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Abstract

The ability to quickly and accurately compute properties from atomic simulations is
critical for advancing a large number of applications in chemistry and materials sci-
ence including drug discovery, energy storage, and semiconductor manufacturing.
To address this need, we present a family of Universal Models for Atoms (UMA),
designed to push the frontier of speed, accuracy, and generalization. UMA models
are trained on half a billion unique 3D atomic structures (the largest training runs
to date) by compiling data across multiple chemical domains, e.g. molecules,
materials, and catalysts. We develop empirical scaling laws to help understand how
to increase model capacity alongside dataset size to achieve the best accuracy. The
UMA small and medium models utilize a novel architectural design we refer to as
mixture of linear experts that enables increasing model capacity without sacrificing
speed. For example, UMA-medium has 1.4B parameters but only ∼50M active
parameters per atomic structure. We evaluate UMA models on a diverse set of
applications across multiple domains and find that, remarkably, a single model
without any fine-tuning can perform similarly or better than specialized models.
We are releasing the UMA code, weights, and associated data to accelerate com-
putational workflows and enable the community to build increasingly capable AI
models.

1 Introduction

Density Functional Theory (DFT) models the interaction of atoms from first principles through the
estimation of their electronic structure. It serves as the foundation of modern computational chemistry
and materials science, and has provided insights into many applications including drug discovery [70,
78], energy storage [73, 27, 72], and semiconductors [62, 76]. Despite DFT’s widespread adoption,
its considerable computational expense limits its usage.

Machine learning models offer the potential to accurately approximate DFT while being dramatically
faster (O(n) vs. O(n3) for DFT, where n is the number of atoms); reducing computation time from
hours to less than a second. Ideally, these models – referred to as Machine Learning Interatomic
Potentials (MLIPs) – would generalize across the many tasks that utilize DFT. We refer to a “task” as
a chemical domain (e.g. materials, catalysts, molecules) plus the specialized DFT settings required
by domain. For each task, we can explore different applications of DFT, such as molecular dynamics,
relaxations, vibrational analysis, and mechanical response. Training MLIPs that generalize across
such tasks remains an open problem.
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Figure 1: Visualization of the different datasets used for training. The 2D plots (bottom) illustrate
the number of pairwise interactions contained in each dataset for every combination of elements.
Note their combination covers nearly the entire chemical space with the exception of the radioactive
elements. Model accuracies have improved with training dataset size (upper right), and this paper
explores the limits of this scaling.

The scaling of datasets and model sizes has led to major breakthroughs in language and vision models,
enabling their generalization across diverse data distributions and tasks [2, 24]. A similar scaling of
atomic datasets is more challenging due to their computational cost, resulting in models typically
being trained on smaller problem-specific datasets [57, 18, 17]. A potential solution is to pool data
across tasks to allow for the creation of an exceptionally large dataset for training multi-task models.
Recently, several large domain-specific datasets including catalysts [11, 72], materials [5, 67], and
molecules [43] have been released that, when combined, total nearly half a billion atomic systems.
This combined dataset defines a new paradigm in terms of the diversity of interactions and chemical
environments (Figure 1), allowing for the learning of general-purpose models.

In this paper, we present a family of Universal Models for Atoms (UMA) designed to test the
limits of accuracy, speed, and generalization for a single model across chemistry and materials
science. The unprecedented amount of data (∼500M atomic systems, Figure 1) poses new challenges
in balancing accuracy and efficiency with multi-task training. To explore this space, we develop
empirical scaling laws, relating compute, data, and model size, to determine the model size required
to fit the UMA dataset and to define compute-optimal and inference-optimal training strategies. To
accommodate the growing demand for model capacity while maintaining speed, we introduce a
novel Mixture of Linear Experts (MoLE) architecture that efficiently scales the model size without
increasing inference times for applications such as Molecular Dynamics (MD). For efficient model
training, we propose a novel two-stage training schedule that efficiently pre-trains a model that is
then refined in the second stage to conserve energy at higher precision.

We demonstrate that UMA, without fine-tuning to specific tasks, performs similarly or better in
both accuracy and inference-speed/memory-efficiency than specialized models on a wide-range of
material, molecular and catalysis benchmarks. Highlights include state-of-the-art results on the
popular Matbench Discovery leaderboard [59], a 25% improvement in successful adsorption energy
calculations for catalysis [42], and accuracy sufficient for practical applications (e.g. ligand-strain
energy) in structure-based drug-design [43]. All code and data used for training UMA is publicly
available. UMA model weights are available with a commercially permissive license (with some
geographic and acceptable use restrictions).

2 Approach

An MLIP acts as a surrogate for DFT, and so it requires the same inputs as DFT: atom positions,
their atomic numbers, and optionally spin and charge information. As outputs, MLIPs estimate the
energy of an atomic structure from which other properties may be computed through the use of
derivatives, such as per-atom forces, stress, etc. For many applications, such as molecular dynamics
or performing relaxations, an MLIP is used to calculate the atomic forces to run simulations that can
require thousands or even millions of iterations. For this reason, MLIPs must be both accurate and
computationally efficient.
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Figure 2: (left) Overview of UMA model architecture. The SO2 convolution is made up of a set
of linear operations and each one of these operations is replaced with MoLE. (middle) Illustration
of MoE and MoLE. The embedding used for routing, which estimates the expert weights α, only
depends on global information making it possible to merge before the model forward pass (middle,
bottom), which has substantial benefits for applications that require long roll outs such as molecular
dynamics. (right) Bar plot of UMA-S trained with MoLE for multi-task and without MoLE for single
and multi-task. Note the MoLE model outperforms non-MoLE models. (right, bottom) Loss plots
when varying the number of experts from 1 to 128 for UMA-S.

Table 1: Summary of UMA models.

Model Total Parameters Active Parameters Inferences per second for
1k Atoms

Max Atoms per
80GB GPU Conservative

UMA-S 150M 6M 16 100k+ ✓
UMA-M 1.4B 50M 3 10k+ ✓
UMA-L 700M 700M 1.6 1k+ ✗

Inference speed and max atoms measured on Nvidia H100 with a periodic system that has ≈ 50 neighbors per atom within 6Å, see Appendix D

2.1 UMA: Universal Model for Atoms

In this paper, we describe a family of models that can be categorized into three sizes: small (S),
medium (M), and large (L). A summary of the models can be found in Table 1. Additional details
on the different versions of UMA can be found in Appendix E.1. All the models have different
accuracy and speed attributes and as a result are best suited for distinct use cases. UMA-S aims
to strike a balance between accuracy and efficiency and is suitable for computationally intensive
applications such as long molecular dynamics simulations. The most general-purpose model of the
family is UMA-M, which is more accurate and can be used as a DFT surrogate for relaxations or
vibrational analysis as well as for molecular dynamics. UMA-L is a highly accurate DFT surrogate
and is intended as a proof-of-principle to help understand scaling behavior and to demonstrate the
limits of what is currently feasible.

We begin by providing a basic introduction to the UMA architecture. Next, we highlight our use of
Mixture of Linear Experts (MoLE), an efficient way to scale capacity and add flexibility for training
models across different DFT datasets and tasks. Lastly, we present an overview of the training
procedure used for UMA models.

2.2 Architecture

The UMA architecture is based on eSEN [21], an equivariant graph neural network, with a number of
important modifications to enable the model to efficiently scale and handle additional inputs, such as
total charge and spin, and the DFT settings desired for emulation. The standard eSEN architecture
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takes 3D atomic positions and atomic numbers as inputs and returns the total energy, per-atom forces,
and, optionally, stress. The network operates by updating a spherical harmonic node embedding
for each atom through a series of message passing layers. The embeddings are initialized based on
the atom’s atomic number. Messages are passed between neighboring atoms that are less than a
predefined distance (6 Å) from each other. Each message passing layer consists of an edge-wise block
followed by a node-wise feed-forward block with residual connections. Normalization is performed
after each layer. The central component of the edgewise block is the eSCN convolution [54]. After
message passing, there is a single task-independent node-wise feed-forward block to predict the
outputs.

2.2.1 Charge, Spin, and DFT Task Inputs

In addition to the inputs handled by eSEN, we expand the model to incorporate information about the
system’s total charge, total spin multiplicity, and the DFT task. The charge and spin are indicated
using an integer value for each and allow the MLIP to model structures which may be electrically
charged (have extra or missing electrons) or have unpaired electrons. The DFT task indicates which
of the five training dataset DFT settings the model should attempt to replicate. A single dataset is
specified and a random vector corresponding to it is fed into the network. This is necessary since
different datasets use different plane-wave or localized orbital DFT calculators (VASP [39, 38] and
ORCA [50]) and levels of theory.

We introduce a new embedding to UMA models that enables the inclusion of charge, spin, and
DFT task. Each of these inputs generates an embedding with the same dimension as the number of
spherical channels used, which is concatenated and then fed through a 1-layer feed-forward network.
The result is added to the node embeddings at each layer for the spherical harmonics coefficients of
degree 0 (L = 0). This embedding is also used to compute the global embedding used for MoLE
routing, which is described below.

2.3 Mixture of Linear Experts

A common approach to learning general-purpose models is to increase the amount and diversity
of their training data. As datasets increase in size, scaling laws suggest model sizes must also be
scaled to optimally reduce losses [24, 2]. However, this presents a tradeoff, which may lead to
accurate models that are too computationally expensive to use in practical applications. One method
to improve these trade-offs is to use Mixture of Experts [32, 31, 47] (MoEs) to increase the number
of model parameters while minimizing the additional computational cost. In an MoE model, the
outputs of a block are calculated by a set of experts, each with their own individual set of weights.
Typically, a sparse weighted combination of their outputs is combined and passed to the next block.
This approach has been shown to work well for LLMs to improve both their efficiency and their
ability to generalize [19, 33, 60, 15].

The application of MoEs to MLIPs requires additional considerations. Contrary to language modeling,
estimating the potential energy surface is a regression task whose outputs should vary smoothly to
ensure energy conservation [21]. In addition, the estimated forces should be equivariant to rotation.
This implies that the use of experts should not introduce discontinuities on the energy surface, and
care must be taken to ensure equivariance is maintained. Another practical consideration for MLIPs
is that the task and set of atoms is commonly held constant during long simulations. Ideally, an
MoE approach for MLIPs would take advantage of this to improve efficiency in sequential inference
applications.

We propose using a Mixture of Linear Experts (MoLE) for MLIPs. An MoLE combines a set of
linear experts [46, 31]:

y =
∑
k

αk (Wkx) (1)

where each expert k has a set of weights Wk and contribution αk ∈ [0, 1]. While this was one of
the original approaches proposed for MoEs [31], MoEs that use sparse sets of non-linear experts
which compete for attention [32] are much more commonly used in modern networks [19, 60, 15, 63].
However, MoLEs offer distinct advantages for MLIPs. First, the MLIP can learn functions that
share information and vary smoothly between tasks by encouraging the dense use of all experts
without enforcing sparseness. Second, since MoLE is a mixture of linear experts, they maintain
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rotational equivariance when used within the eSCN convolution [54]. Finally, if the expert weights
are only dependent on time-invariant global information such as element composition, the network
weights may be precomputed before running simulations [46, 75]. The precomputed weights W ∗ are
calculated by moving the summation in Equation 1, which results in MoE inference times that are
similar to non-MoE models:

y = W ∗x where W ∗ =

(∑
k

αkWk

)
(2)

The contribution αk of each expert is calculated as a function of system-level features, including
element composition, charge, spin, and task information. Embeddings are calculated for each of
these properties, concatenated, and passed through a 3-layer MLP followed by a softmax to estimate
αk,
∑

k αk = 1. We specifically exclude information when calculating α’s that may vary during
the course of relaxations or MD simulations, such as relative atom positions or other neighborhood
information.

2.4 Training Procedure

Training models on large datasets across numerous tasks is challenging due to the computational
resources required. This is especially true for conservative models, which require an additional
backward pass to calculate forces or stress. To improve training efficiency, we implemented a
two-stage approach described in detail in the supplementary material (Appendix A). As proposed by
[21, 7], we train a model that directly predicts forces in the first stage. In the second stage, we remove
the force head and fine-tune the model to predict conserving forces and stresses using auto-grad. This
approach takes advantage of the faster training enabled by direct models, while providing energy
conservation and smooth potential energy landscapes required by many applications.

Several other novel improvements were made to each stage’s training to further improve efficiency.
Half-precision is critical to training efficiently on modern GPUs. Similar to other domains such as
LLM training, we found that BF16 is significantly more stable compared to FP16 with automatic
mixed precision. However, unlike LLMs, MLIPs are significantly more sensitive to numerical
precision; we observed that BF16 alone will degrade accuracy by as much as 20− 50% depending
on the task and the property being computed . We found that pre-training with BF16 and switching to
FP32 for fine-tuning recovers the loss in accuracy. Finally, training the models with a large number of
MoLE experts is challenging due to memory constraints. We make further optimization to help bound
and amortize memory usage (Appendix A). In addition, models were trained with a combination
of graph parallelism [66] and fully-sharded data parallelism for large MoLE layers and activation
checkpointing (Appendix A). When combined, this allows us to reliably scale up model training up
to 10B total parameters.

The energies for each dataset can vary significantly due to the use of different DFT settings, which
makes multi-task training difficult. To account for this, an energy referencing scheme was employed
as described in Appendix A.6. This approach allowed for the use of a single energy head across all
tasks without the need for task-specific heads.

3 Datasets

To train a model capable of generalizing across DFT tasks, an ideal training dataset would include
materials, molecules, and their interactions. The Open Molecules 2025 (OMol25) [43] and Open
Materials 2024 (OMat24) [5] datasets cover both molecules and materials respectively. The Open
Catalyst 2020 (OC20) [11] and OpenDAC 2025 (ODAC25) [68] datasets are useful for modeling the
interactions of molecules and materials. Finally, the Open Molecular Crystals 2025 (OMC25) [23]
dataset specializes in modeling the interaction between molecules in periodic structures. In combina-
tion, these datasets contain close to 500 million training examples with over 30 billion atoms. As
visualized in Figure 1, the combination of these datasets contains nearly all pairwise interactions be-
tween atoms of different elements. We focused on large datasets, because of the challenges of mixing
different DFT tasks and since the inclusion of much smaller datasets was unlikely to significantly
impact the model weights.

While all DFT calculations yield energy and force labels by determining ground-state electronic
structures, different chemical systems require domain-specific DFT settings. For instance, the OMat24
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Figure 3: Empirical scaling measurements of dense (blue) vs. MoLE (red) model architectures.
FLOPs vs. validation loss for (a) dense and (b) MoLE (8-expert) models. Experiment sets are
performed by holding FLOPs constant and varying model size and training data. Diamonds represent
the compute optimal frontier. (c) Training compute vs. parameters. Vertical green dotted line
represents our estimated training budget of O(1022) FLOPs, horizontal dotted lines are corresponding
dense and MoLE model sizes. (d) Compute vs. dataset size (atoms) with the green dotted line
representing the training FLOPs required for 1 epoch of UMA training data (50B atoms) (e) Overlay
of dense vs. MoLE compute optimal frontiers from (a-b) and the fitted power law of validation loss as
a function of parameters. A compute optimal MoLE model with ∆ ≈ 2.5× fewer active parameters
can achieve an equivalent loss. Fitting details and parameters are described in Appendix C.

Table 2: Test MAE results on held out test splits for materials [59], catalysis [11], molecules [43],
molecular crystals [23] and MOFs [67]. All energies are in meV, forces are in meV/Å and stresses
are in meV/Å3. Results for UMA are compared against the SOTA literature results. Target accuracies
for practical utility are provided as an approximate guide for reference.
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UMA
UMA-S-1.1 20.2 62.8 4.4 24.9 83.7 3.5 51.5 24.1 68.8 30.7 0.95 8.64 0.84 15.47 1.03 5.04 0.93 289.9 13.3
UMA-M-1.1 18.2 50.7 4.2 21.9 69.0 3.5 31.8 15.5 45.5 20.2 0.74 5.44 0.50 10.14 0.84 2.83 0.90 294.1 10.3

Literature
eSEN-30M-OMat [21] 16.2 49.6 4.1 20.0 59.5 3.2 - - - - - - - - - - - - -
eqV2-OMat [5] 14.9 46.3 3.6 20.3 47.0 2.7 - - - - - - - - - - - - -
eqV2-OC20 [44] - - - - - - 149.1 11.6 306.5 15.7 - - - - - - - - -
GemNet-OC20 [22] - - - - - - 163.5 16.3 343.3 23.1 - - - - - - - - -
eqv2-ODAC [67] - - - - - - - - - - - - - - - - - 316.0 7.2
eSEN-sm-cons. [43] - - - - - - - - - - 1.35 7.39 0.83 12.72 - - - - -
eSEN-S-OMC [23] - - - - - - - - - - - - - - 1.05 5.39 0.94 - -

Target
Practical Utility 10-20 - - 10-20 - - 100 - 100 - 1-3 - 1-3 - 1-3 - - 100 -

dataset uses the PBE functional and is generated with the plane-wave code VASP, whereas OMol25
employs the ωB97M-V functional with the localized orbital code ORCA. Designing a single model
that performs well across such diverse settings is a non-trivial challenge. Additionally, the datasets
differ in size and information content, so we adjust their sampling ratios: 4 for OMat24 and OMol25,
1 for OC20 and ODAC25, and 2 for OMC25. Further details on the datasets and our unified modeling
strategy can be found in Appendix B and A respectively.
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4 Results

4.1 Model and Data Scaling

In various domains such as language, empirical power-law relationships have been successfully used
[28, 24, 35] to predict the optimal model size and quantity of training data given a fixed compute
budget. However, for modeling MLIPs, no models have been trained on the size of UMA’s dataset
and very few models have been trained to >100M parameters [5]; we do not know whether such
relationships exist or whether the models will continue to improve with data and parameters. In this
study, we show that UMA models do show log-linear scaling behavior as seen in other domains in the
FLOP ranges we tested, indicating that greater model capacity is required to fit the UMA dataset. We
used these scaling relationships to select the appropriate model size for our dataset and demonstrate
the advantage of MoLE over the dense architecture.

Following [28, 24, 35], we first examine the behavior of training compute in FLOPs C as a function
of model size N and dataset size D. To determine this, we used total validation loss (computed in the
same way as training loss) as the observable quantity. We trained a series of models by sweeping the
model parameter size while fixing the training compute budget in FLOPs. This is done by varying
the amount of training data for each model, i.e., smaller models receive more training data, while
larger models receive less. This is performed for both the dense and MoLE (8 expert) models classes,
producing "Iso-FLOPs" curves Figure 3(a,b). The minima of the Iso-FLOPs represent the compute
optimal model, or the best achievable loss for the given compute budget (diamonds in Figure 3).

Optimal model size. We fit the Iso-FLOPs minima using power laws [35, 28] to estimate the
optimal model and dataset sizes given a fixed compute budget (detailed in Appendix C). Figure 3(c,d)
indicates that the dense and MoLE models display convincing log-linear scaling behavior at the
scales of our experiments (1018 − 1020 FLOPs). Given that our training dataset was approximately
50 billion atoms (1 epoch) and our estimated compute budget for pretraining was O(1022) FLOPs
(extrapolated from our preliminary training runs), Figure 3(c) suggests the largest compute optimal
dense model we should train is ∼ 700M parameters corresponding to the UMA-L. In practice, we
used the compute optimal model size as a starting point and continued training beyond the compute
optimal regime to produce lower losses while minimizing parameter sizes. However, we observed
that training on too many epochs can lead to overfitting and significantly deviate from log-linear
scaling behavior, prompting us to keep our training within 2-3 epochs.

Dense vs MoLE. If we combine Figures 3(a,b) and fit the Iso-FLOPs minima as a function of loss
(Figure 3(e)), we can compare the model sizes needed by the dense and MoLE models to achieve a
fixed loss. Effectively, an optimal MoLE model can achieve the same loss as an optimal dense model
that is ∆ times larger, e.g., ∆ ≈ 2.5± 0.2 for UMA-M. We observe that this advantage is reduced at
larger model sizes; training a 700M active parameter (8 expert - 5.6B parameter total) MoLE model
had marginal improvement over the dense version. This effect can be seen in overlaid IsoFLOPs in
Figure 3(e). As parameters increase, dense and MoLE performance converge. We hypothesize that
we are limited by our dataset’s size, regardless of MoLE or dense architectures.

4.2 Multi-task vs. Single-Task

To explore the benefits of MoLE models for multi-task training, we compare UMA-S (with MoLE)
to non-MoLE dense models trained for single/multi-task in Figure 2 (right, top). In this limited
parameter regime, multi-task models trained without MoLE always perform worse than single-task
(ST) models. With the use of MoLE, UMA-S can achieve results comparable to task specialized small
models. We also experimented with varying the number of experts for UMA-S in Figure 2 (right,
bottom). A significant improvement in loss is observed when moving from 1 expert to 8. A smaller
gain is found with 32 experts, and the additional gain from 32 to 128 experts is negligible. In our
experiments, UMA-S uses 32 experts. For large models, multi-task training offers benefits even
without MoLE, as shown in Appendix F, where multi-task models avoid overfitting and generally
achieve better performance.

4.3 Inference Efficiency

The ability to increase the length scale (number of atoms) and time scale of molecular dynamics
(MD), relaxations and other types of long running simulations is critical to our design. Leveraging

7



Table 3: Evaluation results on Matbench-Discovery [59], MDR phonon [45], elastic tensor [16, 34],
and AdsorbML benchmarks [42]. Results are also provided for a diverse set of molecule [43] and
molecular crystal [29, 23] benchmarks. NVE MD [21] tests whether energy conservation is observed
when running the model for molecular dynamics. SOTA results from literature are reported where
available. Additionally, for the materials evaluations, UMA models were fine-tuned on MPtrj [17]
and sAlex [61, 5] to be consistent with the benchmark’s DFT settings.
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UMA
UMA-S-1.1 0.913 0.064 0.020 0.204 18.82 5.48 9.47 5.16 ✓ 66.80% 4.86 127.7 20.4 194.7 ✓ 2.13 0.86 0.13
UMA-M-1.1 0.929 0.061 0.018 0.176 14.81 3.87 8.57 4.78 ✓ 72.25% 2.96 76.8 15.5 138.1 ✓ 3.24 0.82 0.14

Literature
eSEN-30M-OAM [21] 0.925 0.061 0.018 0.170 15.00 4.00 9.13 5.73 ✓ - - - - - - - - -
ORB v3 [58] 0.905 0.075 0.024 0.210 - - - - - - - - - - - - - -
SevenNet-MF-ompa [36] 0.901 0.064 0.021 0.317 - - - - - - - - - - - - - -
GRACE-2L-OAM [8] 0.880 0.067 0.023 0.294 - - - - - - - - - - - - - -
MACE-MPA-0 [6] 0.852 0.073 0.028 0.412 - - - - - - - - - - - - - -
eqv2-OC20 [42] - - - - - - - - - 60.80% - - - - - - - -
GemNet-OC20 [42] - - - - - - - - - 54.88% - - - - - - - -
eSEN-sm-cons. [43] - - - - - - - - - - 4.66 147.3 21.6 197.0 ✓ - - -
eSEN-S-OMC [23] - - - - - - - - - - - - - - - 6.18 0.74 0.18

our MoLE strategy, we can pre-merge all the weights and pay no additional penalty in inference
time or memory when running a long time-scale simulations on a single system. Here we show that
UMA models, despite having very large parameter counts and achieving SOTA accuracy across many
domains, are extremely competitive in simulation settings in both speed and raw number of atoms
that can fit in memory compared to specialized single-domain models. For example, the UMA-S
can simulate 1000 atoms at 16 steps per second (1.4 ns-per-day) and fit system sizes up 100,000 or
more atoms in memory on a single 80GB GPU. Lastly, our models are designed to be scaled with
multi-GPU parallel inference using the Graph Parallelism strategy [66] described in training; giving
the potential to provide orders of magnitude speed-ups when running simulations at the 100k+ atoms
scale and unlock new science that is not possible today. We will leave multi-GPU inference outside
the scope of this paper.

4.4 Evaluation

Our evaluation contains two main components: (1) a diverse set of held-out test splits (Table 2) and
(2) a suite of practically important benchmarks (Table 3). To cover all chemical domains studied:
materials, catalysis, molecules, molecular crystals, and metal–organic frameworks (MOFs), we
propose new test sets and benchmarks, in addition to established benchmarks in existing literature.
We highlight selected results below, with a more detailed discussion in Appendix E.

Materials. In Table 2, we report the test-set performance on two OOD test sets: WBM [74] and
high entropy alloy (HEA). The HEA test set is introduced in this work (Appendix E.2). UMA-M
performs on-par with SOTA task specialized models, such as eSEN-30M-OMat and eqV2-OMat.
The degraded performance of UMA-L on energy of the HEA dataset (Table 11) suggests overfitting,
and demonstrates the test set’s challenging nature. In Table 3, we report benchmark results on the
prediction of materials’ thermodynamic stability, thermal conductivity, and vibrational properties.
Note for these results, the UMA models are fine-tuned on the MPTrj [17] and sAlex [61, 5] to be
consistent with the DFT settings of the public benchmarks. On the popular benchmark Matbench-
Discovery (MBD) [59], UMA-M achieves the highest F1 score to date. All UMA models of different
sizes show strong performance, which suggests that further scaling of model sizes is unlikely to result
in better performance on the MBD benchmark. The conserving UMA models (S and M) also excel at
phonon-related properties, which are reflected by metrics including κSRME, free energy MAE, and
shear/bulk elasticity MAE.

Catalysis. We evaluate our models on two established catalysis benchmarks: OC20 S2EF [11] and
AdsorbML [42]. These benchmarks focus on adsorption energy predictions – that is, the models
predict the change in energy as a molecule, known as an adsorbate, comes in contact with a surface.
Most previous models on the OC20 benchmark directly predict the adsorption energy given the
adsorbate’s position on the surface. Since our model predicts total energy, we make a total energy
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prediction on the same structure, and another on a clean surface without the adsorbate [1]. These two
values are subtracted (along with the energy of the adsorbate in isolation) to predict the adsorption
energy. As shown in Table 2, UMA models significantly outperform previous SOTA models on
OC20 S2EF adsorption energy prediction – reducing the errors by around 80%. On the more realistic
benchmark of AdsorbML, which evaluates a model’s capability to predict the global minimum
adsorption energy, all UMA models outperform the previous SOTA (EquiformerV2). In particular,
UMA-L achieves a 25% improvement in the success rate (Table 12).

Molecules. Initial UMA models were trained on a preview subset (≈ 70%) of the OMol25 dataset,
since portions of the dataset were still being calculated when UMA model training began (results in
Appendix E). Both UMA-1 and UMA-1.1 were trained on the full OMol25 dataset. In Table 2, we
report the prediction performance on two challenging test splits of OMol25: OOD-Comp and OOD
PDB-TM. Our results show that UMA-S achieves performance comparable to the domain-specific
eSEN-sm-cons, while UMA-M significantly outperforms both models. In Table 3, we first consider
two informative benchmarks for drug discovery: ligand strain energy and pocket-ligand interaction
energy prediction. In particular, UMA-M demonstrates high accuracy in predicting ligand strain
energy, making it practical for real-world applications. For the distance scaling benchmarks (short
and long range), UMA-S slightly surpasses eSEN-sm-cons despite having the same receptive field.

Molecular Crystals. In contrast to materials, molecules, and catalysis, the development and use of
universal MLIPs for molecular crystals has been relatively underexplored. In addition to the OMC25
test set, we evaluate our UMA’s capability to accurately predict lattice energies, rank, and match
structures of the most recent 7th Crystal Structure Prediction (CSP) Blind Test [29]. In all evaluations,
UMA-S outperforms the task-specific eSEN-S-OMC baseline, which was trained on the OMC25
dataset [23]. The high accuracy of lattice energy predictions (≤ 3 kJ/mol) indicates that UMA can be
a reliable substitute for DFT in many crystal structure prediction applications.

Metal Organic Frameworks. Computing the adsorption energy of CO2 for a MOF sorbent is
important for direct-air carbon capture applications and an established benchmark [67]. Similar to
OC20, UMA models use total energy predictions to compute the adsorption energy. UMA models
perform on par with previous SOTA models on the ID test set (Appendix E) while achieving the best
performance on the hardest ODAC OOD test set (Table 2), suggesting improved generalization.

5 Related Work

5.1 Universal MLIPs

The field of MLIPs has been rapidly improving due in part to the availability of larger datasets. A
recent example in the materials space is the release of the Alexandria [61] and OMat24 [5] datasets,
which quickly led to improved performance on the Matbench-Discovery leaderboard [59]. While
MLIPs trained on these materials datasets are often referred to as "universal" because they include
nearly all the elements in the periodic table [12, 6, 20, 51, 48, 77, 53], they may not generalize well to
other domains such as molecules [37] or surfaces [11]. One reason for this is the chemical, structural,
and elemental distribution shifts between materials and other domains such as molecules. Another
reason is the level of DFT theory that is considered accurate differs between domains, e.g. PBE for
materials and ωB97M-V for molecules. As we demonstrate, training across domains can lead to
unified representations and help generalization.

While there have been a number of promising works exploring training MLIPs across multiple
domains, it remains an open challenge to demonstrate high-accuracy zero-shot performance. One
approach is to pre-train a model using a large corpus of data (> 100M) and fine-tuning for specific
tasks [65, 79]. The fine-tuned models are shown to perform significantly better than models trained
from scratch. Nevertheless, removing the need for specialization would make these models substan-
tially more useful. Recent studies suggest that achieving zero-shot performance across two DFT tasks
may be possible [36, 64].

5.2 Scaling Relations

Empirical scaling laws provide a wealth of insight into the relationships between compute, data, and
model size. In LLMs, scaling laws motivated the community to train on more tokens with larger
models because performance improvements became predictable [28, 24, 35]. Additionally, scaling

9



relations help practitioners decide on how to best (compute-optimal) allocate resources such as dataset
and model size. These types of relations have been explored in MLIPs to compare the asymptotic
scaling behavior of different model architectures and training paradigms. For example, [10] showed
that equivariant models have different scaling behavior compared to non-equivariant models.

6 Limitations

While UMA represents a significant step forward, there are still limitations and areas for improvement.
Currently, the UMA models are limited in their ability to model long-range interactions. Our small
and medium models use a standard MLIP cutoff distance of 6Å, the actual receptive field is much
larger due to message passing, but this can present a problem for inputs where sets of atoms are
separated by more than 6Å. For example, if an adsorbate starts at 7Å from a catalyst’s surface the
model views these as two independent non-interacting structures. Improvements may also be made in
how charge and spin are incorporated into the model [17]. Currently, each discrete charge or spin
uses a separate embedding, which limits its ability to generalize to unseen spins or charges.

Our work aims to accelerate scientific discovery in chemistry and materials science using MLIPs;
however, potential misuses exist, and we train on datasets designed for applications beneficial to
society to mitigate these risks.

7 Discussion and Conclusion

We explore techniques for training MLIPs across diverse DFT tasks using nearly 500 million training
examples gathered over numerous datasets. By taking advantage of scaling relationships between
dataset size, model capacity and loss, we are able to train models that are competitive with–or better
than–task specialized models. Naive approaches to scaling model parameters would result in an
accurate but slow model. To address this, we introduced Mixture of Linear Experts, a method to
increase model capacity while maintaining inference efficiency. Among our family of models, UMA-
S offers a favorable balance between speed and accuracy, capable of performing MD simulations of
1,000 atoms at 1.4ns per day on a single 80GB GPU.

We evaluated UMA across a wide-range of benchmarks for materials, molecules, catalysts, molecular
crystals, and metal organic frameworks, demonstrating strong performance across all. For well
established benchmarks, such as AdsorbML and Matbench Discovery, we achieve new state-of-the-
art results. Looking ahead, the development of more challenging benchmarks will be crucial for
driving progress in the field.

Our findings suggest that a single model can achieve sufficient accuracy for practical research
applications across a broad spectrum of chemistry and materials science applications. This paves the
way for universal MLIPs and opens new opportunities for atomic simulations at scale.
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A Training Details and Hyperparameters

A.1 Two-stage training

While conservative models have been found to provide reliable performance in diverse physical
property prediction tasks [21], the backward pass required for force/stress prediction significantly
increases inference costs. Models with direct force prediction are much more efficient, and have been
found to be effective as a pre-training strategy to save compute when subsequently fine-tuned as a
conservative model [21, 7]. The UMA-S and UMA-M both follow this procedure. In addition, we
introduce low-precision training, max-atom batching, and max neighbor switching to further enhance
the scalability and efficiency of our training process. These novel strategies are discussed in turn
below. Detailed hyper-parameters are summarized in Table 4.

Precision. For pretraining, we used BF16 numerical format, commonly used in training LLMs but
uncommon in MLIP models due high numerical precision requirements. In our experiments, we
found that BF16 is significantly more stable than AMP-FP16 (automatic mixed precision) especially
in our multi-modal setting where data distributions can vary dramatically, frequently causing gradient
and loss spikes that would destabilize AMP training. However, it suffers an accuracy drop compared
to AMP-FP16 and FP32. We found the degradation can be nearly completely recovered after a very
small number of finetuning steps in FP32 (<1% of data).

Max-atom Batching. Due to the large differences in system topology and number of atoms/edges
per system, using a fixed number of systems as batch size is infeasible. Instead we chose to use a
max-atom batching scheme where we randomly pack batches that contain as close to an upper bound
(max atoms) as possible without going over to guarantee an upper bound on memory usage.

Max Neighbors. For training efficiency purposes, we use a significantly smaller number of neigh-
bors per atom during pretraining and found that it has no effect on the final performance, energy
conservation, and smoothness properties of the model after finetuning with effectively “infinite” max
neighbors.

A.2 Parallelisms

Although our models are designed with inference efficiency in mind, training models with a large
number of MoLE experts is memory intensive, In particular, for the finetuning stages, a combination
of infinite neighbors, FP32 precision, and autograd forces puts significant constraints on memory and
training speed. We used a combination three parallelism training techniques summarized as follows:

• Graph parallelism (GP) [66]: Partitioning graphs across GPUs during message passing
layers is used when scaling up to a large number of atoms at large model sizes. Graph
partitioning is only used within a node with a fixed graph parallel rank size (2 or 4) during
conservative fine-tuning stages.

• Fully-sharded data parallel (FSDP): We use the Pytorch FSDPv1 implementation on MoLE
expert layers only for models with a total parameter count exceeding 1B during conservative
fine-tuning when memory is scarce. Parameters are sharded within a node and replicated
across nodes.

• Distributed Data Parallel (DDP): We use the standard PyTorch DDP implementation, with
modifications for per-atom loss averaging and compatibility with graph parallelism.

Furthermore, we leveraged Pytorch’s Distributed Checkpointing framework to ensure saving and
loading extremely large checkpoints is efficient and stable across different node configurations.
Exponential moving average (EMA) is used for stable validation performance.

A.3 Model

One model for all tasks. UMA is designed for multi-task learning under diverse DFT settings. For
two inputs with exactly the same atomic numbers and positions, the DFT labels will be different
when different DFT settings are used. Such DFT settings include the level of theory and system
total charge/spin. These task specifications are global information of the atomic system, and we
process them through initial embedding layers. In this paper, five levels of theories are involved –
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Table 4: Summary of main training-related hyper-parameters for the pre-training and fine-tuning
stages. These hyper-parameters are shared among model sizes.

Hyper-parameter Pre-training Finetuning

Precision BF16 FP32
Radius cutoff Å 6 6
Max neighbors 30 300
Force prediction Direct Autograd
Stress prediction None Autograd
Optimizer AdamW AdamW
Learning rate scheduling Cosine Cosine
Maximum learning rate 8× 10−4 4× 10−4

Warmup epochs 0.01 0.01
Warmup factor 0.2 0.2
Gradient clipping norm threshold 100 100
Model EMA decay 0.999 0.999
Weight decay 1× 10−3 1× 10−3

Energy loss coefficient 10 20
OMol energy loss coefficient 30 -
Force loss coefficient 30 2
Stress loss coefficient - 1

Table 5: Hyper-parameters for UMA models of different sizes.

Hyper-parameters UMA-S UMA-M UMA-L

Number of MoLE experts 32 32 Dense
Number of layer blocks 4 10 16
Maximum degree Lmax 2 4 6
Maximum order Mmax 2 2 2
Number of channels Nchannel 128 128 256
Number of radial basis functions 64 128 256
Global batch size (atoms) 88k 44k 44k
Number of pre-training steps 1.68M 2.08M 2.58M
Number of fine-tuning steps 1M 545k 350k

OMat24, OC20, OMol25, OMC25, and ODAC25 all use different DFT levels of theory. OMol25
further contains systems with non-neutral charge/spin.

For this iteration of the UMA models, these global information are embedded as follows:

Furthermore, to use a single model for all tasks, it is crucial to normalize the labels such that targets
from different datasets fall into similar numerical ranges. We specifically design a referencing scheme
that brings the diverse datasets to a similar level, detailed in Appendix B. The model hyperparameters
are shown in Table 6.

A.4 MPtrj and sAlex Fine-tuning

For materials evaluations, UMA models were fine-tuned on the MPTrj [17] and sAlex [61, 5] datasets
to ensure consistent DFT settings. The fine-tuning procedure is the same as eSEN-30M-OAM as
documented in [21].

A.5 Training Compute Resources

The resources used to train UMA models are described in Table 7.

A.6 Referencing and Normalization

While each dataset used in this work comes with its own specific set of DFT settings, we wanted a
referencing scheme that provides a way to make energy magnitudes comparable across datasets. We
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Table 6: Hyper-parameters for UMA models of different sizes.

Hyper-parameters UMA-S UMA-M UMA-L

Number of MoLE experts 32 32 Dense
Number of layer blocks 4 10 16
Maximum degree Lmax 2 4 6
Maximum order Mmax 2 2 2
Number of channels Nchannel 128 128 256
Number of radial basis functions 64 128 256
Global batch size (atoms) 88k 44k 44k
Number of pre-training steps 1.68M 2.08M 2.58M
Number of fine-tuning steps 1M 545k 350k

Table 7: Training Times for UMA models.

Model Stage GPUs in Parallel Training Days GPU-Type

UMA-S Direct Pre-train 128 5 H200 140GB
UMA-S Conserve Fine-tune 256 5 H200 140GB
UMA-M Direct Pre-train 128 14 H200 140GB
UMA-M Conserve Fine-tune 256 14 H200 140GB
UMA-L Direct Pre-train 128 25 H100 80GB
UMA-L Stress Fine-tune 128 4 H100 80GB
UMA-L FP32 Fine-tune 128 2 H100 80GB

do this through a "heat of formation" (HOF) reference that is applied to the energies:

Eref = EDFT −
N∑
i

[
Ei,DFT −∆Hf,i

]
Where EDFT corresponds to the total DFT energy of the system, i is the atom number, N is the
total number of atoms in the system, Ei,DFT is the DFT energy of an isolated atom i in a box, and
∆Hf,i is the heat of formation of atomic number i as taken directly from Mendeleev [49]. Ei,DFT

was calculated using the DFT settings for each of the unique datasets in this work. Additionally, we
apply a linear reference to the above energies to help with the convergence and training stability of
our models. We follow the same protocol as described in the OC22 Appendix [72].

We use a custom normalization x′ = x−µ
σ for all targets (energy, forces, stress), where the shift term

µ = 0 and the scale term σ = Force root mean square (RMS). For the combined dataset the Force
RMS is computed as the weighted average (based on the number of systems) of all individual dataset
Force RMS values.

B Training Data

A summary of the five datasets used to train UMA is shown in Table 8. In total, the dataset has 459
million training examples, containing up to 350 atoms. The average number of atoms varies based on
the dataset, from 19 for OMat24 to 178 for ODAC25.

Table 8: Overview of the five datasets used to train UMA. For each dataset various statitiscs are
provided alongside the sampling ratio used for training.
Dataset Domain Training Size Labels # Elements Avg Size Force RMS Sampling ratio

OMat24 Materials 100,824,585 E,F,S 89 19 2.83 4
OMol25 Molecules 75,889,983 E,F 83 52 0.985 4
OC20++ Catalysis 229,054,043 E,F 56 77 0.624 1
OMC25 Molecular Crystals 24,870,226 E,F,S 12 130 0.103 2
ODAC25 MOFs 28,517,826 E,F 70 178 0.046 1

Total 459,156,663
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B.1 Materials

The field of inorganic bulk materials is moving at an incredibly fast pace. Here we train on the
Open Materials (OMat24) dataset (100M) [5], one of the largest and most diverse datasets in the
community. All DFT calculations from this domain were run with VASP [39, 38, 40, 41] and used the
PBE [55] functional. Due to the differences in psuedopotential version and different pseudopotentials
for certain elements in OMat24 and Materials Project [5] calculation settings used for the data in most
third party benchmarks, finetuning was also performed on MPtrj [17] and subsampled Alexandria
(sAlex) [61] to ensure consistent evaluation on the materials benchmarks.

B.2 Molecules

The community has seen dozens of molecular datasets spanning different scales for a variety of
applications []. However, the varying levels of DFT theory and quality makes it challenging to
unify under a single model. The release of the Open Molecules 2025 (OMol25) dataset [43] helps
address this by providing the largest single dataset (100M+) spanning 80+ elements covering metal-
complexes, biomolecules, electrolytes, and several existing datasets under a single, high-quality level
of theory. All DFT calculations were performed using Orca [50] (ωB97M-V/def2-TZVPD). At the
time of training, only 75M samples from OMol25 were available for use, and we refer to this as
OMol-preview. Splits were constructed to ensure that this snapshot of the dataset is consistent with
the full dataset release. All ablations and results were trained with this OMol-preview, unless stated
otherwise. Released models, however, will be retrained with the full OMol25 dataset to ensure the
best models are accessible by the community.

B.3 Catalysis

The Open Catalyst (OC20) dataset [11] provides the largest adsorbate+surface dataset in the com-
munity. OC20 enumerates 1M+ unique surface + adsorbate combinations, spanning 55 elements,
and runs local geometry optimizations. Here, we train on the OC20 All (133M), MD (38M), and
Rattled (17M) datasets. Unlike prior work, we also leverage OC20’s clean surface data (14M) since
models here are trained on total energies. One limitation of OC20 is that it only contains single
adsorbates that interact with a surface. To address this, we introduce the OC20-Multi-Adsorbate
(mAds) dataset (22M) to better capture coverage effects and adsorbate-adsorbate interactions. All
DFT calculations were performed using VASP [39, 38, 40, 41] with the RPBE exchange-correlation
functional functional [26].

B.4 Molecular Crystals

The most recent 7th Crystal Structure Prediction (CSP) Blind Test organized by Cambridge Crystallo-
graphic Data Center (CCDC) demonstrated the effectiveness of tailored machine learning interatomic
potentials (MLIPs) in predicting, filtering, and ranking molecular crystal structures [30, 29]. However,
despite the widespread applications of molecular crystals, there has been limited focus on developing
universal MLIPs for molecular crystals, mostly because of the scarcity of publicly available datasets.
Currently, publicly available datasets of molecular crystals are scarce, with at most 60,000 materials
represented [3, 9]. To address this data gap, we use the Open Molecular Crystals (OMC25) dataset,
which comprises 25 million molecular crystal structures. The dataset includes multiple relaxation
trajectories of various molecular crystal packings generated with Genarris [71] starting from organic
molecules from the OE62 dataset [69]. The dataset includes 12 elements (all elements from OE62,
excluding Li, As, Se, and Te) and the maximum number of atoms is capped at 300. The dataset is
computed using VASP [39, 38, 40, 41] with the PBE exchange-correlation functional [55] and D3
dispersion correction [25]. The OMC25 dataset, along with in-depth details on data and polymorph
structure generation, will be released in an upcoming publication [23].

B.5 Metal-organic frameworks (MOFs)

The Open Direct Air Capture 2025 (ODAC25) dataset represents the largest MOF dataset (78M) for
DAC applications [68]. ODAC25 extends the earlier ODAC23 [67] dataset, and is derived from the
CoREMOF [13, 14] dataset. ODAC25 focuses on the adsorption and co-adsorption of CO2 and H2O
in MOFs among other adsorbates, which is critical for DAC performance evaluation. This work uses
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the subset of ODAC25 that overlaps with ODAC23, where all DFT-computed adsorption energies
have been upgraded to a higher k-points sampling grid density, providing improved accuracy over
ODAC23 (29M calculations). All DFT calculations were performed using VASP [39, 38, 40, 41]
with the PBE exchange-correlation functional [55] and D3 dispersion correction [25].

C Scaling Laws Methods

The scaling law experiments were only performed on pretraining; due to compute constraints, we did
not study the effect on finetuning with energy conservation. We used an 8-expert MoLE version of
the model with the UMA-M settings (lmax = 4, mmax = 2, and nneighbors = 30) for consistency.

C.1 FLOP counting

We approximate our training FLOPs by
C(N,D) ≈ κND, (3)

where N is the total number of parameters in the network, and D is the number of inputs (tokens for
LLMs and atoms or edges for MLIPs) computed on. This relationship holds for any network that is
dominated by linear layers where κ indicates how many times a parameters is re-used on an input.
For a single forward pass of a linear network, κ = 2. A full training cycle for such a network with
a single backward pass brings κ = 6 as we need to compute the gradient with respect to both the
parameters and inputs. Thus, for most LLMs κ = 6 FLOPs/parameter/token [35] for a single forward
and backwards pass where D is in units of tokens.

For our edge-based SO2 equivariant networks [54], κ is a function of lmax and mmax spherical
harmonic orders and the number of edges per atom nneighbors. For the scaling law experiments,
we used lmax = 4, mmax = 2, and nneighbors = 30 which corresponds to the settings of UMA-M
model, resulting in κ ≈ 270 FLOPs/parameter/atom (or 9 FLOPs/parameter/edge) per training step,
which can be computed or experimentally determined. As long as the number of input edges and
parameters are sufficiently large (which holds for UMA models), this flop approximation holds as
contributions from all other operators are marginal. We also verified this assumption with direct
FLOP counting in our model code.

Overall, parameter reuse is significantly higher in Equivariant-GNNs compared to LLMs, and hence
the flop count is 2-3 orders of magnitude higher for a similar parameter-sized LLM network.

C.2 Compute optimal fits

The compute optimal model and dataset sizes can then be fitted to power laws [35, 28]:

log(N∗(C)) = α log(C) +A

log(D∗(C)) = β log(C) +B (4)

Where C is the compute in FLOPs described in Appendix C.1. N∗(C) represents the optimal model
size (in parameters) as a function of compute, and D∗(C) represents the optimal dataset size (in units
of atoms). N∗(C) is determined by finding the minima of fitted parabolas for each Isoflop curve.
The 10% and 90% percentile bootstrap errors are shown in Figure 3(e). α and β are the scaling
coefficients w.r.t. model size and dataset size respectively. A and B are offset constants of the fit. Fit
coefficients and bootstrap errors are shown in Table 9.

C.3 Fitting loss vs. parameters

To understand the minimum achievable loss for dense vs MoLE models we can fit the more general
parameterized ansatz of L(N,D) proposed by [35].

L̃(N,D) = Ê +
Â

N α̂
+

B̂

Dβ̂
(5)
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This maps the power law coefficients from Equation 5 to those in Equation 4 by using α = β̂

α̂+β̂

and β = α̂
α̂+β̂

. Here we can either minimize the L̃(N,D) directly by fitting the 5 parameters

Ê, Â, B̂, α̂, β̂ with a iterative minimization procedure such as LBFGS [28, 10] or by examining the
loss as a power relationship of N∗ using

log L̃(N∗) = α̂ log(N∗) + γ (6)

where γ = log([1 + α̂
β̂
]Â) with Ê ≈ 0. We found both methods yielded similar results but the

minimization of L̃ was more sensitive to the choice of hyperparameters.

Table 9: Power Law Coefficients determined from fitting Equations 4 and 6. Error bounds are
determined by bootstrap sampling 1000 times and taking the 10th and 90th percentile values, quoted
in brackets.

Parameter Dense MoLE

α 0.61 (0.57,0.65) 0.56 (0.49,0.59)
β 0.39 (0.35, 0.43) 0.44 (0.39, 0.43)
A -4.5 (-3.8, -5.3) -3.8 (-2.56, -4.65)
B 3.6 (2.9, 4.4) 2.9 (1.6, 3.7)
α̂ -0.29 (-0.27, -0.31) -0.25 (-0.2, -0.3)
γ 2.16 (2.02, 2.34) 1.82 (1.61, 2.12)

D Inference

For inference benchmarking we use a periodic fcc carbon system with lattice constant a = 3.8Å.
This results in a fixed density of approximately 50 edges per atom within 6Å. For UMA models,
we use a combination of torch.compile, cuda graphs and pre-merged MoLE experts for inference
speed. For large number of atoms (> 1000), we use edge-based activation checkpointing to trade off
memory for some speed, allowing us to fit 100k+ atoms for the UMA-S into memory. We checked all
our optimizations chosen does not degrade simulation accuracy, equivariance or energy conservation
properties. While our benchmarks do not include graph generation, our internal CUDA based graph
generation algorithm is very fast and decreases throughput by no more than 10% even for the largest
systems tested. In the case of non-MoLE merging, we found the inference speed was comparable but
the parameters require more GPU memory to store.

Table 10: Single-GPU simulation speeds for energy-conservative models in steps per second: compar-
ing conservative UMA models to the top two models (eSEN and OrbV3) on the Matbench Discovery
leaderboard [59] and the MACE materials and molecules models. Benchmarks are run, excluding
graph generation, on a single Nvidia H100 80GB GPU using FP32 (TF32-high precision) and torch
compile when possible. Test systems are a standard periodic atomic system that have ≈ 50 neighbors
per atom with a 6Å cutoff. OOM indicates the model ran out of memory. Refer to Sec.D for more
details.

Atoms UMA-S
(6.6M)

UMA-M
(50M)

eSEN-30M-
OAM
(30M)

Orb-v3
conservative-

inf-omat
(25M)

MACE-
MPA-0
(9M)

MACE-
OFF23-L
(4.7M)

100 44 21 8 77 38 89
1,000 16 3 1.7 30 24 20

10,000 1.6 0.2 OOM 3.7 2.9 OOM
50,000 0.2 OOM OOM OOM OOM OOM

100,000 0.1 OOM OOM OOM OOM OOM

For fair comparisons against other models, we used pytorch2.6.0, cuda12.4, python3.12 and TF-32
precision universally on a H100 80GB GPU. We use standard torch.compile settings whenever
possible (only MACE-MPA-0 failed to compile). Different models have different radius cutoffs and
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max neighbors settings. We made sure that all models was receiving roughly 50 neighbors per atom
for the same number of atoms.

E Evaluations

Section E.1 provides results for all versions of UMA.

Sections E.2-E.6 provides additional results for the original version of UMA, which was trained on a
preview subset of the OMol25 dataset.

Table 11: Test MAE results on held out test splits for materials [59], catalysis [11], molecules [43],
molecular crystals [23] and MOFs [67]. All energies are in meV, forces are in meV/Å and stresses
are in meV/Å3. Results for UMA are compared against the SOTA literature results. Target accuracies
for practical utility are provided as an approximate guide for reference.
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UMA
UMA-S 20.0 60.8 4.4 22.0 72.8 3.1 52.1 24.3 70.2 30.9 3.64 10.80 0.88 16.12 0.91 4.77 0.97 292.4 16.0
UMA-M 18.1 51.4 4.3 19.0 62.2 3.2 33.4 16.0 46.5 21.0 3.26 9.09 0.69 10.37 0.82 3.00 0.98 290.2 10.7
UMA-L 17.6 45.5 3.8 24.8 48.3 2.8 32.4 12.2 43.5 15.9 2.33 5.19 0.81 8.76 0.59 2.28 0.10 291.1 6.5
UMA-S-1 19.4 62.2 4.5 21.9 73.5 3.1 53.1 24.5 70.4 31.2 0.96 8.25 0.93 15.56 0.93 5.15 1.01 287.1 13.6
UMA-S-1.1 20.2 62.8 4.4 24.9 83.7 3.5 51.5 24.1 68.8 30.7 0.95 8.64 0.84 15.47 1.03 5.04 0.93 289.9 13.3
UMA-M-1.1 18.2 50.7 4.2 21.9 69.0 3.5 31.8 15.5 45.5 20.2 0.74 5.44 0.50 10.14 0.84 2.83 0.90 294.1 10.3

Literature
eSEN-OMat [21] 16.2 49.6 4.1 20.0 59.5 3.2 - - - - - - - - - - - - -
eqV2-OMat [5] 14.9 46.3 3.6 20.3 47.0 2.7 - - - - - - - - - - - - -
eqV2-OC20 [44] - - - - - - 149.1 11.6 306.5 15.7 - - - - - - - - -
GemNet-OC20 [22] - - - - - - 163.5 16.3 343.3 23.1 - - - - - - - - -
eSEN-sm-cons. [43] - - - - - - - - - - 1.35 7.39 0.83 12.72 - - - - -
eSEN-S-OMC [23] - - - - - - - - - - - - - - 1.05 5.39 0.94 - -
eqv2-ODAC [67] - - - - - - - - - - - - - - - - - 316.0 7.2

Target
Practical Utility 10-20 - - 10-20 - - 100 - 100 - 1-3 - 1-3 - 1-3 - - 100 -

Table 12: Evaluation results on Matbench-Discovery [59], MDR phonon [45], elastic tensor [16, 34],
and AdsorbML benchmarks [42]. Results are also provided for a diverse set of molecule [43] and
molecular crystal [29, 23] benchmarks. NVE MD [21] tests whether energy conservation is observed
when running the model for molecular dynamics. SOTA results from literature are reported where
available. For the materials evaluations, UMA models were fine-tuned on MPtrj [17] and sAlex [61, 5]
to be consistent with the benchmark’s DFT settings.
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UMA-S 0.916 0.064 0.020 0.203 17.59 5.00 8.54 4.96 ✓ 68.35% 4.39 150.3 67.6 432.1 ✓ 2.695 0.82 0.12
UMA-M 0.930 0.061 0.018 0.195 13.91 3.39 8.40 4.76 ✓ 71.12% 2.45 89.7 41.6 588.7 ✓ 2.664 0.81 0.13
UMA-L 0.928 0.065 0.018 0.671 78.50 18.20 20.56 14.48 ✗ 74.41% 3.37 71.7 16.6 246.1 ✗ 2.488 0.84 0.12
UMA-S 0.916 0.064 0.020 0.203 17.59 5.0 8.54 4.96 ✓ 68.35% 4.39 150.3 67.6 432.1 ✓ 2.70 0.82 0.12
UMA-S-1 0.914 0.064 0.020 0.231 18.65 5.51 13.72 5.19 ✓ 64.85% 5.19 138.3 23.8 - ✓ 2.57 0.81 0.13
UMA-S-1.1 0.913 0.064 0.020 0.204 18.82 5.48 9.47 5.16 ✓ 66.80% 5.2 127.7 26.7 256.7 ✓ 2.13 0.86 0.13
UMA-M-1.1 0.929 0.061 0.018 0.176 14.81 3.87 8.57 4.78 ✓ 72.25% 2.3 76.8 21.5 214.8 ✓ 3.24 0.82 0.14

Literature
eSEN-30M-OAM [21] 0.925 0.061 0.018 0.170 15.00 4.00 9.13 5.73 ✓ - - - - - - - - -
ORB v3 [58] 0.905 0.075 0.024 0.210 - - - - - - - - - - - - - -
SevenNet-MF-ompa [36] 0.901 0.064 0.021 0.317 - - - - - - - - - - - - - -
GRACE-2L-OAM [8] 0.880 0.067 0.023 0.294 - - - - - - - - - - - - - -
MACE-MPA-0 [6] 0.852 0.073 0.028 0.412 - - - - - - - - - - - - - -
eqv2-OC20 [42] - - - - - - - - - 60.80% - - - - - - - -
GemNet-OC20 [42] - - - - - - - - - 54.88% - - - - - - - -
eSEN-sm-cons. [43] - - - - - - - - - - 4.52 147.3 28.6 268.6 ✓ - - -
eSEN-S-OMC [23] - - - - - - - - - - - - - - - 6.18 0.74 0.18
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E.1 Additional UMA Results

In this section, we provide results for the UMA, UMA-1, and UMA-1.1 models. The original
UMA models (S, M, L) were trained on a preview subset of the OMol25 dataset (≈ 70%), since
portions of the dataset were still being calculated when UMA model training began. Both UMA-1
and UMA-1.1 were trained on the full OMol25 as released 05/14/2025. The other datasets used for
training were unchanged, with the exception of the sampling ratios (Table 8) where the OMat24
coefficent was changed from 4 to 2 for both UMA-1 and UMA-1.1. UMA-1.1 resolved a size
extensive bug later discovered. These models were fine-tuned on our 1.0 models with the fix in place.
Tables 11 and 12 correspond to Tables 2 and 3 in the main text.

E.2 Materials

Table 13: Materials validation and test evaluations from OMat24 [5] and HEA. All energies are in
meV, forces are in meV/Å and stresses are in meV/Å3.
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Val [5] Test

WBM [5] OOD Composition [5] OOD Element [5] HEA
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UMA-S 11.3 57.1 2.9 0.98 20.0 60.8 4.4 11.5 57.0 3.0 9.9 56.9 2.6 22.0 72.8 3.1
UMA-M 10.0 47.3 2.7 0.99 18.1 51.4 4.3 10.2 47.6 2.9 8.5 47.1 2.4 19.0 62.2 3.2
UMA-L 9.7 43.5 2.5 0.99 17.6 45.5 3.8 9.8 43.6 2.6 8.1 43.6 2.3 24.8 48.3 2.8

Literature
eSEN-30M-OMat [21] 10.7 47.3 2.6 0.99 16.2 49.6 4.1 10.7 47.3 2.8 9.0 47.2 2.3 20.0 59.5 3.2
eqV2-86M-OMat [44] 10.0 44.9 2.4 0.99 14.9 46.3 3.6 10.0 44.5 2.5 8.8 44.7 2.1 20.3 47.0 2.7

Table 14: Materials evals results. We note that UMA models are fine-tuned on the MPTrj [17] and
sAlex [61, 5] datasets to be consistent with the DFT settings of the benchmarks.
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UMA-S 0.92 6.00 0.92 0.97 0.02 0.07 0.87 0.09 0.20 17.59 7.41 13.59 3.49 5.00 8.54 4.96 8.57 5.25 ✓

UMA-M 0.93 6.08 0.93 0.98 0.02 0.07 0.87 0.09 0.20 13.91 5.11 9.63 2.66 3.39 8.40 4.76 7.07 4.75 ✓

UMA-L 0.93 6.09 0.93 0.98 0.02 0.07 0.86 0.45 0.67 78.50 27.68 43.04 15.85 18.20 20.56 14.48 21.95 17.01 ✗

Literature
eSEN-30M-OAM [21]0.93 6.07 0.93 0.98 0.02 0.07 0.87 - 0.17 15.00 10.21 10.00 3.00 4.00 9.13 5.73 9.02 5.73 ✓

eqV2-86M-OAM [5] 0.92 6.05 0.92 0.98 0.02 0.07 0.85 1.82 1.94 840.33 377.96 426.79 102.72 251.14 19.60 26.25 22.02 26.50 ✗

Full results on materials’ benchmarks are in Tables 13 and 14. Table 13 shows both validation and test
results following OMat24 [5] along with the new high entropy alloy HEA test introduced in this paper.
The HEA dataset contains relaxation trajectories for over 5000 alloys with atomic configuration
disorder. Input structures were generated by sampling metallic element combinations of up to 6
different unique elements and using the special quasirandom structure method [80, 4] to decorate
face-centered cubic, body-centered cubic and hexagonal close packed structures. DFT relaxations
were carried out following the settings used in the OMat24 dataset [5].

In Table 14 we show full results for Matbench discovery [59], MDR phonon, elastic tensors, high
entropy alloy IS2RE and NVE MD conservation benchmarks. The Matbench-Discovery benchmark
evaluates a model’s ability to predict ground-state thermodynamic stability by optimizing geometry
and predicting energy. The thermal conductivity prediction task demands accurate modeling of
harmonic and anharmonic phonons, which are crucial for precise predictions of thermal transport.
The MDR Phonon benchmark assesses a model’s performance in predicting phonon and vibrational
thermodynamic properties. The MP elastic constant benchmark tests a model’s accuracy in predicting
bulk and shear moduli, requiring precise calculations of stress tensors and their derivatives with
respect to cell deformations.
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E.3 Catalysis

For catalysis, we show full validation and test results for OC20 [11] in Table 15. The structures in
the dataset contain molecules, called adsorbates, interacting with surfaces. The goal is to estimate
the adsorption energy, which is the change in energy as the adsorbates come into contact with the
surface, and the forces on the atoms. Force MAEs are comparable across UMA-M and UMA-L to
other state-of-the-art models. Adsorption energies for UMA are calculated by subtracting two total
energy calculations as described in the main text, which improves results over prior models.

In addition to energy and forces MAEs, we use AdsorbML to evaluate the performance on the
practically relevant task of finding the global minima adsorption energy [42]. One limitation of the
originally proposed AdsorbML pipeline is that it requires a DFT evaluation of the ML-identified
global minima structure. To make this benchmark more accessible to those without access to DFT,
we propose a slightly altered version of this benchmark that only requires ML. Here, we follow the
same AdsorbML pipeline but allow the use of the ML-predicted global minima energy, but success is
now only considered if the energy is within 0.1 eV of the DFT minima. Previously, success did not
enforce a lower bound so long a DFT evaluation confirmed that energy prediction is realized. Without
DFT, we also set a lower bound of 0.1 eV to provide some flexibility to finding a better global minima
than DFT. We show that metrics are still highly correlated when you perform the original evaluation
to the one proposed here.

Table 15: Catalysis validation and test results on OC20 [11] metrics. All energies are in meV and
forces are in meV/Å.

Model

Val (Total Energy) Test (Ads. Energy)

ID OOD-Both ID OOD-Both
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UMA
UMA-S 63.6 24.1 0.63 107.0 29.2 0.65 52.1 24.3 70.2 30.9
UMA-M 43.1 15.8 0.73 70.0 19.2 0.75 33.4 16.0 46.5 21.0
UMA-L 32.6 12.0 0.77 49.8 14.5 0.79 32.4 12.2 43.5 15.9

Literature
eqV2-OC20 [44] - - - - - - 149.1 11.63 306.5 15.74
GemNet-OC20 [22] - - - - - - 163.5 16.33 343.3 23.11

E.4 Molecules

Table 16: Open Molecule 2025 [43] validation evaluations across biomolecules, electrolytes, metal
complexes, neutral organics and OOD-comp. All energies are in meV and forces are in meV/Å. All
models are trained with preview OMol25.

Model

Biomolecules Electrolytes Metal Complexes Neutral Organics OOD-Comp
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UMA
UMA-S 0.53 5.69 2.69 11.65 4.63 37.85 1.00 13.15 3.62 12.02
UMA-M 0.44 3.95 2.28 10.21 3.60 28.81 0.68 7.00 3.21 9.90
UMA-L 0.33 2.90 1.13 4.52 3.35 24.85 0.65 5.02 2.39 5.83

Baseline
eSEN-S-OMol 0.54 6.06 2.52 12.63 4.27 37.30 0.84 13.00 3.69 12.78

We report results on molecules following the Open Molecules 2025 [43]. These include energy
and force estimates for validation and test splits, as well as, numerous other tasks. The validation
and test results are shown in Tables 16 and 17, respectively. Note that the eSEN-S-OMol model is
only trained on the preview OMol25 dataset, which is ≈ 70% of the full OMol25 dataset for a fair
comparison with the UMA models that were trained on the same subset. In general, the UMA-S and
eSEN-S-OMol models provide comparable results.

OMol25 [43] provides numerous other tasks for evaluation. These include evaluations which only
require the estimation of a single point DFT calculation and evaluations that require optimizations.
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Table 17: Open Molecule 2025 [43] test evaluations across biomolecules, electrolytes, metal com-
plexes, neutral organics and OOD-comp, metal ligand, PDB-TM, reactivity, COD and anions. All
energies are in meV and forces are in meV/Å. All models are trained with preview OMol25.

Model

Biomolecules Electrolytes Metal Complexes Neutral Organics OOD-Comp Metal Ligand PDB-TM Reactivity COD Anions
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UMA-S 0.51 5.70 3.80 13.95 3.07 33.56 1.49 20.33 3.64 10.80 1.23 17.71 0.88 16.12 4.82 61.80 2.92 29.82 0.66 10.85
UMA-M 0.42 3.89 3.29 13.19 2.40 24.85 0.98 10.83 3.26 9.09 0.99 12.04 0.69 10.37 3.88 47.75 2.19 20.11 0.50 8.03
UMA-L 0.34 2.92 1.41 5.42 2.47 21.67 1.03 6.91 2.33 5.19 1.05 10.00 0.81 8.76 3.93 41.97 2.57 15.44 0.62 5.90

Baseline
eSEN-S-OMol 0.52 6.06 3.52 15.23 2.86 33.30 1.35 20.06 3.67 11.56 1.18 17.49 0.79 14.11 4.89 61.16 2.93 24.12 0.47 10.38

Table 18: Open Molecule 2025 [43] single point evaluations for protein-ligand, IE/EA, spin gap
and distance scaling. All energies are in meV and forces are in meV/Å. All models are trained with
preview OMol25.

Model

Protein-ligand IE/EA Spin gap Distance scaling

Ix
n

E
ne

rg
y

M
A

E

Ix
n

Fo
rc

es
M

A
E

∆
E

ne
rg

y
M

A
E

∆
Fo

rc
es

M
A

E

∆
Fo

rc
es

co
si

ne
si

m
.

∆
E

ne
rg

y
M

A
E

∆
Fo

rc
es

M
A

E

∆
Fo

rc
es

co
si

ne
si

m
.

∆
E

ne
rg

y
(S

R
)

M
A

E

∆
Fo

rc
es

(S
R

)
M

A
E

∆
E

ne
rg

y
(L

R
)

M
A

E

∆
Fo

rc
es

(L
R

)
M

A
E

UMA
UMA-S 150.25 5.09 336.16 80.60 0.77 665.75 112.09 0.69 67.60 4.11 432.14 5.54
UMA-M 89.69 4.06 236.76 66.28 0.81 547.73 98.15 0.74 41.60 3.86 588.74 8.73
UMA-L 71.68 2.27 244.23 57.18 0.82 568.36 93.09 0.73 16.55 2.03 246.10 2.34

Baselines
eSEN-S-OMol 154.48 5.59 310.19 77.48 0.77 634.02 110.28 0.70 73.02 4.16 608.91 7.69

Table 19: Open Molecule 2025 [43] optimization evaluations including ligand-strain, conformer
prediction, and protonation states. Results are reported across a variety of energy and structure based
metrics for each task. All energies are in meV. All models are trained with preview OMol25.
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UMA-S 4.39 0.28 0.06 0.05 5.76 0.02 3.06 0.13 40.42 0.04 18.35
UMA-M 2.45 0.19 0.04 0.03 3.19 0.01 1.47 0.08 24.08 0.02 10.99
UMA-L 3.37 0.25 0.05 0.05 4.97 0.01 2.27 0.11 30.31 0.02 12.54

Baselines
eSEN-S-OMol 5.15 0.31 0.06 0.05 5.25 0.03 3.24 0.13 32.82 0.04 18.65

The comparison for single point DFT calculations is shown in Table 18. Similar to the test results,
the UMA-S and eSEN-S-OMol models perform similarly with the UMA-M and UMA-L performing
significantly better. Table 19 shows the results for tasks that require optimizations, which require
repeated calls to the model to update atoms positions until a local energy minima is found. The small
models report similar performance, and the UMA-M demonstrates the highest accuracies. It is likely
that UMA-M outperforms UMA-L due to UMA-M being energy conserving and better behaved
during optimization tasks.

E.5 Molecular Crystals

Open Molecular Crystals (OMC25) [23] evaluates whether a model can predict the packing of
molecule into crystal structures. This task requires the accurate estimation of inter-molecular forces.
Results on validation and test splits are shown in Table 20. It is notable that all sizes of UMA models
outperform the eSEN-S-OMC model trained on only OMC25. This indicates that the other datasets,
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Table 20: Open Molecular Crystals 2025 [23] validation and test table. All energies are in meV,
forces are in meV/Å and stresses are in meV/Å3.

Model

Val Test
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UMA
UMA-S 0.9 4.9 1.0 0.92 0.9 4.8 1.0 0.93
UMA-M 0.8 3.1 1.0 0.95 0.8 3.0 1.0 0.95
UMA-L 0.6 2.3 0.1 0.96 0.6 2.3 0.1 0.96

Baselines
eSEN-S-OMC 1.06 5.58 0.96 0.92 1.05 5.39 0.94 0.92

Table 21: Open Molecular Crystals 2025 [23] evaluation for polymorphs from the Structure Ranking
Phase of CCDC 7th CSP Blind Test [29]. All lattice energies are per molecule basis in kJ/mol.
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CCDC 7th CSP Blind Test Polymorphs
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UMA-S 2.69 3.67 0.73 0.82 0.93 0.12 0.07 0.99
UMA-M 2.66 3.71 0.60 0.81 0.91 0.13 0.07 0.99
UMA-L 2.49 3.70 0.81 0.84 0.95 0.12 0.07 1.00

Baselines
eSEN-S-OMC 6.18 7.38 0.07 0.74 0.87 0.18 0.08 0.91

such as OMol25, provide useful complementary information for the task. One important and real-
world task for molecular crystals is to predict the lowest energy packing, called a polymorph, for a
molecule. Results for this task for a subset of molecular crystal polymorphs from the most recent
7th Crystal Structure Prediction (CSP) Blind Test [29] are shown in Table 21. The pymatgen’s [52]
StructureMatcher class with default settings is used to match DFT and UMA-relaxed polymorphs,
and root mean square deviation (RMSD) is computed for matches. Similar to the test metrics, the
UMA models outperform the eSEN-S-OMC trained on only OMC25.

E.6 Metal–Organic Frameworks

Table 22: OpenDAC [67] val and test table. All energies are in meV and forces are in meV/Å.

Model

Val (Total Energy) Test (Ads. Energy)

ID OOD-L/T
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UMA
UMA-S 60.4 5.9 0.82 169.5 16.7 0.63 292.4 16.0 0.57
UMA-M 59.3 3.8 0.91 167.3 14.8 0.62 290.2 10.7 0.76
UMA-L 38.7 3.3 0.91 177.1 7.8 0.82 291.1 6.5 0.91

Literature
eqV2-ODAC [67] - - - 145.0 8.2 0.69 316.0 7.2 0.72

The results on OpenDAC [67] are shown in Table 22. The OpenDAC dataset contains Metal-Organic
Frameworks (MOFs) with CO2 and water molecules. The goal is to estimate the change in energy in
the presence with and without the CO2 and water molecules. These adsorption energies are computed
in the same manner as for catalysts. The use of total energies leads to significantly better adsorption
energy estimates, similar to catalysis. The forces of UMA-M and UMA-L are similar to the SOTA
eqV2-ODAC [67] model.
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Figure 4: Pre-training curves of UMA-L for both single-task and multi-task models. Errors are
normalized based on single-task performance. Note single-task models can overfit (forces on right),
and the multi-task model generally converges to lower errors.

F Single-task vs Multi-task

For large models, multi-task training offers benefits even without MoLE. In Figure 4, we plot the
direct-force pre-training curves of UMA-lg and single-task models with the same model architecture
and size. All metrics are normalized to those achieved with the models trained on single tasks to
easily compare their relative performance with multi-task models. We observe that single task models
frequently overfit to forces (OMat overfits upon further training), while the multi-task UMA model
does not. Furthermore, UMA achieves lower losses in most cases. The one exception is OMol forces,
for which errors are already small (< 10 meV/Å) for both models.

G Additional MoLE Analysis

G.1 Expert Analysis

Using a limited validation set consisting of 10,000 OMat24, 5,000 OC20, 20,000 OMol25, 10,000
OMC25, and 5,000 ODAC23 samples, we calculate the mean expert coefficient for each element-
expert pair across all systems where the pair appears. We visualize these results using 32 periodic
tables, each representing one of the 32 experts in UMA-S (Figure 5).

Additionally we visualize the expert cofficient mean and variance across datasets (tasks). Many
experts utilized in OC20 are also used in OMat24. In contrast, the experts associated with OMol25
show minimal overlap with other datasets, aside from a small subset shared with OM25C. Lastly
ODAC23 and OMC25 utilize the fewest experts, and these two share a single expert between them.6).

G.2 Generalization Across Architectures

Table 23: Testing the generalization capability of MoLE layers. We applied 8-expert MoLE layers to
both eSEN[21] and EquiformerV2[44] model architectures and measured their relative performance
on direct pretraining against the versions without no MoLE. For each row, we show the relative
improvement over the baseline.

OMol25 Val subset eSEN 6M EquiformerV2 6M
Metal Complexes +10% +10%
Spice +5% +5%
Neutral organics 0% +3%
Biomolecules +25% +21%
Electrolytes +12% +10%
Mean across subsets +10% +10%

We performed additional analysis to ablate the benefit of the MoLE layers. Since our MoLE implement
is very general and can be applied any linear layers inside a model, we ran experiments adding MoLE
to both eSEN and EquiformersV2 architectures, controlling for model size (6M base parameters) and
8 training epochs on Omol dataset, direct pretraining only.
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Figure 5: Log mean expert coefficient across element-expert pairs.

23 shows that despite EquiformersV2 and eSEN being very different architectures, the relative benefit
of adding MoLE is fairly consistent in both cases. This suggests that MoLE is a simple and general
approach to boost the capacity of MLIP models without incurring inference speed and memory
overhead.
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Figure 6: Log mean expert coefficient across element-expert pairs.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The abstract provides a short summary of the innovations
and key findings presented in the paper, while the introduction outlines the research problem,
objectives, and the significance of the work. Both sections are aligned with the results
discussed in the subsequent sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss some of the limitations of our work in the discussion section,
including long-range interactions and incorporation of charge and spin.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

32



Justification: We describe the architecture, especially the novel features, in detail as part
of the main text. We provide descriptions of the training procedure and the datasets used
in main text with additional details in the appendix. For established evaluations we cite
the standard procedure and if the evaluation is new we describe it. These cover the main
components needed to reproduce the main results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and data will be available upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide full details about the training procedure, hyperparameters, datasets,
and evaluations in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Given the computational expense, we did not train ensembles of models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We provide details about the resources used for training our main family of
models (small, medium, large) in the appendix. This includes a breakdown of the various
training stages.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We respect the NeurIPS code of Ethics and do our best to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the positive societal impact in the introduction/results and discuss
potential misuse and how that risk is mitigated in the discussion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The model will have appropriate terms of use when released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: We have cited any assets used (to the best of our ability), but we do not
explicitly state the license and terms of use for every asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: When we introduce new assets such as data/code/models we make sure they
are well documented. Upon publication, we plan to include URLs to access all new assets
including detailed license information. These have not been included in the initial submission
due to the difficulty in remaining anonymous.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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