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ABSTRACT

Low-rank adaptations (LoRA) are widely employed for fine-tuning large-scale
pretrained models in downstream tasks, by learning low-rank incremental matri-
ces. LoRA and its variants such as AdaLoRA train an entire low-rank incremental
matrix on a single training dataset, which often leads to overfitting to training data
and inferior generalization on test data. To address this problem, we propose a
bi-level optimization (BLO) based method for alleviating overfitting. Our method
parameterizes a low-rank incremental matrix in a pseudo singular value decompo-
sition form, and separates the training of pseudo singular vectors and values onto
different data subsets in different optimization problems. This separation allevi-
ates the risk of overfitting to a single dataset and improves generalization on other
data. Specifically, in the lower level of our BLO formulation, we train the pseudo
singular vectors on a subset of the training data. In the upper level, we learn the
pseudo singular values on the other subset of the training data. The two levels of
optimization problems are mutually dependent on each other and solved jointly.
On ten datasets from natural language understanding and generation tasks and on
various popular large pretrained models, our method achieves significantly better
performance than LoRA, AdaLoRA, and other fine-tuning baseline methods with
similar amounts of trainable parameters.

1 INTRODUCTION

Large language models (LLMs) have achieved excellent performance across various natural lan-
guage processing tasks (Devlin et al., 2018; He et al., 2020; Radford et al., 2019; Brown et al.,
2020). The prevalent paradigm for leveraging large language models in application development
involves pretraining on large-scale data and subsequently fine-tuning the pretrained model on spe-
cific downstream tasks. With the ever-increasing size of large language models, full fine-tuning (Qiu
et al., 2020) them on various downstream tasks can cause significant computation costs. In addition,
the large number of parameters in pre-trained models may make the fine-tuning process more prone
to overfitting (Karimi Mahabadi et al., 2021). Researchers have proposed multiple fine-tuning meth-
ods to address these issues. These methods, aiming to reduce the parameter count during fine-tuning
while maintaining performance, can be collectively referred to as Parameter-Efficient Fine-Tuning
(PEFT) methods (Houlsby et al., 2019; Ding et al., 2023; Mao et al., 2021).

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is one of the important methods for PEFT. Different
from adapter tuning (Houlsby et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2020), LoRA does not
add small neural modules to the pre-trained model. LoRA takes inspiration from Li et al. (2018);
Aghajanyan et al. (2020) which show that well trained over-parameterized models actually exist
within a space characterized by a low intrinsic dimension. It introduces incremental updates named
low-rank adapters to frozen pre-trained weights and parameterizes them in the form of the product of
two much smaller matrices. For h = W0x, the modified forward pass yields: h = W0x+∆Wx =
W0x + BAx, where ∆W ∈ Rd×k, A ∈ Rd×r, B ∈ Rr×k and r ≪ min{d, k}. With much less
trainable parameters, LoRA achieves comparable or even better performance than full fine-tuning
and other adaptation methods (Hu et al., 2021).

LoRA sets the rank of incremental matrices at different layers to be the same, without considering
the fact that pretrained weight matrices in different layers have varying importance for a downstream
task. A more important weight matrix should be finetuned more, with a larger number of weight
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parameters (equivalently, a larger rank) in its incremental matrix. To address this issue, AdaLoRA
(Zhang et al., 2023) sets different ranks for incremental matrices at different layers adaptively ac-
cording to layers’ importance. It parameterizes a low-rank incremental matrix ∆W as ∆W = PΛQ
to mimic SVD. With regularization to enforce the orthogonality of P and Q, Λ can be approximately
considered as a singular value matrix. AdaLoRA uses singular values and vectors to compute im-
portant scores for determining how to set layer-specific ranks.

One limitation of AdaLoRA is that it learns pseudo singular vectors in {P,Q} and pseudo singular
values in Λ simultaneously by minimizing the fine-tuning loss on a single training dataset. This often
results in overfitting to the training data and unsatisfactory generalization on test data. Particularly,
Λ determines the number of learnable parameters and the contribution of each rank-1 update matrix
(outer product of two pseudo singular vectors) in ∆W . Learning Λ by minimizing a single dataset’s
training loss can easily render these contributions and parameter amounts tailored to this dataset,
leading to inferior generalization performance on other data.

To address this problem, we propose a bi-level optimization (BLO) based method to learn {P,Q}
and Λ on different subsets of the training data. A BLO formulation (Sinha et al., 2017) consists of
two levels of nested optimization problems. The optimal variables in the lower level are the inputs of
the objective function in the upper level. The non-optimal variables in the upper level are the inputs
of the objective function in the lower level. In the lower level of our formulation, we train {P,Q}
by minimizing a fine-tuning loss on a subset S of the training dataset D while tentatively fixing
Λ. The optimally learned {P ∗(Λ), Q∗(Λ)} are functionals of Λ. In the upper level, we validate
{P ∗(Λ), Q∗(Λ)} on the rest of the training data D\S. The validation loss is a function of Λ and
we learn Λ by minimizing this loss. By separating the learning of {P,Q} and Λ onto different
data subsets in different optimization problems, our method can effectively alleviate overfitting to a
single dataset and improve generalization performance to other datasets.

Our contributions can be summarized as follows:

• We propose a novel bi-level optimization based method to alleviate overfitting in LoRA
and its variants. Different from previous methods which learn an entire incremental matrix
on a single dataset, our method separates the learning of parameter subsets onto different
datasets in different optimization problems which are tightly coupled. In this way, our
method can effectively alleviate overfitting to a single dataset.

• We demonstrate the effectiveness of our method on ten datasets in both natural lan-
guage understanding and generation tasks and on various pretrained large models including
RoBERTa, DeBERTa, and GPT2. Compared with LoRA, AdaLoRA and other popular fine-
tuning methods, our method achieves significantly better performance with similar amounts
of trainable parameters.

2 RELATED WORK

Low-Rank Adaptation. Li et al. (2018) and Aghajanyan et al. (2020) demonstrate that widely-used
pre-trained models possess a very low intrinsic dimension and it is possible to achieve comparable
fine-tuning performance by utilizing a reparameterization with reduced dimensionality. This in-
spires low-rank adapters to be introduced for fine-tuning. LoRA introduces incremental updates to
frozen pre-trained weights as low-rank adapters (Hu et al., 2021). By parameterizing the low-rank
adapter as the product of two low-rank matrices, LoRA greatly reduces trainable parameters while
maintaining or even improving the performance over full fine-tuning. Multiple methods have been
proposed to improve the time/memory efficiency and performance of low-rank adapters based on
LoRA. DyLoRA (Valipour et al., 2022) trains low-rank adapter blocks for multiple ranks by sorting
the learned representations dynamically during training. QLoRA (Dettmers et al., 2023) introduces
multiple strategies to reduce memory footprint for low-rank adapters, lowering the memory barrier
for training LLMs. LoraHub (Huang et al., 2023) is designed to facilitate the efficient combination
of LoRA modules trained on various tasks using only a few examples from a new task. AdaLoRA
(Zhang et al., 2023) allocates the parameter budget adaptively according to the importance of mod-
ules to improve the fine-tuning performance in specific budget settings. It parameterizes the incre-
mental updates in the form of singular value decomposition and iteratively prunes singular values
in correspondence to their importance scores during training. Different from these existing methods
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which train all the parameters in incremental updates on a single training dataset and therefore of-
ten lead to overfitting, our method (based on the SVD reparameterization of incremental updates)
separately train singular values and singular vectors in two different optimization levels, which ef-
fectively alleviates the risk of overfitting to a single dataset.

Bi-level Optimization (BLO). BLO has gained much attention for formulating various machine
learning methods including meta-learning (Finn et al., 2017; Rajeswaran et al., 2019), hyperparam-
eter optimization (Franceschi et al., 2017; Lorraine et al., 2020), neural architecture search (Liu
et al., 2018; Zhang et al., 2021), reinforcement learning (Rajeswaran et al., 2020), to name a few.
In addition to applying BLO to various machine learning problems, various algorithms have been
proposed to address this specific form of optimization problem, including zeroth-order methods like
Bayesian optimization (Cui & Bai, 2019), first-order algorithms based on hypergradients (Pearl-
mutter & Siskind, 2008; Lorraine et al., 2020), etc. Gradient-based BLO is efficient for scaling up
to high-dimensional problems with a large number of trainable parameters. We expand the appli-
cation scenarios of gradient-based BLO and build an efficient training framework to improve the
generalization performance of low-rank adapters.

3 METHODS
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Figure 1: The proposed BiLoRA method.

We propose BiLoRA (Figure 1), a novel low-rank
adapter training framework based on bi-level opti-
mization. Similar to AdaLoRA, incremental ma-
trices in our method are parameterized in a pseudo
SVD form with learnable pseudo singular vectors V
and pseudo singular values E . We split the train-
ing dataset into two non-overlapping subsets D1 and
D2. In the lower level, we train V on D1 while fixing
E . The optimal solution V∗(E) (which is a functional
of E) is fed into the upper level. In the upper level,
we train E on the dataset D2. The updated E is fed
into the lower level. The two levels of optimization
problems are solved iteratively until convergence.

3.1 PARAMETERIZATION
OF LOW-RANK INCREMENTAL MATRICES

Following (Zhang et al., 2023), we parameterize the
low-rank incremental matrix ∆W as ∆W = PΛQ
which mimics SVD. The diagonal matrix Λ contains
pseudo singular values and the approximately orthogonal matrices P and Q represent pseudo
left/right singular vectors. We use k to index the incremental matrix, i.e., ∆Wk = PkΛkQk for
k = 1, ..., n, where n is the number of low-rank adapters. We denote the i-th singular value of
∆Wk as λk,i and the rank of low-rank adapters as r. We further denote the parameter sets as
P = {Pk}nk=1, E = {Λk}nk=1, Q = {Qk}nk=1, and V = {P,Q}. To encourage Pk and Qk to be
approximately orthogonal, we use the following regularizer as in AdaLoRA (Zhang et al., 2023):

R1 =

n∑
k=1

(∥PT
k Pk − I∥2F + ∥QkQ

T
k − I∥2F ), (1)

where I is an identity matrix and ∥ · ∥F denotes the Frobenius norm.

Parameterization of Pseudo Singular Values. We parameterize the pseudo singular values in Λ
in three specific forms.

• Real-Value: All pseudo singular values are real-valued without any constraints.

• Softmax: Given a real vector v, we apply the softmax operation to it. softmax(v) are used
as the pseudo singular values. These values add up to one and represent the contributions
of their corresponding singular vector pairs.
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• Approximately Binary: Given a real vector v, we apply element-wise sigmoid to it to
transform the values in v into (0, 1). Then we use an element-wise entropy regularizer
to encourage the values in sigmoid(v) are close to either zero or one. The regularizer is
defined as:

R2(E) =
n∑

k=1

r∑
i=1

λk,i log λk,i + (1− λk,i) log(1− λk,i). (2)

This setting automatically assigns either a high or low importance to each singular vector
pair with the corresponding singular value as zero or one, effectively serving as an auto-
matic rank selection mechanism.

3.2 A BI-LEVEL OPTIMIZATION FRAMEWORK

Our method is based on bi-level optimization, where pseudo singular vector matrices V and their
corresponding pseudo singular value matrices E are set as trainable parameters for the lower and
upper level respectively.

Lower Level. In the lower level, we perform LoRA fine-tuning of a pre-trained model by min-
imizing a loss C defined on the first dataset D1 and low-rank incremental matrices {∆Wk}nk=1.
Calculating C involves the forward pass for each input example x: W0x+∆Wx = W0x+PΛQx,
where W0 is a weight matrix in the pretrained model. R1 in Eq.(1) is applied to promote the approx-
imate orthogonality of P and Q. The overall training objective is L1 = C(V, E ;D1) + γ1R1(V),
where γ1 is a tradeoff parameter. In this level, we only train V , while keeping E tentatively fixed.
E will be updated in the upper level. In the end, the lower level amounts to solving the following
problem:

V∗(E) = argmin
V

C(V, E ;D1) + γ1R1(V). (3)

V∗(E) denotes that the optimal solution V∗ depends on E since V∗ depends on C which depends on
E .

Upper Level. In the upper level, we validate the fine-tuned model where the incremental matrices
are parameterized by the optimally learned V∗(E) and unlearned pseudo singular values in E , on
the second dataset D2. This results in a validation loss C(V∗(E), E , D2), which is a function of E .
We learn E by minimizing this loss. Optionally, we use the regularizer R2 in Eq.(2) to encourage
the pseudo singular values in E to be approximately binary. The overall objective function is L2 =
C(V∗(E), E ;D2) + γ2R2(E), where γ2 is a tradeoff parameter. This level amounts to solving the
following optimization problem:

min
E

C(V∗(E), E ;D2) + γ2R2(E). (4)

A Bi-level Optimization Framework.

Integrating these two interdependent levels of optimization problems, we have the following bi-level
optimization framework:

Upper Level: min
E

C(V∗(E), E ;D2) + γ2R2(E)

Lower Level: s.t. V∗(E) = argmin
V

C(V, E ;D1) + γ1R1(V)

Note that these two levels of optimization problems are mutually dependent on each other. The
output of the lower level, which is V∗(E), is the input of the upper level. The optimization variable
E in the upper level is the input of the lower level. By solving these two interconnected problems
jointly, we can learn the pseudo singular vectors and values end-to-end.

Optimization Algorithm. We utilize a gradient-based optimization algorithm (Choe et al., 2022)
to solve this bi-level optimization problem. Our overall optimization algorithm is summarized in
Algorithm 1. Specifically, in the lower level, we perform gradient descent for a preset number of
steps T1 on the pseudo singular vector matrices V to approximate the optimal solution V∗(E). With
the initial V as V(0) and learning rate η1, the gradient descent steps can be formulated as:

V(t) = V(t−1) − η1
dL1

dV(t−1)
, for t = 1, 2, 3, ..., T1.
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Table 1: RoBERTabase/large (Rb/l) with different adaptation methods on the GLUE benchmark. We
report the average result of five runs with different random seeds. Higher is better for all metrics.
Numbers except BiLoRA are published in prior works. ∗ indicates model already adapted to MNLI
when adapting to MRPC, RTE, and STS-B, while † indicates model started as pre-trained when
adapting to all datasets.

Method Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Rb(FT) 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
Rb(BitFit) 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
Rb(AdptD) 0.3M 87.1±.0 94.2±.1 88.5±1.1 60.8±.4 93.1±.1 90.2±.0 71.5±2.7 89.7±.3 84.4
Rb(AdptD) 0.9M 87.3±.1 94.7±.3 88.4±.1 62.6±.9 93.0±.2 90.6±.0 75.9±2.2 90.3±.1 85.4
Rb(LoRA)∗ 0.3M 87.5±.3 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 90.8±.1 86.6±.7 91.5±.2 87.2
Rb(BiLoRA)∗ 0.3M 87.9±.2 95.1±.2 91.7±.5 64.8±.6 93.3±.2 91.4±.2 87.2±.4 91.7±.2 87.9

Rl(FT)∗ 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
Rl(LoRA)∗ 0.8M 90.6±.2 96.2±.5 90.9±1.2 68.2±1.9 94.9±.3 91.6±.1 87.4±2.5 92.6±.2 89.0
Rl(BiLoRA)∗ 0.8M 90.6±.3 96.7±.4 92.6±1.4 69.2±1.6 95.0±.1 92.0±.1 89.5±1.1 92.6±.8 89.8

Rl(AdptP)† 3.0M 90.2±.3 96.1±.3 90.2±.7 68.3±1.0 94.8±.2 91.9±.1 83.8±2.9 92.1±.7 88.4
Rl(AdptP)† 0.8M 90.5±.3 96.6±.2 89.7±1.2 67.8±2.5 94.8±.3 91.7±.2 80.1±2.9 91.9±.4 87.9
Rl(AdptH)† 6.0M 89.9±.5 96.2±.3 88.7±2.9 66.5±4.4 94.7±.2 92.1±.1 83.4±1.1 91.0±1.7 87.8
Rl(AdptH)† 0.8M 90.3±.3 96.3±.5 87.7±1.7 66.3±2.0 94.7±.2 91.5±.1 72.9±2.9 91.5±.5 86.4
Rl(LoRA)† 0.8M 90.6±.2 96.2±.5 90.2±1.0 68.2±1.9 94.8±.3 91.6±.2 85.2±1.1 92.3±.5 88.6
Rl(BiLoRA)† 0.8M 90.6±.3 96.7±.4 92.2±1.0 69.2±1.6 95.0±.1 92.0±.1 87.4±1.0 92.6±.8 89.5

We plug V∗(E) ≈ V(T1) into the overall objective function in the upper level and get an approximate
objective L̂2 = C(V(T1), E ;D2) + γ2R2(E). We perform gradient descent for a preset number of
steps T2 on the pseudo singular values in E to minimize L̂2. With the initial E as E(0) and learning
rate η2, the gradient descent steps can be formulated as:

E(t) = E(t−1) − η2
dL̂2

dE(t−1)
, for t = 1, 2, 3, ..., T2.

These steps constitute one global optimization step. We take iterative global steps between the
lower level and upper level to solve this bi-level optimization problem until converge. Specifically,
following the chain rule, the hypergradient for the upper level can be calculated as:

dL̂2

dE
=

∂L̂2

∂E
+

∂V(T1)

∂E
× ∂L̂2

∂V(T1)
.

Algorithm 1 BiLoRA
1: Input: Datasets D1, D2; unroll steps T1, T2; learning rates η1, η2.
2: In a Global Step do
3: for t = 1, 2, 3, ..., T1 do
4: Sample a minibatch B

(t)
1 from D1

5: Compute dL1

dV(t−1) on B
(t)
1 and update V(t) = V(t−1) − η1

dL1

dV(t−1)

6: for t = 1, 2, 3, ..., T2 do
7: Sample a minibatch B

(t)
2 from D2

8: Compute dL̂2

dE(t−1) = ∂L̂2

∂E(t−1) +
∂V(T1)

∂E(t−1) × ∂L̂2

∂V(T1) and update E(t) = E(t−1) − η2
dL̂2

dE(t−1)

9: end this step

4 EXPERIMENTS

We evaluated the downstream performance of BiLoRA on RoBERTa (Liu et al., 2019), DeBERTa
(He et al., 2020) and GPT-2 (Radford et al., 2019), and compared with LoRA (Hu et al., 2021),
AdaLoRA (Zhang et al., 2023), and other baselines. Our experiments covered a wide range of
tasks, from natural language understanding (NLU) to generation (NLG). Specifically, we evaluated
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Table 2: DeBERTa-v3-base (Dv3) with different adaptation methods, on the GLUE benchmark.
We report the average result of five runs with different random seeds. Higher is better. * indicates
numbers published in prior works. BiLoRA outperforms FT, LoRA, AdaLoRA, and other adaptation
methods with equal or less parameters.

Method Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Dv3(FT)* 184.0M 90.01 95.63 89.46 69.19 94.03 92.40 83.75 91.60 88.09
Dv3(AdptH)* 0.6M 90.18 95.30 89.22 67.87 93.76 91.65 85.56 91.30 87.93
Dv3(AdptP)* 0.6M 90.22 95.53 89.22 69.48 93.98 91.62 84.12 91.52 88.04
Dv3(LoRA)* 0.3M 90.34 94.95 89.71 68.71 94.03 91.61 85.56 91.68 88.15
Dv3(AdaLoRA)* 0.3M 90.68 95.80 90.44 70.04 94.49 91.78 87.36 91.63 88.86
Dv3(BiLoRA) 0.3M 90.81 96.02 91.42 70.52 94.25 91.82 88.45 91.96 89.41

RoBERTa and DeBERTa on the GLUE benchmark (Wang et al., 2018) and GPT-2 on the E2E NLG
challenge (Novikova et al., 2017). We used DeBERTa-xxlarge(1.5B) to evaluate the scaling-up
performance of our method. We used NVIDIA A100 for all experiments.

4.1 BASELINES

We compared with the same baselines as LoRA and AdaLoRA, and used the reported results in
previous work. Additionally, we also took LoRA and AdaLoRA as our baselines to evaluate the
effectiveness of our method.

Full Fine-Tuning (FT) is a frequently employed method for adaptation. The model is initialized
with pre-trained weights and biases and all model parameters are subjected to gradient updates. We
also included a simple variant reported in prior work on GPT-2 (Li & Liang, 2021), which only
adapts the last two layers while freezing others.

Bias-only or BitFit (Zaken et al., 2021) is an effective PEFT method which only trains the bias
vectors while freezing everything else in the pre-trained model.

Prefix-embedding tuning (PreEmbed) introduces specialized tokens within the input tokens, fea-
turing trainable word embeddings that typically do not belong to the model’s vocabulary (Li &
Liang, 2021).

Prefix-layer tuning (PreLayer) learns the activations after every Transformer layer by replacing
the activations computed from previous layers with trainable parameters. This method can be seen
as an extension to prefix-embedding tuning.

Adapter tuning (Houlsby et al., 2019) inserts layer-adapters between neural modules such as the
MLP module or the self-attention module. We used four types of adapters as in LoRA (Hu et al.,
2021): AdapterL with the adapter layer applied only after the MLP module and after a LayerNorm
(Lin et al., 2020), AdapterD with some adapter layers dropped for increasing efficiency (Rücklé
et al., 2020). AdapterH incorporates two fully connected layers within an adapter layer, with non-
linearity in between (Houlsby et al., 2019). AdapterP (Pfeiffer et al., 2020) is similar to AdapterL,
but introduces a novel two-stage transfer learning strategy to combine the knowledge from multiple
source tasks.

LoRA (Hu et al., 2021) adds trainable incremental update matrices to pretrained weight matrices.
Following the experimental settings of LoRA, we applied BiLoRA to Wq and Wv matrices (the
query and value weight matrices in the self-attention module) for a fair comparison.

AdaLoRA (Zhang et al., 2023) proposes SVD-based adaptation and rank-allocation based on LoRA,
which formulates the incremental matrices in the form of singular value decomposition and allocates
rank budget based on importance scores.

4.2 NATURAL LANGUAGE UNDERSTANDING

For natural language understanding (NLU) tasks, we conducted experiments on the General Lan-
guage Understanding Evaluation (GLUE) benchmark for RoBERTa and DeBERTa. Please see Ap-
pendix A for more details on the models and datasets we use.
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Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. * indicates numbers published in prior works. We keep
the same experimental settings as different adaptation baselines for a fair comparison.

Model&Method Params BLEU NIST MET ROUGE-L CIDEr

GPT-2 M(FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M(AdptL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M(AdptL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M(AdptH)* 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7 ±.2 2.44 ±.01
GPT-2 M(FTTop2)* 25.19M 68.1 8.59 46.0 70.8 2.41
GPT-2 M(PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M(LoRA)* 0.35M 70.4±.1 8.85±.02 46.8±.2 71.8 ±.1 2.53 ±.02
GPT-2 M(BiLoRA) 0.35M 70.5±.4 8.86±.03 46.9±.1 72.0±.2 2.54±.03

GPT-2 L(FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L(AdptL)* 0.88M 69.1±.1 8.68 ±.03 46.3 ±.0 71.4±.2 2.49±.0
GPT-2 L(AdptL)* 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02
GPT-2 L(PreLayer)* 0.77M 70.3 8.85 46.2 71.7 2.47
GPT-2 L(LoRA)* 0.77M 70.4±.1 8.89±.02 46.8±.2 72.0±.2 2.47±.02
GPT-2 L(BiLoRA) 0.77M 70.5±.3 8.90±.04 47.0±.3 72.0±.4 2.49 ±.03

Implementation Details. Our implementation is based on Huggingface Transformers (Wolf et al.,
2019) and Betty (Choe et al., 2022). Betty is a software library for solving large-scale multilevel
optimization (MLO) problems. Specifically, we load RoBERETa and DeBERTa models with Hug-
gingface Transformers and build our bi-level optimization framework with Betty.

Experimental Settings. Following LoRA, we used the development set in GLUE as test data since
the test set is not publicly available. We divided the training set into two datasets, with an 8:2
split, serving as the lower-level and upper-level datasets respectively in our bi-level formulation.
We maintained this fixed ratio for all tasks. Singular values were parameterized as Softmax if not
otherwise stated and R1 was added to the lower level as a regularizer. For RoBERTa base/large, we
kept our experimental settings the same as LoRA. For DeBERTa-v3-base, we kept our experimental
settings close to AdaLoRA while maintaining a lower parameter budget. We also kept hyperparam-
eters such as sequence length, total batch size, LoRA rank, and LoRA alpha exactly the same as
LoRA/AdaLoRA where necessary. These experimental settings allow for a fair comparison with all
baseline methods. Please see the Appendix for all the hyperparameter settings.

Main Results. The same as LoRA, we report the overall (matched and mismatched) accuracy for
MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for the other
tasks. Table 1 shows the results of RoBERTa base/large on the GLUE development set. As can
be seen, our method outperforms LoRA on all datasets with the same number of trainable parame-
ters. On most datasets, our method achieves better or on par performance compared with baselines.
The average score of BiLoRA notably outperforms all the baselines. Table 2 shows the results of
DeBERTa-v3-base on the GLUE development set. BiLoRA outperforms all baselines with equal or
less trainable parameters. The improvements achieved by our method over baselines are attributed
to its bi-level learning mechanism which separates the training of pseudo singular vectors and values
on two distinct datasets. As a result, it effectively alleviates the risk of overfitting to one dataset and
yields better generalization performance. In contrast, baseline methods train all parameters on the
same dataset and thus lead to overfitting to this dataset. This is particularly evidenced by the obser-
vation that on smaller datasets such as CoLA, RTE, and MRPC where overfitting is more likely to
occur, BiLoRA outperforms baselines by a larger margin.

4.3 NATURAL LANGUAGE GENERATION

For natural language generation (NLG) tasks, we followed the setup of Prefix-Tuning (Li & Liang,
2021) and LoRA (Hu et al., 2021) on GPT-2 for a direct comparison with LoRA and other adap-
tation methods. We evaluated GPT-2 medium and large on the E2E NLG Challenge. Please see
Appendix A for more details on the models and datasets we used.
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Implementation Details. Our implementation is based on the fine-tuning code for GPT-2 in Hug-
gingface and Betty (Choe et al., 2022). Specifically, we load GPT-2 models with the code of Hug-
gingface and build our bi-level optimization framework with Betty.

Experimental Settings. In our method, the training set and validation set are used as the lower-level
and upper-level datasets respectively, and we report performance on the test set. Singular values
were parameterized as Softmax if not otherwise stated. We kept our experimental settings the same
as LoRA. Specifically, we kept hyperparameters such as sequence length, batch size, LoRA rank,
LoRA alpha, and label smoothing exactly the same as LoRA. These experimental settings allow for
a fair comparison with LoRA and other adaptation methods.

Main Results. Table 3 shows the results of GPT-2 medium/large on the E2E test set. Our method
outperforms LoRA and other methods on all metrics for both GPT-2 M and GPT-2 L. The results
demonstrate the effectiveness of our method in Natural Language Generation (NLG) downstream
tasks and the generalization capabilities of our method across different models and task types.

4.4 ANALYSIS

Scaling Up to DeBERTa-XXL. We use DeBERTa-v2-xxlarge(1.5B) to evaluate the scaling-up
performance of our method. The study was performed on three datasets of the GLUE benchmark
due to the constraint of computational resources for keeping the same experimental settings with
LoRA. Results in Table 4 show that BiLoRA achieves better or on par performance compared with
LoRA and full fine-tuning (FT), indicating that BiLoRA yields better generalization when applied
to fine-tuning models with a very large number of parameters.

Table 4: Experiment results for scaling up to DeBERTa-XXL (Dv2). In BiLoRA, the values of
hyperparameters including LoRA rank, LoRA alpha, and max length are the same as those in LoRA.
* indicates numbers published in prior works.

Method params MNLI MRPC CoLA Avg.

Dv2(FT)* 1500.0M 91.8 92.0 72.0 85.3
Dv2(LoRA)* 4.7M 91.9±.2 92.6±.6 72.4±1.1 85.6
Dv2(BiLoRA) 4.7M 91.9±.3 92.7±.4 73.0±.4 85.9

Ablation Studies on Pseudo Singular Values. In Section 3.1, we introduced three ways to param-
eterize the pseudo singular values: Real Value, Softmax, and Approximately Binary. We conduct
experiments separately using these three parameterization methods while keeping other experimen-
tal settings the same. We test RoBERTa’s performance on the GLUE dataset. Results in Table 5
show that the Softmax parameterization exhibits the best performance, with Approximately Binary
coming in a close second. Softmax and Approximately Binary outperform Real Value because they
yield positive values which meet the constraint that singular values need to be non-negative while
Real Value does not. Approximately Binary performs slightly worse than Softmax since it imposes
a stronger constraint that the values need to be close to zero or one. Such a constraint limits the ex-
pressivity of the parameterization. Another observation is that under all the three parameterization
methods, BiLoRA outperforms LoRA, demonstrating that BiLoRA is robust against different ways
of representing the pseudo singular values and thus does not require extensive tuning for selecting
the best parameterization.

Table 5: Experiment results on three different parameterizations of pseudo singular values: Real
Value, Softmax, and Approximately Binary.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Rb(LoRA) 87.5 95.1 89.7 63.4 93.3 90.8 86.6 91.5 87.2
Rb(Real Value) 87.5 94.6 91.7 63.6 93.0 90.8 86.6 91.3 87.4
Rb(Softmax) 87.9 95.1 91.7 64.8 93.3 91.4 87.2 91.7 87.9
Rb(Binary) 87.6 94.8 91.4 64.4 93.0 91.2 86.6 91.5 87.6
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Ablation Study on Orthogonality-Promoting Regularization. We investigated how the tradeoff
parameter γ1 associated with the orthogonality-promoting regularizer R1 in Eq.(1) affects the per-
formance of our method. The study was performed on RoBERTa-base. Results in Table 6 show that
our method is robust against different values of γ1, which implies that using our method does not
need to extensively tune this hyperparameter.

Table 6: Experiment results of RoBERTabase (Rb) on GLUE, under different values of γ1.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Rb(γ1 = 0.0) 87.8 95.0 91.7 64.8 93.1 91.5 87.2 91.7 87.9
Rb(γ1 = 0.1) 87.9 95.1 91.7 64.8 93.3 91.4 87.2 91.7 87.9
Rb(γ1 = 0.2) 87.8 95.0 91.9 64.4 93.1 91.2 86.9 91.5 87.7
Rb(γ1 = 0.3) 87.2 94.6 91.4 63.6 92.8 90.9 87.4 91.2 87.4

Computation Costs. Table 7 shows the training time of LoRA and our method. The total training
time of our method on the eight datasets is lower than that of LoRA. This arises from the fact that
BiLoRA converges with much fewer training epochs than LoRA. In the Softmax parameterization
of pseudo singular values, each value is initialized with a mean equal to 1/r, larger than that in
Real-Value, which increases the overall magnitude of ∆W and allows a larger learning rate for the
training process. The bi-level optimization framework effectively accommodates this larger learning
rate by iteratively optimizing between the two levels without affecting the training stability. With
such a large learning rate, even though bi-level optimization takes longer time for each training step,
it takes much fewer training steps for training low-rank adapters compared to LoRA, thus reducing
the total training time.

Table 7: Training time (minutes) of LoRA and BiLoRA on RoBERTabase/large (Rb/l) and the GLUE
benchmark.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Total.

Rb(LoRA) 3190.7 1096.2 30.2 193.0 709.8 2464.3 55.5 62.4 7802.1
Rb(BiLoRA) 1407.1 260.1 240.3 260.3 375.2 1732.6 97.5 158.3 4531.4
Rl(LoRA) 789.7 133.9 14.7 34.1 209.1 1446.7 10.0 23.1 2661.3
Rl(BiLoRA) 707.5 160.8 19.2 62.5 200.4 1166.7 4.4 43.3 2363.8

The results in Table 1 and 4 jointly demonstrate that BiLoRA enhances training performance while
reducing the overall training time. These results substantiate the effectiveness of our method.

5 CONCLUSION AND FUTURE WORK

We propose BiLoRA, a novel and general bi-level optimization framework for further enhancing
the performance of low-rank adapters through addressing the overfitting issue in LoRA and its vari-
ants. By utilizing the SVD parameterization form of low-rank incremental matrices, our method
separately trains pseudo singular vectors and singular values on different datasets in two different
optimization levels. Such a method effectively alleviates overfitting and enhances the performance
of low-rank incremental matrices while reducing the total training time. Results of extensive exper-
iments on various NLU and NLG tasks and different large pre-trained models show that our method
achieves notable performance improvements over existing adaptation methods.

Our method opens up several potential directions for future research: 1) The parameterization form
of pseudo singular values can be further developed to support automated rank selection. 2) Our
bi-level optimization framework enhances the generalization capability of fine-tuned models, which
encourages further in-depth theoretical analysis in this regard.
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A DATASETS AND MODELS

A.1 NATURAL LANGUAGE UNDERSTANDING

GLUE Benchmark comprises a diverse array of natural language understanding tasks widely em-
ployed for evaluation. It encompasses two single-sentence classification tasks, three tasks assessing
similarity and paraphrasing, and four tasks focusing on natural language inference. Specifically, it
includes MNLI (MultiNLI, Williams et al. (2017)), SST-2 (Stanford Sentiment Treebank, Socher
et al. (2013)), MRPC (Microsoft Research Paraphrase Corpus, Dolan & Brockett (2005)), CoLA
(Corpus of Linguistic Acceptability, Warstadt et al. (2019)), QNLI (Question NLI, Rajpurkar et al.
(2018)), QQP (Quora Question Pairs), RTE (Recognizing Textual Entailment), and STS-B (Seman-
tic Textual Similarity Benchmark, Cer et al. (2017)). We summarized the statistical data for all
datasets within the GLUE Benchmark in the table below:

Table 8: The statistical data for all datasets within the GLUE Benchmark

Dataset Metrics Train Dev Test Label Task

MNLI Accuracy 393k 20k 20k 3 NLI

SST-2 Accuracy 67k 872 1.8k 2 Sentiment

MRPC Accuracy 3.7k 408 1.7k 2 Paraphrase

CoLA Matthews corr 8.5k 1k 1k 2 Acceptability

QNLI Accuracy 108k 5.7k 5.7k 2 QA/NLI

QQP Accuracy 364k 40k 391k 2 Paraphrase

RTE Accuracy 2.5k 276 3k 2 NLI

STSB Pearson corr 7.0k 1.5k 1.4k 1 Similarity

A.2 NATURAL LANGUAGE GENERATION

E2E NLG Challenge (Novikova et al., 2017) is now commonly used for data-to-text evaluation.
It was first introduced as a dataset for training end-to-end, data-driven natural language generation
systems. Multiple references can be associated with each source table used as input. Each sample
input (x, y) is composed of a series of slot-value pairs, accompanied by an associated natural lan-
guage reference text. The E2E dataset consists of approximately 42,000 training examples, 4,600
validation examples, and 4,600 test examples from the restaurant domain.

A.3 MODELS

RoBERTa (Liu et al., 2019) builds upon the foundational principles and training strategies of
BERT (Devlin et al., 2018), offering novel alternatives that enhance downstream task performance.
RoBERTa refines and optimizes the pre-training methodology initially proposed in BERT, resulting
in notable improvements in task performance while maintaining a comparable number of trainable
parameters. We use RoBERTa-base and RoBERTa-large for a convenient and fair comparison with
LoRA (Hu et al., 2021).

DeBERTa (He et al., 2020) represents an advanced iteration of BERT, having undergone extensive
training at a larger scale. DeBERTa demonstrates strong competitiveness when evaluated on the
GLUE benchmark. For our experiments, we use DeBERTa-v2-xxlarge which has 1.5 billions of
parameters to evaluate the scaling-up capability of BiLoRA and also for a convenient comparison
with LoRA. We use DeBERTa-v3-base which has 183 millions parameters for fair comparison with
AdaLoRA (Zhang et al., 2023).

GPT-2 (Radford et al., 2019) developed by OpenAI, was once a state-of-the-art language model
renowned for its remarkable text generation capabilities. It is a scaled-up version of its predecessor,
GPT-1, and is trained on an extensive corpus of text data. GPT-2 has been widely recognized for
its proficiency in generating coherent and contextually relevant text across various natural language
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understanding and generation tasks, showcasing its versatility and potential in the field of natural
language processing.

B EXPERIMENTAL SETTINGS

B.1 ROBERTA

We summarized the experimental settings for the experiments of RoBERTa-base and RoBERTa-
large in Table9. In fact, we only introduced an additional level of learning rate compared to LoRA.
For hyperparameters such as max seq length, LoRA α, we kept them the same as LoRA. We chose
learning rates from the magnitude of 1e-5 for almost all of our experiments. The hyperparameter
tuning for our method is quite simple, convenient and straightforward.

Table 9: The hyperparameters we used for RoBERTa on the GLUE benchmark. ∗ indicates model
already adapted to MNLI when adapting to MRPC, RTE, and STS-B, while † indicates model started
as pre-trained when adapting to all datasets.

Method Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank rankq = rankv = 8

RoBERTa-base* Total batch size 64
Global steps 10k 3k 2k 3k 3k 15k 1.5k 5k
Lower learning rate 2e-5 3e-5 2e-6 2e-5 3e-5 3e-5 4e-6 4e-6
Upper learning rate 3e-5 4e-5 8e-6 4e-5 4e-5 4e-5 2e-6 2e-6
Lower weight decay 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1
Upper weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Seq Length 512

RoBERTa-large* Total batch size 32
Global steps 15k 4k 1k 3k 3k 20k 0.12k 2k
Lower learning rate 1.5e-5 1.5e-5 4e-6 1e-5 1e-5 1e-5 4e-6 1e-5
Upper learning rate 2e-5 2e-5 6e-6 5e-5 3e-5 2e-5 4e-6 5e-6
Lower weight decay 0.12 0.12 0.12 0.12 0.12 0.12 0.1 0.1
Upper weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Seq Length 128

RoBERTa-large† Total batch size 32
Global steps 15k 4k 1k 3k 3k 20k 2k 2k
Lower learning rate 1.5e-5 1.5e-5 2e-5 1e-5 1e-5 1e-5 1e-5 8e-6
Upper learning rate 2e-5 2e-5 1e-4 5e-5 3e-5 2e-5 2e-5 4e-6
Lower weight decay 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1
Upper weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Seq Length 128

B.2 DEBERTA

We summarized the experimental settings used in the experiments for DeBERTa-v2-xxlarge and
DeBERTa-v3-base in Table10. In fact, we only introduced an additional level of learning rate com-
pared to LoRA. For hyperparameters such as max seq length, LoRA α, we kept them the same as
LoRA and AdaLoRA. We chose learning rates from the magnitude of 1e-5 for almost all of our
experiments. The hyperparameter tuning for our method is quite simple, convenient and straight-
forward. Due to our limited computational resources, we were unable to maintain the same exper-
imental settings as LoRA on many datasets, making a fair comparison impossible. Therefore, for
DoBERTa-v2-xxlarge, we only conducted experiments on the MNLI, CoLA, and MRPC datasets.
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Table 10: The hyperparameters we used for DeBERTa-v2-xxlarge and DeBERTa-v3-base on the
GLUE benchmark.

Method Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Scheduler Linear
LoRA rank rankq = rankv = 8

DeBERTa-v2-XXL Total batch size 64 32 32
Global steps 20k 1k 3k
Inner learning rate 0.5e-5 2e-6 1e-5
Outer learning rate 1e-5 2e-6 1e-5
LoRA α 16 16 16
Max Seq Length 128 128 64

DeBERTa-v3-base Total batch size 32
Global steps 15k 3k 1k 1k 2k 20k 0.5k 1k
Lower learning rate 1e-5 1.5e-5 2e-6 1e-5 1e-5 1e-5 4e-6 4e-6
Upper learning rate 2e-5 2.5e-5 4e-6 2e-4 2e-5 2e-5 4e-6 4e-6
Lower weight decay 0.12 0.12 0.15 0.12 0.12 0.12 0.12 0.12
Upper weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
LoRA α 16
Max Seq Length 256 128 320 64 512 320 320 128

B.3 GPT-2

We summarized the experimental settings for the experiments of GPT-2 M and L in Table11. We
kept hyperparameters almost the same as LoRA for a fair comparison.

Table 11: The hyperparameters we used for GPT-2 on the E2E NLG benchmark.

Settings Training

Optimizer AdamW
Warmup Steps 500
Scheduler Linear
LoRA rank rankq = rankv = 4
LoRA α 32
Label Smooth 0.1
Weight Decay 0.01
Batch Size 8

Settings Inference

Beam Size 10
Length Penalty 0.9
no repeat ngram size 4

C MOTIVATION

Figure 2.

D PRUNING RATES AND WEIGHT DECAY IN ADALORA

Figure 3 and Figure 4.

E THE DISTRIBUTION OF THE SINGULAR VALUES

Figure 5.
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(a) LoRA

(b) AdaLoRA

(c) BiLoRA

Figure 2: Training/Evaluation Loss Curves for illustrating of the overfitting limitations of existing
methods. Blue curves represent evaluation losses. In LoRA and AdaLoRA, yellow curves represent
training losses while in BiLoRA yellow/red curves separately represent inner/outer losses.
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(a) AdaLoRA 0.00

(b) AdaLoRA 0.02

(c) AdaLoRA 0.05

Figure 3: Training/Evaluation Loss Curves for illustrating of the influence of different weight decays
in AdaLoRA. Blue curves represent evaluation losses and yellow curves represent training losses.
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(a) AdaLoRA 6kinds

(b) AdaLoRA 4kinds

Figure 4: Training/Evaluation Loss Curves for illustrating of the influence of different pruning rates
in AdaLoRA. Blue curves represent evaluation losses and yellow curves represent training losses.
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Figure 5: Singular Value Distribution of BiLoRA and AdaLoRA.
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F THE ORTHOGONALITY OF OPTIMAL SOLUTIONS

Figure 6 and Figure 7.

Figure 7: Loss Curve with λ = 0.1
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(a) BiLoRA Without Regularization
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(b) BiLoRA With λ = 0.1
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Figure 6: The orthogonality of optimal solutions.
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