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Abstract

Large Language Models (LLMs) present an intriguing avenue for exploration in the field
of formal theorem proving. Nevertheless, their full potential, particularly concerning the
mitigation of hallucinations and refinement through prover error messages, remains an area
that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field,
we introduce the Lyra, a new framework that employs two distinct correction mechanisms:
Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the
post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover
tools (the tool is used to prove the connection. The tool can be by simp, Sledgehammer and
so on) for guiding the replacement of incorrect tools. Tool Correction significantly contributes
to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition,
we introduce Conjecture Correction, an error feedback mechanism designed to interact with
prover to refine formal proof conjectures with prover error messages. Compared to the
previous refinement framework, the proposed Conjecture Correction refines generation with
instruction but does not collect paired (generation, error & refinement) prompts. Therefore,
DSP(Jiang et al., 2023a)+Tool Correction + Conjecture Correction = Lyra. Our method has
achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% → 55.3%)
and test (45.5% → 51.2%). Using GPT-4, our Lyra enhances the baseline DSP, achieving
improvements on the miniF2F validation from 50.4% to 55.3%, and on the test from 42.6% to
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51.2%. We also present 3 IMO (International Mathematical Olympiad) problems solved by
Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture
Correction (subgoal adjustment from interaction with the environment) could provide a
promising avenue for future research in this field.

1 Introduction

Formal proof automation is a challenging task that has garnered increased attention in recent years (Bansal
et al., 2019a; Polu & Sutskever, 2020; Lample et al., 2022; Jiang et al., 2022; Wu et al., 2022; Wang et al.,
2023c). Unlike other domains where deep learning approaches have shown remarkable success, previous studies
have proposed techniques to synthesize additional formal training data (Wu et al., 2022; Polu & Sutskever,
2020; Han et al., 2021; Bansal et al., 2019b; Polu et al., 2023). Recently, large language models (LLMs)
trained on informal mathematical data have showcased impressive quantitative reasoning abilities (Lewkowycz
et al., 2022; Welleck et al., 2022).

Draft, Sketch, and Prove (DSP) (Jiang et al., 2023a) maps informal proofs to formal proof sketches, and
uses the sketches to guide an automated prover by directing its search to easier sub-problems. Following this
direction, Subgoal-based Learning (Zhao et al., 2023) replaces the informal proof with subgoal-proof and
learns how to optimize subgoal demonstration selection. However, they have not been able to post-process
LLM generation or gradually refine previous generations.

In this paper, our goal is to develop Lyra, a system that integrates Large Language Models (LLMs) to
enhance the capabilities of formal theorem proving. There are two major challenges for LLM generation: 1)
hallucination mitigation; 2) interaction with the environment. To mitigate LLM hallucination, we propose
Tool Correction to leverage prior knowledge and rules to guide incorrect tool replacement. As shown in the
observation in Figure 1 Tool Correction, prover fails to prove conjecture x = 19 ∗ (x div 19) + 4 because
by (simp add: div_mult_mod_eq) generated by LLM cannot prove x = 19 ∗ (x div 19) + 4 (considered as
LLM hallucination), while the conjecture is correct but employed tool simp is not powerful enough. The
“simp” is the name of one tool. The expression by (simp add: div_mult_mod_eq) refers to a directive in
interactive theorem proving, which suggests an attempt to simplify the current goal or statement using the
theorem div_mult_mod_eq, which usually relates to the relationship between division, multiplication, and
modulo operations. Tool Correction employs predefined tools (e.g. sledgehammer, arith) to guide incorrect
tool replacement and finally prove the conjecture. We also propose a general interaction technique with
LLM named Conjecture Correction. To further improve and modify the conjectures, Conjecture Correction
leverages a general framework that can easily integrate feedback from any environment, in this case, the
Isabelle prover, to further polish conjectures. We believe the Lyra presents our insights to mitigate LLM
hallucination and interact with the environment.

The proposed method significantly outperforms competing approaches in formal theorem-proving tasks,
achieving a pass rate of 51.2% on the miniF2F test dataset, a 5.7% absolute improvement over the previous
state-of-the-art. Furthermore, the insights gained from Tool Correction and Conjecture Correction design can
be applied to other frameworks that need to interact with the environment. In summary, our contributions
are as follows:

• We introduce Lyra, a method composed of two components Tool Correction and Conjecture Correction,
to guide automated provers with formal proof sketches.

• Tool Correction employs the predefined tools to replace the incorrect tools to mitigate hallucination,
while Conjecture Correction integrates previous formal sketch and prover error messages to refine
proof.

• We establish a new SOTA of 55.3% and 51.2% on miniF2F validation and test, outperform previous
best 7.3% and 5.7% respectively.With GPT-4, our Lyra improves the baseline DSP on both miniF2F
validation (50.4% → 55.3%) and test (42.6% → 51.2%). And we newly solve two IMO problems:
IMO_1974_p5 and IMO_1981_p6.
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Figure 1: Our proposed Lyra framework contains two modules. Tool Correction: employ the predefined tools
to replace the incorrect tools and prove the conjectures. The prover fails because by (simp add: div_mult_mod_eq)
generated by LLM cannot prove x = 19 ∗ (x div 19) + 4, which is considered as the hallucination. Actually, the
conjecture is correct and simple, and the prover fails to prove it because it employs an incorrect tool. Hence, the
prover successfully proves the conjecture when employing by sos. Conjecture Correction: We design an interaction
framework that integrates previous formal sketch and prover error messages to better sketch generation. The steps
with the ATPWithTC delimiters are generated by an automated prover with Tool Correction.

2 Related Works

Interactive theorem provers. Contemporary mathematical verification systems are centered on interactive
theorem provers (ITPs), including Isabelle (Paulson, 1994), Lean (de Moura et al., 2015), Coq (Barras et al.,
1997), and Metamath (Megill & Wheeler, 2019). ITPs lay the groundwork for mathematical definitions
and theorems on a robust logical foundation through their core kernels. The validation of each theorem is
kernel-based and takes place within the ITP. To achieve formal proof, a theorem is initially expressed in
the programming language of the ITP and systematically refined into simpler subgoals until it aligns with
previously established facts. In this paper, the chosen ATP is Isabelle, known for its potent prover tools,
including sledgehammer (Paulson, 2010).

3



Published in Transactions on Machine Learning Research (07/2024)

Machine learning for formal proving. Numerous approaches advocate the integration of machine learning
with contemporary interactive theorem provers (ITPs) (Yang & Deng, 2019; Gauthier et al., 2021). They
leverage the recent advancements in language models (Polu & Sutskever, 2020; Han et al., 2021; Polu et al.,
2023; Jiang et al., 2022; Lample et al., 2022; Mikuła et al., 2023). These techniques recommend actions based
on the current proving state, and the tree search identifies a sequence of correct steps using actions provided
by the language model. Potent methods like MCTS (Silver et al., 2018; Wu et al., 2021; Laurent & Platzer,
2022) or dynamic-tree MCTS (Wang et al., 2023c) are utilized for this purpose. Previous work (Wu et al.,
2022) has demonstrated the few-shot statement autoformalization capability of LLMs (Chowdhery et al.,
2022). In investigating these findings’ applicability to proof autoformalization, DSP (Jiang et al., 2023a)
conducted an in-depth analysis using Draft, Sketch, and Proof. Subgoal-Learning (Zhao et al., 2023) further
employs a subgoal-goal-based informal proof approach. In an effort to support the open-source community,
LeanDojo (Yang et al., 2023) created a Lean playground that includes toolkits, data, models, and benchmarks.
While these methods directly use the results generated by LLMs, we adopt a different approach by employing
predefined tools to post-process the generations to mitigate hallucination, specifically Tool Correction.

Large language model refinement. Calibration studies conducted on LLMs reveal that the probabilistic
predictions made by current LLMs are closely aligned with the actual frequencies of token occurrences,
resulting in well-calibrated predictions for specific tasks (Guo et al., 2017; Kadavath et al., 2022; Jiang
et al., 2020). As LLMs exhibit reliable calibration, an increasing number of research studies emphasize using
self-evaluation for verification. For instance, Reflexion (Shinn et al., 2023) leverages an agent with dynamic
memory and self-reflection capabilities, while Self-Refine (Madaan et al., 2023) proposes a method to generate
outputs from LLMs and refine their previously generated outputs based on their own feedback. Taking a
similar approach, methods like Self-Debug (Chen et al., 2023) and CRITICS (Gou et al., 2023) interact with
code interpreters to further debug. The Baldur (First et al., 2023) trains a model to correct and refine the
generated proof. In contrast, Progressive-Hint Prompting (Zheng et al., 2023) iteratively extracts hints from
previous LLM’s answers as hints for the next answer generation. However, previous works require extensive
prompts, including generation prompts and refine prompts. Our approach Conjecture Correction refines
generation with instruction but does not collect paired (generation, error & refinement) prompts.

3 Method

This section describes our Lyra for formal proof automation, which leverages Tool Correction and Conjecture
Correction to guide automated formal theorem provers with proof sketches.

3.1 Background: Pipeline of DSP

DSP (Jiang et al., 2023a) aims to generate a formal sketch from an informal statement, verifiable by an off-
the-shelf automated theorem prover. DSP creates N demonstration examples, denoted as E = E1, E2, ..., EN ,
each containing informal/formal components (statements, informal proofs, formal proof).The statement is
the problem description, the informal proof is the informal solution, and the formal proof is the proof via
formal language. The pipeline of DSP has the following three steps.

Informal proof generation. The informal proof generation utilizes in-context learning. DSP provides the
model with a few examples containing both (statement, and informal proof) for informal proof generation.
Subsequently, DSP presents a problem statement that needs to be translated and the model then generates
the subsequent tokens to produce the desired informal proof.

Formal proof generation. The formal proof generation also utilizes in-context learning. DSP leverages
the few-shot learning capabilities of a large language model. Specifically, DSP provides the model with
a few example pairs containing (statement, informal proof, formal proof) for a formal proof generation.
Subsequently, DSP presents a (statement, informal proof) that needs to be translated. The model then
generates the subsequent tokens to produce the desired formal sketch.

Two Formal Proof Generation Scenarios. Given There are two scenarios: one with an existing human
informal proof and another where a language model generates draft-proof candidates without a human
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reference. For LLM-generated informal proof, we should first generate informal proof, and then utilize the
generated informal proof to generate formal proof.

Prover validation. In the final phase, off-the-shelf automated provers address sketch gaps. These systems
create formally valid proofs. DSP framework remains agnostic to prover type (symbolic, neural, hybrid).
Successful prover results yield verifiable formal proofs.

3.2 Tool Correction

Tool Correction employs prior knowledge to employ predefined tools (e.g. sledgehammer) to guide incorrect
tool replacement, as shown in Algorithm 1. We introduce the Tool Correction as a remedy to alleviate the
generation errors stemming from Large Language Models (LLMs). Through empirical observation, it becomes
evident that despite the factual accuracy of conjectures, LLMs at times adopt misguided tools that do not
withstand validation by theorem provers, as shown in Figure 1.

For instance, consider the statement x = 19 ∗ (x div 19) + 4, where LLM proposes to utilize
the tactic by (simp add: div_mult_mod_eq), leading to failure. This is the LLM hallucination, as
by (simp add: div_mult_mod_eq) is suited for proving a = a div b ∗ b+a mod b but not x = 19∗(x div 19)+4.
Substituting it with by sos enables the theorem prover to successfully verify x = 19 ∗ (x div 19) + 4. Hence,
in certain instances, LLM might formulate correct conjectures but employ inappropriate tools, resulting
in unsuccessful proof attempts. To address this, Tool Correction leverages predefined tools to enhance the
success rate.

The Tool Correction approach entails the validation of a given tactic t using Isabelle. If validation succeeds,
we proceed; if not, Tool Correction intervenes to modify the tactic. Specifically, when a tactic is equal to “."
or commencing with “by" or “sledgehammer" but the tactic fails, we attempt the application of ttool. This
ttool can be either: 1) “sledgehammer" or; 2) by tool with tool belonging to the set (auto, simp, blast,
fastforce, force, eval, presburger, sos, arith, linarith, auto simp: field simps).

By integrating Tool Correction, we systematically explore the applicability of “sledgehammer" and 11 heuristic
tools. If any of these successfully pass the theorem prover, we progress to the subsequent tactics. However, if
proof still fails to prove the tactic after trying all ttool fail, the overall proof attempt is deemed unsuccessful.

3.3 Conjecture Correction

Initial 
Round

Theorem Prover 

Feedback

Prover 
FeedBack

Prover 
Validation

Refine
Previous Proof

Repeat Four Times

If fails after four times, then regenerate the 
initial proof without prover feedback

Figure 2: The figure illustration of Conjecture Correction. First, we generate the formal proof without the
prover feedback (just like DSP formal proof generation. Then, we validate the proof to get the feedback and utilize
the feedback to refine previous formal proof. If we fail to successfully refine the previous proof four times, then we go
back to the initial round, which generates formal proof without feedback. In our work, as shown in Figure 1, the
feedback of prover contains: 1) error tactic; 2) error message summary and 3) error message detail.

For Conjecture Correction, we design a framework that can easily integrate previous formal sketches and
error messages from the prover to improve sketch generation. LLMs, particularly GPT-4, can leverage prior
responses or contextual cues for improved output. Nonetheless, integrating feedback into mathematical
proving remains a challenge. This stems from two primary factors: 1) diverse theorem provers employ distinct
syntax, complicating the design of varied prompts; 2) often require an extensive token count, incurring
a high computational cost and exceeding model length limits. To address these limitations, Lyra uses
Conjecture Correction, offering a versatile refinement pipeline that can transform a non-refined framework
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into a refined one. Compared to the previous refinement framework, such as Self-Refine (Madaan et al., 2023)
or Self-Debug (Chen et al., 2023), the proposed Conjecture Correction refines generation with instruction,
but does not collect paired (generation, error & refinement) prompts. The details are shown in Algorithm 2
and Figure 2.

Initial round generation. In the initial round generation, we follow the same process as DSP, directly
producing informal or formal proofs without prover error messages.

Rectification round. Our approach also involves the use of an LLM (e.g. GPT-4 (Bubeck et al., 2023)) for
rectification. In contrast to the initial round generation, the rectification employs the same initial prompt as
the first round but appends error messages from the prover. As most formal proofs of our prompts begin
with proof -, we add proof - at the end of the instruction so that the LLM response is formal proof.

Reset initial round generation. Since the rectification round builds upon the first round, the quality of
Conjecture Correction performance is tied to the initial round proof. To ensure that a potentially subpar
initial round proof does not negatively affect subsequent proofs, we regenerate the initial round proof at
interaction rounds K, 2K, 3K, and so on, refining its generation in the remaining rounds. For example, when
working with 200 attempts and setting K to 5, Conjecture Correction partitions the 200 attempts into 40
patches. Each patch consists of the first proof derived from DSP, followed by four subsequent refined proofs
that build upon the previous proof and incorporate the error message provided by the prover.

4 Experiment

4.1 Dataset

In this study, we assess our approach using the miniF2F dataset (Zheng et al., 2021), which is a collection
of 488 formal mathematical problems derived from high-school competitions and expressed in three formal
languages: Lean (de Moura et al., 2015), HOL-Light (Bansal et al., 2019a), and Isabelle (Paulson, 1994). The
dataset is divided into validation and test sets, each containing 244 problems. These problems are sourced
from three distinct categories, with 260 problems extracted from the MATH dataset (Hendrycks et al., 2021),
160 problems taken from actual high school mathematical competitions (AMC, AIME, and IMO), and 68
problems specially crafted to mirror the difficulty level of the aforementioned competitions.

Evaluation. The objective of our study is to generate formal sketches for the problems in the miniF2F
dataset. We consider a proof valid if and only if (a) it does not have any "cheating" keywords (sorry and oops)
that terminate a proof without completion, and (b) Isabelle must be capable of verifying the corresponding
formal statement with the proof.

Implementation details. In our research, we utilized GPT-4 as the Language Model Model (LLM) for
generating informal drafts and formal sketches. The temperature of GPT-4 was set to 0.7, with 200 attempts.
The details of the baselines are shown in the Appendix.

4.2 Baseline

To evaluate the effectiveness of our proposed methodology, we employed several baseline methods, which
follow previous work setting (Jiang et al., 2023a; Zhao et al., 2023).

Sledgehammer with heuristics The first baseline is Sledgehammer (Paulson, 2010), which a proof
automation tool in the Isabelle environment. Additionally, we utilized Sledgehammer supplemented with
heuristics, which integrates 11 prevalent tactics (i.e., auto, simp, blast, fastforce, force, evapl, presburger,
sos, arith, linarith, auto simp: field simps) with Sledgehammer. If all tactics fail, the system employs
Sledgehammer (Jiang et al., 2023a). The Magnushammer employs contrastive learning and transformer to
retrieval relevant premises.

Language model based methods Thor (Jiang et al., 2022) combines language models with automatic
theorem provers to help select premises from a vast library. Thor+expert (Wu et al., 2022) iteration enhances
a neural theorem prover by training it on theorems that have been successfully formalized. Draft, Sketch,
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Table 1: Proving success rates on the miniF2F dataset with Isabelle. The table displays the success rates of
previous works and the Lyra, using both human and GPT-4 informal proofs. The highest success rates for each set
are highlighted in bold.

Success rate miniF2F-valid miniF2F-test

Baselines

Sledgehammer (Paulson, 2010) 9.9% 10.4%
Sledgehammer + heuristics (Jiang et al., 2023a) 18.0% 20.9%
Thor (Jiang et al., 2022) 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022) 37.3% 35.2%
Magnushammer (Mikuła et al., 2023) 43.9% 39.3%

Draft, Sketch, and Prove (100 attempts) (Jiang et al., 2023a)

Human informal proof 42.6% 39.3%
540B Minerva informal proof 42.6% 38.9%

Subgoal-Learning (100 attempts) (Zhao et al., 2023) 48.0% 45.5%

LEGO-Prover (100 attempts) (Wang et al., 2023b)

Model informal proof 52.4% 45.5%
Human informal proof 55.3% 50.0%

Lyra (Ours)

GPT-4 informal proof (100 attempts) 52.8% 44.2%
GPT-4 informal proof (200 attempts) 54.9% 47.9%
Human informal proof (100 attempts) 52.0% 47.1%
Human informal proof (200 attempts) 55.3% 51.2%

and Prove (DSP) (Jiang et al., 2023a) transforms informal proofs into formal sketches and utilizes these
formal sketches to guide an automated prover. Another LLM-based method is Subgoal-Proof Learning (Zhao
et al., 2023), which incorporates subgoal proof to replace informal proof and proposes a prompt selection
framework. Finally, we also compare our method with the LEGO-Prover Wang et al. (2023b).

Following previous work (Jiang et al., 2023a; Zhao et al., 2023), we excluded representative methods such
as HyperTree Proof Search (HTPS) (Lample et al., 2022) and GPT-f with expert iteration (Polu et al.,
2023), which are implemented using Lean de Moura et al. (2015), a different interactive theorem prover. The
disparity in tactics and automation between Lean and Isabelle renders them not directly comparable to our
method.

4.3 Main Results

Table 1 presents the distribution of successful formal proofs obtained from the miniF2F dataset using
the interactive theorem prover Isabelle. An examination of the results presented in Table 1 reveals a
conspicuous enhancement in the efficacy of the Sledgehammer automated prover, owing to the integration
of 11 supplementary heuristic tactics (Jiang et al., 2023a). Noteworthy achievements are also realized
through deploying the DSP-based methods (DSP and Subgoal), attaining success rates of 39.3% and 45.5%,
respectively on the miniF2F test set.

By harnessing informal proofs generated by GPT-4, our proposed method achieves success rates of 54.9%
and 47.9% on the validation and test sets of miniF2F respectively. This performance persists even when the
attempt number is set at 100, affirming its robustness. When the attempt number is 100, compared to 540B
Minerva informal proof with DSP, our proposed Lyra improves the performance on miniF2F validation set
from 42.6% to 52.8% and miniF2F test set from 38.9% to 44.2%. This outcome can be attributed to the Tool
Correction and Conjecture Correction.

In instances where human informal proofs are employed, our proposed method demonstrates impressive
success rates of 55.3% and 51.2% on the validation and test sets of miniF2F. Comparative analysis against
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Table 2: Ablation results on the miniF2F dataset with Isabelle. There are three important conclusions: 1)
GPT-4 is better than Codex for mathematical proving; 2) Tool Correction can consistently improve performance; 3)
Conjecture Correction can improve performance but needs more attempts. Our proposed method degrades to
DSP (Jiang et al., 2023a) when without Tool Correction and Conjecture Correction.

Attempt Formal Proof Informal Proof TC CC miniF2F-valid miniF2F-test

100

Codex 540B Minerva ✗ ✗ 42.6% 38.9%
GPT-4 GPT-4 ✗ ✗ 48.3% 38.9%

Codex Human ✗ ✗ 42.6% 39.3%
GPT-4 Human ✗ ✗ 47.9% 39.7%

GPT-4 GPT-4 ✓ ✓ 52.8% 44.2%
GPT-4 Human ✓ ✓ 52.0% 47.1%

200

GPT-4 GPT-4 ✗ ✗ 49.5% 40.9%
GPT-4 GPT-4 ✓ ✗ 55.3% 45.0%
GPT-4 GPT-4 ✗ ✓ 48.3% 40.9%
GPT-4 GPT-4 ✓ ✓ 54.9% 47.9%

GPT-4 Human ✗ ✗ 50.4% 42.6%
GPT-4 Human ✓ ✗ 52.8% 45.9%
GPT-4 Human ✗ ✓ 46.7% 43.0%
GPT-4 Human ✓ ✓ 55.3% 51.2%

DSP reveals an improvement of 12.7% and 11.9% on the validation and test sets respectively for miniF2F.
Furthermore, when contrasted with the previous state-of-the-art Subgoal-Learning model, our approach
showcases an advancement of 7.3% and 5.7% on the miniF2F validation and test sets respectively. Though
LEGO-ProverWang et al. (2023b) achieves relatively good performance, we would like to highlight that
LEGO-Prover needs more computation resources to build skill library.

The performance of human informal proofs surpasses that of GPT-4 generated counterparts, especially on the
test set. This substantiates the notion that precision in informal proofs is important for generating formal
sketches.

4.4 Ablation Study

GPT-4 is better than Codex, especially on miniF2F validation dataset.. In the absence of Tool
Correction and Conjecture Correction, our proposed method experiences degradation to DSP. Referring
to Table 2, when considering the informal proof generated by LLM (GPT-4 or 540B Minerva), GPT-4 is
better than Codex (Chen et al., 2021). When compared with the deployment of Codex for generating formal
sketches, GPT-4 demonstrates improvements of 5.3% and 0.4% on the validation and test subsets of miniF2F,
respectively, while utilizing the same attempt number 100 and human informal proof. This substantiates the
notion that GPT-4 indeed enhances performance.

Tool Correction: consistently improve performance. As evident from Table 2 and Figure 3, the
inclusion of Tool Correction yields enhanced performance. Similarly, when assessing GPT-4-generated informal
proofs on the miniF2F test set, Tool Correction elicits improvements of 4.1% and 7.0% in the absence and
presence of Conjecture Correction, respectively. When considering human informal proofs on the miniF2F
test set, Tool Correction showcases enhancements of 3.3% and 8.2% in scenarios devoid of and accompanied
by Conjecture Correction, respectively. Therefore, regardless of whether the informal sketch is generated by
GPT-4 or created manually by a human, Tool Correction consistently enhances performance and can further
benefit from the addition of Conjecture Correction.

Conjecture Correction: further improves performance, prefers more powerful prover and
requires more attempts to be convergent. The outcomes presented in Table 2 and illustrated in Figure 3
underscore the efficacy of integrating Conjecture Correction, albeit at the expense of requiring an increased
number of attempts to achieve convergence. When considering human informal proofs on the miniF2F test
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Figure 3: Number of problems solved on miniF2F against the number of autoformalization attempts
per problem. On miniF2F validation and test set, we have shown the results of Tool Correction (TC) and Conjecture
Correction (CC) on human informal proof and GPT-4 informal proof respectively.

set, Conjecture Correction showcases enhancements of 0.4% and 5.3% in scenarios devoid of and accompanied
by Tool Correction, respectively. This suggests that Conjecture Correction improves proof quality, but needs
a more powerful prover (e.g. with Tool Correction) to fill the formal gaps. Conjecture Correction needs more
attempts to be convergent because Conjecture Correction modifies the initial proof to generate subsequent
proofs, which strongly hinges on the quality of the initial proof. Specifically, Conjecture Correction partitions
the pool of 200 attempts into 40 patches, wherein the first proof originates from DSP, and the subsequent
four are based on the initial proof. Furthermore, it’s worth noting that, in theory, any problems solvable
through DSP remain solvable using our approach, as DSP is equivalent to our initial proof generation without
Tool Correction.

Attempt number: Lyra benefits more with attempt number increment. In the absence of Tool
Correction and Conjecture Correction, our proposed method reduces to DSP. Within the validation set with
human informal proofs, when the number of attempts is escalated from 100 to 200 (shown in Table 2), the
performance of DSP experiences a gain from 47.9% to 50.4%, achieving a 2.5% improvement. Conversely, our
proposed approach exhibits a performance improvement from 52.0% to 55.3%, reflecting a more substantial
3.3% enhancement. For the test set, DSP’s performance improves from 39.7% to 42.6%, marking a 2.9%
increment. In contrast, our method demonstrates an increment from 47.1% to 51.2%, indicating a more 4.1%
boost. This divergence implies that our proposed approach effectively surpasses the performance limitations
of DSP, highlighting the potential efficacy of expanding the attempt number to further enhance performance
differences.

The performance of Conjecture Correction under smaller attempt number and no Tool Correc-
tion. Initially, a proof is created with feedback from a prover, and Conjecture Correction is applied up to
four times to refine this proof. However, if the initial proof is of poor quality, further refinement may be
ineffective, particularly for difficult problems that require such refinement. While Conjecture Correction can
enhance problem-solving for harder issues, its effectiveness diminishes with fewer autoformalization attempts
and is compromised when Tool Correction is disabled. It operates by analyzing and correcting errors in
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Statement: Determine all possible values of S = a
a+b+d + b

a+b+c + c
b+c+d + d

a+c+d where a, b, c, d, are arbitrary positive
numbers.

Informal Proof (Human):
Note that 2 = a

a+b + b
a+b + c

c+d + d
c+d > S > a

a+b+c+d + b
a+b+c+d + c

a+b+c+d + d
a+b+c+d = 1. We will now prove that S can

reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k, m, l > 0 and k + m + l = 1, let b = ak, c = am, and d = al.
Plugging this back into the original fraction, we get S = a

a+ak+al + ak
a+ak+am + am

ak+am+al + al
a+am+al = 1

1+k+l + k
1+k+m +

m
k+m+l + l

1+m+l . The above equation can be further simplified to S = 1
2−m + k

2−l + m + l
2−k . Note that S is a continuous

function and that f(m) = m + 1
2−m is a strictly increasing function. We can now decrease k and l to make m tend arbitrarily

close to 1. We see limm→1 m + 1
2−m = 2, meaning S can be brought arbitrarily close to 2. Now, set a = d = x and b = c = y

for some positive real numbers x, y. Then S = 2x
2x+y + 2y

2y+x = 2y2+8xy+2x2

2y2+5xy+2x2 . Notice that if we treat the numerator and

denominator each as a quadratic in y, we will get 1 + g(x)
2y2+5xy+2x2 , where g(x) has a degree lower than 2. This means taking

limy→∞ 1 + g(x)
2y2+5xy+2x2 = 1, which means S can be brought arbitrarily close to 1. Therefore, we are done.

Formal Proof:
theorem imo_1974_p5:

fixes a b c d s :: real
assumes "a>0" "b>0" "c>0" "d>0"
assumes h0 : "s=a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
shows "1<s \<and> s<2"

proof -
(* Let's correct the proof. *)

(* Define the sum S *)
let ?S = "a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
(* Show that S > 1 *)
have "a/(a+b+c+d) + b/(a+b+c+d) + c/(a+b+c+d) + d/(a+b+c+d) = 1"

using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S > a/(a+b+c+d) + b/(a+b+c+d) + c/(a+b+c+d) + d/(a+b+c+d)"
proof -

have "a/(a+b+d) > a/(a+b+c+d)" "b/(a+b+c) > b/(a+b+c+d)"
"c/(b+c+d) > c/(a+b+c+d)" "d/(a+c+d) > d/(a+b+c+d)"

using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC]

qed
ultimately have "1 < ?S" by simp [ATPWithTC]
(* Show that S < 2 *)
have "a/(a+b) + b/(a+b) + c/(c+d) + d/(c+d) = 2"

using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S < a/(a+b) + b/(a+b) + c/(c+d) + d/(c+d)"
proof -

have "a/(a+b+d) < a/(a+b)" "b/(a+b+c) < b/(a+b)"
"c/(b+c+d) < c/(c+d)" "d/(a+c+d) < d/(c+d)"

using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC]

qed
ultimately have "?S < 2" by simp [ATPWithTC]
(* Conclude the proof *)
then show "1<s \<and> s<2" using assms h0 `1 < ?S` by auto [ATPWithTC]

qed
end

Figure 4: A successful formal proof synthesized with human informal proof. With Tool Correction and
Conjecture Correction, we successfully solve an IMO problem IMO_1974_p5. The steps with the ATPWithTC delimiters
are generated by an automated prover with Tool Correction. We also solve IMO_1959_p1 with GPT-4 informal proof,
which is shown in the Appendix.

tactics and conjectures based on detailed feedback from the prover, potentially rectifying issues that DSP
(the initial proof generation technique) cannot. The inclusion of Tool Correction, which addresses errors in
the tools used by Conjecture Correction, can significantly improve performance by replacing incorrect tool
tactics with correct ones, thus mitigating the drawbacks of Conjecture Correction.

4.5 Case Study

We solve another IMO problem IMO_1959_p1 with GPT-4 informal proof, which is also solved via DSP with
540B Minerva. Furthermore, to present the effectiveness of our method, we provide a formal sketch of an IMO
problem named IMO_1974_p5 that remains unproven by earlier state-of-the-art methods. As demonstrated in
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Figure 4, our Lyra successfully proves IMO_1974_p5 with Tool Correction and Conjecture Correction. We
have shown the interaction details of IMO_1974_p5 and IMO_1959_p1 in the Appendix.

4.6 Further Analyze Tool Correction and Conjecture Correction

Number of fixed wrong steps by Tool Correction To further analyze the effectiveness of Tool
Correction, we calculate how many fixed wrong steps by Tool Correction, compared to baseline sledgehammer
+ heuristics.

Proof comes from: the miniF2F validation set (pass rate 55.3%) and test set result (pass rate 51.2%), with
GPT-4, human informal proof, Conjecture Correction and Tool Correction. The definition of proof step: a
proof step is regarded as a tactic. Calculation protocol: if sledgehammer+heuristic or Tool Correction fails
to validate the current tactic, then the current proving process will be terminated and we will turn to the
next formal proof validation. Finally, we calculate how many correct tactics/proof steps. On miniF2F-valid,
sledgehammer+heuristics can help the prover successfully pass 2260 steps. After adding Tool Correction, the
number increases to 3486 steps. Therefore, Tool Correction fixes 1226 wrong steps. On miniF2F-test, Tool
Correction fixes 1293 wrong steps

Table 3: The number of wrong fixed steps by Tool Correction.

Dataset Sledehammer+heuristics Tool Correction Number of Fixed Wrong Steps

miniF2F-valid 2260 3486 1226

miniF2F-test 2594 3887 1293

The Tool Correction generalization To prove the generalization of Tool Correction, we combine DT-
Solver (Wang et al., 2023c) with Tool Correction on PISA dataset (Jiang et al., 2021), which is used to
evaluate previous famous works, such as Lisa (Jiang et al., 2021), Thor (Jiang et al., 2022) and Thor +
expert. We do not employ Lyra on the PISA dataset because: similarly to the experiment setting of DSP
and Sub-goal learning, the Lyra needs informal information, such as informal problem and informal proof. To
the best of our knowledge, only miniF2F has an Isabelle dataset that has informal information, while PISA
does not. According to the experiment results in Table 4, we can observe that Tool Correction significantly

Table 4: The experiment result of DT-Solver with Tool Correction on PISA dataset.

Dataset DT-Solver DT-Solver + sledgehammer+heuristics DT-Solver + Tool Correction

PISA 37.0% 37.0% 55.2%

improves the performance, from 37.0 to 55.2%. This proves that Tool Correction is also useful for other
datasets, such as the PISA dataset. The sledgehammer+heuristics does not work well for DT-Solver on
the PISA dataset, because DT-Solver hardly uses sledgehammer tactics, while sledgehammer+heuristics
only works when the given tactics is sledgehammer. We believe the above experiment can prove that TC
is also useful for other datasets but not limited to miniF2F, even for different models. Meanwhile, TC is a
plug-in-plug-out module, which is easily integrated into other methods.

The potential explanation of why Conjecture Correction works. There are two potential explanations
of why Conjecture Correction works.

One potential explanation: The publicly available Isabelle proof corpus also has examples of error messages.
The training dataset of GPT-3 (Brown et al., 2020) contains Common Crawl datasets (Raffel et al., 2020),
which contain Stackflow. On the Stackflow, we find examples of error messages. Example 1: Failed to apply
initial proof method: using this: [ ] ∈ ns_public goal (1 subgoal): 1. ∀ A B X. Says A B X /∈ set_of_list [ ].
Example 2: Failed to apply proof method: using this: (y, x) ∈ r*̂ (z, y) ∈ r goal (1 subgoal): 1. (z, x) ∈ r*̂.
Example 3: Failed to apply initial proof method: using this: n <a n <b goal (1 subgoal): 1. n * n <a * b.
Therefore, the publicly available Isabelle proof corpus may also have examples of error messages.
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Another potential explanation: the LLMs may understand Isabelle’s error message if they understand English
and Isabelle’s syntax, but do not have to see Isabelle’s error messages before. First, we show what Isabelle’s
error messages look like. The error message is written in English, such as “Failed to apply proof method
using this: 0 <y goal (1 subgoal): 1. 9 * (x * sin x) + 4 / (x * sin x) = (9 * (x * sin x)<ŝup>2 + 4) / (x *
sin x) At command “by” “. According to the error message, we can find that the error message only contains
English words and Isabelle syntax (such as <ŝup>). Therefore, to understand Isabelle’s error message, the
proposed LLM may not need to see Isabelle’s error message before, but just has to understand English and
Isabelle’s syntax.

4.7 Relation between performance and the time limit

Given a time limit, the performance of Lyra is related to whether allowing parallel process. If allows the
parallel process, then we can keep the performance (55.3% on validation and 51.2% on test), if the time limit
is larger or equal to 10 minutes. For the relationship between time limit and performance, we can refer to
Figure 3 on Page 8, which presents the relationship between the number of attempts and the performance.
One attempt takes 2 minutes, if not allow the parallel process.

Table 5: The relation between performance and time limit.

Parallel Process Time Limit Method Time Cost miniF2F-valid miniF2F-test

✗ 10 mins DSP 10 mins 32.7% 25.4%

✗ 10 mins Lyra 10 mins 33.6% 28.6%

✗ 30 mins DSP 30 mins 40.1% 31.5%

✗ 30 mins Lyra 30 mins 40.1% 36.0%

✗ 400 mins DSP 400 mins 50.4% 42.6%

✗ 400 mins Lyra 400 mins 55.3% 51.2%

✓ 10 mins DSP 2 mins 50.4% 42.6%

✓ 10 mins Lyra 10 mins 55.3% 51.2%

Usually, it takes about 1 to 2 minutes to finish one attempt (we take 2 min/attempt here), where each
problem is allowed to try 200 attempts(a total of 400 minutes), in our setting. As shown in Table 5, for DSP,
the 200 attempts can be processed in parallel. Hence, if allowing the parallel process, the maximum time
cost is 2 minutes. For Lyra, these 200 attempts are divided into 40 patches, where each patch contains five
attempts. The 40 patches can be processed in parallel. Hence, if allowing the parallel process, the maximum
time cost is 10 minutes. If not allowing the parallel process, when the time limit is 10 mins, Lyra achieves
33.6% miniF2F-validation and 28.6% miniF2F-test. And if not allow the parallel process, when the time
limit is 30 mins, Lyra achieves 40.1% miniF2F-validation and 36.0% miniF2F-test.

5 Conclusion

In this paper, we introduced Lyra, a novel pipeline that takes advantage of Tool Correction and Conjecture
Correction. Tool Correction uses existing knowledge to select and apply predefined tools, such as the
’sledgehammer’ tool, for the purpose of correctly replacing tools that were initially used inappropriately.
Conjecture Correction, interacting with the prover environment, integrates previous formal sketch and prover
error messages for better sketch generation. We demonstrated the feasibility and effectiveness of Lyra
by reaching state-of-the-art performance 55.3% and 51.2% on the miniF2F dataset validation and test,
respectively, with the Isabelle theorem prover. Central to our method is the incorporation of prior knowledge
and the development of a comprehensive GPT-4 refinement framework. Our ablations showed that both Tool
Correction and Conjecture Correction are critical to the success of Lyra.
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Appendix

Algorithm 1 Pseudocode of Tool Correction in a Python-like style.
#tactic_list: list of the tactics of formal proof
#prover: Isabelle Prover
#TCUsage: whether employ Tool Correction
tool_heuristics=['by auto','by arith','by blast', 'by simp',
'by fastforce', 'by force', 'by eval', 'by presburger', 'by sos',
'by linarith', 'by (auto simp: field_simps)', 'sledgehammer']
for tactic in tactic_list:

use_heuristics=False
output = prover.run_tac(tactic)
if output['error'] is not None:

if TCUsage: # Use Tool Correction or Not
if tactic.strip().startswith("by") or tactic.strip()==("."):

use_heuristic=True

if ("sledgehammer" in tactic) or use_heuristic:
for tool_try in tool_heuristics:

output = prover.run_tac(tool_try)
if output['error'] is None:

break
if output['error'] is not None:

return "tactic_failed", output
if output['tactic_state'] == 'no goals':

return "success", output

return "proof_incomplete", output

Algorithm 2 Pseudocode of Conjecture Correction in a Python-like style.
#round_count: the current round number
#prompt_sample: the prompt and proposed question
#previous_response: previous formal proof
#error_info: error information from Isabelle
input=[{"role": "system", "content": "You are an expert in \
Mathematical Proof and Isabelle Proof Assistant. Follow the given \
examples and complete the proof with Isabelle Proof Assistant"},
{"role": "user", "content": prompt_sample}]
if round_count%5!=0: #If False, the initial round.
#Otherwise, then the Refinement round.
#Refinement Rround
input.append({"role": "assistant", "content": previous_respon})
input.append({"role": "user", "content": "(*The last proof has the \
following errors from Isabelle Prover. Therefore,\n 1) Please Follow \
the Above Prompt;\n\n 2) And Utilize the Following Errors to redo \
the last formal proof.\n {}.\n\n*)\n\n \
proof -\n".format(error_info)})

json_obj = openai.ChatCompletion.create(messages=input)
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A Tool Correction tells us something fundamental about the nature of mathematical
proofs

Tool Correction tells us something fundamental about the nature of mathematical proofs: try as many proving
tools as we can, so that we can improve the performance by reducing the occurrence of “the conjecture is
correct, but the proving tools fail to prove the conjecture”.

Why does the simple strategy used by TC, i.e., iteratively replacing the tactics in a failed proof with one of
the 11 tactics from the tool heuristics set, work?

• Recall when can we successfully prove a conjecture
– The conjecture should be correct, and the proving tools (such as a sledgehammer) can prove the

conjecture.
• Recall when we fail to prove a conjecture: the proving tools fail to prove the conjecture.

– Situation 1: The conjecture is incorrect.
– Situation 2: Or, the correction is correct, but the proving tool is not correct so the proving tool

cannot prove the conjecture.
• Why Observation: prover (such as Isabelle or Lean) fails to validate a formal proof, which may caused

by “the conjecture is correct, but the proving tools fail to prove the conjecture”. The following is an
example.

– Conjecture: 1*1=1
– If the proving tool can not process multiplication operation, then it will fail to prove the

conjecture 1*1=1, though the conjecture is correct.
• Therefore, to improve the performance, we can reduce the occurrence of “the conjecture is correct,

but the proving tools fail to prove the conjecture”
– One solution is Tool Correction: try as many proving tools as we can to prove the conjecture.

B Other Potential tactics besides the sledgehammer + 11 tactics

To improve the effectiveness of TC, we can easily add tactics, including by clarify, by fact, by rule, by
erule, by elim, by induction, by algebra and so on.

According to the DSP paper, the 11 tactics can be used to process algebra and number theory problems.
And the tactics also have their own advantages and disadvantages. For example, it seems that by simp is
not very good at processing natural numbers, as shown in Figure 1 in our paper.

As introduced in the DSP paper, the Sledgehammer (Paulson, 2010) is relatively special, as it works by
flattening the goals encoded in the higher-order logic used by Isabelle/HOL into other logics (e.g., first-
order logic) which can then be fed into automated theorem provers. The development of proving tools
is also an important direction of automated theorem proving. Recently, there has been a work named
Magnushammer Mikuła et al. (2023), which is more powerful than Sledgehammer.
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C IMO 1974 p5 Case

Statement: Determine all possible values of S = a
a+b+d

+ b
a+b+c

+ c
b+c+d

+ d
a+c+d

where a, b, c, d, are arbitrary
positive numbers.

Informal Proof (Human):
Note that 2 = a

a+b
+ b

a+b
+ c

c+d
+ d

c+d
> S > a

a+b+c+d
+ b

a+b+c+d
+ c

a+b+c+d
+ d

a+b+c+d
= 1. We will now

prove that S can reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k, m, l > 0 and k+m+l = 1, let b = ak, c = am, and
d = al. Plugging this back into the original fraction, we get S = a

a+ak+al
+ ak

a+ak+am
+ am

ak+am+al
+ al

a+am+al
=

1
1+k+l

+ k
1+k+m

+ m
k+m+l

+ l
1+m+l

. The above equation can be further simplified to S = 1
2−m

+ k
2−l

+ m + l
2−k

.

Note that S is a continuous function and that f(m) = m + 1
2−m

is a strictly increasing function. We can
now decrease k and l to make m tend arbitrarily close to 1. We see limm→1 m + 1

2−m
= 2, meaning S

can be brought arbitrarily close to 2. Now, set a = d = x and b = c = y for some positive real numbers
x, y. Then S = 2x

2x+y
+ 2y

2y+x
= 2y2+8xy+2x2

2y2+5xy+2x2 . Notice that if we treat the numerator and denominator each
as a quadratic in y, we will get 1 + g(x)

2y2+5xy+2x2 , where g(x) has a degree lower than 2. This means taking
limy→∞ 1 + g(x)

2y2+5xy+2x2 = 1, which means S can be brought arbitrarily close to 1. Therefore, we are done.

Formal Proof:
theorem imo_1974_p5:

fixes a b c d s :: real
assumes "a>0" "b>0" "c>0" "d>0"
assumes h0 : "s=a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
shows "1<s \<and> s<2"

proof -
let ?S = "a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
have c0: "a/(a+b)+b/(a+b)+c/(c+d)+d/(c+d) = 2" using assms by auto [ATPWithTC]
have c1: "a/(a+b+c+d)+b/(a+b+c+d)+c/(a+b+c+d)+d/(a+b+c+d) = 1" using assms by auto [

ATPWithTC]
have "1 < ?S" using assms by (simp add: add_pos_pos c1) [ATPWithTC]
moreover have "?S < 2" using assms by (simp add: add_pos_pos c0) [ATPWithTC]
then show "1<s \<and> s<2" using assms h0 by auto [ATPWithTC]

qed

Figure 5: IMO_1974_p5: first round.
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Statement: Determine all possible values of S = a
a+b+d

+ b
a+b+c

+ c
b+c+d

+ d
a+c+d

where a, b, c, d, are arbitrary
positive numbers.

Informal Proof (Human):
Note that 2 = a

a+b
+ b

a+b
+ c

c+d
+ d

c+d
> S > a

a+b+c+d
+ b

a+b+c+d
+ c

a+b+c+d
+ d

a+b+c+d
= 1. We will now

prove that S can reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k, m, l > 0 and k+m+l = 1, let b = ak, c = am, and
d = al. Plugging this back into the original fraction, we get S = a

a+ak+al
+ ak

a+ak+am
+ am

ak+am+al
+ al

a+am+al
=

1
1+k+l

+ k
1+k+m

+ m
k+m+l

+ l
1+m+l

. The above equation can be further simplified to S = 1
2−m

+ k
2−l

+ m + l
2−k

.

Note that S is a continuous function and that f(m) = m + 1
2−m

is a strictly increasing function. We can
now decrease k and l to make m tend arbitrarily close to 1. We see limm→1 m + 1

2−m
= 2, meaning S

can be brought arbitrarily close to 2. Now, set a = d = x and b = c = y for some positive real numbers
x, y. Then S = 2x

2x+y
+ 2y

2y+x
= 2y2+8xy+2x2

2y2+5xy+2x2 . Notice that if we treat the numerator and denominator each
as a quadratic in y, we will get 1 + g(x)

2y2+5xy+2x2 , where g(x) has a degree lower than 2. This means taking
limy→∞ 1 + g(x)

2y2+5xy+2x2 = 1, which means S can be brought arbitrarily close to 1. Therefore, we are done.

Formal Proof:
theorem imo_1974_p5:

fixes a b c d s :: real
assumes "a>0" "b>0" "c>0" "d>0"
assumes h0 : "s=a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
shows "1<s \<and> s<2"

proof -
let ?S = "a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"

(* Let's show that S > 1 *)
have c1: "a/(a+b+c+d) + b/(a+b+c+d) + c/(a+b+c+d) + d/(a+b+c+d) = 1"

using assms by (simp add: divide_simps)
have "1 < ?S"
proof -

note add_strict_mono[of a a b d, of b a c b, of c b d c, of d a c d]
then have "a/(a+b+d) > a/(a+b+c+d)" "b/(a+b+c) > b/(a+b+c+d)"

"c/(b+c+d) > c/(a+b+c+d)" "d/(a+c+d) > d/(a+b+c+d)"
using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]

then show "1 < ?S" using c1 by auto [ATPWithTC]
qed

(* Let's show that S < 2 *)
have c2: "a/(a+b) + b/(a+b) + c/(c+d) + d/(c+d) = 2"

using assms by (simp add: divide_simps) [ATPWithTC]
have "?S < 2"
proof -

note add_strict_mono[of a a b 0, of b a 0 c, of c 0 d b, of d a 0 c]
then have "a/(a+b+d) < a/(a+b)" "b/(a+b+c) < b/(a+b)"

"c/(b+c+d) < c/(c+d)" "d/(a+c+d) < d/(c+d)"
using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]

then show "?S < 2" using c2 by auto [ATPWithTC]
qed

then show "1<s \<and> s<2" using assms h0 `1 < ?S` by auto [ATPWithTC]
qed

Figure 6: IMO_1974_p5: second round.
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Statement: Determine all possible values of S = a
a+b+d

+ b
a+b+c

+ c
b+c+d

+ d
a+c+d

where a, b, c, d, are arbitrary
positive numbers.

Informal Proof (Human):
Note that 2 = a

a+b
+ b

a+b
+ c

c+d
+ d

c+d
> S > a

a+b+c+d
+ b

a+b+c+d
+ c

a+b+c+d
+ d

a+b+c+d
= 1. We will now

prove that S can reach any range in between 1 and 2.
Choose any positive number a. For some variables such that k, m, l > 0 and k+m+l = 1, let b = ak, c = am, and
d = al. Plugging this back into the original fraction, we get S = a

a+ak+al
+ ak

a+ak+am
+ am

ak+am+al
+ al

a+am+al
=

1
1+k+l

+ k
1+k+m

+ m
k+m+l

+ l
1+m+l

. The above equation can be further simplified to S = 1
2−m

+ k
2−l

+ m + l
2−k

.

Note that S is a continuous function and that f(m) = m + 1
2−m

is a strictly increasing function. We can
now decrease k and l to make m tend arbitrarily close to 1. We see limm→1 m + 1

2−m
= 2, meaning S

can be brought arbitrarily close to 2. Now, set a = d = x and b = c = y for some positive real numbers
x, y. Then S = 2x

2x+y
+ 2y

2y+x
= 2y2+8xy+2x2

2y2+5xy+2x2 . Notice that if we treat the numerator and denominator each
as a quadratic in y, we will get 1 + g(x)

2y2+5xy+2x2 , where g(x) has a degree lower than 2. This means taking
limy→∞ 1 + g(x)

2y2+5xy+2x2 = 1, which means S can be brought arbitrarily close to 1. Therefore, we are done.

Formal Proof:
(*statement begin*)
theorem imo_1974_p5:

fixes a b c d s :: real
assumes "a>0" "b>0" "c>0" "d>0"
assumes h0 : "s=a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
shows "1<s \<and> s<2"

(*statement end*)
proof -
(* Let's correct the proof. *)

(* Define the sum S *)
let ?S = "a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)"
(* Show that S > 1 *)
have "a/(a+b+c+d) + b/(a+b+c+d) + c/(a+b+c+d) + d/(a+b+c+d) = 1"

using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S > a/(a+b+c+d) + b/(a+b+c+d) + c/(a+b+c+d) + d/(a+b+c+d)"
proof -

have "a/(a+b+d) > a/(a+b+c+d)" "b/(a+b+c) > b/(a+b+c+d)"
"c/(b+c+d) > c/(a+b+c+d)" "d/(a+c+d) > d/(a+b+c+d)"

using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC]

qed
ultimately have "1 < ?S" by simp [ATPWithTC]
(* Show that S < 2 *)
have "a/(a+b) + b/(a+b) + c/(c+d) + d/(c+d) = 2"

using assms by (simp add: divide_simps) [ATPWithTC]
moreover have "?S < a/(a+b) + b/(a+b) + c/(c+d) + d/(c+d)"
proof -

have "a/(a+b+d) < a/(a+b)" "b/(a+b+c) < b/(a+b)"
"c/(b+c+d) < c/(c+d)" "d/(a+c+d) < d/(c+d)"

using assms by (simp_all add: divide_strict_right_mono) [ATPWithTC]
then show ?thesis by auto [ATPWithTC]

qed
ultimately have "?S < 2" by simp [ATPWithTC]
(* Conclude the proof *)
then show "1<s \<and> s<2" using assms h0 `1 < ?S` by auto [ATPWithTC]

qed
end

Figure 7: IMO_1974_p5: Third round.
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D IMO 1959 p1 Case

Statement: Prove that the fraction 21n+4
14n+3 is irreducible for every natural number n.

Informal Proof (GPT-4): We can use the Euclidean algorithm to prove this. If the greatest common
divisor (gcd) of the numerator and the denominator is 1, then the fraction is irreducible.
Let’s find the gcd of 21n + 4 and 14n + 3.
We start by subtracting the smaller number from the larger one. We get: (21n + 4) − (14n + 3) = 7n + 1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n + 3) − (7n + 1) = 7n + 2.
Now, we subtract 7n + 1 from 7n + 2. We get: (7n + 2) − (7n + 1) = 1.
Since the greatest common divisor of 21n + 4 and 14n + 3 is 1, the fraction 21n+4

14n+3 is irreducible for every
natural number n.

Formal Proof:
theorem imo_1959_p1:

fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
(* Let's find the gcd of 21n + 4 and 14n + 3. *)
have h1: "gcd (21*n + 4) (14*n + 3) = gcd ((21*n + 4) - (14*n + 3)) (14*n + 3)"

by (metis add_diff_inverse_nat gcd_diff1_nat le_add2 nat_le_linear) [ATPWithTC]
(* We start by subtracting the smaller number from the larger one.
We get: (21n + 4) − (14n + 3) = 7n + 1. *)
also have "... = gcd (7*n + 1) (14*n + 3)" by simp [ATPWithTC]
(* Next, we subtract 7n + 1 from 14n + 3. We get: (14n + 3) − (7n + 1) = 7n + 2. *)
also have "... = gcd (7*n + 1) (7*n + 2)"

by (metis add_diff_inverse_nat gcd_diff1_nat le_add2 nat_le_linear) [ATPWithTC]
(* Now, we subtract 7n + 1 from 7n + 2. We get: (7n + 2) − (7n + 1) = 1. *)
also have "... = gcd (7*n + 1) 1" by simp [ATPWithTC]
(* Since 1 is the greatest common divisor of any number,
we find that gcd (7*n + 1) 1 = 1. *)
finally show ?thesis by simp [ATPWithTC]

qed

Figure 8: IMO_1959_p1: first round.
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Statement: Prove that the fraction 21n+4
14n+3 is irreducible for every natural number n.

Informal Proof (GPT-4):
We can use the Euclidean algorithm to prove this. If the greatest common divisor (gcd) of the numerator and
the denominator is 1, then the fraction is irreducible.
Let’s find the gcd of 21n + 4 and 14n + 3.
We start by subtracting the smaller number from the larger one. We get: (21n + 4) − (14n + 3) = 7n + 1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n + 3) − (7n + 1) = 7n + 2.
Now, we subtract 7n + 1 from 7n + 2. We get: (7n + 2) − (7n + 1) = 1.
Since the greatest common divisor of 21n + 4 and 14n + 3 is 1, the fraction 21n+4

14n+3 is irreducible for every
natural number n.

Formal Proof:
theorem imo_1959_p1:

fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
(* Let's find the gcd of 21n + 4 and 14n + 3. *)

have h1: "gcd (21*n + 4) (14*n + 3) = gcd (14*n + 3) ((21*n + 4) mod (14*n + 3))"
using gcd_red_nat by blast [ATPWithTC]

(* We compute modulo operation and get: (21n + 4)mod(14n + 3) = 7n + 1 *)
also have "... = gcd (14*n + 3) (7*n + 1)"

by (smt add.right_neutral add_Suc_right add_lessD1 gcd.commute mult_2 mult_Suc
mult_less_cancel1 mult_numeral_1 numeral_Bit0 numeral_Bit1 numeral_eq_iff
semiring_norm(76) semiring_norm(78) semiring_norm(8)) [ATPWithTC]

(* Then we again compute the GCD with the modulo operation. *)
also have "... = gcd (7*n + 1) ((14*n + 3) mod (7*n + 1))"

using gcd_red_nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (14n + 3)mod(7n + 1) = n + 2. *)
also have "... = gcd (7*n + 1) (n + 2)"

by (smt add_2_eq_Suc add_lessD1 gcd.commute mult_2 mult_Suc mult_less_cancel1
semiring_norm(76) semiring_norm(78) semiring_norm(8)) [ATPWithTC]

(* Then we again compute the GCD with the modulo operation. *)
also have "... = gcd (n + 2) ((7*n + 1) mod (n + 2))"

using gcd_red_nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (7n + 1)mod(n + 2) = 1. *)
also have "... = gcd (n + 2) 1"

by (smt add.commute add_lessD1 gcd.commute mult_less_cancel1
semiring_norm(76) semiring_norm(78) semiring_norm(8)) [ATPWithTC]

(* gcd of any number with 1 is 1. *)
also have "... = 1" by simp [ATPWithTC]
finally show ?thesis . [ATPWithTC]

qed

Figure 9: IMO_1959_p1: second round.
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Statement: Prove that the fraction 21n+4
14n+3 is irreducible for every natural number n.

Informal Proof (GPT-4):
We can use the Euclidean algorithm to prove this. If the greatest common divisor (gcd) of the numerator and
the denominator is 1, then the fraction is irreducible.
Let’s find the gcd of 21n + 4 and 14n + 3.
We start by subtracting the smaller number from the larger one. We get: (21n + 4) − (14n + 3) = 7n + 1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n + 3) − (7n + 1) = 7n + 2.
Now, we subtract 7n + 1 from 7n + 2. We get: (7n + 2) − (7n + 1) = 1.
Since the greatest common divisor of 21n + 4 and 14n + 3 is 1, the fraction 21n+4

14n+3 is irreducible for every
natural number n.

Formal Proof:
theorem imo_1959_p1:

fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

theorem imo_1959_p1:
fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
(* Let's find the gcd of 21n + 4 and 14n + 3. *)

have h1: "gcd (21*n + 4) (14*n + 3) = gcd (14*n + 3) ((21*n + 4) mod (14*n + 3))"
using gcd_red_nat by blast [ATPWithTC]

(* We compute modulo operation and get: (21n + 4)mod(14n + 3) = 7n + 1 *)
also have "... = gcd (14*n + 3) (7*n + 1)"

by (simp add: mod_simps) [ATPWithTC]
(* Then we again compute the GCD with the modulo operation. *)
also have "... = gcd (7*n + 1) ((14*n + 3) mod (7*n + 1))"

using gcd_red_nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (14n + 3)mod(7n + 1) = n + 2. *)
also have "... = gcd (7*n + 1) (n + 2)"

by (simp add: mod_simps) [ATPWithTC]
(* Then we again compute the GCD with the modulo operation. *)
also have "... = gcd (n + 2) ((7*n + 1) mod (n + 2))"

using gcd_red_nat by blast [ATPWithTC]
(* We compute the modulo operation and get: (7n + 1)mod(n + 2) = 1. *)
also have "... = gcd (n + 2) 1"

by (simp add: mod_simps) [ATPWithTC]
(* gcd of any number with 1 is 1. *)
also have "... = 1" by simp [ATPWithTC]
finally show ?thesis . [ATPWithTC]

qed

Figure 10: IMO_1959_p1: third round.
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Statement: Prove that the fraction 21n+4
14n+3 is irreducible for every natural number n.

Informal Proof (GPT-4):
We can use the Euclidean algorithm to prove this. If the greatest common divisor (gcd) of the numerator and
the denominator is 1, then the fraction is irreducible.
Let’s find the gcd of 21n + 4 and 14n + 3.
We start by subtracting the smaller number from the larger one. We get: (21n + 4) − (14n + 3) = 7n + 1.
Next, we subtract 7n + 1 from 14n + 3. We get: (14n + 3) − (7n + 1) = 7n + 2.
Now, we subtract 7n + 1 from 7n + 2. We get: (7n + 2) − (7n + 1) = 1.
Since the greatest common divisor of 21n + 4 and 14n + 3 is 1, the fraction 21n+4

14n+3 is irreducible for every
natural number n.

Formal Proof:
theorem imo_1959_p1:

fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
(* We can use the Euclidean algorithm to prove this. *)

(* If the greatest common divisor (gcd) of the numerator and the denominator is 1,
then the fraction is irreducible. *)
have h1: "gcd (21*n + 4) (14*n + 3) = gcd (14*n + 3) ((21*n + 4) mod (14*n + 3))"

using gcd_red_nat by blast [ATPWithTC]
(* We start by subtracting the smaller number from the larger one. *)
also have "... = gcd (14*n + 3) ((21 - 14)*n + (4 - 3))"

using mod_if by auto [ATPWithTC]
(* We get: (21n + 4) − (14n + 3) = 7n + 1. *)
also have "... = gcd (14*n + 3) (7*n + 1)"

by simp [ATPWithTC]
(* Next, we subtract 7n + 1 from 14n + 3. *)
also have "... = gcd (7*n + 1) ((14*n + 3) mod (7*n + 1))"

using gcd_red_nat by blast [ATPWithTC]
(* We get: (14n + 3) − (7n + 1) = 7n + 2. *)
also have "... = gcd (7*n + 1) ((14 - 7)*n + (3 - 1))"

using mod_if by auto [ATPWithTC]
also have "... = gcd (7*n + 1) (7*n + 2)"

by simp [ATPWithTC]
(* Now, we subtract 7n + 1 from 7n + 2. *)
also have "... = gcd (7*n + 2) ((7*n + 1) mod (7*n + 2))"

using gcd_red_nat by blast [ATPWithTC]
(* We get: (7n + 2) − (7n + 1) = 1. *)
also have "... = gcd (7*n + 2) (1)"

using mod_if by auto [ATPWithTC]
(* Since the greatest common divisor of 21n + 4 and 14n + 3 is 1, *)
also have "... = 1"

by simp [ATPWithTC]
finally show ?thesis . [ATPWithTC]

qed

Figure 11: IMO_1959_p1: fourth round.
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E IMO 1981 p6 Case

Statement: The function f(x, y) satisfies
(1) f(0, y) = y + 1,
(2) f(x + 1, 0) = f(x, 1),
(3) f(x + 1, y + 1) = f(x, f(x + 1, y)),
for all non-negative integers x, y. Determine f(4, 1981)

Informal Proof (Human):
We observe that f(1, 0) = f(0, 1) = 2 and that f(1, y + 1) = f(1, f(1, y)) = f(1, y) + 1, so by induction,
f(1, y) = y + 2. Similarly, f(2, 0) = f(1, 1) = 3 and f(2, y + 1) = f(2, y) + 2, yielding f(2, y) = 2y + 3.
We continue with f(3, 0) + 3 = 8; f(3, y + 1) + 3 = 2(f(3, y) + 3); f(3, y) + 3 = 2y+3; and f(4, 0) + 3 = 222

;
f(4, y) + 3 = 2f(4,y)+3.
It follows that f(4, 1981) = 22·.·2

− 3 when there are 1984 2s, Q.E.D.

Formal Proof:
theorem imo_1981_p6:

fixes f :: "nat \<Rightarrow> nat \<Rightarrow> nat"
assumes "\<forall> y. f 0 y = y + 1"

and "\<forall> x. f (x + 1) 0 = f x 1"
and "\<forall> x y. f (x + 1) (y + 1) = f x (f (x + 1) y)"

shows "\<forall> y. f 4 (y + 1) = 2^(f 4 y + 3) - 3"
(*statement end*)
proof -

(* We observe that f(1, 0) = f(0, 1) = 2 *)
have "\<forall>y. f 1 y = y + 2"
proof

fix y
show "f 1 y = y + 2"
proof (induction y)

case 0
then show ?case using assms(2)[rule_format, of "0"]

by simp ATPWithTC]
next

case (Suc y)
then show ?case using assms(3)[rule_format, of "0" "y"]

by simp ATPWithTC]
qed

qed
then have f1: "\<forall>y. f 1 y = y + 2"

by simp
(* Similarly, f(2, 0) = f(1, 1) = 3 and f(2, y + 1) = f(2, y) + 2, yielding f(2, y) = 2y + 3. *)
have "\<forall>y. f 2 y = 2*y + 3"

Figure 12: IMO_1981_p6: Part 1.
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proof
fix y
show "f 2 y = 2*y + 3"
proof (induction y)

case 0
then show ?case using assms(2)[rule_format, of "1"]

using f1 by simp ATPWithTC]
next

case (Suc y)
then show ?case using assms(3)[rule_format, of "1" "y"]

using f1 by simp ATPWithTC]
qed

qed
then have f2: "\<forall>y. f 2 y = 2*y + 3"

by simp [ATPWithTC]
(* We continue with f(3, 0) + 3 = 8; f(3, y + 1) + 3 = 2(f(3, y) + 3); f(3, y) + 3 = 2y+3 *)
have "\<forall>y. f 3 y + 3 = 2^(y + 3)"
proof

fix y
show "f 3 y + 3 = 2^(y + 3)"
proof (induction y)

case 0
then show ?case using assms(2)[rule_format, of "2"]

using f2 by simp [ATPWithTC]
next

case (Suc y)
then show ?case using assms(3)[rule_format, of "2" "y"]

using f2 by simp [ATPWithTC]
qed

qed
then have f3: "\<forall>y. f 3 y + 3 = 2^(y + 3)"

by simp [ATPWithTC]
(* and f(4, 0) + 3 = 222

; f(4, y) + 3 = 2f(4,y)+3. *)
have "\<forall>y. f 4 (y + 1) = 2^(f 4 y + 3) - 3"
proof

fix y
show "f 4 (y + 1) = 2^(f 4 y + 3) - 3"
proof (induction y)

case 0
then show ?case using assms(2)[rule_format, of "3"]

using f3 by simp [ATPWithTC]
next

case (Suc y)
then show ?case using assms(3)[rule_format, of "3" "y"]

using f3 by simp [ATPWithTC]
qed

qed
then show ?thesis

by simp [ATPWithTC]
qed

Figure 13: IMO_1981_p6: Part 2. This problem is finished with human informal proof and Tool Correction, but
without Conjecture Correction. Actually, if a problem can be solved by only Tool Correction, then it can be solved via
Tool Correction and Conjecture Correction. The Lyra needs more attempts to solve the IMO_1981_p6, as Conjecture
Correction needs more attempts.
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