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Abstract
Autoregressive next-token prediction with the
Transformer decoder has become a de facto stan-
dard in large language models (LLMs), achiev-
ing remarkable success in Natural Language Pro-
cessing (NLP) at scale. Extending this paradigm
to audio poses unique challenges due to its in-
herently continuous nature. We research audio
generation with a causal language model (LM)
without discrete tokens. We leverage token-wise
diffusion to model the continuous distribution of
the next continuous-valued token. Our approach
delivers significant improvements over previous
discrete solution, AudioGen, achieving 20% and
40% relative gains on AudioCaps in Frechet Au-
dio Distance (FAD) and Kullback-Leibler (KL) di-
vergence, respectively. Additionally, we propose
a novel masked next-token prediction task that in-
corporates masked prediction into the causal LM
framework. On AudioCaps, the innovation yields
41% and 33% relative FAD improvements over
AudioGen Base (285M) and AudioGen Large
(1B) models, respectively, and is on par with the
state-of-the-art (SOTA) diffusion models. Further-
more, we achieve these results with significantly
fewer parameters—193M for our Base and 462M
for our Large models.

1. Introduction
Large Language Models (LLMs) has revolutionized arti-
ficial intelligence (Wang et al., 2018; Žagar & Robnik-
Šikonja, 2022; Hendrycks et al., 2021). They show remark-
able emergent capabilities and human-level understanding
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Figure 1. Causal Language Modeling on Continuous-valued
Audio Tokens with Masked Next-Token Prediction. The audio
tokens are low-dimensional continuous latent. We use a stan-
dard Transformer decoder for the audio language modeling. Our
masked next-token prediction learns to predict any future token
given any subset of the past tokens, which turns out benefit the
standard next-token prediction and rival the bidirectional diffusion
models and masked generative models. The figure illustrates the
prediction order in which all tokens are conditioned on all previ-
ously predicted tokens.

and reasoning abilities (Achiam et al., 2023; Team et al.,
2023) after scaling up to thousands of billions of parameters,
such as the GPT series (Brown et al., 2020; Achiam et al.,
2023). The essence behind LLMs is simple, scaling up the
model by more parameters and data with a Transformer de-
coder (Vaswani, 2017) and next-token prediction. Given the
success of this paradigm, plenty of efforts have been put into
developing better theories and tools for this standardized
model, including the architecture improvement (Chowdhery
et al., 2023; Du et al., 2022) scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022), and efficient inference and
streaming infrastructure (Kwon et al., 2023; Pope et al.,
2023).
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We study text-to-audio (TTA) with the LLM framework.
TTA is critical due to its various applications in virtual (aug-
mented) reality, media creation, video editing, and game
development (Liu et al., 2023a). Specifically, given a natu-
ral language prompt, the model generates a relevant sound.
The causal language modeling approach is important to
audio for its fundamental role in multi-modal LLMs (Wu
et al., 2024; Yin et al., 2023; Liu et al., 2024b; Zhou et al.,
2024) and the streaming capability for real-time user interac-
tion (Wang et al., 2024a; Zhang et al., 2024). Hence, we ask
whether a causal language model can achieve high-fidelity
audio generation. Existing works applied a Transformer
decoder with next-token prediction on discrete audio tokens
for TTA (Kreuk et al., 2023; Yang et al., 2023a). Despite
scaling to billions of parameters, these models lag behind
the SOTA systems, which typically rely on diffusion tech-
niques (Majumder et al., 2024; Liu et al., 2024c). As a
result, to build an LLM that can speak or produce high-
fidelity sound, the prevailing approach relies on external
vocoders (Huang et al., 2024; Liu et al., 2023b; Wang et al.,
2024b). However, the pipeline approach overlooks the pos-
sibility of directly generating audio with a scalable and
streamable LLM, allowing us to enjoy the aforementioned
resources like scaling, efficient inference and streaming in-
frastructure.

In this work, we enable audio generation for causal lan-
guage models. We address the bottlenecks that block the
decoder-only solution by integrating strengths from SOTA
diffusion models (Majumder et al., 2024; Liu et al., 2024c),
including token types, loss functions, and learning tasks.
We reinterpret the variational auto-encoder (VAE) latents
in latent diffusion models (LDMs) (Rombach et al., 2022)
as continuous-valued tokens1, replacing discrete acoustic
tokens used in audio language modeling. To model the
continuous distribution of the next token, we replace the
cross-entropy loss by the token-wise diffusion loss (Li et al.,
2024b), leaving the backbone Transformer decoder intact,
allowing it to fully leverage the benefits and resources
of LLMs. Using continuous-valued audio tokens and
next-token prediction (NTP), our 193M AudioNTP Base
achieves 20% and 40% relative improvements over 285M
AudioGen Base (Kreuk et al., 2023) on AudioCaps (Kim
et al., 2019) in Frechet Audio Distance (FAD) and Kullback-
Leibler (KL) divergence, respectively.

To further match the performance of SOTA diffusion mod-
els, we incorporate masked language modeling (MLM)
and propose a novel learning task. MLM learns contex-
tualized dependencies (Kenton & Toutanova, 2019; Vyas
et al., 2023; Liu et al., 2024a; Li et al., 2024b; Chang et al.,
2022) and develops understanding capabilities (Li et al.,

1Specifically, we use a VAE to encode the Mel-spectrogram
into a 2-D feature map, and serialize it into a 1-D sequence of
low-dimensional latents.

2024a; 2023; Wei et al., 2023), both of which have been
shown to benefit generation across various scenarios. Con-
cretely, we randomly drop tokens as the masking, forming a
shorter sequence. Next-token prediction is then performed
on this shorter sequence as the masked prediction, a task we
term masked next-token prediction (MNTP). Compared
to next-token prediction, MNTP predicts a random future
token conditioned on a random subset of past tokens (Fig-
ure 1), a task that ultimately benefits next-token prediction.
On AudioCaps, our AudioMNTP Base significantly out-
performs AudioNTP Base, achieving a 41% relative FAD
improvement over AudioGen Base. Scaling up to 462M
AudioMNTP Large yields a 33% relative FAD improve-
ment over 1B AudioGen Large, matching SOTA diffusion
models (Liu et al., 2024c; Majumder et al., 2024) while
remaining streamable and compatible with LLMs. Our con-
tributions are:

• We propose the use of continuous-valued tokens in
generative audio language modeling, demonstrating
their superiority over discrete tokens.

• We introduce a novel learning task, masked next-token
prediction (MNTP). Training with MNTP enhances
the model’s decoding performance on the regular next-
token prediction.

• By integrating continuous-valued tokens and MNTP,
we achieve SOTA-level audio generation within the
causal LM framework, establishing a pathway for di-
rectly generating high-fidelity audio with LLMs.

2. Related Work
Text-guided Audio Generation. The most relevant works
include AudioGen (Kreuk et al., 2023) and UniAudio (Yang
et al., 2023a). AudioGen learns a causal LM on discrete
tokens (Zeghidour et al., 2021; Défossez et al., 2023) with
low downsampling rate to preserve audio fidelity, whereas
UniAudio employs a multi-scale Transformer (Yu et al.,
2023) to reduce RVQ token sequence length, thereby saving
computation. On the other hand, LDMs (Rombach et al.,
2022) have outperformed language modeling approaches
in audio generation (Yang et al., 2023b; Liu et al., 2024c;
Majumder et al., 2024) by modeling the joint probability
distribution of continuous-valued tokens through diffusion
processes. Among them, we adopt a causal LM similar to
AudioGen but apply it to continuous-valued tokens, as in
LDMs.

Language Modeling on Continuous-valued Tokens.
Language modeling on continuous data has traditionally
required quantizing data into discrete tokens (Chen et al.,
2020b; Esser et al., 2021; Borsos et al., 2023; Kreuk et al.,
2023). Recent works in image and speech generation (Li
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et al., 2024b; Tschannen et al., 2025; Meng et al., 2024)
demonstrates that continuous-valued tokens prevent infor-
mation loss and achieve higher generation quality. These
approaches model continuous next-token distributions using
diffusion loss (Li et al., 2024b) or Gaussian mixture mod-
els (Tschannen et al., 2025; Meng et al., 2024). In our work,
we employ diffusion loss for sound.

Masked Prediction in Generative Models. Masked pre-
diction has been shown effective in various generative mod-
els. In text generation, masked infilling serves as a pretext
task for bidirectional models (Raffel et al., 2020; Lewis et al.,
2020), and iterative MLM has been applied to image gener-
ation (Li et al., 2023; Chang et al., 2022). Similarly, masked
infilling benefits audio (Vyas et al., 2023) and speech (Liu
et al., 2024a) generation in the flow-matching (Lipman et al.,
2023) framework. Recently, several methods (Fried et al.,
2023; Aghajanyan et al., 2022; Peng et al., 2024; Bavarian
et al., 2022) reorder masked tokens to the sequence end,
enabling decoder-only models to leverage both past and fu-
ture context for the editing tasks. In contrast, we integrate
masked prediction without future context, strictly preserving
causality and improving unidirectional decoding.

Relation to MAR. Our work is based on MAR (Li et al.,
2024b), which introduces continuous-valued tokens in the
context of masked generative modeling (MGM) for image
generation. In MGM, a bidirectional model iteratively per-
forms MLM from an all-zero input, predicting all masked
positions but retaining only a subset, until all positions are re-
tained. Our approach differs from MAR by using a standard
Transformer decoder with the classic next-token prediction,
making it compatible with LLMs. We show that, in the
audio domain using continuous-valued tokens, the unidirec-
tional MNTP outperforms naive next-token prediction and
is comparable to the bidirectional MAR. Furthermore, in the
left-to-right causal inference scenario, MNTP outperforms
MAR.

3. Method
Our approach includes two main proposals: continuous-
valued tokens in Section 3.1 and masked next-token predic-
tion in Section 3.2.

3.1. AudioNTP: Continuous-valued Tokens

Common belief holds that next-token prediction is tied to
a fixed size dictionary and cross-entropy loss. However,
the task by definition is predicting the next token given
the previous tokens, independent of the exact realization
of the token and how to model the next-token distribution.
Following the paradigm shift in CV (Tschannen et al., 2025;
Li et al., 2024b), we investigate the use of continuous-valued
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Figure 2. The framework of the continuous-valued audio token
proposal. The waveform is transformed into the Mel-spectrogram,
subsequently encoded into continuous-valued tokens. The Trans-
former decoder learns the next token prediction on these tokens
via the token-wise diffusion loss with a small MLP diffusion head.
This framework is termed AudioNTP.

tokens in audio language modeling. Figure 2 illustrates the
framework of AudioNTP.

Training. Given an input text prompt w and a length-s
audio waveform a = {a1, ..., as}, we tokenize it into a
sequence of low-dimensional latents2: x = {x1, ..., xn},
where xi ∈ Rh and h ∈ Z represents the latent di-
mension. We refer to this length-n, 1-D latent sequence
x as the continuous-valued tokens. We train the lan-
guage model with maximum likelihood on x over an au-
dio corpus D = {aj , wj}. The loss function is then
E(a,w)∼D [−log p(a | w)], where

p(a | w) = p(x1, ..., xn | w) =
n∏

i=1

p(xi | x1, ..., xi−1, w)

(1)

To learn the next-token distribution p(xi | x1, ..., xi−1, w),
our model consists of a Transformer decoder3 Cθ and a MLP
diffusion head Mϕ, where θ and ϕ denote the parameters.
Firstly, Cθ encodes the input sequence {w, β, x1, ...xi−1}
into a sequence of context vectors z = {z1, ..., zi}, where w
is placed at the front as the input prompt and β is the BOS
token: zi = Cθ(w, β, x

1, ..., xi−1). A small multi-layer

2 See Appendix F.1 for the detailed tokenization pipeline.
3 Compared to MAR (Li et al., 2024b) which relies on a bidirec-

tional Transformer to achieve competitive results, we stick to the
causality to align with the LLM setting. Their use of continuous-
valued tokens on causal LM performs poorly, while our approach
achieves results comparable to the bidirectional counterpart with
the masked next-token prediction.
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perceptron (MLP) Mϕ conditions on zi and models the next-
token distribution p(xi | zi) = p(xi | x1, ..., xi−1, w) with
the following diffusion objective (Li et al., 2024b; Rombach
et al., 2022).

argmin
θ,ϕ

Eε,t

[∥∥ε−Mϕ(x
i
t, z

i, t)
∥∥2] . (2)

ε ∈ Rd is a Gaussian noise sampled from N (0, I). The
diffused token xi

t is obtained by xi
t =

√
ᾱtx

i +
√
1− ᾱtε

with the noise schedule ᾱt (Ho et al., 2020; Nichol & Dhari-
wal, 2021). t ∈ {0, ..., T} is a time step sampled from the
noise schedule. We train Cθ and Mϕ jointly. By backpropa-
gating the gradient from the small diffusion head Mϕ to the
Transformer decoder Cθ, the decoder represents the next-
token distribution into the context vector zi. This facilitates
accurate diffusion modeling even with a lightweight Mϕ.

Inference. At position i, Cθ infers the context vector zi

by a single pass given the previously sampled tokens zi =
Cθ(y, x̃

1, ..., x̃i−1). Conditioning on zi, Mϕ iteratively de-
noises a Gaussian noise into a clean token x̃i, known as the
sampling process. Sampling is done via a reverse diffusion
procedure (Ho et al., 2020):

x̃i
t−1 =

1
√
αt

(
x̃i
t −

1− αt√
1− ᾱt

Mϕ(x̃
i
t, z

i, t)

)
+σtδ. (3)

δ is sampled from N (0, I) and σt is the noise level at time
step t. The decoding de-noising procedure starts from the
timestamp T to timestamp 0. That is, x̃i

T ∼ N (0, I) and
x̃i
0 = x̃i ∼ p(xi | zi) = p(xi | x1, ..., xi−1, w). The

sampled tokens can then be de-tokenized into the sampled
waveform2.

3.2. AudioMNTP: Masked Next-Token Prediction

AudioNTP yields significant improvement over AudioGen.
However, as shown in our results, the generation quality
and diversity still lag behind LDMs (Liu et al., 2024c; Ma-
jumder et al., 2024). Instead of resorting to the bidirectional
solution3, we stick to the causality to maximally follow the
LLM framework. Given the success of MLM in generative
models, we seek to migrate the core idea of MLM into the
causal next-token prediction. We hypothesize that the key
mechanism behind MLM is predicting the unseen token
given the sparse context4, essentially independent of the
model directionality. We devise a novel learning task tai-
lored to the causal architectures termed masked next-token
prediction (MNTP). Figure 3 illustrates the framework.

4In MAE (He et al., 2022) and AudioMAE (Huang et al., 2022),
over 70% tokens are masked.
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Figure 3. The framework of the masked next-token prediction
(MNTP). The continuous-valued tokens are first masked (dropped)
to form a shorter sequence. The Transformer decoder then learns
the next-token prediction on the dropped sequence with the diffu-
sion loss. This framework is termed AudioMNTP.

Training. Before feeding the token sequence x =
{x1, ..., xn} into Cθ, we first apply masking on it. We
denote the mask as v = {v1, ..., vn} where vi ∈ {0, 1}
and vi = 0 means the position i is masked. The masked
sequence is then x̄v = x ⊙ v. Recent works show that
dropping instead of masking yields similar performances
while greatly reduce the training cost5. We drop the tokens
to form a shorter sequence xv = {x̄i

v ∈ x̄v | x̄i
v ̸= 0}. We

learn the next-token prediction on xv as the masked predic-
tion6. Upon a closer look, each position i learns to predict
various future positions, depending on the random masking
patterns. We can then view MNTP as a multi-task learning
with input dropout (Hou et al., 2022; Zaremba et al., 2014;
Sennrich et al., 2016), where skip-token prediction benefits
next-token prediction during inference7. Since the model is
unaware of the current masking pattern, it is confusing to
naively ask the model predict various future positions indis-
criminately. We introduce the target positional embedding
pt to Cθ, as shown by Figure 3. Originally, each token has
its own learnable content positional embedding pc. We learn
an additional target positional embeddings representing the

5Due to the drastically reduced sequence length (Huang et al.,
2022; He et al., 2022; Baevski et al., 2023).

6Appendix D.1 reviews the similarity and differences between
MLM and MNTP.

7Predicting skip positions have been proven effective for audio
representation learning (Oord et al., 2018; Chung & Glass, 2020).
We verify its effectiveness in autoregressive generative modeling.
Compared to text, continuous data exhibits high similarity between
consecutive tokens, allowing the model to easily exploit local
smoothness (Oord et al., 2018) for next-token prediction. We
avoid this trivial prediction and facilitate a sparse context required
by MLM via skip-token prediction.
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position to be predicted and add both embeddings to the au-
dio tokens. Consequently, masked next-token prediction can
be viewed as a generalized form of causal language model-
ing. The model can predict any future timestamp given any
subset of past information, with predicting the immediate
next token and conditioning on all previous tokens as special
cases of the standard next-token prediction8.

Inference. The inference procedure of AudioMNTP is
identical to that of AudioNTP, except for the inclusion of an
additional target positional embedding, which is derived by
incrementing the content positional embedding by one.

4. Implementation
Continuous-valued Audio Tokenizer. We leverage the to-
kenization pipeline of AudioLDM (Liu et al., 2023a), includ-
ing a pre-trained VAE and a pre-trained Hifi-GAN (Kong
et al., 2020) vocoder. Given an audio, the pipeline extracts
the Mel-spectrogram, and the VAE encoder processes it into
a sequence of continuous-valued tokens x = {x1, ..., xn},
which is used for training. During inference, we sample
x̃ = {x̃1, ..., x̃n} according to equation 3. We use the VAE
decoder to decode x̃ back to a Mel-spectrogram. Then,
the vocoder is used to synthesize the waveform. Refer to
Appendix F.1 for details.

Conditional Audio Language Modeling. We mostly fol-
low the implementation in MAR (Li et al., 2024b), includ-
ing the training/inference details of the MLP diffusion head,
and the architecture design of MLP and the Transformer de-
coder. We train an audio version of the bidirectional MAR
as the topline (AudioMAR), a causal LM as the baseline
(AudioNTP), and our main proposal (AudioMNTP), which
is also causal. For most of the studies, we train AudioMAR,
AudioNTP and AudioMNTP with the 193M Base model.
We also train a 462M AudioMNTP Large to study the scal-
ing behavior. For the text prompt, we use CLAP (Wu et al.,
2023) and FLAN-T5 (Chung et al., 2024) to extract the
text embeddings and concatenate them as the input prompt.
Refer to Appendix F.2 for details.

Initialization. By default, AudioMAR, AudioNTP, and
AudioMNTP are obtained by fine-tuning the pre-trained im-
age MAR9 on audio data. That is, they all start by learning
the MAR task on images and diverge by using MAR, NTP,
and MNTP task on audio data, respectively. As shown in
the subsequent ablation study, this image initialization only
slightly boosts performance and is not critical.

8Appendix D.2 illustrates the idea more formally.
9Either the Base or Large model in

https://github.com/LTH14/mar.

Masking Schedule. For each training iteration, we sam-
ple a masking ratio from a distribution over [0, 1] defined
by the schedule, and randomly drop the tokens according to
the ratio. Specifically, we apply a mixture of normal distri-
bution and truncated normal distribution, where the former
emphasizes the high masking ratio for MLM and the latter
preserves the long-tailed distribution on the low masking
ratio for next-token prediction. See Appendix B for details.

5. Experiments
Training. We train our model on AudioCaps (AC) (Kim
et al., 2019) and WavCaps (WC) (Mei et al., 2024). See
Appendix A for details. We use AdamW (Loshchilov &
Hutter, 2017) optimizer with a fixed learning rate 1.0×10−4.
We train the Base model with 40 NVIDIA V100 GPUs,
and the Large model requires 104. Our effective batch
size is 2048 10-second clips. We train the Base and the
Large model for 1000 epochs, about 2 days and 5 days,
respectively.

Evaluation. We evaluate our model on the AC evalua-
tion set, following the protocol in AudioLDM and using
its evaluation toolkit10. For each generated audio and its
ground-truth counterpart in AC, we compute several met-
rics: Fréchet Audio Distance (FAD) (Kilgour et al., 2019),
Fréchet Distance (FD), Kullback–Leibler divergence (KL),
Inception Score (IS) (Liu et al., 2023a), and Contrastive
Language-Audio Pretraining (CLAP) score (Huang et al.,
2023b). See Appendix G.1 for details on these metrics.
For subjective evaluation, we rate audio samples on text
relevance (REL) and overall quality (OVL) using a 1-5
scale (Ghosal et al., 2023; Liu et al., 2023a); additional de-
tails are in Appendix G.2. Because speech is challenging in
TTA—and even the most advanced systems often produce
unintelligible speech—we split our evaluation into speech
and non-speech categories.

5.1. Main results

Continuous-valued tokens with diffusion loss are com-
petitive for audio language modeling. Table 1 shows
that our 193M baseline AudioNTP Base outperforms the
285M AudioGen Base and 1B UniAudio by a large margin
on the FAD and KL metrics. Specifically, we achieve 20%,
40% relative improvements over AudioGen Base on FD and
KL scores, respectively. Both AudioGen and UniAudio are
based on the discrete tokens and use much more data, pa-
rameters and compute compared to our method. The results
gauge the effectiveness of the continuous-valued tokens and
the diffusion loss for audio language modeling11.

10https://github.com/haoheliu/audioldm eval
11We do not train our model with discrete tokens due to com-

putational constraints imposed by their long sequence length. For
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Table 1. Main results. FD, FAD, KL, IS, and CLAP metrics on the AudioCaps evaluation set. The AS, AC, and WC stand for AudioSet,
AudioCaps, and WavCaps, respectively. Bold: the best performance. Underline: the second best performance. *Re-inference with the
public checkpoint. The detailed datasets used by each model are listed in the Appendix A.

TOKEN METHOD DATASETS #PARAMS FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑
BI-DIRECTIONAL

DISCRETE
MAGNET-SMALL (ZIV ET AL., 2024) AS + AC + 8 OTHERS 300M 23.02 3.22 1.42 9.72 0.287
MAGNET-LARGE (ZIV ET AL., 2024) AS + AC + 8 OTHERS 1.5B 26.19 2.36 1.64 9.10 0.253

CONTINUOUS

TANGO (GHOSAL ET AL., 2023) AC 866M 24.52 1.59 1.37 7.70 0.313
TANGO-FULL-FT (GHOSAL ET AL., 2023) AS + AC + WC + 5 OTHERS 866M 18.93 2.19 1.12 8.80 0.340
TANGO-AF&AC-FT (KONG ET AL., 2024B) AC + 1 OTHER 866M 21.84 2.35 1.32 9.59 0.343
TANGO 2 (MAJUMDER ET AL., 2024) AS + AC + WC + 6 OTHERS 866M 20.66 2.69 1.12 9.09 0.375
MAKE-AN-AUDIO 2 (HUANG ET AL., 2023A) AS + AC + WC + 11 OTHERS 937M 16.23 2.03 1.29 9.95 0.345
AUDIOLDM2-AC (LIU ET AL., 2024C) AC 346M - 1.67 1.10 - -
AUDIOLDM2-AC-LARGE (LIU ET AL., 2024C) AC 712M - 1.42 0.98 - -
AUDIOLDM2-FULL (LIU ET AL., 2024C) AS + AC + WC + 2 OTHERS 346M - 1.78 1.60 - -

- RE-INFERENCE* 346M 32.14 2.17 1.62 6.92 0.273
AUDIOLDM2-FULL-LARGE (LIU ET AL., 2024C) AS + AC + WC + 2 OTHERS 712M - 1.86 1.64 - -

- RE-INFERENCE* 712M 33.18 2.12 1.54 8.29 0.281

UNI-DIRECTIONAL

DISCRETE
AUDIOGEN BASE (KREUK ET AL., 2023) AS + AC + 8 OTHERS 285M - 2.84 2.14 - -
AUDIOGEN LARGE (KREUK ET AL., 2023) AS + AC + 8 OTHERS 1B - 1.82 1.69 - -
UNIAUDIO (YANG ET AL., 2023A) AS + AC + WC + 10 OTHERS 1B - 3.12 2.60 - -

CONTINUOUS

OURS

AUDIONTP BASE AC + WC 193M 18.52 2.28 1.29 9.42 0.308
AUDIOMNTP BASE AC + WC 193M 14.81 1.68 1.16 9.67 0.336
AUDIOMNTP LARGE AC + WC 462M 14.30 1.22 1.17 9.81 0.341

Table 2. Human Evaluation Results. We use AudioMNTP Large
to compare to other models.

NON-SPEECH SPEECH

METHOD REL ↑ OVL ↑ REL ↑ OVL ↑
REFERENCE 4.06 ± 1.09 3.87 ± 1.11 4.47 ± 0.83 4.61 ± 0.95

BI-DIRECTIONAL

AUDIOLDM 2 3.10 ± 1.29 3.32 ± 1.17 3.17 ± 1.14 3.01 ± 0.91
TANGO 2 3.95 ± 0.97 3.80 ± 0.99 4.20 ± 0.79 3.15 ± 0.94

UNI-DIRECTIONAL

AUDIOGEN 3.05 ± 1.09 3.02 ± 1.17 3.33 ± 0.97 2.56 ± 1.13
AUDIOMNTP 3.79 ± 1.02 3.46 ± 1.10 3.91 ± 0.94 3.69 ± 0.88

MNTP significantly outperforms next-token prediction.
Table 1 shows that AudioMNTP Base outperforms our base-
line AudioNTP Base by a large margin, with 26%, 10%, and
9% relative improvements on FAD, KL and CLAP scores
respectively, demonstrating the effectiveness of MNTP.

Scaling up MNTP reaches SOTA performances on FD
and FAD. We scale up the model to produce the 462M Au-
dioMNTP Large model. The scaling boosts the performance
across most of the metrics, including the 27% and 1.5% rel-
ative improvements on FAD and CLAP scores compared to
AudioMNTP Base. Our model is intrinsically less expres-
sive compared to SOTA diffusion models, (1) our model is
uni-directional and (2) our model is significantly smaller, i.e.
866M Tango 2. However, AudioMNTP Large demonstrates
the best FD and FAD scores across all the models, and reach

each 10-second clip, our method uses only 256 tokens, whereas
AudioGen uses 5,000 tokens.

the similar KL, IS and CLAP scores compared to the lead-
ing diffusion models12. We believe performance can be
improved by further scaling up the model and data, and we
leave this for future work due to computational constraints.

5.2. Subjective evaluation

We compare with the best existing decoder-only solution,
AudioGen, and two leading diffusion models, AudioLDM
2 and Tango 2. Table 2 shows that AudioMNTP is signifi-
cantly better than AudioGen in both speech and non-speech
categories, and approaching the performance of Tango 2. In
both categories, our REL scores lag behind those of Tango
2; however, Tango 2 is a bi-directional model and utilizes
the preference optimization dataset to enhance text-audio
alignment. Interesting, we find that our method is especially
good at generating authentic speech, indicated by the high-
est OVL score in the speech category, potentially due to
the incorporation of MLM, the de facto standard in speech
pre-training (Liu et al., 2024a; Baevski et al., 2020)13.

5.3. Ablation studies

We ablate the components of AudioMNTP in Table 3 and
visualize them in the Appendix E. Note that different mask-

12We place 5th, 2nd, and 4th based on the KL, IS, and CLAP
scores, respectively. Most of the scores are close. Tango 2’s espe-
cially high CLAP score is attributed to the additional preference
dataset Audio-Alpaca (Majumder et al., 2024).

13MLM is effective in both discriminative (Baevski et al., 2020)
and generative (Liu et al., 2024a) speech pre-training.
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Table 3. Ablate the components of MNTP with the Base configuration. INIT. means initialization; POS. EMB. means positional embedding.
By default, the masking schedule is the mixture of the normal and truncated normal distribution, as described in Section 4. *indicates the
masking schedule used in MAR (Li et al., 2024b), a truncated normal distribution over [0.7, 1]. †indicates the fixed masking ratio at 0.7.
‡indicates a masking schedule of uniform distribution over [0, 1].

ID CAUSAL MAR INIT.
ZERO
MASK

GAUSSIAN
MASK

DROP
TOKEN

PREDICT
NEXT

PREDICT
SKIP

TARGET
POS. EMB.

PREDICT
MASKED

FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑

(A) BASELINE - AUDIONTP
✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 18.52 2.28 1.29 9.42 0.308

(B) ✗ ➝ ✓ ✓ ✓* ✗ ✗ ✓ ✗ ✗ ✓ 17.15 2.13 1.25 9.45 0.321
(C) ✓ ✓ ✓† ✗ ✗ ✓ ✗ ✗ ✗ 16.78 1.97 1.28 9.33 0.333
(D) ✓ ✓ ✗ ✓‡ ✗ ✓ ✗ ✗ ✗ 15.15 1.82 1.18 9.22 0.324
(E) ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 16.62 1.77 1.32 9.25 0.315
(F) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ 24.45 4.49 1.68 5.87 0.229

(G) AUDIOMNTP
✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 14.81 1.68 1.16 9.67 0.336

(H) ✓ ✓ ✗ ✗ ✓* ✓ ✓ ✓ ✗ 15.55 1.89 1.16 9.56 0.327
(I) ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ 20.82 3.12 1.55 8.13 0.301
(J) ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ 14.85 1.70 1.17 9.62 0.335

(K) TOPLINE - AUDIOMAR
✗ ✓ ✓* ✗ ✗ ✗ ✗ ✗ ✓ 14.86 1.35 1.17 9.75 0.346

ing strategies, such as masking or dropping, favor different
masking schedules. We explored various schedules and
report the best result.

Combining MLM and NTP. Table 3 (B) naively com-
bines MLM with NTP by using the bidirectional AudioMAR
as the initialization and fine-tuning with next-token predic-
tion on audio data. That is, Table 3 (A) uses the image MAR
as the initialization, but Table 3 (B) uses AudioMAR as the
initialization, which additionally learns the MAR task on
audio data. Table 3 (B) shows that MLM on audio data
improves performance, but only slightly.

Migrate MLM into NTP: masking. The bidirectional
MLM is essentially not designed for the causal decoding.
We investigate incorporating input masking into next-token
prediction. Table 3 (C) follows MAR to apply zero masking,
but uses the causal decoder for next-token prediction. Ta-
ble 3 (D) tries the Gaussian noises as the masking, since the
numerical value space is more aligned to that of the clean
tokens, which are sampled from the same Gaussian by the
diffusion head. Appendix E Figure 8 (C) illustrates the idea.
Table 3 (E) tries dropping the tokens as a type of masking,
which significantly reduces the compute cost, as shown by
Appendix E Figure 8 (E). We predict the next tokens directly
on top of the visible tokens instead of the masked tokens,
and the masked tokens are completely removed. Given that
our masking ratio is typically above 70% (Li et al., 2024b;
Huang et al., 2022), dropping only requires less than half
of the original computation during training. According to
Table 3 (C), (D), and (E), incorporating input masking to
next-token prediction improves the performance on most
metrics compared to Table 3 (A), including FD, FAD and
CLAP, except for IS. We proceed with the dropping scenario

due to its computational efficiency. However, our proposal
is independent of the exact realization of the masking. Note
that other masking strategies, such as zero masking, do not
work well with our final masking schedule, as indicated in
Table 3 (F). In contrast, dropping tokens remains effective
with different masking schedules in subsequent studies.

Migrate MLM into NTP: masked prediction. We study
the effectiveness of skip-token prediction, our form of
masked prediction, which we hypothesize to benefit next-
token prediction. Table 3 (G), AudioMNTP, justifies our
hypothesis and outperforms all the rows on all metrics. We
ablate our mixture of distributions masking schedule to ver-
ify the robustness of MNTP. We replace the schedule by
the one used in MAR14. Table 3 (H) shows that our MNTP
task, even with the masking schedule of MAR, remains
competitive compared to Table 3 (A) and Table 3 (B), only
slightly underperforming Table 3 (G). This demonstrates
MNTP’s robustness to the masking schedule. Next, we
ablate the target positional embedding used for skip-token
prediction. Table 3 (I) is significantly worse than Table 3
(G) on all metrics, suggesting that different future positions
conflict each other. Table 3 (I) is even worse than Table 3
(E), which simply predicts the immediate next token. The
results demonstrate the importance of the target positional
embedding.

Initialization. We replace the image MAR initialization
by random initialization for AudioMNTP. Table 3 (J) under-
performs Table 3 (G) on all metrics, but slightly, suggesting
that the image MAR initialization is helpful but not neces-

14We find that MAR’s truncated normal distribution on [0.7, 1.0]
works poorly, but simply shifting it to the left to [0.55, 0.85] works
reasonably well.
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Table 4. Ablating different MLP diffusion head sizes with the
AudioMNTP Base configuration. The dimension of each MLP
layer is 1024. L denotes the layers of the MLP. The relative size
of the heads in the whole model is 5.4%, 10.7%, and 17.4% for
L = 1, 3, 6, respectively. S denotes the inference speed, measured
by seconds per 10-second audio with batch size 40 on an NVIDIA
V100 GPU.

MLP FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑ S
L SIZE

1 9.84M 16.97 1.68 1.20 8.87 0.321 3.22
3 20.34M 14.81 1.68 1.16 9.67 0.336 3.93
6 36.09M 14.74 1.21 1.15 9.78 0.337 4.84

Table 5. Comparing the text embedding with the Base configura-
tion. EMB. denotes embedding.

TEXT EMB. FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑
CLAP + FLAN-T5 14.82 1.68 1.16 9.67 0.336
CLAP 15.94 1.75 1.29 8.36 0.297
FLAN-T5 16.43 1.75 1.37 8.22 0.285

sary for MNTP to work.

The size of the MLP diffusion head. Table 4 shows that
the size of the diffusion head matters. Increasing the head
from 1 layer to 3 layers significantly improve the perfor-
mances on most metrics. Further increasing to 6 layers
significantly decrease the FAD score. However, with the
larger MLP size, the inference time increases. Our results
highlight that the size of the diffusion head is an important
hyperparameter for balancing performance and efficiency
during trade-offs.

The ensemble text embedding. Table 5 shows that con-
catenating CLAP and FLAN-T5 yields the best performance,
as both embeddings provide complementary information to
the model, and neither individual embedding can match the
performance of the joint embeddings.

5.4. MAR vs. MNTP vs. Next-Token Prediction

MNTP is approaching MAR. First, Table 6A indicates
that AudioMAR yields the best results on most metrics ex-
cept for FD. This is expected, as it is a bidirectional model
with the full context. However, compared to AudioNTP,
AudioMNTP significantly bridges the gap and achieves per-
formance comparable to that of AudioMAR on IS and CLAP
score. AudioMNTP even surpasses AudioMAR on FD and
KL, suggesting that MNTP is a competitive task for learning
causal language modeling on continuous data.

The effectiveness of MNTP in causal decoding. MAR
is competitive, but its use of future context does not sup-
port streaming in the LLM framework well. We verify this
hypothesis by comparing AudioMAR, AudioNTP, and Au-

Table 6. Comparing MAR and MNTP on different decoding
scenarios. The random-order decoding is the default decoding
method used in MAR. The steps means the number of decoding
steps. 64 is the default decoding step of MAR. 256 is the total
sequence length of the 10-second audio. AudioMAR supports
parallel decoding so it can reduce the decoding steps, denoted by †.
The bold denotes the best performance with the causal decoding.
The underline denotes the globally best performance.

ID MODEL STEPS FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑
RANDOM DECODING

(A) AUDIOMAR 64† 14.86 1.35 1.17 9.75 0.35
(B) 256 15.02 1.57 1.13 9.47 0.347

CAUSAL DECODING

(C) AUDIOMAR 64† 21.43 2.17 1.17 7.31 0.287
(D) 256 16.32 1.84 1.14 9.09 0.317
(E) AUDIONTP 256 18.52 2.28 1.29 9.42 0.308
(F) AUDIOMNTP 256 14.82 1.68 1.16 9.67 0.336

dioMNTP under causal decoding. AudioNTP and AudioM-
NTP are intrinsically developed for causal decoding, while
AudioMAR can perform causal decoding by unmasking
from left to right. Causal decoding degrades the perfor-
mance of AudioMAR when comparing Table 6 (A) and (C).
Interesting, by increasing the decoding steps as shown by
Table 6 (D), AudioMAR works much better, and even sur-
passes the naive AudioNTP in Table 6 (E). However, Table 6
(F) indicates that AudioMNTP is the best in most metrics in
the causal decoding scenario15.

6. Conclusion
We propose AudioNTP and AudioMNTP, a high-
performing framework for audio language modeling. Our
results demonstrate that continuous-valued tokens are com-
petitive for audio language modeling, yielding 20% improve-
ments over the discrete token-based audio language models.
Our masked next-token prediction (MNTP) further vali-
dates the benefits of applying masked language modeling
concept to causal language modeling on continuous data,
achieving another 20% improvements over next-token pre-
diction while preserving the causality during inference. By
combining continuous-valued tokens with MNTP, our ap-
proach achieves SOTA audio generation quality, rivaling the
leading latent diffusion models and reviving the language
modeling approach for sound generation. Moreover, our
models are significantly smaller than most existing solutions,
showcasing the efficiency and effectiveness of the proposed
learning techniques. These findings point toward a promis-
ing direction for directly generating high-fidelity audio with
the streamable and scalable large language models.

15We verified the idea of simply applying MLM to a Transformer
decoder in Table 3 (C) and (D), which are worse than AudioMNTP.
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Impact Statement
Scaling with Large Language Models (LLMs). Our
work demonstrates that causal language modeling can pro-
duce high-fidelity audio even with small models and limited
data. A natural next step is to scale up to billions of pa-
rameters like LLMs and incorporate larger datasets, such
as AudioSet16. With this scaling, our approach has the
potential to set a new SOTA in streamable sound generation.

Merge with other Modalities in LLMs. Since our
method only requires changing the prediction head of
the Transformer decoder, it can be easily integrated into
existing multi-modality LLM training to jointly learn
with other modalities such as text and image (Sun et al.,
2024). Compared to post-synthesizing with the external
vocoders (Huang et al., 2024; Liu et al., 2023b; Wang et al.,
2024b), the end-to-end approach avoids error propagation
and allows audio data to interact directly and losslessly with
other modalities in a single model. Audio generation also
benefits from the LLM scaling with other modalities.

Efficient Inference. Since we primarily adhere to the stan-
dard Transformer decoder, our model naturally benefits from
resources developed for this standardized architecture, in-
cluding the KV-cache (Pope et al., 2023) and PagedAtten-
tion (Kwon et al., 2023). Furthermore, our model learns to
predict any future timestamp given any subset of past infor-
mation. Theoretically, one can devise a parallel decoding
algorithm by manipulating the target positional embedding.
With these techniques, combined with our inherently stream-
ing capability, our method can potentially establish a new
SOTA in efficient, high-fidelity sound generation.
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A. Data
We compare the datasets used by our method to the existing systems. We only use AudioCaps (Kim et al., 2019) and
WavCaps (Mei et al., 2024), highlighting the data efficiency of our methods. Audios longer than 10 seconds are randomly
cropped into 10 second. That is, the number of the text-audio pairs are the same after the pre-processing. To speedup the
training, we pre-extract the text embedding and the continuous-valued audio tokens.

Table 7. The datasets used by the TTA systems. The AS, AC, WC stand for AudioSet (Gemmeke et al., 2017), AudioCaps (Kim et al.,
2019), WavCaps (Mei et al., 2024), respectively. WavCaps is composed of FreeSound (Fonseca et al., 2017), BBC Sound Effects18,
SoundBible19, and the AudioSet Strongly-Labeled Subset (Hershey et al., 2021), augmented with the ChatGPT-generated text prompt.
Some systems use the individual datasets in WavCaps without the natural language prompt, i.e. AudioGen.

METHOD DATASETS

AUDIOGEN BASE (KREUK ET AL., 2023)
AUDIOGEN LARGE (KREUK ET AL., 2023)
MAGNET-SMALL (AUDIO20) (ZIV ET AL., 2024)
MAGNET-LARGE (AUDIO) (ZIV ET AL., 2024)

AS + AC + BBC SOUND EFFECTS + CLOTHO V2 (DROSSOS ET AL., 2020)
+ VGG-SOUND (CHEN ET AL., 2020A) + FSD50K (FONSECA ET AL., 2021)

+ FREE TO USE SOUNDS21 + SONNISS GAME EFFECTS22 + WESOUNDEFFECTS23

+ ODEON SOUND EFFECTS24

TANGO (GHOSAL ET AL., 2023) AC

TANGO-FULL-FT (GHOSAL ET AL., 2023)
AS + AC + WC + MUSICCAPS (AGOSTINELLI ET AL., 2023)

+ ESC (PICZAK, 2015) + URBANSOUND (SALAMON ET AL., 2014)
+ GTZAN (TZANETAKIS & COOK, 2002) + MUSICAL INSTRUMENTS25

TANGO-AF&AC-FT (KONG ET AL., 2024B) AC + AF-AUDIOSET26

TANGO 2 (MAJUMDER ET AL., 2024) TANGO-FULL-FT DATA + AUDIO-ALPACA (AA)27

MAKE-AN-AUDIO 2 (HUANG ET AL., 2023A)

AS + AC + WC + WAVTEXT5K (DESHMUKH ET AL., 2023) + ADOBE AUDITION SOUND EFFECTS28

+ MACS (MARTÍN-MORATÓ & MESAROS, 2021) + CLOTHV2 (DROSSOS ET AL., 2020)
+ AUDIOSTOCK29 + EPIDEMIC SOUND30 + FSD50K (FONSECA ET AL., 2021) + ODEON SOUND EFFECTS24

URBANSOUND (SALAMON ET AL., 2014) + ESC (PICZAK, 2015) + TUT (MESAROS ET AL., 2016)

AUDIOLDM2-AC (LIU ET AL., 2024C)
AUDIOLDM2-AC-LARGE (LIU ET AL., 2024C) AC

AUDIOLDM2-FULL (LIU ET AL., 2024C)
AUDIOLDM2-FULL-LARGE (LIU ET AL., 2024C) AS + AC + WC + VGG-SOUND (CHEN ET AL., 2020A) + MSD (BERTIN-MAHIEUX ET AL., 2011)

UNIAUDIO (YANG ET AL., 2023A)

AS + AC + WC + LIBRILIGHT (KAHN ET AL., 2020) + LIBRITTS (ZEN ET AL., 2019)
+ MLS (PRATAP ET AL., 2020) + AISHELL3 (SHI ET AL., 2021) + OPENCPOP (WANG ET AL., 2022)

+ OPENSINGER (HUANG ET AL., 2021) + MSD (BERTIN-MAHIEUX ET AL., 2011)
+ PROMPTSPEECH (GUO ET AL., 2023) + OPENSLR26,OPENSLR28F (KO ET AL., 2017)

AUDIO-NTP BASE
AUDIO-MNTP BASE
AUDIO-MNTP LARGE

AC + WC

B. Masking Schedules
B.1. Defining masking schedules.

We explored various masking schedules, including the truncated normal distribution used in MAR, the fixed masking ratio,
uniform distribution, and our mixture of normal and truncated normal distribution. Different masking strategies, including

18https://sound-effects.bbcrewind.co.uk
19https://soundbible.com/
20There are music and audio versions of Magnet. The music version follows the datasets used in (Copet et al., 2024) and the audio

version follows those in AudioGen.
21https://www.freetousesounds.com/all-in-one-bundle/
22https://sonniss.com/gameaudiogdc
23https://wesoundeffects.com/we-sound-effects-bundle-2020/
24https://www.paramountmotion.com/odeon-sound-effects
25https://www.kaggle.com/datasets/soumendraprasad/musical-instruments-sound-dataset
26AF-AudioSet is a synthetic dataset released by (Kong et al., 2024b), where Audio Flamingo (Kong et al., 2024a) provides the caption

for the AudioSet audio.
27The Audio-Alpaca (AA) preference dataset is released by Tango 2, where a text prompt corresponds to a winner audio and a loser

audio. It is used after the standard TTA supervised training for the preference alignment.
28https://www.adobe.com/products/audition/offers/adobeauditiondlcsfx.html
29https://audiostock.net/
30https://www.epidemicsound.com/
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zero masking, Gaussian masking, and dropping, work best under different masking schedules, as suggested by Table 3.
By default, a masking schedule represents a distribution over [0, 1], where we sample a masking ratio r ∼ [0, 1] for each
training iteration. Then, given a length-n sequence of continuous-valued tokens, we mask (drop) n × r tokens. For the
dropping masking strategy, the remaining sequence length is n× (1− r). In Figure 4, we visualize a few representative
schedules we find useful in this study.
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(C) MNTP schedule: mixture of (A) normal and (B) truncated normal
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Figure 4. Visualizing the masking schedules. We first sample a masking ratio from the schedule, a probability distribution over [0, 1], and
then sample the masking positions in the token sequence based on the ratio. In (C), we average (A) and (B) with equal weights.

B.2. Ablating the MNTP schedule.

We examine the components of the MNTP masking schedule, specifically the normal distribution and the truncated normal
distribution. Table 8 shows that the normal distribution (A) plays a more critical role than the truncated normal distribution
(B), underscoring the importance of a high masking ratio during MLM. However, the normal distribution alone results in a
poor IS score. We hypothesize that this issue arises from a training/testing mismatch. During next-token prediction, all
previous tokens are presented—a scenario that is less frequently encountered during training if the focus is solely on a high
masking ratio. To address this, we incorporate a long-tailed distribution (B) into the normal distribution by averaging them,
resulting in (C), our final masking schedule. As shown in Table 8, (C) outperforms (D), the MAR default masking schedule,
across all metrics, demonstrating the effectiveness of our approach.

Table 8. Ablating the masking schedule of MNTP. The schedule IDs match the IDs in Figure 4.

SCHEDULE ID FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑
(A) 15.22 1.70 1.17 8.83 0.326
(B) 15.96 2.17 1.25 8.18 0.293
(C) 14.81 1.68 1.16 9.67 0.336
(D) 15.55 1.89 1.16 9.56 0.327

C. Classifier-free guidance (CFG) and sampling temperature
Classifier-free guidance. Classifier-free guidance is a method for trading off diversity in favor of fidelity. We reuse the
notations in Section 3.1. During training, the input text prompt w is replaced with a fake latent wf with a probability of
10%. The fake latent has the same length as the text prompt and is learned jointly with the whole model. During testing,
we run two inferences for each text prompt: conditional generation and unconditional generation. Specifically, at each
decoding position i, we get two conditioning vectors: zic = Cθ(w, β, x

1, ..., xi−1) and ziu = Cθ(wf , β, x
1, ..., xi−1). At

each diffusion sampling step t, we then induce two noise predictions with the diffusion head: εc = Mϕ(x̃
i
t, z

i
c, t) and

εu = Mϕ(x̃
i
t, z

i
u, t). The classifier-free guidance is realized by linear interpolating two predicted noises.

16



Generative Audio Language Modeling with Continuous-valued Tokens and Masked Next-Token Prediction

ε = εc + ωi · (εc − εu) (4)

where ωi ∈ R is the guidance scale when decoding the position i. Intuitively, the guidance scale represents the degree of
moving away from the unconditional generation. With higher ωi, the generation becomes more aligned with the given text
prompt, albeit with reduced diversity. We do not fix a guidance scale ωi for all positions. We adopt a annealing schedule in
(Ziv et al., 2024). That is, given the current decoding position i ∈ {1, ..., n} and an initial CFG scale ω0 ≥ 1, we gradually
decrease the guidance scale by:

ωi = 1 + (ω0 − 1)×
(
1− i− 1

n− 1

)
(5)

Intuitively, this means that the initial decoded tokens are more tailored to the given condition and gradually allow for
greater diversity and uncertainty. We find that this annealing schedule works better than the constant schedule and the linear
schedule used in MAR (Li et al., 2024b).

Sampling temperature. Conventionally, the higher sampling temperature corresponds to more diverse samples. To
facilitate this behavior, we can multiply the noise scale δ in equation 3 by a temperature factor τ (Dhariwal & Nichol, 2021).

Results. Figure 5 demonstrates the effects of the CFG guidance scale ω0 and the sampling temperature τ . Figure 5 (a)
shows that ω0 is critical for the competitive performances, and the best performance is achieved around 7. As a result, we
set ω0 = 7 as default thorough the article. Next, we explore different sampling temperatures with ω0 = 7 in Figure 5 (b).
Figure 5 (b) shows that sampling temperatures have varying impacts on different metrics. As a result, given a specific metric
to optimize, it is helpful to tune the temperature. However, no single τ achieves the best performance across all metrics.
Therefore, we set τ = 1 as the default.

(a) Classifier-Free Guidance (b) Temperature

Figure 5. Ablating the (a) classifier-free guidance scale (CFG) and the (b) temperature during the MLP diffusion sampling. The darker
color represents the better performance. We use the AudioMNTP Base configuration for the ablation. In (a), the temperature is fixed to
1.0; In (b) the CFG is fixed to 7.0, as suggested by (a).

D. MNTP v.s. MLM v.s. Next-Token Prediction
We compare MNTP to the closely related MLM and next-token prediction for their similarities and differences.

D.1. Comparing MNTP to MLM

MNTP draws inspiration from MLM to improve next-token prediction. They share the same spirit in learning the
contextualized dependencies, where the model generates the representation from a sparse context which is predictive to the
unseen data. Figure 6 illustrate the idea. In MLM, the model predicts the unseen x5 conditioning on a masked sparse context
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{x0, x1, x4, x7}. In MNTP, the model predicts the unseen x7 also conditioning on a dropped sparse context {x0, x1, x4}.
The differences include the following:

1. Directionality: MLM relies on a bidirectional model, while MNTP is designed for the causal model. As a result, the
sparse context of MLM includes both the past {x0, x1, x4} and future {x7} context, while that of MNTP includes only
the past context {x0, x1, x4}.

2. Mask token & Target positional embedding: We remove the mask tokens which do not appear in the NTP decoding
stage and cost extra computation, and predict the unseen tokens directly at the position of the seen tokens with the
additional target positional information.

3. Prediction target: We consider the right-masked span in Figure 6 as an example. In MLM, all tokens in the masked
span are predicted using both left and right context, e.g., p(x5 | x4, . . .) and p(x6 | x7, . . .). In contrast, MNTP predicts
only the rightmost token using left context alone, e.g., p(x7 | x4, . . .). To quantify task difficulty, we only list the
closest observed token to the unseen token as the condition. As a result, MNTP is uni-directional and relies on more
distant tokens on average compared to MLM, making it intuitively more challenging.

2 3

0 1 M M 4

0 1 2 3 4

Output

Input 

Pos. Emb.

1 7 Target Pos. Emb.

M M

5 6

5 6

(a) MLM (b) MNTP
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Figure 6. Comparing the differences between MLM and MNTP.

D.2. Comparing MNTP to Next-Token Prediction.

We can view MNTP as a Generalized form of Causal Language Modeling (GCLM), where the model predicts any future
timestamp given any subset of past information. We illustrate the idea with an simple example in Figure 7. Given the
length-5 sequence and the current token x3, all the possible prediction patterns in GCLM are enumerated in Figure 7 (b),
including possible subsets of the past conditions and the possible future prediction targets. All the corresponding masking
patterns are listed in Figure 7 (a), and they are all possible masking patterns in our masking schedule since we sample the
masking ratio from the entire [0, 1]. To be formal, we follow the notation in Section 3.1 and Section 3.2. Given an unmasked
sequence x = {x1, ..., xn}, without loss of generality, we pick a current input token xi where 1 < i < n. We then have the
past token set P = {x1, ..., xi−1} and future token set F = {xi+1, ..., xn}. For any prediction pattern in GCLM, there is a
past token subset P̄ ⊆ P and a target future token xf ∈ F , we can derive at least one masking pattern v = {v1, ..., vn}
which satisfies this prediction pattern by:

vj =

{
1 if j ∈ {i, f} or (j < i and xj ∈ P̄ ),

0 otherwise.
(6)

Note that this is not the only masking pattern satisfying this prediction pattern, our goal is to show that the prediction pattern
would be sampled and learned. This masking pattern can be sampled when setting the masking ratio r = 1 −

∑n
j=1

vj

n .
Since our masking schedule is a distribution over the entire [0, 1] (See Appendix B.1), the pattern would be sampled and
learned. As a result, our MNTP at position i models pi(x

f | P̄ ) over all xf ∈ F and P̄ ⊆ P . By setting P̄ = P and
xf = xi+1, we restores the original next-token prediction with the full context.
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Figure 7. Visualizing the generalized causal language model. (a) shows the masking patterns. We enumerate the masking patterns
with binary numbers where a masked position is denoted by 1 (white) and a unmasked position is denoted by 0 (gray). (b) shows the
corresponding dropped sequence and the prediction pattern given the current gray token x3. The conditions are in white and the prediction
target is in black.

E. Ablating the components of MNTP
We visualize the process of MNTP ablation in Figure 8. Refer to Section 5.3 for the discussion.
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Figure 8. Visualizing the differences between the ablation variants. The subfigure IDs match the IDs in Table 3.

F. Implementation
F.1. Continuous-valued audio tokenizer

Tokenize. We leverage the pre-processing pipeline of AudioLDM (Liu et al., 2023a), including a pre-trained variational
autoencoder (VAE) (Kingma & Welling, 2014) V = {VE , VD} and a pre-trained Hifi-GAN (Kong et al., 2020) vocoder G.
VE and VD are the encoder and the decoder, respectively. We first extract the 64-band Mel-spectrogram with the hop size
of 10 ms from audio: m ∈ RT×F , where T = s · 1000/10 and F = 64. Given that all our training samples are 16 kHz
10-second audios, s = 160000. The VAE encoder VE then encodes m into a 2-D map of continuous latents v ∈ R

T
r ×F

r ×c

where r = 4 is the compression level and c = 8 is the latent dimension. To reduce the sequence length and the training cost,
we further patchify v into x̄ ∈ R

T
r·p×

F
r·p×(c·p2) by stacking the latents in a p× p neighborhood. We set p = 4. Finally, we

flatten x̄ into a 1-D sequence x = {x1, ..., xn} in a row-major order, where n = T
r·p × F

r·p and xi ∈ Rc·p2

. That is, different
frequency components are placed together in the flatten sequence. With the tokenization, we represent a 10-second clip by
256 continuous-valued tokens with the latent size 128.
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De-tokenize. Given the sampled, flattened tokens x̃ = {x̃1, ..., x̃n}, we undergo the reverse process of flatten and patchify
to get the 2-D latent map ṽ ∈ R

T
r ×F

r ×c. The VAE decoder VD then decodes ṽ into the sampled Mel-spectrogram m̃. Finally,
the vocoder G synthesizes waveforms ã from m̃.

F.2. Conditional audio language modeling

Diffusion head. We follow (Li et al., 2024b) for its diffusion process, including the cosine noise schedule, training/sampling
(1000/100) diffusion steps, and the prediction target (noise). We reuse the MLP architecture introduced in (Li et al., 2024b).
The MLP of the Base model has 3 layer, and that of the Large model has 6 layer. Both versions use 1024 dimension for all
the MLP layers.

Transformer. We use the Transformer (Vaswani, 2017) implementation in ViT (Wang et al., 2021), same as MAR (Li
et al., 2024b). The Base model adopts 24 layers with the hidden dimension of 768; the Large model adopts 32 layers with
the hidden dimension of 1024. The model sizes are about 170M and 420M, respectively. Since we use the same architecture,
we can leverage the image pre-trained weights in MAR. The image pre-trained weights help the spectrogram-based audio
models, as suggested by AST (Gong et al., 2021). We reuse only the weights of the backbone Transformer, excluding those
of the diffusion head, since the latter is entangled to the modality-specific token dimension.

Text prompt. We use CLAP (Wu et al., 2023) and FLAN-T5 (Chung et al., 2024) to extract the text embeddings and
concatenate them as the input prompt. Our ablation study shows that using both is slightly better than using either individually.
In practice, FLAN-T5 produces variable-length embeddings, which we truncate to the first 77 embeddings. Combined with
a single CLAP embedding and the linear projections, our text conditioning is equal to 78 tokens, which we use as the initial
input prompt in the causal LM for audio generation. The positions of the text prompt do not contribute to the loss.

G. Evaluation
G.1. Objective evaluation

We evaluate our model on the AC evaluation set. Each audio is labeled by 5 captions, and we follow AudioLDM to randomly
select one text description as the input prompt. We leverage the AudioLDM evaluation toolkit31. Given the generated
audio and the ground-truth audio in AC, we calculate several metrics: Fréchet Audio Distance (FAD) (Kilgour et al.,
2019), Fréchet Distance (FD), Kullback–Leibler divergence (KL), Inception Score (IS) (Liu et al., 2023a), and Contrastive
Language-Audio Pretraining (CLAP) score (Huang et al., 2023b). Intuitively, lower FD and FAD indicate higher similarity
to the paired ground-truth. The lower KL indicates that the set of the generated audios share the similar distribution as the
ground-truth audios. The higher IS indicates that given an audio classifier, each audio is well-recognized by the classifier32,
and the classifier classifies all the generated audios into diverse classes33. Intuitively, these two conditions jointly imply
the generated audios are diverse and authentic. Finally, the higher CLAP score indicates the better alignment between the
generated audio and the input text prompt.

G.2. Subjective evaluation

We follow a similar approach to Tango (Ghosal et al., 2023), we assessed 20 generated audio samples based on text relevance
(REL) and overall quality (OVL) but used a 1-to-5 rating scale instead of a 1-to-100 scale. Each sample was rated by at least
10 participants. We separate the evaluation into speech and non-speech categories to understand the differences in model
behaviors. The speech prompts are sampled by selecting the text prompts containing man, woman, and person and people.
The non-speech prompts are sampled from the remaining. Note that in the AudioCaps evaluation set, most prompts consist
of both speech and non-speech descriptions. We compare our method to the existing decoder-only solution AudioGen and
two SOTA diffusion models AudioLDM 2 and Tango 2.

31https://github.com/haoheliu/audioldm eval
32Indicated by the low entropy of the output distribution.
33Indicated by the high entropy of the average output distribution over the generated audios.
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