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ABSTRACT

Automated diagnosis of Alzheimer’s Disease (AD) from brain imaging, such as
magnetic resonance imaging (MRI), has become increasingly important and has
attracted the community to contribute many deep learning methods. However,
many of these methods are facing a trade-off that 3D models tend to be inefficient
in training and inferencing while 2D models cannot capture the full 3D intricacies
from the data. In this paper, we introduce a new model structure for diagnosing AD,
and it can complete with 3D model’s performances while essentially is a 2D method
(thus computationally efficient). While the core idea lies in building different blocks
on different views according to physicians’ diagnosing perspectives, we introduce
multiple components that can further benefit the model in this new perspective,
including adaptively selecting the number of sclices in each dimension, and the new
attention mechanism. In addition, we also introduce a morphology augmentation,
which also barely introduces new computational loads, but can help improve the
diagnosis performances due to its alignment to the pathology of AD. We name
our method ADAPT, which stands for Alzheimer’s Diagnosis through Adaptive
Profiling Transformers. We test our model from a practical perspective (the testing
domains do not appear in the training one): the diagnosis accuracy favors our
ADAPT with 4.5% improvement, while ADAPT uses at leat 14% less parameters
than the state-of-the-art models.

1 INTRODUCTION

Alzheimer’s disease (AD) is a highly common neurodegenerative disorder that is usually diagnosed
by structural alterations of the brain mass. Assessing an AD usually involves the acquisition of
magnetic resonance imaging (MRI) images, since it offers accurate visualization of the anatomy and
pathology of the brain Zhou et al. (2023b). To overcome the vulnerability of misdiagnosis Despotović
et al. (2015) and to speed the diagnosis process, the community has been using machine intelligence
to help physicians diagnose AD diseases Jo et al. (2019).

Considering the complex structure of brain magnetic resonance imaging (MRI), in recent years,
Convolutional Neural Networks (CNNs) have been established with a dominant performance in the
AD-related field Salehi et al. (2020); Farooq et al. (2017), due to their effectiveness in extracting
meaningful spatial hierarchical features from complex images. Many methods Zhu et al. (2021); Wen
et al. (2020) try to learn the characteristics of AD using CNN-based models. However, the original
MRI is complex 3D data, with the proposed 3D model, the input of the 3D convolution operation
introduces a third dimension, which greatly increases the burden on the computer. So they use a
bag of patches selected from the skull-stripped brain region. These approaches disregard the global
context information, which can have a substantial impact on accurately identifying lesions during
inference Wang et al. (2022). Moreover, CNNs are not well-suited for mining global long-dependent
information due to their inherent focus on extracting local information Luo et al. (2016); Dosovitskiy
et al. (2020).

Transformers Vaswani et al. (2017) have also been widely used in medical imaging because of their
superior performances over CNNs. Such spatial relationships are crucial in 3D MRI images for
Alzheimer’s diagnosis Iaccarino et al. (2021), where understanding cross-sectional interdependencies
is the key. However, transformer-based methods have yet to see widespread use in 3D medical image
diagnosis. A primary reason is that due to a lack of inductive bias of locality, lower layers of ViTs can
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not learn the local relations well, leading to the representation being unreliable Zhu et al. (2023). Also,
3D medical images are usually complex, making ViTs hard to pay attention to a special local feature
that will play a crucial role in Alzheimer’s diagnosis. Moreover, in 3D medical imaging, the scarcity
of datasets, largely due to ethical considerations that restrict access Setio et al. (2017); Simpson et al.
(2019), costly annotations Yu et al. (2019); Wang et al. (2023), class imbalance challenges Yan et al.
(2019), and the significant computational demands of processing high-dimensional data Tajbakhsh
et al. (2020), is a notable issue.

At the same time, these models typically treat all the dimensions in the same way. In contrast, when
physicians read the MRI, they usually pay different attentions to different dimensions of the images,
according to the atrophic patterns of the brain. This adaptive strategy of the physicians allows them
to diagnose more efficiently and accurately.

Inspired by the above, we propose ADAPT, a pure transformer-based model that leverages the
captured different features from each view dimension more smartly and efficiently. Our goal is to
classify Alzheimer’s disease (AD) and normal states in 3D MRI images. ADAPT factorizes 3D
MRI images into three 2D sequences of slices along axial, coronal and sagittal dimensions. Then we
combine multiple 2D slices as input and use a 2D separate transformer encoder model to classify.
At the same time, we also build attention encoders across slices from the same dimension and the
attention encoders across three dimensions. These encoders can help to efficiently combine the
feature information better than just keep training using the slices altogether. Benefiting from the
special encoder blocks with morphology augmentation and adaptive training strategy, ADAPT can
learn the AD pathology just using a few slices instead of inputting all 2D images, which can further
reduce memory footprint. The detailed architecture is shown in Section 3. Our contributions are as
follows:

• We proposed a new transformer-based architecture to solve the real-world AD diagnosis
problem.

• We proposed a novel cross-attention mechanism and a novel guide patch embedding, which
can gather the information between slices and sequences better.

• Considering the structure and difference between AD and normal MRI images, we designed
the morphology augmentation methods to augment the data.

• We proposed an adaptive training strategy in order to guide the attention of our model,
leading the model to adaptively pay more attention to the more important dimension.

• Overall, we name our method ADAPT, which is evaluated as the state-of-the-art perfor-
mance among all the baselines while occupying minimum memory.

2 RELATED WORKS

2.1 3D VISION TRANSFORMER

The recent success of the transformer architecture in natural language processing Vaswani et al. (2017)
has garnered significant attention in the computer vision domain. The transformer has emerged
as a substitute for traditional convolution operators, owing to its capacity to capture long-range
dependencies. Vision Transformer (ViT) Dosovitskiy et al. (2020) introduces transformer architecture
into the computer vision field and starts a craze in combining transformers and images together. Many
works have demonstrated remarkable achievements across various tasks, with several cutting-edge
methods incorporating transformers for enhanced learning.

Some attention-based methods have been proposed for 3D image classification. COVID-VIT Zhou
et al. (2023a) uses 3D vision transformers to exploit CT chest information for the accurate classifica-
tion of COVID. I3D Carreira & Zisserman (2017) proposes a new two-stream inflated 3D ConvNet
to learn seamless spatio-temporal feature extractors from video, which can be used to do human
action classification. At the same time, many existing works also deal with 3D object detection
problems. Pointformer Pan et al. (2021) captures and aggregates local and global features together to
do both indoor and outdoor object detection. 3DERT Misra et al. (2021) proposes an encoder-decoder
module that can be applied directly on the point cloud for extracting feature information, and then
predicting 3D bounding boxes. Also, image segmentation is a hot topic in the both computer vision
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and medical imaging fields. Swin UNETR Hatamizadeh et al. (2021) projects multi-modal input data
into a 1D sequence of embedding and uses it as input to an encoder composed of a hierarchical Swin
Transformer Liu et al. (2021).

Key Differences: These models are all using 3D architecture to deal with 3D input, which is
inefficient in medical field due to the high value of medical images and limited dataset size. Unlike
them, our 2D ADAPT utilizes different blocks to first extract features among different slices and
dimensions, then use a cross-attention mechanism to combine these features together, which can
better release the abilities of transformer architecture.

2.2 DEEP LEARNING FOR MEDICAL IMAGE ANALYSIS

With the success of deep learning models, extensive research interest has been devoted to deep learning
for the development of novel medical image processing algorithms, resulting in remarkably successful
deep learning-based models that effectively support disease detection and diagnosis in various medical
imaging tasks Chen et al. (2022). U-Net and its variants dominate medical image analysis, which is
widely used in image segmentation. Attention U-Net Oktay et al. (2018) incorporates attention gates
into the U-Net architecture to learn important salient features and suppress irrelevant features.

For medical image classification, AG-CNN Guan et al. (2018) uses the attention mechanism to
identify discriminative regions from the global 2D image and fuse the global and local information
together to better diagnose thorax disease from chest X-rays. MedicalNet Chen et al. (2019) uses the
resnet-based He et al. (2016) model with transfer learning to solve the problem of lacking datasets.
DomainKnowledge4AD Zhou et al. (2023b) uses ResNet18 to extract high-dimensional features
and proposes domain-knowledge encoding which can capture domain-invariant features and domain-
specific features to help predict AD. ACS Yang et al. (2021) leverages large amount of 2D images
and expands pretrained 2D convolutions to 3D on different view dimensions to solve 3D problems.
M3T Jang & Hwang (2022) tries to leverage CNNs to capture the local features and use traditional
transformer encoders for a long-range relationship in 3D MRI images.

Key Differences: These methods usually focus on CNN based model to extract and combine features,
which has been outperformed by transformer-based models. ACS tries to deal with 3D problems on
different view dimensions, nevertheless, the lack of an efficient fusion layer and the pure CNN-based
architecture will lead to a terrible understanding of the spatial relationship in 3D images. M3T tries
to concate transformer blocks after CNNs, however, they propose a much bigger model and treat all
slices as the same which is inefficient. In our work, we use a pure transformer-based model with
different kinds of encoders to do Alzheimer’s classification and have demonstrated ADAPT can
outperform other deep learning models in both classification accuracy results and model size.

3 METHODOLOGY

ADAPT mainly consists of three main parts: morphology augmentation, ADAPT encoder blocks
and adaptive training strategy. As shown in Figure 1, when a 3D MRI image comes in, it will be
first split into three sequences according to coronal, sagittal and axial view, then the images will
be augmented to align the pathology feature of AD with morphology augmentation (section 3.3).
Then the sequences will be encoded by different encoders to fully capture the features (section 3.1).
Before the next iteration, adaptive rank training will rank the importance of each view with the output
attention score from the final encoder, and resplit the next 3D image (section 3.4).

3.1 MODEL ARCHITECTURE

In the real-world setting, while physicians diagnosis alzheimer’s disease with MRI images, the
physicians will pay different attentions to different views according to the brain pattern. Because
clinicians usually diagnose AD using 2D slices but not the whole 3D MRI, we conjecture 2D slices
may contain more valuable information. Thus the design of ADAPT is inspired by this setting.
At the same time, manipulating spatial information is crucial for a variety of goals and cognitive
abilities Galati et al. (2010), and clinicians may use spacial information in their brain when diagnosing
the AD-related images. Thus to keep the ability of ADAPT in modeling the spatial information,
ADAPT mainly consists of 4 blocks:
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Figure 1: The detailed architecture for our ADAPT. ADAPT consists of three main modules: 1) Mor-
phology Augmentation for atrophy expansion and reduction. 2) Four blocks: Self-Attention Encoders
(SAE) across three views, Dimension-specific Self-Attention Encoders (DS-AE), Intra-dimension
Cross-Attention Encoders (IntraCAE), Inter-dimension Cross-Attention Encoders (InterCAE) with
fusion attention mechanism. 3) Adaptive Rank Training for dimension-based attention score calcula-
tion. After ranking, the score will be used to resample different amounts of 2D images on different
views.

• Self-Attention Encoders (SAE) across three views
• Dimension-specific Self-Attention Encoders (DS-AE)
• Intra-dimension Cross-Attention Encoders (IntraCAE)
• Inter-dimension Cross-Attention Encoders (InterCAE)

These encoders can not only extract and fuse features from local and global patterns but also assign
different attentions to different views. To be specific, first, to better obtain the complete information
of the 3D image, we cut each image along three views: sagittal view (along x-axis), coronal view
(along y-axis), and axial view (along z-axis). We use n images from each view as the model input.
Then similar to ViT, ADAPT also uses the image patch and patch embedding method to embed
the 2D images into 3 sequences including 3 × n slices with guide patch embedding layer xguide,
then concatenates them together as the input to the transformer encoders (Eq. 1). The guide patch
embedding aims to reshape the whole sequence into a sequence of flattened 2D patches that has the
same shape as the sequence after the normal patch, which means the guide patch embedding has
the input channel with the number 3× n. With the guide patch embedding design, we can use 3D
models to extract the global information and add it to each special slice sequence. Because our model
mainly focuses on 2D slice dimension, guide patch embedding can help to keep the relative position
information of 3D brain.

S0 = [xclass; xp1 + xguide; · · · ; xpn + xguide︸ ︷︷ ︸
sagittal

; · · · ; xp2n + xguide︸ ︷︷ ︸
coronal

; · · · ; xp3n + xguide︸ ︷︷ ︸
axial

]
(1)

S0 = S0 + Epos Epos ∈ R(3·n·N+1)×D (2)
Second, the lower layer encoders learn the bias attention among multiple slices and multiple views.
To be more specific, the shared Self-Attention Encoders (SAE) across three view dimensions are
designed to learn not only the attention of the slice itself but also the relationship between all slices.
The designed encoder can realize global information extraction for the first time. These encoders
can also help to keep the relative position information of 3D MRI. These networks are Siamese
networks Guo et al. (2017) which share the same weights.

Ss0 = [xsclass; xps ] s ∈ (1, 3 · n) (3)

Ssl = SAE(Ss
l-1) l = 1...LSAE (4)
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The Dimension-specific Self-Attention Encoders (DS-AE) also aim to learn the attention of the slice
itself. However, compared with SAE, these encoders focus more on the relationship between the
slices from the same dimension sequence. These encoders can better extract the local features from
the same view dimension. This will fill the gap that transformers cannot capture the local features
well however the local embeddings of different brain tissues (such as hippocampus and cortex) are
really important in AD diagnosis. In the following equation, t means the three different views.

St·sl = DSAEt(St·sl-1 ) s ∈ (1, n), t ∈ (1, 3), l = (LSAE + 1)...(LSAE + LDSAE) (5)

We will fusion the local features from the same dimension first. So we design Intra-dimension
Cross-Attention Encoders (IntraCAE). Here ADAPT will apply cross embedding mechanism to the
input embeddings. (Details are in section 3.2.) After the IntraCAE, the embeddings will gather the
features from different slices of the same view sufficiently.

St·sl =IntraCAEt(St·sl-1 ) s ∈ (1, n), t ∈ (1, 3),

l = (LSAE + LDSAE + 1)...(LSAE + LDSAE + LIntraCAE)
(6)

After combining the features between slices of the same dimension independently, the last In-
ter-dimension Cross-Attention Encoders (InterCAE) are proposed to learn the inter-dimension
relationship among different sequences from different views. This is corresponding to the SAE layer
and will gather the global features together. InterCAE will apply cross embedding mechanism again
into the view-dependent embeddings.

Stl = InterCAEt(Stl-1) t ∈ (1, 3)

l = (LSAE + LDSAE + LIntraCAE + 1)...(LSAE + LDSAE + LIntraCAE + LInterCAE)
(7)

Finally, the [class] tokens of the output from three dimensions will be averaged and sent to Layer
Norm and classification MLP head to get the final diagnosis result: AD or normal.

3.2 FUSION ATTENTION MECHANISM

The above architecture will allow us to learn the intricies of AD pathologies along three different
dimensions. However, the complicatedness of AD will require the model to thoroughly integrate the
information from these three dimensions. Thus, we propose a cross-attention mechanism, namely
fusion attention. The fusion attention adds the embeddings together directly. However, different from
simply adding them together one by one, it adds the embeddings representing the patches but not
the tokens. Note that the [class] token of each embedding has aggregated the information from one
slice in previous encoders, so this operation will let the embeddings more focus on themselves when
learning attention. At the same time, it can also extract the feature information from other slices or
dimensions. The fusion attention applied to both IntraCAE and InterCAE, but here we use IntraCAE
as an example:

St·sl = xt·sclass ⊕ (xp(t−1)·n+1
+ · · ·+ xpt·n) where s ∈ (1, n), t ∈ (1, 3) (8)

In a more formal way, the traditional attention mechanism is shown as Eq. 9. After fusing these two
embeddings, the K matrix of the first embedding will consist of the K value corresponding to the
[class] token from the first embedding, and the K matrix corresponding to fusion embedding, simi-
larly for Q matrix. After the matrix calculation, Eq. 11 fuses the information from two embeddings
while keeping some unique information from the special [class] token.

H = softmax(
QKT

√
dk

)V (9)

K1 = [Kclass1 ,K1 +K2], Q1 = [Qclass1 , Q1 +Q2] (10)

Q1K
T
1 =

[
Qclass1Kclass1 (Q1 +Q2)Kclass1

Qclass1(K1 +K2) (Q1 +Q2)(K1 +K2)

]
(11)

3.3 MORPHOLOGY AUGMENTATION

A key characteristic of the AD-plagued brain is that, as the disease progresses, an increasing amount
of brain mass will suffer from atropy. When this process is reflected in brain imaging, the there will
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AD MCI to AD NC MCI to NC

Figure 2: The visualization of Alzheimer’s Disease (AD) image, Normal Control (NC) image and
Mild Cognitive Impairment (MCI) image. The left is the raw image and the right is the augmented
image. Such that for the two images in the third blue border (MCI to AD), an MCI image (left) is
augmented by Morphology Augmentation into AD (right) and classified as AD for model training.
The cerebral ventricle (red circle) has a significant difference in size for AD and NC.

be empty “holes” of the brain if one has AD. Based on this, we propose a morphology augmentation,
an augmentation method which help to expand and reduce the size of the atrophy, causing the
improvement of the model. This augmentation is based on atrophy expansion and atrophy reduction
shown in Eq. 12, 13. f is the input image, bN is the atrophy expansion or atrophy reduction element,
(x, y) and (s, t) are the coordinates in f and bN respectively.

[f ⊖ bN ](x, y) = min
(s,t)∈bN

{f(x+ s, y + t)− bN (s, t)} (12)

[f ⊕ bN ](x, y) = max
(s,t)∈bN

{f(x− s, y − t) + bN (s, t)} (13)

We apply atropy expansion augmentation to AD images and MCI images and label the resultant
images as AD; on the other hand, we apply atropy reduction augmentation to Normal Control(NC)
images and MCI images and label the resultant images as NC, where MCI is the prodromal stage of
AD. The visualization of morphology augmentation is shown in Fig. 2.

3.4 ADAPTIVE TRAINING STRATEGY

To further investigate the potential of ADAPT, we propose an attention score based training strategy
in order to allow our model to extract more features from the more important dimension with limited
size of inputs. We calculate the attention score of each dimension after the final inter-dimension cross
attention encoder layer according to Eq. 14. Because our [class] token is dimension specific, so we
just calculate the attention score of the [class] token as the representation of the special dimension.
This strategy allows our network to adaptively choose the slice number of each dimension while
updating itself.

Hdim = softmax(
QclassdimK

T

√
dk

)V (14)

Algorithm 1 ADAPT Training Strategy
Input: 3D MRI Training set T , initial slice number list ψ, model ADAPT Θ, total slice number ntotal

Output: Updated model Θ, final list ψ
1: while Training do
2: With T and ψ, sample 2D data δa,δcδs on axial, coronal and sagittal views.
3: δa,δc,δs = SAE(δa,δc,δs)
4: δa,δc,δs = IntraCAEa(DSAEa(δa)), IntraCAEc(DSAEc(δc)), IntraCAEs(DSAEs(δs))
5: δa,δc,δs = InterCAE(δa,δc,δs)
6: Calculate score using Eq. 14 for three dimensions
7: Calculate cross-entropy loss and update Θ
8: if p then
9: Update ψ according to Eq 15.

10: else
11: INITIALIZE(ψ)
12: end if
13: end while

We then adaptively update the slice number of each dimension based on normalized attention scores
using Eq. 15, where n is the total slice number and ψ is the slice number list. Here we also constrain

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ADNI AIBL MIRIAD OASISModel name Model size
(#params) GFLOPs Morphology Aug val acc. test acc. test acc. test acc. test acc.

MedicalNet-10 17,723,458 225.7 No 0.855± 0.015 0.851± 0.016 0.880± 0.007 0.845± 0.007 0.802± 0.002
MedicalNet-10 Chen et al. (2019) 17,723,458 225.7 Yes 0.827± 0.013 0.811± 0.009 0.808± 0.011 0.849±0.016 0.752± 0.013
MedicalNet-18 36,527,938 492.6 No 0.772± 0.005 0.750± 0.006 0.874± 0.012 0.815± 0.010 0.801± 0.003
MedicalNet-18 Chen et al. (2019) 36,527,938 492.6 Yes 0.739± 0.008 0.782±0.002 0.757± 0.009 0.896±0.012 0.742± 0.010
MedicalNet-34 66,837,570 910.8 No 0.622± 0.005 0.635± 0.006 0.660± 0.012 0.704± 0.010 0.546± 0.003
MedicalNet-34 Chen et al. (2019) 66,837,570 910.8 Yes 0.635±0.018 0.691±0.012 0.727±0.010 0.805±0.006 0.711±0.004
MedicalNet-50 59,626,818 666.8 No 0.639± 0.012 0.650± 0.006 0.705± 0.007 0.742± 0.011 0.649± 0.014
MedicalNet-50 Chen et al. (2019) 59,626,818 666.8 Yes 0.612± 0.015 0.525± 0.014 0.614± 0.007 0.673± 0.004 0.660±0.013
MedicalNet-101 98,672,962 1181.1 No 0.619± 0.012 0.587± 0.015 0.674± 0.007 0.647± 0.003 0.585± 0.005
MedicalNet-101 Chen et al. (2019) 98,672,962 1181.1 Yes 0.571± 0.005 0.626±0.004 0.729±0.017 0.675±0.007 0.628±0.005
MedicalNet-152 130,831,682 1604.8 No 0.536± 0.014 0.540± 0.006 0.604± 0.009 0.560± 0.006 0.490± 0.009
MedicalNet-152 Chen et al. (2019) 130,831,682 1604.8 Yes 0.543±0.015 0.632±0.007 0.730±0.007 0.655±0.017 0.626±0.002
3D Resnet-34 63,470,658 341.1 No 0.540± 0.007 0.572± 0.009 0.545± 0.012 0.584± 0.005 0.492± 0.004
3D Resnet-34 He et al. (2016) 63,470,658 341.1 Yes 0.560±0.005 0.587±0.008 0.652±0.017 0.661±0.010 0.504±0.008
3D Resnet-50 46,159,170 256.9 No 0.540± 0.007 0.572± 0.009 0.545± 0.012 0.584± 0.005 0.492± 0.004
3D Resnet-50 He et al. (2016) 46,159,170 256.9 Yes 0.560±0.005 0.587±0.008 0.652±0.017 0.652±0.017 0.504±0.008
3D Resnet-101 85,205,314 391.1 No 0.556± 0.011 0.468± 0.014 0.601± 0.008 0.590± 0.015 0.537± 0.014
3D Resnet-101 He et al. (2016) 85,205,314 391.1 Yes 0.560±0.009 0.587±0.008 0.652±0.010 0.661±0.012 0.504±0.009
3D DenseNet-121 11,244,674 260.5 No 0.591± 0.001 0.545± 0.004 0.651± 0.012 0.670± 0.005 0.699± 0.007
3D DenseNet-121 Huang et al. (2017) 11,244,674 260.5 Yes 0.576± 0.009 0.620±0.005 0.781±0.005 0.375± 0.011 0.744±0.004
3D DenseNet-201 25,334,658 286.5 No 0.584± 0.005 0.605± 0.007 0.644± 0.008 0.540± 0.014 0.653± 0.007
3D DenseNet-201 Huang et al. (2017) 25,334,658 286.5 Yes 0.552± 0.003 0.620±0.007 0.691±0.015 0.385±0.006 0.674±0.014
Knowledge4D 33,162,880 633.9 No 0.605± 0.005 0.716± 0.003 0.764± 0.002 0.650± 0.002 0.799± 0.006
Knowledge4D Zhou et al. (2023b) 33,162,880 633.9 Yes 0.515± 0.010 0.617± 0.011 0.789±0.002 0.435± 0.005 0.744± 0.004
I3D 12,247,332 191 No 0.466± 0.008 0.612± 0.005 0.630± 0.008 0.537± 0.012 0.597± 0.007
I3D Carreira & Zisserman (2017) 12,247,332 191 Yes 0.465± 0.010 0.643±0.007 0.680±0.005 0.549±0.007 0.613±0.012
FCNlinksCNN 310,488,372 375.6 No 0.572± 0.008 0.453± 0.005 0.303± 0.008 0.718± 0.012 0.562± 0.007
FCNlinksCNN Qiu et al. (2020) 310,488,372 375.6 Yes 0.536± 0.006 0.474±0.016 0.477±0.004 0.743±0.006 0.563±0.011
COVID-ViT 78,177,282 448.6 No 0.515± 0.004 0.553± 0.007 0.543± 0.012 0.338± 0.002 0.682± 0.008
COVID-ViT Gao et al. (2021) 78,177,282 448.6 Yes 0.500± 0.002 0.569±0.013 0.630±0.014 0.38±0.002 0.720±0.011
Uni4Eye 340,324,866 78.4 No 0.519± 0.002 0.597± 0.017 0.655± 0.011 0.343± 0.004 0.713± 0.009
Uni4Eye Cai et al. (2022) 340,324,866 78.4 Yes 0.521±0.007 0.620±0.011 0.740±0.012 0.340±0.005 0.755±0.012
ADAPT 9,695,490 46.3 No 0.842± 0.005 0.862± 0.007 0.905± 0.003 0.853± 0.007 0.818± 0.009
ADAPT 9,695,490 46.3 Yes 0.900±0.009 0.920±0.002 0.921±0.004 0.907±0.005 0.864±0.002

Table 1: Comparison of accuracy various 3D CNN-based and transformer-based models on multi-
institutional Alzheimer’s disease dataset. The numerical numbers of models with morphology
augmentation are bolded when getting better performance.

the selection pool to make sure the model will attend across multiple attentions. The full training
strategy is shown in algorithm 1. To avoid the model will stick with certain view dimension after the
first choice, we also allow the model to change the attention with certain probabilities p.

ndim = round(
ˆHdim∑
r∈ψ r

∗ ntotal), ndim =

{
nmin, ndim ≥ nmin
nmax, ndim ≤ nmax

(15)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We implemented ADAPT using a Pytorch library Paszke et al. (2019).
ADAPT was trained using an AdamW optimizer with a learning rate of 0.00005. All other parameters
are default. At the same time, we also took the advantage of cosine learning rate from Loshchilov &
Hutter (2016). We treat this as a binary classification task, so we use cross-entropy loss Zhang &
Sabuncu (2018). The training process used 2 80G NVIDIA A800 GPUs. Due to the memory capacity,
we use 6 batches on each GPU, meaning a total batch size of 12. We also do data preprocessing, the
details are in Appendix A.1.

Datasets. To verify the effectiveness of our ADAPT, we use the dataset from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) for the training process. Then we also evaluate our trained
ADAPT and other baselines with AIBL, MIRIAD and OASIS datasets. The details of these datasets
can be found in Appendix A.2. Each of the images for any dataset is a 3D grayscale image.

4.2 EVALUATION BETWEEN BASELINES

Our ADAPT was compared with various baseline models, including 3D CNN-based models: 3D
DenseNet (121, 201) Huang et al. (2017), 3D ResNet (34, 50, 101) He et al. (2016) because they have
been widely used for AD classification Korolev et al. (2017); Ruiz et al. (2020); Yang et al. (2018);
Zhang et al. (2021). We also add other baselines to show the capability of our ADAPT, including:
MedicalNet Chen et al. (2019), I3D Carreira & Zisserman (2017), FCNlinksCNN Qiu et al. (2020)
and Knowledge4D Zhou et al. (2023b). Each MedicalNet is based on a basic Resnet He et al. (2016)
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model, such that MedicalNet-10 is based on Resnet-10 respectively. We also compare our method
with 3D transformer-based models: COVID-VIT Gao et al. (2021), Uni4Eye Cai et al. (2022).

In the experiment, we chose 48 slices as input, meaning 16 equidistant slices on each view as initial.
Because we found the central part of 3D images would be more important and consist of more useful
information, we applied the important sampling method in our slice-picking stage. To be more
specific, for a 224×224×224 image, we pick equidistant slices from 52nd to 172nd on each view.

The experiment is conducted for three times and the quantitative performance is presented in Table
1. We choose the model with the best validation accuracy on ADNI and then test it on various
Alzheimer’s disease datasets. This kind of method can verify if the model has learned well on the
knowledge that is highly transferable across different datasets. We also record the total parameters
and GFLOPs of each model. We set up an ablation study on Morphology Augmentation to test the
effectiveness. Overall, ADAPT achieves the best performance on i.i.d testing scenario (ADNI) as
well as all out-of-domain testing scenarios (AIBL, MIRIAD and OASIS). We believe these results
show that ADAPT is not only superior in Alzheimer’s diagnosis in i.i.d setting, but also fairly robust
when the testing data is collected from different facilities. At the same time, our model has the
least parameters and GLOPs, demonstrating the success of our novel method in attacking the AD
diagnosing task using 2D based model.

The best performance is achieved when ADAPT chooses 14 slices from saggital view, and 17 slices
from the coronal and axial view respectively. As compared with table 4, we found the interesting facts
that coronal and axial view may contain more differential relationships about cortex and ventricle of
AD and NC, which can help the model learn the special attention features accurately.

By analyzing the morphology augmentation result (bolded one), we found that it can greatly im-
prove the diagnosis accuracy on most models. However, for the Medicalnet with fewer layers, the
augmentation method cannot guarantee improvement. These are due to the following two reasons:

• The morphology augmentation method enlarges the dataset with the MCI data included.
The small CNN-based models will be overfitting quickly when trained with large dataset.
However, the transformer-based models usually need more data to be trained sufficiently,
thus morphology augmentation will show its power when applying transformer-based models
to alzheimer’s disease diagnosis.

• CNN-based models rely on local bias detection to do diagnosis. Morphology augmentation
may melt some of the cortex details but augment the atrophy (see Fig 2). This may cause
the lost of some local details.

4.3 ABLATION STUDY

To evaluate how effective each block is, we compared our ADAPT with other variants, changing one
setting each time. We first changed the transformer attention layers of each encoder. We investigate
how the number of layers will affect our ADAPT performance. The results are shown in Table 2,
there are four numbers in each variant, each one corresponding to an encoder block. Such as 1+1+2+2
meaning that the shared self-attention encoders, dimension-specific self-attention encoders, intra-
dimension cross-attention encoders and inter-dimension cross-attention encoders have 1, 1, 2, 2
transformer attention layer respectively. The result shows that ADAPT outperforms all the variants
on test accuracy in all four datasets.

Layer Number ADNI AIBL MIRIAD OASIS
Val acc. Test acc. Test acc. Test acc. Test acc.

1+1+1+1 0.713 0.776 0.800 0.685 0.793
2+2+1+1 0.770 0.811 0.863 0.903 0.716
2+2+2+2 0.881 0.911 0.897 0.669 0.800
3+3+3+3 0.917 0.895 0.907 0.723 0.806

Ours (1+1+2+2) 0.9 0.920 0.921 0.907 0.864

Table 2: Comparison of accuracy between
ADAPT and four variants ablating with different
numbers of transformer layers in each encoder
in the four datasets.

Cross-Attention Mechanism ADNI AIBL MIRIAD OASIS

Val acc. Test acc. Test acc. Test acc. Test acc.

No Cross-Attention 0.719 0.627 0.810 0.710 0.675
Class Token Cross-Attention 0.878 0.848 0.864 0.709 0.606
Easy Concat Cross-Attention 0.917 0.783 0.723 0.806 0.681

Ours (Fusion Attention) 0.9 0.920 0.921 0.907 0.864

Table 3: Comparison of accuracy between
ADAPT and three variants ablating different
cross attention mechanisms in the four datasets.
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Models ADNI AIBL MIRIAD OASIS

Val acc. Test acc. Test acc. Test acc. Test acc.

w/o Adaptive Training 0.855 0.836 0.883 0.882 0.807
w/o Guide Embedding 0.880 0.860 0.863 0.869 0.826

w/o Torchio 0.878 0.876 0.899 0.864 0.802
w/o Important Sampling 0.823 0.886 0.852 0.887 0.838

ADAPT 0.9 0.920 0.921 0.907 0.864

Table 4: Comparison of accuracy between
ADAPT and four variants ablating differ-
ent training augmentation settings in the four
datasets.

Component ADNI AIBL MIRIAD OASIS

Val acc. Test acc. Test acc. Test acc. Test acc.

w/o SAE 0.872 0.905 0.914 0.869 0.848
w/o DS-AE 0.859 0.859 0.901 0.781 0.817

w/o IntraCAE 0.885 0.867 0.904 0.885 0.827
w/o InterCAE 0.872 0.864 0.877 0.87 0.851

ADAPT 0.9 0.920 0.921 0.907 0.864

Table 5: Comparison of accuracy between
ADAPT and four variants ablating different
main components of ADAPT architecture in the
four datasets.

Table 3 shows how different cross-attention mechanisms will affect the final result. The first variant:
No Cross-Attention, meaning that we didn’t apply any cross-attention mechanism in the last two
encoder blocks. Class Token Cross-Attention is a variant of Eq. 10. It adds the [class] token
embedding up but not the embedding behind the [class] token. For the easy concat cross-attention
mechanism, it simply concatenates the embeddings from different slices and view dimensions into a
whole large embedding. Our proposed Fusion Attention achieves more than 7% improvements to
the ADNI test result while demonstrating superiority on other testing datasets, verifying that fusion
attention cannot only fuse the information while keeping the unique information in each embedding.

Table 4 shows other variables in our settings. We delete one important setting in each variant to
see the results. ADAPT outperforms all variant models in all four datasets by 3.2%, 7.1%, 3.8%
and 6.0%, respectively. The results show the great capability of different settings in augmenting the
model learning ability to classify 3D MRI.

Table 5 shows the results after ablating the main components of ADAPT one by one. We can find
that each component is indispensable and vital for the final performance of ADAPT. In conclusion,
DS-AE block will contribute the most, because it plays the role of extracting detailed features from
each 2D slice from different views, not only leading the whole model to focus on special features but
also guiding the adaptive training strategy to determine which view is more important.

4.4 VISUALIZATION RESULT

We visualize the activated area of our model based on the transformer attention map. Figure 3 shows
a NC-related attention map in 3D MRI images from ADNI dataset in sagittal, coronal and axial views.
Because ADAPT has 4 special encoders, we visualize the attention result after each encoder.

We found that for NC and AD result, the attention mostly focused on some special brain tissues, such
as hippocampus, cortex, ventricle and frontal lobe. Disruption of the frontal lobes and its associated
networks are a common consequence of neurodegenerative disorders Sawyer et al. (2017), as well as
the hippocampus is most notably damaged by AD Xu et al. (2021). Based on these understandings
of Alzheimer’s pathology Frisoni et al. (2010), ADAPT successfully captured the AD-related part
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Figure 3: Attention map for Normal Control
result. Each line corresponds to one view di-
mension: saggital, coronal and axial.
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dimension: saggital, coronal and axial.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

because with the procedure of Alzheimer’s, the hippocampus and cortex begin to atrophy, and the
ventricle begins to expand, which can serve as an evidence of morphology augmentation and confirm
the reliability of our proposed ADAPT.

5 CONCLUSIONS

We proposed a 3D medical image classification model, called ADAPT, that uses various 2D trans-
former encoder blocks for Alzheimer’s disease diagnosis. The proposed method uses shared self-
attention encoders across different view dimensions, dimension-specific self-attention encoders,
intra-dimension cross-attention encoders, and inter-dimension cross-attention encoders to extract
and combine information from high-dimensional 3D MRI images, with novel techniques such as
fusion attention mechanism and morphology augmentation. With different encoders, our adaptive
training strategy can allow physicians to pay more attention to different dimensions of MRI images.
The experiments show that ADAPT can achieve outstanding performance while utilizing the least
memory compared to various 3D image classification networks in multi-institutional test datasets.
The visualization results show that ADAPT can successfully focus on AD-related regions of 3D MRI
images, guiding accurate and efficient clinical research on Alzheimer’s Disease.
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A ALZHEIMER’S DIAGNOSIS EXPERIMENTS

A.1 IMPLEMENTATION DETAILS

We implement consistent data pre-processing techniques to normalize and standardize MRI images
sourced from a multi-institutional database. We first do data augmentation in the following steps. we
have followed closely the recommended protocol from the medical community Wen et al. (2020) to
process the data. Firstly, we do bias field correction with N4ITK method Tustison et al. (2010). Next,
we register each image to the MNI space Fonov et al. (2009; 2011) with the ICBM 2009c nonlinear
symmetric template by performing a affine registration using the SyN algorithm Avants et al. (2014)
from ANTs Avants et al. (2008). At the same time, the registered images were further cropped to
remove the background to improve the computational efficiency. These operations result in 1 mm
isotropic voxels for each image. Intensity rescaling, which was performed based on the minimum
and maximum values, denoted as MinMax, was also set to be optional to study its influence on the
classification results. Finally, the deep QC system Fonov et al. (2018) is performed to check the
quality of the linearly registered data. The software outputs a probability indicating how accurate
the registration is. We excluded the scans with a probability lower than 0.5. Overall, the registration
process we perform on the data maps different sets of images into a single coordinate system to
prepare the data for our later usage.

We also use the Torchio library Pérez-García et al. (2021) in the training set. Meanwhile, we resize
all the MRI images with Scipy library Virtanen et al. (2020) into 224×224×224 to better fit the input
of our ADAPT. Finally, we employed the zero-mean unit-variance method to normalize the intensity
of all voxels within the images.

For the training dataset, we apply morphology augmentation to the same MCI data, classify the MCI
into NC after doing atrophy reduction augmentation, and classify it into AD after doing atrophy
expansion augmentation. In this way, each MCI is used twice, significantly enlarging the dataset.
At the same time, we also do morphology augmentation to AD and NC images randomly, with a
probability of 0.5.

After preprocessing the 3D MRI images, we cut them into 2D slices along sagittal, coronal and axial
views. Then we choose 16 slices in each view as the initial data and concatenate them into a sequence.
We choose equidistant slices on each view and embed them into patch embedding similar to ViT.
Here we choose the embed layer from Touvron et al. (2022). Then we use a total of 6 standard
transformer attention layers, and 1 layer for each of the first two encoders, 2 layers for each of the
last two encoders, with 4 heads. For the adaptive training strategy, we set the probability p as 0.8.
At last, because we have three [class] tokens, each representing a special view dimension, we use a
classification MLP head, with input feature number 3×256 and output feature number 2, aiming to
figure out whether the image is from a disease or not.

A.2 DATASETS DESCRIPTION

The ADNI dataset consists of MRI images of T1-weighted magnetic resonance imaging subjects.
There are a total of 3,891 3D MRI images in the dataset, including 1,216 normal cases (NC), 1,110
AD cases and 1,565 MCI cases. During the training, 878 normal images, 884 AD images and
1565 MCI images were split into the training set, with 72 normal images and 81 AD images as a
validation set, together with 266 normal images and 145 AD images as a testing set. All splits have
no overlapping subjects.

Meanwhile, to evaluate the performance of our ADAPT and other deep learning baseline models,
we also consider other datasets as test sets. We mainly acquire them from three other institutions
with the ADNI test dataset: Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing
(AIBL), Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD), and The Open
Access Series of Imaging Studies (OASIS). The AIBL dataset contains a total of 413 images with
363 NC and 50 AD after dropping all MCI cases. The MIRIAD dataset contains a total of 523 cases
which consist of 177 NC and 346 AD cases. The OASIS dataset contains a total of 2157 cases which
consist of 1692 NC and 465 AD cases.
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ADNI AIBL MIRIAD OASIS
Valid Test Test Test TestModel name

brier specificity roc brier specificity roc brier specificity roc brier specificity roc brier specificity roc
MedicalNet-10 w/o Aug 0.314 0.852 0.852 0.452 0.795 0.799 0.710 0.449 0.663 0.266 0.852 0.848 0.575 0.456 0.630
MedicalNet-10 Aug 0.413 0.827 0.824 0.628 0.790 0.801 0.787 0.673 0.736 0.360 0.898 0.873 0.603 0.669 0.709
MedicalNet-18 w/o Aug 0.421 0.790 0.783 0.325 0.835 0.774 0.778 0.359 0.616 0.342 0.869 0.841 0.629 0.363 0.583
MedicalNet-18 Aug 0.266 0.713 0.726 0.466 0.786 0.786 0.617 0.696 0.726 0.195 0.887 0.873 0.609 0.689 0.716
MedicalNet-34 w/o Aug 0.194 0.585 0.603 0.217 0.666 0.651 0.177 0.547 0.603 0.167 0.452 0.578 0.193 0.619 0.584
MedicalNet-34 Aug 0.188 0.582 0.609 0.336 0.711 0.701 0.467 0.654 0.688 0.147 0.730 0.761 0.187 0.626 0.673
MedicalNet-50 w/o Aug 0.247 0.605 0.623 0.399 0.764 0.706 0.662 0.683 0.694 0.134 0.571 0.657 0.528 0.703 0.680
MedicalNet-50 Aug 0.230 0.508 0.561 0.269 0.648 0.586 0.119 0.757 0.591 0.142 0.349 0.510 0.041 0.775 0.637
MedicalNet-101 w/o Aug 0.18 0.567 0.591 0.425 0.488 0.54 0.303 0.421 0.513 0.139 0.432 0.54 0.365 0.508 0.546
MedicalNet-101 Aug 0.156 0.507 0.539 0.576 0.62 0.543 0.458 0.219 0.511 0.155 0.374 0.524 0.764 0.44 0.535
MedicalNet-152 w/o Aug 0.018 0.467 0.503 0.519 0.445 0.493 0.242 0.411 0.508 0.499 0.598 0.579 0.243 0.561 0.509
MedicalNet-152 Aug 0.04 0.469 0.507 0.45 0.644 0.523 0.65 0.43 0.488 0.062 0.657 0.566 0.52 0.392 0.511
3D ResNet-34 w/o Aug 0.238 0.478 0.511 0.258 0.484 0.529 0.258 0.448 0.498 0.245 0.571 0.576 0.258 0.568 0.531
3D ResNet-34 Aug 0.188 0.494 0.526 0.237 0.58 0.543 0.329 0.744 0.525 0.118 0.584 0.5 0.526 0.617 0.521
3D ResNet-50 w/o Aug 0.237 0.521 0.546 0.256 0.458 0.446 0.253 0.491 0.511 0.257 0.574 0.554 0.317 0.353 0.494
3D ResNet-50 Aug 0.218 0.499 0.519 0.353 0.413 0.495 0.335 0.247 0.521 0.262 0.530 0.554 0.317 0.353 0.494
3D ResNet-101 w/o Aug 0.252 0.518 0.538 0.302 0.458 0.463 0.345 0.651 0.456 0.222 0.536 0.516 0.337 0.611 0.497
3D ResNet-101 Aug 0.207 0.476 0.514 0.306 0.449 0.476 0.396 0.244 0.460 0.217 0.427 0.550 0.342 0.750 0.510
3D DenseNet-121 w/o Aug 0.243 0.535 0.563 0.242 0.628 0.565 0.24 0.58 0.616 0.274 0.82 0.747 0.233 0.632 0.662
3D DenseNet-121 Aug 0.243 0.483 0.529 0.262 0.615 0.512 0.241 0.179 0.481 0.346 0.335 0.5 0.261 0.241 0.492
3D DenseNet-201 w/o Aug 0.228 0.522 0.553 0.268 0.579 0.517 0.282 0.594 0.512 0.263 0.76 0.576 0.273 0.824 0.521
3D DenseNet-201 Aug 0.169 0.494 0.523 0.414 0.435 0.523 0.379 0.676 0.557 0.286 0.614 0.597 0.389 0.753 0.524
Knowledge4D w/o Aug 0.296 0.622 0.612 0.345 0.628 0.672 0.399 0.45 0.608 0.332 0.817 0.732 0.392 0.472 0.632
Knowledge4D Aug 0.249 0.507 0.51 0.43 0.548 0.565 0.462 0.411 0.633 0.379 0.698 0.567 0.442 0.637 0.629
I3D w/o Aug 0.257 0.508 0.488 0.267 0.461 0.537 0.274 0.544 0.587 0.237 0.538 0.536 0.273 0.488 0.542
I3D Aug 0.335 0.538 0.5 0.339 0.354 0.518 0.275 0.524 0.602 0.237 0.56 0.554 0.273 0.487 0.548
FCNlinksCNN w/o Aug 0.233 0.527 0.549 0.23 0.668 0.562 0.221 0.783 0.542 0.217 0.489 0.604 0.222 0.72 0.64
FCNlinksCNN Aug 0.229 0.481 0.51 0.233 0.666 0.571 0.2298 0.635 0.556 0.232 0.629 0.687 0.225 0.774 0.599
COVID-ViT w/o Aug 0.252 0.519 0.516 0.245 0.503 0.529 0.238 0.588 0.568 0.257 0.662 0.5 0.24 0.345 0.513
COVID-ViT Aug 0.251 0.528 0.518 0.251 0.535 0.592 0.248 0.635 0.633 0.221 0.662 0.5 0.256 0.384 0.562
Uni4Eye w/o Aug 0.264 0.564 0.542 0.274 0.431 0.513 0.277 0.492 0.473 0.241 0.55 0.496 0.243 0.561 0.509
Uni4Eye Aug 0.346 0.598 0.554 0.325 0.436 0.527 0.586 0.56 0.528 0.559 0.562 0.5 0.482 0.582 0.547
ADAPT w/o Aug 0.377 0.818 0.828 0.672 0.748 0.805 0.692 0.641 0.776 0.434 0.886 0.831 0.47 0.58 0.724
ADAPT Aug 0.371 0.918 0.909 0.659 0.855 0.887 0.684 0.650 0.787 0.210 0.850 0.876 0.580 0.603 0.732

Table 6: Comparison of brier score, specificity score and ROC-AUC score various 3D CNN-based
and transformer-based models on multi-institutional Alzheimer’s disease dataset. The numerical
numbers of models with morphology augmentation are bolded when getting better performance.

A.3 MULTI-METRICS PERFORMANCE

Considering that the Alzheimer’s experimental datasets are usually imbalanced, we also verify
the performance of ADAPT using other metrics, including brier score Rufibach (2010), specificity
score Glaros & Kline (1988), and ROC-AUC score Hoo et al. (2017), which are usually used in clinical
research. Table 6 shows the detailed results of ADAPT and various baselines on multi-institutional
Alzheimer’s disease dataset. We observe that the conclusion is consistent with Section 4.2. ADAPT
can still achieve the best ROC-AUC score compared to all the baselines. Also the specificity score is
also the best on ADNI dataset, meaning that ADAPT can accurately classify the negative samples.
The morphology augmentation greatly improves the performance of transformer-based models. At
the same time, after applying the augmentation method, the ROC-AUC score was improved on most
of the models, including CNN-based ones. These metrics also reflect the power of our proposed
ADAPT and morphology augmentation.

B GLIOBLASTOMA SUBTYPE DIAGNOSIS

A malignant brain tumor, known as glioblastoma, is a life-threatening condition. It is the most
common and deadliest form of brain cancer in adults, with a median survival time of less than a year.
The presence of MGMT promoter methylation, a specific genetic sequence in the tumor, has been
identified as a favorable prognostic factor and a strong predictor of responsiveness to chemotherapy.
We tried to use ADAPT to predict the genetic subtype of glioblastoma, which will potentially
minimize the number of surgeries and refine the type of therapy required.

B.1 DATASET DESCRIPTION

We collected the brain tumor dataset Baid et al. (2021), which consists of 585 MRI samples and
classified into two subtypes. We resized the T1-weighted post-contrast multi-parametric MRI
(mpMRI) scans into 224 pixels and use the resized gray-scale image to construct the 3D volume data.
Then we split it into train, validation and test sets according to the ratio of 8:1:1. In conclusion, there
are 226 subtype 0 and 242 subtype 1 in training set, 27 subtype 0 and 31 subtype 1 in validation
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Tumor
Valid TestModel name

acc. brier specificity roc acc. brier specificity roc
MedicalNet-10 w/o Aug 0.621 0.592 0.617 0.619 0.433 0.488 0.412 0.423
MedicalNet-10 Aug 0.594 0.188 0.553 0.574 0.656 0.609 0.464 0.56
MedicalNet-18 w/o Aug 0.621 0.313 0.579 0.6 0.533 0.131 0.392 0.463
MedicalNet-18 Aug 0.594 0.248 0.473 0.534 0.609 0.609 0.405 0.507
MedicalNet-34 w/o Aug 0.621 0.309 0.588 0.605 0.567 0.139 0.45 0.509
MedicalNet-34 Aug 0.609 0.478 0.585 0.597 0.656 0.422 0.55 0.603
MedicalNet-50 w/o Aug 0.672 0.568 0.696 0.684 0.45 0.625 0.516 0.483
MedicalNet-50 Aug 0.625 0.422 0.556 0.591 0.641 0.544 0.439 0.54
3D ResNet-34 w/o Aug 0.638 0.26 0.656 0.647 0.533 0.258 0.552 0.543
3D ResNet-34 Aug 0.655 0.271 0.661 0.563 0.617 0.24 0.6 0.609
3D DenseNet-121 w/o Aug 0.534 0.23 0.466 0.5 0.583 0.225 0.417 0.5
3D DenseNet-121 Aug 0.603 0.239 0.592 0.598 0.533 0.237 0.472 0.503
Knowledge4D w/o Aug 0.603 0.263 0.621 0.612 0.517 0.245 0.506 0.511
Knowledge4D Aug 0.638 0.261 0.67 0.615 0.567 0.246 0.565 0.566
I3D w/o Aug 0.586 0.232 0.544 0.565 0.6 0.227 0.486 0.543
I3D Aug 0.552 0.258 0.586 0.569 0.5 0.254 0.574 0.537
FCNlinksCNN w/o Aug 0.586 0.236 0.563 0.575 0.5 0.239 0.449 0.474
FCNlinksCNN Aug 0.586 0.164 0.53 0.558 0.567 0.171 0.428 0.497
COVID-ViT w/o Aug 0.466 0.25 0.534 0.5 0.417 0.245 0.583 0.5
COVID-ViT Aug 0.5 0.252 0.56 0.53 0.55 0.251 0.61 0.58
Uni4Eye w/o Aug 0.603 0.247 0.607 0.605 0.55 0.237 0.576 0.563
Uni4Eye Aug 0.586 0.265 0.592 0.589 0.583 0.277 0.645 0.614
ADAPT w/o Aug 0.641 0.162 0.528 0.584 0.656 0.198 0.574 0.623
ADAPT Aug 0.688 0.171 0.592 0.64 0.688 0.223 0.656 0.672

Table 7: Comparison of accuracy, brier score, specificity score and ROC-AUC score various 3D
CNN-based and transformer-based models on tumor dataset. The numerical numbers of models with
morphology augmentation are bolded when getting better performance.

set, and 25 subtype 0 and 34 subtype 1 in test set. We also applied the torchio augmentation to the
training set and employed the zero-mean unit-variance method to normalize the intensity of all voxels
within the images.

B.2 EXPERIMENT RESULTS

Following the experiment methods of Alzheimer’s disease diagnosis, we tried to apply morphology
augmentation to augment the atrophy of tumor brain mass, and compared the four metrics among
various baselines and ADAPT. By analyzing the results in Table 7, we could see that ADAPT can
achieve the best performance on various metrics. It outperforms other baseline models by 3.3%, 1.1%
and 5.8% on accuracy, specificity and ROC-AUC score of test set. By comparing the performance
between models with and without morphology augmentation, we found that except for I3D, all the
ROC-AUC scores on test set were improved after applying the morphology augmentation. Especially
for the FCNlinksCNN model and COVID-ViT model, without morphology augmentation, the model
can’t be trained successfully. These results show not only the superior of our proposed ADAPT, but
also the necessity of the morphology augmentation method.

With the tumor dataset results, we proved our ADAPT can show its power in Alzheimer’s diagnosis
task, meanwhile can be expanded into other 3D disease diagnosis tasks, especially when the data
type is brain MRI.
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