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ABSTRACT

Spurious correlations in the data, where multiple cues are predictive of the target
labels, often lead to a phenomenon known as shortcut learning, where a model
relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work,
we propose DiffDiv an ensemble diversification framework exploiting Diffusion
Probabilistic Models (DPMs) to mitigate this form of bias. We show that at partic-
ular training intervals, DPMs can generate images with novel feature combinations,
even when trained on samples displaying correlated input features. We leverage this
crucial property to generate synthetic counterfactuals to increase model diversity
via ensemble disagreement. We show that DPM-guided diversification is sufficient
to remove dependence on shortcut cues, without a need for additional supervised
signals. We further empirically quantify its efficacy on several diversification
objectives, and finally show improved generalization and diversification on par
with prior work that relies on auxiliary data collection.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved unparalleled success in countless tasks across diverse
domains. However, they are not devoid of pitfalls. One such downside manifests in the form of
shortcut learning, a phenomenon whereby models latch onto simple, non-essential cues that are
spuriously correlated with target labels in the training data (Geirhos et al., 2020; Shah et al., 2020;
Scimeca et al., 2022). Often engendered by the under-specification present in data, this simplicity
bias presents easy to learn shortcuts that allow accurate prediction at training time, irrespective
of a model’s alignment to the downstream task. For instance, previous work has found models to
incorrectly rely on background signals for object recognition (Xiao et al., 2021; Beery et al., 2018), or
to rely on non-clinically relevant metal tokens to predict patient conditions from X-Ray images (Zech
et al., 2018). Shortcut learning has often been found to lead to significant drops in generalization
performance (Agrawal et al., 2018; Torralba & Efros, 2011; Minderer et al., 2020; Li & Vasconcelos,
2019; Zech et al., 2018). Leveraging shortcut cues can also be harmful when deploying models in
sensitive settings. For example, shortcuts can lead to the reinforcement of harmful biases when they
endorse the use of sensitive attributes such as gender or skin color (Wang et al., 2019; Xu et al., 2020;
Scimeca et al., 2022).

Addressing simplicity biases in machine learning has been a focus of extensive research. Numerous
studies have aimed to encourage models to use a broader and more diversified set of predictive cues,
especially when dealing with training data that lacks explicit shortcut cue labels. A variety of these
methods have been input-centric, designed to drive models to focus on different areas of the input
space (Teney et al., 2022b; Nicolicioiu et al., 2023), while others have focused on diversification
strategies that rely on auxiliary data for prediction disagreement (Pagliardini et al., 2022; Lee et al.,
2022). The latter approaches, in particular, have been instrumental in developing functionally diverse
models that exhibit robustness to shortcut biases. However, they are limited by their required access
to auxiliary data that is often challenging to obtain.

The primary objective of this work is to mitigate shortcut learning tendencies, particularly when
they result in strong, unwarranted biases, access to ood data is expensive, and different features may
rely on similar areas of the input space. To achieve this objective, we propose DiffDiv, an ensemble
framework relying on unlabelled ood data for shortcut mitigation by ensemble diversification. To
overcome the challenges of the past, we aim to synthetically generate the data for model diversification
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Figure 1: DiffDiv: We sample from a DPM to generate synthetic counterfactuals showcasing emergent
novel feature combinations. These samples are then utilized to build a diverse model ensemble via
different ensemble disagreement objectives.

by disagreement, and thus avoid the impracticality of ood data collection. We posit that the synthetic
data should: first, lie in the manifold of the data of interest; and second, be at least partially free of
the same shortcuts as the original training data. We leverage Diffusion Probabilistic Models (DPMs)
to generate synthetic data for ensemble disagreement.

Although the in-depth study of the generalization properties of diffusion sampling mechanisms is
beyond the scope of this paper, we make the crucial observation and empirically show that even in
the presence of correlated features in the data, appropriately trained DPMs can be used to generate
synthetic counterfactuals that break the shortcut signals present at training time. We show that this
important characteristic arises at specific training intervals, and that it can be leveraged for shortcut
cue mitigation. We hypothesize that diversification, and shortcut mitigation, can be achieved via
ensemble disagreement on these DPM-generated samples, providing models with an opportunity to
break the spurious correlations present during training. Remarkably, our experiments confirm that the
extent and quality of our diffusion-guided ensemble diversification is on par with existing methods
that rely on additional data.

Our contributions are the following:

1. We show that DPMs can generate feature compositions beyond data exhibiting correlated
input features.

2. We demonstrate that ensemble disagreement is sufficient for shortcut cue mitigation.

3. We propose DiffDiv, a framework to achieve bias mitigation through diversification based
on diffusion counterfactuals.

4. We show appropriately trained DPM counterfactuals can lead to state-of-the-art diversifica-
tion and shortcut bias mitigation.

Moreover, our study presents several interesting findings, including the application of the Wisconsin
Card Sorting Test for Machine Learners (WCST-ML) (Scimeca et al., 2022) to the CelebA face
dataset for the first time, exposing biased inference for pale skin features.

2 RELATED WORK

2.1 OVERCOMING THE SIMPLICITY BIAS

Deliberate de-bias: To overcome the simplicity bias, copious literature has explored methodologies
to avoid or mitigate shortcut cue learning when labels for the shortcut cues were present in the training
data (Li & Vasconcelos, 2019; Kirichenko et al., 2023; Wang et al., 2019; Kim et al., 2019; Sagawa*
et al., 2020; Lee et al., 2021). The access to shortcut signals is, however, a critical limitation, as these
are generally hard or impossible to obtain.

Data augmentation: Data augmentation methodologies have proven useful in the generation of
bias-conflicting or bias-free samples (Kim et al., 2021; Lim et al., 2023; Jung et al., 2023), or to
augment underrepresented subgroups therein (Wang et al., 2020; Mondal et al., 2023), leading to
less biased predictions. Although an important research direction, assumptions on the nature of the
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biases are here still necessary, and the rejection of selected cues for prediction may not always lead to
improved generalization, notably when the downstream task is aligned with said cues.

Diversification: A different approach to this problem has been to enforce the use of a diverse set of
signals for prediction. The use of ensembles has been one such method, where models’ diversity would
lead to bias mitigation and improved generalization. Different weight initialization and architectures
have previously been shown to be ineffective in the presence of strong shortcut biases (Scimeca et al.,
2022). Methods ensuring mutual orthogonality of the input gradients have proven more effective,
driving models to attend to different locations of the input space for prediction (Ross et al., 2020;
Teney et al., 2022a;b; Nicolicioiu et al., 2023). These input-centric methods, however, may be at a
disadvantage in cases where different features must attend to the same area of the input space. Instead,
a different approach has been via the diversification of direct ensemble model predictions. This
approach hinges on the availability of –unlabelled– out-of-distribution (ood) auxiliary samples that
are, at least in part, free of the same shortcuts as the original training data. Through a diversification
objective, the models are then made to disagree on these ood samples, while maintaining performance
on the original data, effectively fitting functions with different extrapolation behaviors (Lee et al.,
2022; Pagliardini et al., 2022; Scimeca et al., 2023; Lin et al., 2023). Even in this case, the auxiliary
ood data dependency poses limitations, as this is often not readily accessible, and can be costly to
procure.

2.2 DPM MODELLING AND GENERALIZATION

In recent years, Diffusion Probabilistic Models have emerged as a transformative generative tool,
spearheading progress in the generative domain across various applications, including vision (Ho
et al., 2020; Song & Ermon, 2019), efficient sampling methods (Sendera et al., 2024), and text (Gong
et al., 2022; Venkatraman et al., 2024) and even control tasks (Venkatraman et al., 2024). Numerous
studies have underscored their prowess in generating synthetic images, which can then be harnessed
to enrich datasets and bolster classification performance (Sariyildiz et al., 2023; Azizi et al., 2023;
Yuan et al., 2022; Dunlap et al., 2023; Howard et al., 2023).

In several cases, DPMs have been shown to transcend the surface-level statistics of the data, making
them invaluable in understanding data distributions and features (Chen et al., 2023; Yuan et al.,
2022; Wu et al., 2023). Moreover, recent studies have indicated the ability of DPMs to achieve
feature disentanglement via denoising reconstructions (Kwon et al., 2022; Wu et al., 2023; Okawa
et al., 2023). In particular, work in (Wang et al., 2023) has shown how text-guided generative
models can represent disentangled concepts, and how, through algebraic manipulation of their latent
representations, it is possible to compositionally generalize to novel and unlikely combination of
image features.

Additional work has also shown strong inductive Diffusion biases during learning, which may explain
some of these phenomena (Kadkhodaie et al., 2023). In our work, we test the edge case of DPMs
trained with data exhibiting correlated input features. We find that when suitably trained, DPMs can
still generate samples with novel feature combinations and that these can be leveraged for ensemble
diversity.

3 METHODS

3.1 DIFFDIV OVERVIEW

We apply DiffDiv in two stages. The first stage corresponds to training a DPM on the dataset of
interest. We will explain in later sections how this training can often be interrupted early, to allow for
the DPMs to generate samples especially useful for diversification. The second stage corresponds to
training an ensemble on the dataset and task of interest. This training entails the joint optimization
of two objectives, a standard classification objective, and a diversification objective. The standard
training objective is performed on real data, while the diversification objective is performed on
synthetic counterfactuals generated by the pre-trained DPM. We only consider a fixed small set of 3k
counterfactuals in all experiments, limiting the necessity for expensive DPM generation to apply our
methods. We refer the reader to the supplementary results for ablations on counterfactual set size.
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The following sections describe the key components in DiffDiv. In §3.2 we briefly summarize
diffusion training and sampling during phase 1. In §3.3 we present the diversification objectives
considered for ensemble training in phase 2. In §3.4, as a testbed for our experiments, we introduce
an extreme data setup where the task labels are fully correlated with each of the input features. And
finally, in §3.5, we introduce the datasets considered in our experiments.

3.2 DPMS AND EFFICIENT SAMPLING

We utilize Diffusion Probabilistic Models (DPMs) to generate synthetic data for our experiments.
DPMs operate by iteratively adding or removing noise from an initial data point x through a stochastic
process governed by a predefined noise schedule. Let z = {zt | t ∈ [0, 1]} be a latent variable condi-
tioned on t, and characterized by a noise-to-signal ratio λt = log

[
α2
t /σ

2
t

]
decreasing monotonically

with t. In the forward process, noise is added to x to transform it into zt (Salimans & Ho, 2022):

q (zt | x) = N
(
zt;αtx, σ

2
t I
)
, q (zt | zs) = N

(
zt; (αt/αs) zs, σ

2
t|sI

)
(1)

where and 0 ≤ s < t ≤ 1, and σ2
t|s =

(
1− eλt−λs

)
σ2
t . We let αt follow a cosine schedule, thus

αt = cos(0.5πt).

The reverse process then aims to reconstruct x = z0 by iteratively denoising zt into zs, starting from
z1 ∼ N (0, I). To facilitate efficient sampling, we employ Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2020), a first-order ODE solver for DPMs (Salimans & Ho, 2022; Lu et al.,
2022), utilizing a predictor-corrector scheme to minimize the number of sampling steps:

zs = αsx̂θ (zt) + σs
zt − αtx̂θ (zt)

σt

= e(λt−λs)/2 (αs/αt) zt +
(
1− e(λt−λs)/2

)
αsx̂θ (zt)

(2)

The term x̂θ (zt) is the neural network’s output, predicting the denoised data from the noisy observa-
tion at timestep t. And train the denoising model by:

Lθ =

(
1 +

α2
t

σ2

)
∥x− x̂t∥22 (3)

In our setup, we consider DPMs trained at different fidelity levels, postulating that, generally, in-
creased DPM training will more closely fit the data distribution at hand. Therefore, in our experiments,
we use the ‘number of diffusion training epochs’ as a proxy for the DPM fidelity on the modeled
distribution.

3.3 ENSEMBLE TRAINING AND DIVERSIFICATION

In our setup, we wish to train a set of models within an ensemble while encouraging model diversity.
Let fi denote the ith model predictions within an ensemble consisting of Nm models. Each model
is trained on a joint objective comprising the conventional cross-entropy loss with the target labels,
complemented by a diversification term computed on synthetic counterfactuals, represented as Ldiv.
The composite training objective is:

L = Lxent + γ Lobj
div (4)

where Lxent is the cross-entropy loss, Lobj
div is the diversification term for a particular objective, and

γ is a hyper-parameter used to modulate the importance of diversification within the optimization
objective. To impart diversity to the ensemble, we investigated five diversification objectives denoted
by obj ∈ { div, cross, L1, L2, kl}.

The L1 and L2 baseline objectives were designed to induce diversity by maximizing the distance
between each model output and the moving average of the ensemble prediction, thus:
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LL1
reg = − 1

Nm

Nm∑
i=1

∥∥∥∥∥∥fi − 1

Nm

Nm∑
j=1

fj

∥∥∥∥∥∥
1

LL2
reg = − 1

Nm

Nm∑
i=1

∥∥∥∥∥∥fi − 1

Nm

Nm∑
j=1

fj

∥∥∥∥∥∥
2

2

The cross objective diversifies the predictions by minimizing the negative mutual cross-entropy of
any two models:

Lcross
reg = − 1

Nm(Nm − 1)

∑
i ̸=j

CE(fi, argmax(fj)) + CE(fj , argmax(fi))
2

Finally, the kl objective aims at maximizing the kl divergence between the output distributions
of any two models, while the div diversification objective is adapted from (Lee et al., 2022) and
encourages diversity by minimizing the mutual information of any two models’ predictions; they can
be summarized as:

Lkl
reg = − 1

Nm(Nm − 1)

∑
i ̸=j

DKL(fi||fj) Ldiv
reg =

1

Nm(Nm − 1)

∑
i ̸=j

DKL(p(fi, fj)||p(fi))

3.4 WISCONSIN CARD SORTING TEST FOR MACHINE LEARNERS (WCST-ML)

To isolate and investigate shortcut biases, we employ the Wisconsin Card Sorting Test for Machine
Learners (WCST-ML), a method devised to dissect the shortcut learning behaviors of deep neural
networks (Scimeca et al., 2022). We use the splits from WCST-ML to both train and evaluate the
ensembles in this work, as it provides a systematic approach to creating datasets with multiple cues,
designed to correlate with the target labels. Specifically, given K cues i1, i2, . . . , iK , the method
produces a diagonal dataset Ddiag where each cue ik is equally useful for predicting the labels Y ,
with the total number of classes L = |Y |. This level playing field is instrumental in removing the
influence of feature dominance and spurious correlations, thereby allowing us to observe a model’s
preference for certain cues under controlled conditions. To rigorously test these preferences, WCST-
ML employs the notion of off-diagonal samples. These are samples where the cues are not in a
one-to-one correspondence with the labels, but instead align with only one of the features under
inspection. By evaluating a model’s performance on off-diagonal samples, according to each feature,
we can test and achieve an estimate of a model’s reliance on the same.

3.5 DATASETS

As the experimental grounds for our study, we leverage three representative datasets: a color-
augmented version of DSprites (Matthey et al., 2017), UTKFace (Zhang et al., 2017), and CelebA (Liu
et al., 2015). The choice of the datasets in our work was due to several factors; most prominently,
the disentangled nature of the features in DSPrites – providing a particularly useful analysis with
a controlled overlap of bias tendencies –, UTKFace, a dataset previously known to present strong
ethnical bias in WCST-ML, with concerning societal implications (Scimeca et al., 2022), and CelebA,
providing a large scale more complex and realistic setting to benchmark DiffDiv.

OPERATIONALIZING WCST-ML ACROSS DATASETS

We train our models on the correlated WCST-ML diagonal sample sets for each dataset. For
ColorDSprites, we consider KDS = 4, features {color, orientation, scale, shape}, and L = 3 as
constrained by the number of shapes in the dataset. Within UTKFace we consider KUTK = 3,
features {ethnicity, gender, age}, and L = 2 as constrained by the binary classification on gender.
In CelebA we consider KUTK = 2, features {lightskin, ovalface}, and L = 2 due to the binary
classification on all features. See §S1 for additional implementation details.
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Figure 2: DPM training and counterfactual generation. While training on images showcasing a
correlated set of features (left columns), sampling from DPMs at appropriate fidelity levels can
generate novel objects beyond the combinations of features observed during training (marked right-
hand side images).

4 RESULTS

4.1 IMPLEMENTATION

To investigate the objectives of this study, we apply the WCST-ML framework on ColorDSprites,
UTKFace and CelebA, creating training datasets of fully correlated feature-labels groups (Fig.
1). For ColorDSprites, we consider the features of KDS = {color, orientation, scale, shape},
in UTKFace we consider the features KUTK = {ethnicity, gender, age}, while in CelebA we
consider the features KUTK = {lightskin, ovalface}.

We train three DPMs on the diagonal fully-correlated sets for each dataset, including respectively
34998, 1634 and 2914 feature-correlated samples. As mentioned in §4.1, we consider the number of
DPM training epochs to be a proxy of the diffusion model’s fidelity, or closeness, to the distribution
of interest, where longer training generally leads to higher generative consistency of the target
distribution. We generate ≈ 100k samples from DPMs trained at varying number of epochs between
1 to 1.2K, to be used for ensemble diversification and analysis. We perform no post-processing or
pruning of the generated samples, and instead wish to observe the innate ability of DPMs to generate
samples beyond the training distribution.

For each of the ensemble experiments, we train a diverse ensemble comprising 100 ResNet-18 models
on all datasets. We perform ensemble training separately on all the considered objectives, and for
each, we perform ablation studies by applying the diversification objective to the data generated by
the DPMs at different fidelity levels. For comparison, we also consider ensemble diversification with
real ood data, randomly sampled from the off-diagonal sets, as well as a standard ensamble baseline
with no diversification.

4.2 DIFFUSION COUNTERFACTUAL SAMPLING

DPMs Exhibit Generalization Capabilities Under Correlation: We tested the ability of DPMs
to transcend surface-level statistics of the data and generate samples that break the shortcut signals
at training time, even when trained on correlated data. Fig. 2 displays the training samples for
both datasets (left halves), as well as samples from the DPMs (right halves) trained for 25 and 800
epochs, respectively. In the figure, we observe how sampling from the trained DPMs generates
previously unseen feature combinations, despite the correlated coupling of features during training
(e.g. ⟨green/white, heart⟩, ⟨child, female⟩ or ⟨¬light skin, oval face⟩), suggesting a potential
for DPMS to transcend surface-level statistics of the data, confirming and further extending previous
findings to the special case of fully correlated input features in the target distribution. We leverage this
important characteristic in the generation of samples for disagreement, as it allows models to break
from the shortcuts in the training distribution. Importantly, as later shown, we consider disentangled
samples from non-fully converged DPMs, trading sample fidelity for sample novelty, to appropriately
induce diversification.
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(a) ColorDSprites (b) UTKFace (c) CelebA

Figure 4: Prediction diversity when diversifying via samples from diffusion models at different
fidelities (training epochs), as compared to using real ood samples (ood), and a baseline without
diversification (BS).

Early Stopping to Capture Diffusion ood Sampling Capabilities: To understand under which
conditions sampling from DPMs can lead to the generation of samples displaying unseen feature
combinations, we examine the fraction of ood samples generated by DPMs at different fidelities
(§4.1). ColorDSprites dataset is particularly useful for this analysis, given the disentangled nature
of its features. To measure the fraction of ood samples, we train a near-perfect oracle on the full
ColorDSprites dataset, trained to predict the WCST-ML partitioned labels under all features. We can
then consider in-distribution (id) those samples showcase fully correlated feature levels (close to the
diagonal samples), and out-of-distribution (ood) those samples classified to belong to the off-diagonal
WCST-ML set.

Fidelity (DPM training epochs)

Fidelity = 2

Fidelity = 12

Fidelity = 600

burn in originative exact

Figure 3: ood sample frequency for DPMs trained
at different fidelities on ColodDSprites. Three in-
tervals are prominent: burn-in, characterized by
high ood sample frequency, but poor sample qual-
ity; originative, where the model has learned the
manifold of the data while still displaying capabili-
ties for ood sample generation; and exact, charac-
terized by near-perfect samples, but a significantly
reduced ood sample generation.

Fig. 3 shows the fraction of ood samples
generated by the ColorDSprites DPM at varying
levels of training fidelities. We identify at
least three qualitative different intervals. An
initial burn-in interval, characterized by a
high frequency of ood generated samples,
but which fails to capture the manifold of
the data; an originative interval, where we
observe a reduced number of ood samples,
in favor for a generative distribution more
aligned with the data to represent; and an
exact interval, where the DPM’s ability to
almost perfectly represent the data comes at
the cost of novel emergent feature mixtures.
In the context of ensemble diversification
and bias mitigation, the originative interval is
posed to provide the necessary information to
break the simplicity shortcuts, while providing
effective disagreement signals with respect to
the visual cues available. We refer the reader to
Suppl. §S2 for further insights into DPM-early
stopping with ensemble diversification criteria.
Interestingly, we will later show that even
low-fidelity samples can induce appropriate
diversification within DiffDiv.

4.3 DIFFUSION-GUIDED ENSEMBLE DIVERSITY

We test whether diffusion counterfactuals can lead to ensemble diversification. To do so we trained
ensembles comprising 100 ResNet-18 models on ColorDSprites, UTKFace, and CelebA. The ablation
studies examined the training of the ensemble with each diversification objective in turn, as well as
a baseline with no imposed diversification. For both baseline and diversification experiments, we
favor different training dynamics by using separate vanilla Adam optimizers for each model. We
train the ensemble with a cross-entropy loss on the correlated diagonal training data, as well as an

7
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ColorDSprites UTKFace
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Figure 5: Diversity comparison for ensemble trained on ood data and diffusion counterfactuals across
metrics (higher is better).

additional, objective-specific, diversification loss, computed on a separate diversification set. In our
experiments, we will refer to ‘ood’ to the case where the data for disagreement is comprised of
left-out, feature-uncorrelated, samples from the original dataset; to ‘diffusion’ when the samples are
generated by a DPM; and to ‘baseline’ when no diversification objective is included. We tune γ by
grid-search to provide comparable experiments under different objectives (see Suppl. §S2.1)

DPM Fidelity Significantly Impacts Diversification: We consider the case where the diversifica-
tion objective is computed on samples generated by a DPM at different fidelity levels. We show in Fig.
4 the diversity achieved on the div diversification objective when training the ensemble on the same,
with varying diffusion fidelity samples, and report the full set of diversification fidelity experiments
in Suppl. Fig S3. In both Fig. 4a and Fig. 4b we observe the diversity of the ensemble predictions
to vary significantly, from the low-diversity baseline (BS), trained without a diversification set, to
the high diversity achieved with ood samples. For both datasets, extremely low fidelities provide
little use for diversification, leading to low-diversity predictions by the ensembles. The DPM trained
on ColorDSprites, however, quickly fits the synthetic data distribution and provides counterfactual
samples achieving similar diversification performance to the original off-diagonal samples at early
fidelity levels. Ultimately, excessive diffusion training leads to limited ood sample generation and
lower diversification performance. The DPMs trained on UTKFace and CelebA train longer to
appropriately model the more complex distributions, achieving comparable diversification levels to
the ood sample set after approximately 800 and 1000 training epochs respectively. Importantly, we
find that appropriate DPM training and early stopping procedures are necessary to generate samples
that capture the distribution at hand, while still displaying novel sampling behaviors. We expand on
early stopping signals for DPM training in Suppl. §S2.3.

Diffusion-guided Diversity Leads to Comparably Diverse Ensembles: Given the difficulty and
cost of collecting auxiliary ood data for diversification, we wish to compare the level of diversification
achieved with DPM counterfactual, as opposed to using real ood data. Based on our previous results
in Fig. 4 (also Suppl. Fig. S3), we choose samples drawn from DPMs trained for 100, 800 and
1200 epochs for ColorDSprites, UTKFace and CelebA respectively, providing samples especially
useful for diversification. In Fig. 5 we report the objective-wise normalized diversity achieved
in each scenario by the ensemble. We find that diffusion counterfactuals can lead to comparable
diversification performance with respect to real ood samples. In the figure, the diffusion-led diversity
is almost always within 5% from the metrics achieved when using pure ood samples, both typically

Table 1: Average change in ensemble
accuracy over the averted cues follow-
ing diversification (reported in %).

Obj. ↓ Dataset → Color Face CelebA

Cross 5.17 3.37 2.00
Div 8.16 3.61 0.45
KL 2.87 4.54 2.02
L1 3.31 3.61 1.30
L2 4.67 5.04 1.34

over 50% higher than the baseline.

Ensemble Diversification Breaks Simplicity Biases: By
WCST-ML, we can test each model’s bias to a cue by
testing the model’s output on purposefully designed test
sets (Scimeca et al., 2022). We test the quality of the diversi-
fication obtained reporting in Table 2 the fraction of models
attending to specific cues, when trained on real ood data
and diffusion-generated samples (DiffDiv). A model was
deemed to be attending to a cue if its validation accuracy on
the cue-specific ood WCST-ML dataset was highest relative
to all other features. Firstly, our baseline findings mirrored
the observations in (Scimeca et al., 2022). Specifically, mod-
els trained on ColorDSprites under WCST-ML with no diversification (baseline) attend to color
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Table 2: Comparison between diversification with OOD samples and DiffDiv with model disagree-
ment on five objectives. The feature columns report the fraction of models (not accuracy) attending
to the respective features. The final column reports the average validation accuracy on the original
training data. The shortcut feature for each dataset is highlighted in bold.

Dataset → ColorDSprites UTKFace CelebA

Algo ↓ Feat. Obj. ↓ → Color (↓) Orient. Scale Shape Acc. (↑) Age Ethnicity (↓) Gender Acc. (↑) Oval Face Pale Skin (↓) Acc. (↑)

Baseline - 1.00 0.00 0.00 0.00 1.000±0.00 0.00 1.00 0.00 0.920±0.02 0.00 1.00 0.857±0.01

OOD

Cross 0.99 0.00 0.01 0.00 0.865±0.17 0.01 0.71 0.28 0.865±0.04 0.01 0.99 0.751±0.07

Div 0.86 0.01 0.11 0.02 0.818±0.22 0.00 0.94 0.06 0.859±0.03 0.00 1.00 0.843±0.03

KL 0.91 0.02 0.07 0.00 0.822±0.21 0.05 0.76 0.19 0.818±0.06 0.00 1.00 0.812±0.04

L1 0.91 0.00 0.08 0.01 0.813±0.20 0.02 0.62 0.36 0.847±0.07 0.14 0.86 0.724±0.11

L2 0.84 0.02 0.13 0.01 0.729±0.23 0.03 0.63 0.34 0.798±0.11 0.12 0.88 0.651±0.10

DiffDiv (ours)

Cross 0.96 0.00 0.04 0.00 0.856±0.16 0.00 0.94 0.06 0.836±0.05 0.01 0.99 0.745±0.10

Div 0.94 0.00 0.06 0.00 0.916±0.13 0.00 0.98 0.02 0.826±0.05 0.00 1.00 0.857±0.01

KL 0.89 0.01 0.10 0.00 0.786±0.20 0.00 0.94 0.06 0.837±0.06 0.04 0.96 0.672±0.07

L1 0.89 0.00 0.09 0.02 0.784±0.20 0.00 0.77 0.23 0.816±0.11 0.08 0.92 0.659±0.12

L2 0.93 0.02 0.03 0.02 0.762±0.22 0.01 0.83 0.16 0.757±0.12 0.09 0.91 0.650±0.11

cues 100% of the times, as models trained on UTKFace attend to ethnicity cues, showcasing strong
preferential cue bias while achieving near-perfect classification on diagonal –id– validation data.
Additionaly, we find similar behaviors for models trained on CelebA, which solely preferentially
select the pale skin feature of oval face during training. Notably, upon introducing the diversification
objectives, we observed a perceptible shift in the models’ behavior, some of which averted their focus
from the primary, easy-to-learn cues, turning instead to other latent cues present within the data.
Among the objectives considered, kl, L1, and L2 exhibited the highest cue diversity, catalyzing the
ensemble to distribute attention across multiple cues. However, this is at the expense of a marked drop
in the average ensemble performance. Conversely, the div and cross objectives yielded milder diversi-
fication, focusing on the next readily discernible cues: scale in ColorDSprites, gender in UTKFace,
and oval face in CelebA; while maintaining a generally higher ensemble validation performance.
Similarly to Fig. 5, We find the diversification induced by DiffDiv in Table 2 is largely comparable
with ood data on ColorDSprites, with respectively up to 11% and 14% of the models averting their
attention from the main ‘color’ cue in ColorDSprites; up to 23% and 38% of the models averting
their attention to the ethnicity cue in UTKFace; and up to 9% and 14% of the models averting their
attention to the ethnicity cue in CelebA .

Increased Ensemble Disagreement Negatively Correlates with Ensemble id Performance:
Achieving ensemble diversity by disagreement on unlabelled ood samples has previously been
shown to negatively impact id ensemble performance (Pagliardini et al., 2022) (suppl. Fig. S2),
while improving ood performance on downstream tasks associated with non-shortcut cues. Gen-
erally, ensemble model selection has been an effective method to prune models that misalign with
the original classification objective (Lee et al., 2022). In this section, we wish to understand this
relationship under the scope of Diffusion-guided diversification. In Fig. 6 we observe the change
in ensemble average accuracy ∆acc as a function of the change in diversity ∆ds, spanning all the
diversification objectives. We highlight a few important observations. First, increased ensemble
diversity via disagreement negatively correlates with average ensemble accuracy, without additional
model selection mechanisms. Second, real ood data achieves the highest diversity gain, comparable
to the diffusion samples at the originative stage (§4.2), ≈ [10, 100] for ColorDSprites, ≈ [450, 800]
for UTKFace, and ≈ [1000, 1200] for CelebA. Lastly, the diversification objectives show comparable
trends, with the div objective displaying marginally better diversification/accuracy performance than
the others on both tasks.

5 DISCUSSION

SUMMARY

Shortcut learning is a phenomenon undermining the performance and utility of deep learning models,
where easy-to-learn cues are preferentially learned for prediction, regardless of their relevance to
the downstream task. We propose DiffDiv, a framework to achieve shortcut learning mitigation
via ensemble diversification on low-fidelity DPM counterfactuals. We train and compare diverse
ensembles on different datasets, disagreement objectives, and diversification conditions, and show
several important findings.
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ColorDSprites UTKFace CelebA
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Diffusion
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Figure 6: The relationship between the change in normalized classification prediction diversity (∆ds)
and the change in validation accuracy of the ensemble (∆acc), when trained with samples from
DPMs at varying levels of fidelities. The ∆s are computed with respect to baseline ensemble training,
with no diversification objective. We also compare the metrics achieved by diversification with
non-correlated, off-diagonal, ood data from the respective datasets.

DPM Training and Counterfactual Generation: First, we show that DPMs can generate novel
feature combinations even when trained on images displaying correlated cues. We observe this
phenomenon as a function of diffusion training epochs. We identify three relevant different stages
within DPM training, namely: burn-in, originative, and exact stage. Importantly, the originative stage
suggests early tendencies of DPMs to learn the manifold of the distribution under scrutiny, without
(over)fitting the intricate nuances of the training data, leaving space for the generation of samples
with novel feature combinations even when trained on data presenting correlated features. We find
that the low-fidelity, diverse, samples at this stage are especially useful for ensemble diversification.

Diffusion Ensemble Diversification: We show that diffusion-guided diversification leads models to
avert attention from shortcut cues, and that diffusion counterfactuals can lead to comparable ensemble
diversity without the need for expensive ood data collection. In our experiments, we consider several
diversification objectives and find that our central hypothesis is true despite this choice. Moreover,
we find a relationship between the level of diffusion fidelity and the effectiveness of ensemble
diversification. In particular, we show that ensemble diversity and validation ID performance can be
used as a proxy for the identification of the DPM originative stage.

LIMITATIONS, IMPLICATIONS AND FUTURE DIRECTIONS

Beyond in-distribution sampling: Although beyond the scope of this work, it would be worthwhile
to understand the mechanism behind the ability of DPMs to generalize beyond the observed feature
combinations even under feature correlation. An implication of our findings is the potential of
early-stopping mechanisms to enforce these particular generative capabilities. Another significant
implication is the potential of DPMs for feature disentanglement and ood sample generation, which
may have interesting repercussions in several important domains including data augmentation and
ood generalization.

Diversification: We believe it is worthwhile to delve deeper into the interplay between the fidelity
of DPM-generated samples and model diversification. A limiting factor in the disagreement objective
to achieve shortcut mitigation lies in its impact on average ensemble performance. In prior work, this
was partly overcome by careful model selection, but new avenues should be explored to maintain iid
performance while achieving diverse ood prediction via disagreement.

Furthermore, although our findings showcase an important phenomenon, and its applicative utility
for diverse ensembles, it would also be valuable to extend this work to additional data modalities and
explore its implications beyond vision.An interesting parallel venue is the use of text-to-image models
for conterfactual generation Dunlap et al. (2023); Howard et al. (2023) which may be especially
helpful when prior knowledge of the biases is known.

6 CONCLUSION

This work presents a step forward in addressing the challenge shortcut learning in DNNs. By
leveraging the unique capabilities of DPMs for ensemble diversification, we provide a practical
method that achieves shortcut mitigation in a variety of visual tasks, with only negligible performance
loss compared to methods requiring expensive ood data collection.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just assume;
look and answer: Overcoming priors for visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.
Synthetic data from diffusion models improves imagenet classification. arXiv preprint
arXiv:2304.08466, 2023.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

Yida Chen, Fernanda Viégas, and Martin Wattenberg. Beyond surface statistics: Scene representations
in a latent diffusion model. arXiv preprint arXiv:2306.05720, 2023.

Lisa Dunlap, Alyssa Umino, Han Zhang, Jiezhi Yang, Joseph E Gonzalez, and Trevor Darrell.
Diversify your vision datasets with automatic diffusion-based augmentation. Advances in neural
information processing systems, 36:79024–79034, 2023.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, Nov 2020. ISSN 2522-5839. doi: 10.1038/s42256-020-00257-z.
URL https://doi.org/10.1038/s42256-020-00257-z.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Phillip Howard, Avinash Madasu, Tiep Le, Gustavo Lujan Moreno, and Vasudev Lal. Probing
intersectional biases in vision-language models with counterfactual examples. arXiv preprint
arXiv:2310.02988, 2023.

Yeonsung Jung, Hajin Shim, June Yong Yang, and Eunho Yang. Fighting fire with fire: contrastive
debiasing without bias-free data via generative bias-transformation. In International Conference
on Machine Learning, pp. 15435–15450. PMLR, 2023.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization
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Figure S1: We consider the WCST-ML setting (Scimeca et al., 2022) as the experimental ground
in our experiments. Each dataset is partitioned into training data where the task labels are perfectly
correlated with the image input features (e.g. {color, shape, and scale}) and Test data, where samples
are used to test a model’s tendency to a feature over another. We use a random subset of Test Data for
OOD experiments.

S1 SUPPLEMENTARY METHODS

S1.1 DATASETS

In this work, we leverage three representative datasets: a color-augmented version of
DSprites (Matthey et al., 2017), UTKFace (Zhang et al., 2017), and CelebA (Liu et al., 2015).

DSprites: DSprites includes a comprehensive set of symbolic objects generated with variations in
five latent variables: shape, scale, orientation, and X-Y position. We augment this dataset with a color
dimension and remove redundant samples (e.g. due to rotations), resulting in 2, 862, 824 distinct
images, which we refer to as ColorDSprites. ColorDSprites permits the examination of shortcut
biases in a highly controlled setup.

UTKFace: UTKFace provides a dataset of 23, 708 facial images annotated with attributes like age,
gender, and ethnicity. Unlike DSprites, UTKFace presents a real-world, less controlled setup to study
bias. Its inherent complexity and diversity make it an ideal candidate for understanding the model’s
cue preferences when societal and ethical concerns are at stake.

CelebA: CelebA is a large-scale dataset comprising 202, 599 celebrity facial images annotated with
40 different attributes, including gender, age, and facial features. It provides a more extensive and
diverse real-world dataset compared to UTKFace, offering rich variations in pose, background, and
lighting. CelebA is commonly used for studying bias and fairness in models due to its attribute
diversity and challenging conditions.

S1.2 OPERATIONALIZING WCST-ML ACROSS DATASETS

We follow the set-up in (Scimeca et al., 2022) and construct a balanced dataset Ddiag, which includes
a balanced distribution of cues, coupled with their corresponding off-diagonal test sets (one for
each feature) Figure S1. For both datasets, we define a balanced number of classes L for each
feature under investigation. Where the number of feature values exceeds L, we dynamically choose
ranges to maintain sample balance with respect to each new feature class. For instance, for the
continuous feature ‘age’ in UTKFace, we dynamically select age intervals to ensure the same L
number of categories as other classes, as well as sample balance within each category. We consider
sets of features previously found to lead to strong simplicity biases. For ColorDSprites, we consider
KDS = 4, features {color, orientation, scale, shape}, and L = 3 as constrained by the number of
shapes in the dataset. Within UTKFace we consider KUTK = 3, features {ethnicity, gender, age},
and L = 2 as constrained by the binary classification on gender. For CelebA we consider KCL = 2,
features {lightskin, ovalface}, and L = 2 as enforced by the binary labels on all features. For each
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dataset we create one diagonal subset of fully correlated features and labels, available at training time,
and KDS , KUTK and KCL feature-specific off-diagonal datasets to serve for testing the models’
shortcut bias tendencies.

S1.3 DPM TRAINING AND SYNTHETIC COUNTERFACTUAL GENERATION

We utilize Diffusion Probabilistic Models (DPMs) to generate synthetic data for our experiments.
DPMs operate by iteratively adding or removing noise from an initial data point x through a stochastic
process governed by a predefined noise schedule. We base our training regime on (Ho et al., 2020).
As denoiser, we train a classic U-Net architecture with 4 down-sampling blocks and 4 up-sampling
blocks with ≈ 9mil parameters for all datasets. We train the model with the objective in Equation 3
by iterating through the relevant dataset over a maximum of 1200 epochs. We use a vanilla Adam
optimizer in all experiments. All DPM schemes use a time discretization of 1000 steps. To facilitate
efficient sampling, we employ Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020),
a first-order ODE solver for DPMs (Salimans & Ho, 2022; Lu et al., 2022), utilizing a predictor-
corrector scheme to minimize the number of sampling steps, lowering the final number to 250 during
sampling in framework.

For each of the experiments, we use the trained DPM to generate a fixed dataset of 3000 synthetic
counterfactuals, which is independently shuffled and batched-sampled for the diversification objective
during ensemble training. We perform ablation studies considering a larger batch of synthetic
counterfactuals (equal to the number of data points in each dataset) in §S2.5, with only marginal
performance gains compared to the smaller set.

S2 SUPPLEMENTARY RESULTS

S2.1 γ SELECTION

We perform a hyper-parameter search to find the values of γ for each diversification objective. We
perform the search via the same methodology used in the ood main experiments, i.e. by training an
ensemble of 100 ResNet-18 models on the fully correlated diagonal datasets, while diversifying a
small subset of 30% of the original training data, randomly sampled from the de-correlated left-out
set. We consider γ values ranging from 1e − 3 to 1e1, and monitor both the validation ensemble
accuracy as well as the predictive diversity on a separate de-correlated set of validation data. Figure
S2 shows the performance of each metric for different values of γ. We select the values reported in
Table S1 to be at the intersection of the accuracy and diversification trends for each model.

S2.2 MODEL SELECTION TO BOOST DIVERSE ENSEMBLE PERFORMANCE

The mitigation of Shorcut leaning through diversification is generally known in the literature to suffer
from a decrease in ensemble ID performance, as we also observe and study in our experiments. A
prominent methodology to mitigate this phenomenon in the literature is ensemble model selection,
where a subset of models is selected for final ensemble inference. We perform additional experiments
to assess the degree by which model selection can aid in ensemble performance within the DiffDiv
framework. To ensure diversity in the final selection, we include in the selected subset any model
showing shortcut-cue aversion from Table 1. Furthermore, we select additional models to reach a
dynamic range between 15% and 99% of the original ensemble. We compare the performance of the
ensemble before and after model selection in Table S2.

S2.3 ON THE INFLUENCE OF DPM FIDELITY TO DIVERSIFICATION

We perform experiments whereby an ensemble of 100 ResNet-18 models is trained separately with
respect to all diversification objectives considered. Figure S3 shows the diversification results as a
function of the fidelity of the DPM used to sample the diversification set. Although we observe that
the diversification level obtained is dependent on the diffusion fidelity level, suggesting the need for
appropriate early stopping procedures to achieve increased ensemble prediction diversity, we find
DiffDiv to not be overly sensitive to this choice. In fact, we observe broad areas with similar diversity
levels across several DPM fidelities. While the trends vary mildly across different disagreement
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(a) ColorDSprites

(b) UTKFace

(c) CelebA

Figure S2: Hyper-parameter search on the disagreement intensity (γ) for each diversification objective.
For the main experiments, we select the values of γ at the intersection of the accuracy-diversity trends
by each objective (Table S1).

objectives, we find the diversification maximized in ColorDSprites and UTKFace coherently with the
analysis in Section 4.2, where improved diversification is achieved around the originative interval.
For ColorDSprites, this is realized in around 20 DPM training epochs, for UTKFace, it is realized in
around 800 DPM training epochs, while for CelebA it is around 1000 DPM training epochs.

Interestingly, our results suggest how ensemble diversification metrics can be a viable proxy for
appropriate originative DPM training. In Fig. S4, we observe the min-maxed change in accuracy
and change in diversity by the ensembles with respect to baseline training on ColorDSprites. In
the figure, we observe similar trends across all diversification methods, whereby the originative
interval (highlighted in gray) is primarily identified by the highest changes in diversity, while also
considering the least drop in accuracy. These results confirm our previous supervised findings (Fig.
3). Imporantly, we find that only when jointly looking at both diversity and validation performance
we can best identify the relevant areas around the generative stage. Under this light, ensemble
performance/diversity validation metrics can be directly leveraged for DPM early stopping logic. Our
results align with our previous observations, where the highest number of ood-generated samples to
lie within the DPM training intervals achieve the highest change in diversity while maintaining good
classification performance (Fig. 6.)
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cross kl L1 L2
(a) ColorDSprites

cross kl L1 L2
(b) UTKFace

cross kl L1 L2
(c) CelebA

Figure S3: Ensemble diversity as enforced via samples from diffusion models trained a different
fidelity levels (i.e. diffusion training epochs).
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Figure S4: Min-Maxed change in accuracy and diversity by ensembles trained with diffusion-
augmented samples on ColorDSprites, with respect to all considered diversification methods. The
originative stage, as qualitatively identified in the experiments (see Fig. 3 and Fig. 4) is shown in
gray. The areas primarily highest in diversity, with the least change in accuracy, are significant of the
originative stage. We mark with red discontinuous vertical bars the stage used for the experiments

Table S1: Disagreement γ used in our experiments.

L2 L1 cross div kl
ColorDSPrites 5.0 1.5 0.5 0.5 0.1
UTKFace 5.0 2.0 2.0 5.0 0.2
CelebA 5.0 2.0 2.0 5.0 0.2

S2.4 DIVERSIFICATION LEADS TO ENSEMBLE MODELS ATTENDING TO DIFFERENT CUES

Figure S5 illustrates a feature-centric description of 10 ensemble models trained with a diversification
objective on ood data (a) and Diffusion generated counterfactuals (b). The variation across models is
evident: several models substantially reduce their dependency on the leading cues of the respective
datasets (black edges), diverging considerably from the almost identical configurations present in the
baseline ensemble (red edges). For some of the models, in fact, the averted attention on the main

Table S2: Comparison between the ensemble accuracy before (Ens) and after model selection (Select).
Each subset of models in the ensemble is chosen dynamically while keeping all models with cue
averted tendencies in Table 2

Dataset → ColorDSprites UTKFace CelebA

Obj. ↓ Valid. Acc. (Ens) Valid. Acc. (Select) Valid. Acc. (Ens) Valid. Acc. (Select) Valid. Acc. (Ens) Valid. Acc. (Select)

Baseline 1.000± 0.00 1.000± 0.00 0.920± 0.02 0.943± 0.00 0.857± 0.01 0.873± 0.00
Cross 0.856± 0.16 0.945± 0.14 0.836± 0.05 0.856± 0.07 0.745± 0.10 0.828± 0.06
Div 0.916± 0.13 0.980± 0.07 0.826± 0.05 0.868± 0.06 0.857± 0.01 0.873± 0.00
KL 0.786± 0.20 0.872± 0.22 0.837± 0.06 0.858± 0.08 0.672± 0.07 0.713± 0.09
L1 0.784± 0.20 0.861± 0.23 0.816± 0.11 0.824± 0.11 0.659± 0.12 0.737± 0.12
L2 0.762± 0.22 0.864± 0.26 0.757± 0.12 0.776± 0.13 0.650± 0.11 0.716± 0.12
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Table S3: Diversification results on ColorDSprites, UTKFace, and CelebA when using the same
number of ood samples as the training dataset. The feature columns report the fraction of models (in
each row) biased towards the feature. The final column reports the average validation accuracy for
the ensemble when tested on a left-out feature-correlated diagonal set, of the same distribution as the
original training data

Dataset → ColorDSprites UTKFace CelebA

Obj. ↓ Color (↓) Orient. Scale Shape Acc. (↑) Age Ethnicity (↓) Gender Acc. (↑) Oval Face Pale Skin (↓) Acc. (↑)
Baseline 1.00 0.00 0.00 0.00 1.000±0.00 0.00 1.00 0.00 0.920±0.02 0.00 1.00 0.857±0.01

Cross 0.92 0.00 0.08 0.00 0.849±0.16 0.00 0.73 0.27 0.858±0.04 0.01 0.99 0.751±0.07

Div 0.82 0.00 0.18 0.00 0.820±0.19 0.00 0.76 0.24 0.844±0.04 0.00 1.00 0.843±0.03

KL 0.90 0.03 0.05 0.02 0.801±0.20 0.02 0.68 0.30 0.820±0.07 0.00 1.00 0.812±0.04

L1 0.90 0.01 0.07 0.02 0.799±0.21 0.00 0.66 0.34 0.832±0.09 0.14 0.86 0.724±0.11

L2 0.86 0.04 0.08 0.02 0.745±0.22 0.08 0.58 0.34 0.761±0.15 0.12 0.88 0.651±0.10

shortcut cue leads to increased reliance on one of the other observed features (e.g. scale and age for
models 7 (ColorDsprites), 73 (UTKFace) and 5 (CelebA) in Fig. S5a, and models 80 (ColorDsprites),
47 (UTKFace) and 61 (CelebA)) in Fig. S5b).

S2.5 ON THE INFLUENCE OF AN INCREASED NUMBER OF ood SAMPLES FOR ENSEMBLE
DISAGREEMENT

As per the original objective, with DPM sampling we aim to circumvent the diversification dependency
on Out-Of-Distribution data, which is often not readily accessible and can be costly to procure. We
test this dependency further and assess the quality of the diversification results when matching the
number of ood data used for diversification to the original training data for the ensemble. We report
in Table S3 our findings. We observe the quality of the disagreement on ColorDSprites to only
marginally benefit from additional disagreement samples, with approximately 1% to 7% more of the
models to avert their attention from the shortcut cue color as compared to the original experiments.
On the other hand, we observe a strong improvement in the diversification for UTKFace, mainly
registered via the div objective, where 24% of the models averted their attention from the ethnicity
shortcut, as opposed to the original 6% in our previous experiments, while maintaining high predictive
performance on the validation set. We observe marginal improvements on the other objectives, with
approximately 4% to 8% additional models achieving cue aversion. We speculate this gain to be due
to the higher complexity of the features within the data, which may require additional specimens for
appropriate diversification.
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ColorDSprites

UTKFace

CelebA

(a) ood Disagreement

ColorDSprites

UTKFace

CelebA

(b) Diffusion Disagreement

Figure S5: Comparison of 10 diversified models when training the ensemble while using (a) feature-
uncorrelated ood data and (b) Diffusion Samples.
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