014; Kiryo et al., 2017; Yao et al., 2021). Throughout the paper, we assume that the class
prior πP = P (Y = 1) is known—in practice, it can be estimated from data (Blanchard et al., 2010; Garg
et al., 2021; Zhu et al., 2023).

In PU learning, an unbiased risk estimator of h on Str is given as follows (Natarajan et al., 2013; du Plessis
et al., 2014; 2015):

LuPU(h) = πP

ntr,P

ntr,P∑
m=1

{
l(h(Xtr,P

m ), 1) − l(h(Xtr,P
m ), 0)

}
+ 1

ntr,U

ntr,U∑
m=1

l(h(Xtr,U
m ), 0). (2)

The estimator is suitable for estimating the expected risk E [l(h(X), Y )] or training simple classifiers
(du Plessis et al., 2014; 2015), but it does not work well for training more complex classifiers such as
deep neural networks due to the negative risk issue (Kiryo et al., 2017). To overcome this issue, non-negative
risk estimators were proposed (Kiryo et al., 2017; Lu et al., 2020). The non-negative risk estimator is given
by

LnnPU(h) = πP

ntr,P

ntr,P∑
m=1

l(h(Xtr,P
m ), 1) + lcc

(
1

ntr,U

ntr,U∑
m=1

l(h(Xtr,U
m ), 0) − πP

ntr,P

ntr,P∑
m=1

l(h(Xtr,P
m ), 0)

)
,

where lcc : R → R≥0 is called a consistent-correction function. Several functions have been proposed for use
as lcc, e.g., max{x, 0} (Kiryo et al., 2017; Lu et al., 2020).

3 PU-ECE: An Estimator for Calibration Error in PU Learning

Conventional ECE estimation, as shown in Eq. (1), requires labeled data (both positive and negative), but in
the PU environment, negative data are unavailable, as introduced in Section 2.3. The main challenges are (i)
estimating the true positive rate within bins (ii) the data are not from a single distribution P (X, Y ) but from
P (X) and P (X|Y = 1). In this section, we propose a method to estimate the ECE in the PU environment.
The proposed method is based on the idea of using positive and unlabeled data to estimate E [Y | f(X) ∈ Ib].
We denote the PU evaluation data as SU := {XU

m}nU
m=1, SP := {XP

m}nP
m=1, and SPU := (SU, SP). The

evaluation data are independent of the training data and f , and can be a validation dataset or a test dataset
in practice.

3.1 Proposed Estimator

Since Y ∈ {0, 1}, the conditional expectation can be expressed as

E[Y | f(X) ∈ Ib] = P (Y = 1 | f(X) ∈ Ib) = P (Y = 1, f(X) ∈ Ib)
P (f(X) ∈ Ib) = πPP (f(X) ∈ Ib | Y = 1)

P (f(X) ∈ Ib) . (3)

In the PU learning setting, we have access to positive samples SP = {XP
m}nP

m=1 drawn i.i.d. from P (X|Y = 1)
and unlabeled samples SU = {XU

m}nU
m=1 drawn i.i.d. from P (X). The term P (f(X) ∈ Ib | Y = 1)

in Eq. (3) can be estimated by the empirical frequency of positive samples falling into bin Ib: pb,P :=
1

nP

∑nP
m=1 1f(XP

m)∈Ib
. Similarly, P (f(X) ∈ Ib) can be estimated by the empirical frequency of unla-

beled samples falling into bin Ib: pb,U := 1
nU

∑nU
m=1 1f(XU

m)∈Ib
. These estimators are unbiased, that is,

E [pb,P] = P (f(X) ∈ Ib | Y = 1) and E [pb,U] = P (f(X) ∈ Ib). Let |Ib,P| =
∑nP

m=1 1f(XP
m)∈Ib

and
|Ib,U| =

∑nU
m=1 1f(XU

m)∈Ib
be the number of positive and unlabeled samples in bin Ib, respectively. Then

pb,P = |Ib,P|/nP and pb,U = |Ib,U|/nU. Using these estimates, an estimator for the conditional probability
P (Y = 1 | f(X) ∈ Ib) is naively obtained as ŷb,SPU := πPpb,P

pb,U
. The ECE for PU learning (PU-ECE) can then

be estimated as
B∑

b=1
pb,U

∣∣ŷb,SPU − f̄b,SPU

∣∣ ,
4
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where f̄b,SPU :=
∑nU

m=1
1

f(XU
m)∈Ib

f(XU
m)

|Ib,U| is the average confidence score for unlabeled samples in bin Ib. If
|Ib,U| = 0, then pb,U = 0. In this case, ŷb,SPU would involve division by zero. However, this is a removable
singularity. For all cases where pb,U > 0, we can algebraically reformulate the estimator as follows:

ECEPU(f, SPU) =
B∑

b=1

∣∣∣∣∣πP

nP

nP∑
m=1

1f(XP
m)∈Ib

− 1
nU

nU∑
m=1

1f(XU
m)∈Ib

f(XU
m)
∣∣∣∣∣ .

This new form is mathematically equivalent for all pb,U > 0, and remains well-defined at pb,U = 0, and its
value at pb,U = 0 coincides with the limit of the estimator as pb,U → 0. The computational complexity of
PU-ECE is O(nU + nP) given the bins, which is the same as that of the standard ECE.

We define UWB and UMB for the PU setting as follows: in UWB, the bins are defined in the same way as
in supervised learning, while in UMB, the bins are defined by the unlabeled data; Ib = (ub−1, ub] for b ∈ [B],
where u0 = 0, ub = f(kb) for b ∈ [B − 1], and uB = 1. Here, kb = ⌊ nUb

B ⌋, and f(k) denotes the k-th order
statistic of the set

{
f(XU

m)
}nU

m=1, i.e., the k-th smallest value.

3.2 Bias Analysis of PU-ECE

We analyze the bias of the proposed estimator given the evaluation data. In the analysis, we assume the
following:
Assumption 1. The number of positive samples nP satisfies nP ≥ 1. The number of unlabeled samples nU
satisfies nU ≥ 2B for UMB and nU ≥ 1 for UWB.
Assumption 2. f(X) is absolutely continuous with respect to the Lebesgue measure, i.e., f(X) has a
probability density function.
Assumption 3. E [Y | f(X)] satisfies L-Lipschitz continuity with respect to f(X), i.e., |E [Y | f(X) = v] −
E [Y | f(X) = v′] | ≤ L|v − v′| for all v, v′ ∈ [0, 1].

The (total) bias of the PU-ECE estimator is defined as

Biastot(f, SPU) := |ECEPU(f, SPU) − TCE(f)| .

Then, we have the following theorem, which provides non-asymptotic bias bounds for the PU-ECE estimator.
Theorem 1. Under Assumptions 1, 2 and 3, we have

ESPU [Biastot(f, SPU)] ≤


1+L

B +
√

2
(

π2
P

nP
+ 1

nU

)
B log 2 (for UWB),

1+L
B + (3+2L)B

nU−B +
√

2B log 2
(

1+L√
nU−B

+
√

π2
P

nP
+ 1

nU−B

)
(for UMB).

Furthermore, for any δ ∈ (0, 1), with probability at least 1 − δ over SPU, we have

Biastot(f, SPU) ≤


1+L

B +
√

2
(

π2
P

nP
+ 1

nU

)
(B log 2 + log(1/δ)) (for UWB),

1+L
B + (3+2L)B

nU−B +
√

2(B log 2 + log(1/δ))
(

1+L√
nU−B

+
√

π2
P

nP
+ 1

nU−B

)
(for UMB).

The proof of Theorem 1 is provided in Appendix A.1. Briefly, the proof is based on decomposing the total
bias into two parts: the bias due to binning and the bias due to the estimation by the empirical frequency,
and then bounding each part separately by concentration inequalities.

Minimizing the upper bound of the total bias with respect to B, we have the following upper bound orders:
Corollary 1. Under Assumption 1, the scale of the optimal B that minimizes the upper bound in Theorem 1
for both UWB and UMB is given by

B = Θ
((

π2
P

nP
+ 1

nU

)− 1
3
)

,
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and the corresponding expected total bias convergence rate is given by

ESPU [Biastot(f, SPU)] = O

((
π2

P
nP

+ 1
nU

) 1
3
)

.

The proof can be found in Appendix A.2. In practice, this means that to minimize the bias of the PU-ECE
estimator, the number of bins B should be chosen according to the formula above, balancing the sample
sizes of the positive and unlabeled data. The result corresponds to the convergence rate of the supervised
setting; the optimal B is O(n 1

3 ) and the expected total bias is O(n− 1
3 ), where n is the size of the fully-labeled

evaluation data (Futami & Fujisawa, 2024). The term π2
P in these expressions is a constant factor that does

not depend on the sample size, but it indicates that a smaller class prior πP leads to a smaller expected bias.

In practical PU learning scenarios, the true class prior πP is often unknown and must be estimated from data
(Bepler et al., 2019; Ito & Sugiyama, 2023), which introduces additional estimation error into the calibration
process. It is therefore important to understand how inaccuracies in class prior estimation affect PU-ECE.
We also analyze how the class prior estimation error affects the PU-ECE estimation.
Theorem 2 (Error bound due to class prior estimation error). Let π̂P be an estimate of the class prior πP,
and define the PU-ECE estimator using π̂P as

ÊCEPU(f, SPU) =
B∑

b=1

∣∣∣∣∣ π̂P

nP

nP∑
m=1

1f(XP
m)∈Ib

− 1
nU

nU∑
m=1

f(XU
m)1f(XU

m)∈Ib

∣∣∣∣∣ .
Then, we have the following bound on the difference between the PU-ECE with the true prior and that with
the estimated prior: ∣∣∣ECEPU(f, SPU) − ÊCEPU(f, SPU)

∣∣∣ ≤ |πP − π̂P| .

The proof is provided in Appendix A.3. This inequality does not require expectation and holds for any f
and SPU. This theorem shows that when the class prior is unknown and must be estimated, the calibration
error estimation incurs an additional error of at most the class prior estimation error.

4 Information-Theoretic Generalization Analysis of PU-ECE

The previous analysis focused on the bias of the ECE estimation using evaluation data, which is independent
of the training data used for learning fw. However, in practice, we may recalibrate classifiers using a
recalibration dataset and then evaluate the PU-ECE on the same recalibration dataset (Kumar et al., 2019),
or we may calibrate classifiers using the training dataset (Futami & Fujisawa, 2024). In these cases, the data
used for PU-ECE evaluation and the classifier recalibration/training are no longer independent. Therefore,
analyzing the generalization error of the PU-ECE is crucial to ensure reliable model selection and evaluation
in practice. In this section, we extend the conditional mutual information (CMI) based analysis framework
(Steinke & Zakynthinou, 2020; Haghifam et al., 2021) used in supervised learning to the PU setting and
analyze the generalization error of PU-ECE using it.

4.1 Information-Theoretic Generalization Error Analysis for Supervised Learning

A rigorous understanding of the generalization error is crucial for evaluating the reliability of machine learn-
ing algorithms. Classical paradigms for assessing generalization include the concepts of Vapnik-Chervonenkis
(VC) dimension (Vapnik & Chervonenkis, 1968; Blumer et al., 1989) and metric entropy (Kolmogorov &
Tikhomirov, 1959; Dudley, 1974). The VC dimension quantifies how many points a hypothesis class can
shatter, while metric entropy measures how finely a function class can be approximated using a finite set
of representative functions at a given precision. Despite the established significance of these tools, recent
advances in information-theoretic perspectives, particularly those centered on CMI (Steinke & Zakynthinou,
2020; Haghifam et al., 2021), have provided new insights into generalization. For example, functional con-
ditional mutual information (fCMI) (Steinke & Zakynthinou, 2020) measures the dependency between the
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predictions of a learned model on a supersample (the collection of both training and held-out data) and the
random split that determines which part of the supersample is used for training, conditioned on the super-
sample itself. By bounding this data-model dependency, CMI-based analysis methods provide new insights
into why certain learning algorithms exhibit strong generalization performance. For instance, Futami & Fu-
jisawa (2024) applied this approach to derive non-asymptotic generalization error bounds for the supervised
ECE in the supervised setting.

4.2 Functional Conditional Mutual Information (fCMI) for PU Learning

To analyze the generalization error, we extend the CMI-based analysis framework to the PU setting. We
consider a supersample X̃ = [X̃U; X̃P] ∈ X (ntr,U+ntr,P)×2, which is a (ntr,U + ntr,P) × 2 array of samples.
2 Let X̃U ∈ X ntr,U×2 be the unlabeled supersample and X̃P ∈ X ntr,P×2 be the positive supersample. For
convenience, we use the 0-start-index for the columns of the arrays and the 1-start-index for the rows of the
arrays. We denote the i-th row of X̃ by X̃i. Analogous to X̃, we have a supersample membership vector
M := [MU; MP] ∈ {0, 1}ntr,U+ntr,P , where MU ∈ {0, 1}ntr,U and MP ∈ {0, 1}ntr,P are the membership vectors
for the unlabeled and positive supersamples, respectively. The entry Mi specifies which column of the i-th
row X̃i is retained for the i-th data point for training: Mi = 0 selects the left column (index 0) and Mi = 1
selects the right column (index 1). All entries are drawn independently as Mi ∼ Bern(1/2). We denote the
PU training vector by X̃M . The remaining entries of X̃ that are not selected by M can be regarded as the
PU evaluation data. Let A : X ntr,U+ntr,P × R → W be a randomized algorithm that maps a training dataset
and a source of randomness to the parameter space W. The source of randomness, denoted by R ∈ R, is
independent of any other random variables. Given a training dataset Str and randomness R, the algorithm
outputs the parameters W = A(Str, R) ∈ W, and we denote the corresponding predictor by fW .

We define the functional conditional mutual information (fCMI) for PU data as

fCMI := I(fW (X̃); M |X̃),

where fW (X̃) is the matrix calculated by the elementwise application of fW to X̃. Similarly, we also define
fCMI on X̃U as

fCMIU := I(fW (X̃U); M |X̃).

By the data processing inequality, we have fCMIU ≤ fCMI. The PU fCMI metrics can be bounded by model
complexity measures such as the VC dimension (Steinke & Zakynthinou, 2020; Harutyunyan et al., 2021) or
the metric entropy (Futami & Fujisawa, 2024). Detailed discussions and definitions of these quantities are
provided in Appendix B.

4.3 Generalization Bound for PU-ECE

This subsection analyzes the generalization error of PU-ECE using the fCMIs defined above. We follow
Futami & Fujisawa (2024) and use Biastot(fW , Str) := |TCE(fW ) − ECEPU(fW , Str)| as the generalization
error of ECEPU(fW , Str).
Theorem 3 (Expected generalization error bound of PU-ECE). Under Assumptions 2 and 3, we have

ER,Str [Biastot(fW , Str)]

≤


1+L

B +
√

8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2} (for UWB),

1+L
B +

√
8
(

π2
P

ntr,P
+ 1

ntr,U

)
{fCMI + B log 2} + (1 + L)

√
8

ntr,U
{fCMIU + B log 2} (for UMB).

The proof of Theorem 3 is provided in Appendix C.1. Briefly, the proof is similar to the proof of Theorem 1,
except the dependency on the training data is handled by the fCMIs.

2We use the term "array" for notational convenience, although each entry is an element of X , which can be a high-dimensional
vector rather than a scalar.
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Dataset ntr,U πP Model Learning rate
MNIST (LeCun et al., 1998) 60,000 0.49 2-layer MLP (784-100-100-1) 1.0 × 10−3

CIFAR-10 (Krizhevsky, 2009) 50,000 0.40 ResNet-18 (He et al., 2016) 1.0 × 10−5

DDI (Herrero-Zazo et al., 2013) 27,792 0.14 R-BERT (Wu & He, 2019) 2.0 × 10−5

Table 1: Specification of benchmark datasets, models, and learning rates. ntr,U denotes the number of
unlabeled samples for training PU classifiers.

Similar to Corollary 1, the optimal bin size to minimize the upper bound in Theorem 3 and the order of the
upper bound can also be derived if a learning algorithm has a sufficiently small fCMI. For instance, such an
assumption holds when H is a finite VC class since F is also a finite VC class, and hence fCMI is bounded
by O(log(ntr,P + ntr,U)) (Steinke & Zakynthinou, 2020). For such a case, we can derive the following result.
Corollary 2 (Total bias upper bound order). Under Assumption 2 and 3 and assuming fCMI =

O
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3
)

, the scale of the optimal B that minimizes the upper bound in Theorem 3 is given

by

B = Θ
((

π2
P

ntr,P
+ 1

ntr,U

)−1/3)
,

and the convergence rate of the corresponding expected generalization error is given by

ER,Str [Biastot(fW , Str)] = O

((
π2

P
ntr,P

+ 1
ntr,U

)1/3)
.

The proof is provided in Appendix A.2.

By Corollaries 1 and 2, ER,Str [Biastot(fW , Str)] ≪ ESPU [Biastot(fW , SPU)] if ntr,P ≫ nP and ntr,U ≫ nU
and the classifier generalizes well. This would actually happen in practice since the training dataset is often
much larger than the evaluation dataset. Such a property is also observed in the supervised setting (Futami
& Fujisawa, 2024). This represents an important future direction for PU learning to develop a method that
jointly optimizes the TCE and accuracy, although this is beyond the scope of this paper.

5 Experiments

In this section, we empirically evaluate the theoretical properties of the proposed PU-ECE estimator. We
empirically validate the theoretical bias and convergence properties of our proposed PU-ECE estimator on
both synthetic and real-world benchmark datasets.

5.1 Experimental Setup

The sigmoid function was used as the output activation function. Results are averaged over 100 trials, each
with a different random seed. The code for all experiments was implemented in Python and is available at
https://github.com/<will-be-released>.

Synthetic data Following previous work (Vaicenavicius et al., 2019; Zhang et al., 2020; Futami & Fujisawa,
2024), we generated data from a logistic model where P (Y = 1 | X = x) = σsig(2x), with the conditional
probability densities p(X) = 0.5 N (x; 1, 1) + 0.5 N (x; −1, 1). We evaluated a classifier f(x) = σsig(β0 + β1x)
under two settings: a less-calibrated case (β0 = −0.5, β1 = 1.5) and a better-calibrated case (β0 = −0.2, β1 =
1.9). The ground-truth TCE(f) was computed by the trapezoidal rule. Further details are provided in
Appendix D.

Benchmark data We used the MNIST, CIFAR-10 and DDI datasets, with specifications detailed in Table
1. Since these datasets are multiclass, we converted them into binary classification tasks by selecting positive

8
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classes and treating all other classes as negative. For MNIST, we used the digits 5-9 as the positive class,
while for CIFAR-10, we selected the vehicle class (airplane, automobile, ship, and truck) as the positive
class. For DDI, we treated drug pairs with an annotated drug-drug interaction (DDI) relation as the positive
class, and all other pairs (without a DDI relation) as the negative class. Classifiers were trained using the
nnPU learning method (Kiryo et al., 2017) for MNIST and CIFAR-10 and the imbalanced nnPU learning
method (Su et al., 2021) for DDI, and the outputs of the classifiers were used as logit scores. The logistic
loss (a.k.a. binary cross-entropy loss) log(σsig((2y − 1)h(x))) or sigmoid loss σsig(−(2y − 1)h(x)) was used
as the loss function, depending on the experiment. The sigmoid loss was used as a noise-robust (Ghosh
et al., 2017) and classification-calibrated (Charoenphakdee et al., 2019) loss function, and hence are widely
used in weakly-supervised learning including PU learning (Kiryo et al., 2017; Chen et al., 2020; Zhao et al.,
2022; Ye et al., 2023). Although the sigmoid loss is not strictly proper (Charoenphakdee et al., 2019), its
confidence scores are conventionally interpreted as class-posterior probabilities (Platt, 1999; Chen et al.,
2020; Ye et al., 2023). The sigmoid loss was used for MNIST and CIFAR-10, while the logistic loss was used
for DDI. Classifiers were trained on PU training data with 10,000 positive for MNIST and CIFAR-10 and
2,000 positive for DDI, and ntr,U unlabeled samples specified in Table 1. The other details are provided in
Appendix F.

Ground-truth TCE computation To compute TCE(f) for these datasets, we first need to assume
parametric models for the true conditional probability densities. Fortunately, the TCE can be computed
using the distribution of the logit score h(X) or the confidence score f(X), without modeling the distribution
of X, which would otherwise suffer from the curse of dimensionality (see Appendix E for details). We
observed that the confidence scores were heavily saturated near 0 or 1, while the logit scores were spread
out. Therefore, we modeled the logit score h(X) instead of the confidence score f(X), specifically modeling
the distributions of the logit score, P (h(X) | Y = 1) and P (h(X) | Y = 0). The empirical logit histograms
were multi-modal, so a single-mode parametric family, such as the logistic-beta distribution used by Roelofs
et al. (2022), is inadequate. For instance, the MNIST logits exhibited two clear peaks. Instead, we fitted
Gaussian Mixture Models (GMMs) to P (h(X) | Y = 1) and P (h(X) | Y = 0), selecting the number of
components for each GMM from 1 to 10 via the Bayesian Information Criterion (BIC) (Schwarz, 1978). In
MNIST, the GMMs with 4 positive class components and 3 negative class components were selected, while
in CIFAR-10, the GMMs with 2 positive class components and 2 negative class components were selected,
and in DDI, the GMMs with 3 positive class components and 3 negative class components were selected.
With these estimated densities, we sampled the logit scores from the GMMs. TCE(f) was calculated using
the trapezoidal rule at 10, 000 points.

Binning strategy We use UWB by default, but we also evaluate UMB side-by-side to study stability in
Appendix I. The number of bins B was set to ⌈(π2

P/nP+1/nU)−1/3⌉ for PU-ECE and ⌈n
1/3
PN ⌉ or ⌈(nPN/π2

P)1/3⌉
for ECE, following the optimal order derived in our analysis and in Futami & Fujisawa (2024).

5.2 Empirical Bias Convergence Rate

Let N denote an integer ranging from 10 to 10, 000. We evaluated the convergence behavior by varying N ,
comparing PU-ECE in settings with (nP = N, nU = ∞), (nP = ∞, nU = N), (nP = N, nU = 10N), and
standard ECE with n = N . For settings with either nU = ∞ or nP = ∞, the corresponding components
(e.g., P (f(X) ∈ Ib) when nU = ∞) were computed via numerical integration using the trapezoidal rule with
up to 10,000 points.

Figure 1 shows the total bias of PU-ECE and standard ECE (absolute bias compared to the TCE) on both
synthetic and benchmark datasets. This experiment is designed to validate the theoretical convergence rate
of our estimator. According to our analysis, the total bias of PU-ECE is expected to decrease at a rate of
O((π2

P/nP +1/nU)−1/3). When both nP and nU grow proportionally with N (or are set to ∞), this simplifies
to O(N−1/3).

The empirical results clearly exhibit this O(N−1/3) convergence, providing strong evidence in support of
our theoretical claims. Notably, this rate matches the known optimal convergence rate for standard ECE
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(Futami & Fujisawa, 2024), demonstrating that PU-ECE can achieve competitive calibration performance
even without access to fully labeled data.
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Figure 1: Total bias of ECE and PU-ECE, as a function of sample size N . Both axes are log-scale. The
lines represent the total bias, and the shaded areas represent the 90% percentile interval. The dashed lines
represent the theoretical convergence rate of O(N−1/3).

5.2.1 Finite Positive Sample Size Effect

We also investigated the effect of fixing nP by comparing PU-ECE with (nP = 100, nU = N), (nP =
1, 000, nU = N), (nP = 10, 000, nU = N), and (nP = N, nU = ∞).

Figure 2 investigates the effect of fixing nP while increasing nU. We observe that PU-ECE converges to the
limiting case of PU-ECE with nP = N, nU = ∞ but not to the true TCE. This behavior is consistent with
our theoretical prediction: even as nU → ∞, the bias remains bounded below by the term depending on nP.
This residual error creates an error floor that prevents convergence to the TCE when nP is finite.

These results highlight a key practical insight: sufficiently large sets of both positive and unlabeled samples
are essential for effectively estimating the TCE.
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Figure 2: Convergence of total bias of PU-ECE varying nP. Both axes are log-scale. The lines represent
the total bias, and the shaded areas represent the 90% percentile interval. The dashed lines represent the
theoretical convergence rate of O(N−1/3).

5.3 Robustness to Class Prior Estimation Error

In many PU applications, the class prior πP is estimated from data. Section 3.2 (Theorem 2) shows that
using an estimated prior π̂P perturbs PU-ECE by at most |πP − π̂P|. Here, ±5% and ±10% prior estimation
errors mean |πP − π̂P| = 0.05 πP and 0.10 πP, respectively. Since πP is known in our experiments, we can
compute the corresponding error bound from Theorem 2 and compare it with the observed total bias. Note
that this bound controls only the perturbation due to prior misspecification and does not bound the overall
total bias. Consequently, at small sample sizes the observed total bias can exceed the prior-error bound.
Figure 3 shows that as the data size grows and the total bias itself becomes small, it no longer exceeds the
bound and typically converges to a value below it. The bound becomes tight only in the synthetic datasets
when the prior is overestimated. In this case, the total bias approaches the error bound as the sample size
grows. In all other settings, including benchmark datasets, the total bias converges to smaller values than
the bound, indicating that the theoretical bound is conservative in practice.
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Figure 3: Effect of prior estimation error on PU-ECE. The lines represent the total bias, and the shaded areas
represent the standard error. We perturb the class prior πP by ±5% and ±10% in PU-ECE computation
and observe shifts proportional to the prior estimation error, consistent with Theorem 2.

6 Conclusions

We proposed PU-ECE, the first ECE estimator that can be computed from PU data. Our theoretical analysis
provides non-asymptotic bias bounds for PU-ECE and shows that, with an optimal binning strategy, the
bias of our estimator converges to the TCE at a rate of O((π2

P/nP + 1/nU)1/3). This rate matches the
convergence rate of the standard ECE in the supervised setting. We further extended the CMI framework to
PU learning, deriving generalization error bounds with the same convergence rate as the bias. Experiments on
synthetic and benchmark datasets corroborated the theory: PU-ECE performs comparably to the standard
ECE, despite lacking negative labels. These results also reveal two practical caveats: (i) with the number
of positive samples fixed, increasing unlabeled data alone does not yield convergence to the true TCE,
underscoring the importance of having sufficient positive data for accurate estimation; and (ii) any nonzero
prior error makes PU-ECE converge to a biased limit, even though the observed error is often below the
theoretical bound.
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