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Abstract

The graph attention (GAT) mechanism has been
instrumental in enabling nodes to aggregate in-
formation from their neighbours based on rele-
vancies, significantly enhancing the adaptiveness
of graph neural networks across various graph
representation learning tasks. Recent research
has sought to further leverage the power of GAT
for tasks that require capturing long-range data
dependencies. However, the conventional stack-
ing of GAT layers leads to excessive memory
footprint, computation overhead, and the issue
of over-smoothing. To address these challenges,
this study proposes Attentive Long-Short-range
message passing (ALS), which integrates person-
alized PageRank to mitigate the over-smoothing
problem in long-range message passing and lever-
ages GAT to capture complex data dependencies.
Compared with the naive L-step message passing,
which has a space complexity of O(L) for its opti-
mization, ALS employs implicit differentiation to
achieve O(1) memory footprint and three acceler-
ation techniques to reduce up to 89.51% computa-
tion time. Extensive experiments validate ALS’s
robustness and state-of-the-art performance on
homophilic graphs, heterophilic graphs, and long-
range graph benchmarks, with strong baselines
including recently studied Graph Transformers
and Graph Mambas.

1. Introduction
The graph attention (GAT) mechanism (Velickovic et al.,
2017; Brody et al., 2021) facilitates the soft selection of
passing messages by assigning dynamic weights to edges
based on the relevancies between adjacent nodes. It ef-
fectively captures data dependencies with more complex
patterns than its non-attentive counterparts (Kipf & Welling,
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2016) and has been widely adopted in various graph repre-
sentation learning tasks (Huang & Carley, 2019; Kosaraju
et al., 2019; Ma et al., 2020).

Recently, researchers have shown an increasing interest in
graphs where data dependencies are both complex and dis-
tant (Dwivedi et al., 2022), such as chemical interaction
modeling (Ying et al., 2021) and graph-based robotic con-
trolling (Kurin et al., 2020). While stacking multiple GAT
layers expands the receptive field (Chen et al., 2018) and
enables a node to receive long-range messages from dis-
tant nodes, the number of stacked layers and the distance
of message passing are still constrained by the emerging
over-smoothing problem (Oono & Suzuki, 2019). Specif-
ically, node representations tend to become too similar to
one another, making them indistinguishable as messages are
repeatedly passing. Moreover, the growing memory foot-
print and computational overhead often limit the number of
GAT layers, particularly in training on large-scale graphs.

Previous studies (Wang et al., 2020a; Choi, 2022) have com-
bined GAT with the Personalized PageRank (PPR) (Page
et al., 1999) to resolve the over-smoothing problem. PPR
is to propagate information while retaining a fraction of the
initial representations (Chen et al., 2020), ensuring the exis-
tence of a converged and distinguishable representation for
each node after repeatedly message passing (Gasteiger et al.,
2018; Bojchevski et al., 2020; Chien et al., 2020; Roth &
Liebig, 2022). However, applying GAT into every propaga-
tion step of PPR requires infinite memory footprint for gra-
dient descent. Existing approaches have developed various
truncated versions of PPR to bypass this challenge (Wang
et al., 2020a; Choi, 2022), but resulted in compromised
message passing distance.

To capture long-range and complex data dependencies in
diverse graph-based applications without the drawbacks
of increasing memory footprint and the over-smoothing
problem, this work proposes Attentive Long-Short-range
Message Passing (ALS). Our contributions are as follows:

• We derive an optimization algorithm for the infinite-
step PPR and reduce the memory footprint from the
traditional hop-wise backpropagation’s infinity to a
constant. The resulting Differentiable PPR (DPPR) al-
lows ALS to extend the propagation distance to infinity

1
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ALS: Attentive Long-Short-Range Message Passing

without necessitating an increase in memory footprint.

• We develop three acceleration techniques—conjugate
gradient with symmetrized attentions, dominant
eigenvector initialization, and adaptive batch-
terminating—to expedite the computation of DPPR,
achieving up to an 89.51% reduction in computation
time compared to naive message passing. These
techniques are also advantageous for enhancing the
efficiency of existing PPR-based methods.

• We design a short-range message passing module to
combine with DPPR, ensuring the robustness of ALS
in learning under heterophily (Platonov et al., 2023).
Node classification experiments on homophilic graphs,
heterophilic graphs, and long-range graph benchmarks
reveal that ALS outperforms state-of-the-art baselines,
including the recently studied Transformers (Rampášek
et al., 2022) and Mambas (Behrouz & Hashemi, 2024;
Wang et al., 2024).

2. Background and Related Works
We assume that the adjacency matrix A ∈ {0, 1}n×n repre-
sents a graph’s connectivity, with element Aij = 1 if graph
node i is connected to node j, and 0 otherwise. The feature
matrix X ∈ Rn×d contains the node features, where the
i-th row xi is a feature vector associated with node i.

2.1. Graph Attentions

The attention mechanism, which dynamically weighs the
influence of a part in an inputted sequence to another
part, is the core innovation of Transformer (Vaswani et al.,
2017). Supposing the initial representation of part i is
a d-dimensional row vector xi, the attention mechanism
relies on three vectors derived from xi: (qi,ki,vi) =
xi · (Wq,Wk,Wv), where Wq,Wk,Wv ∈ Rd×c are op-
timizable parameters. The influencial score sij of part i to
part j is given by

sij =
qi · kT

j√
c

, (1)

where qi and kj are the query and key vectors derived from
xi and xj , respectively. Then, normalizing exp(sij) within
the context (the sequence) N gets the attention weights

Ãij =
exp(sij)

Di
, Di =

∑
j∈N

exp(sij). (2)

Finally, The representations hi of part i are obtained by gath-
ering weighted information from all parts within the context,
as hi =

∑
j∈N

Ãijvj . The attention mechanism inspires many

subsequent works in natural language processing (Kalyan

et al., 2021) due to its prominent performance and is soon
applied in other domains such as computer vision (Han et al.,
2020).

Graph attention networks (GAT) (Velickovic et al., 2017)
has brought the attention mechanism into graph neural net-
works (Wu et al., 2020) to empower their adaptiveness and
is later improved to GATv2 (Brody et al., 2021). The influ-
encial score sij of a graph node i to its adjacent node j is
given by

sij = σ(qi + kj)v
T , (3)

where v is optimizable and σ(·) is a nonlinear function usu-
ally implemented as LeakyReLU (Maas et al., 2013) with
its negative slope as 0.2. The key feature of GAT/GATv2 is
that the attention context is decided by the graph structure:
The attention context of node i is its neighbourhood N(i).

Researchers have also investigated another combination of
graph and Transformer as Graph Transformers (GT) (Ying
et al., 2021; Wu et al., 2021) where the attention context is
the whole node set. By allowing to attend to all nodes, GT
captures data dependencies between arbitrary node pairs,
alleviating the over-smoothing problem in message pass-
ing. However, GT confronts with a new challenge of the
over-globalizing problem (Xing et al., 2024) that useful
information on near nodes are weakened. Besides, sim-
ilar to the reliance of Transformer on positional encod-
ings, which convey positional information of the processing
part in the sequence, GT has a severe performance down-
grade if it works without information about the graph struc-
ture (Dwivedi & Bresson, 2020). Therefore, many recent
studies on GT (Shirzad et al., 2023a; Ma et al., 2023) lo-
cated in a framework termed GraphGPS (Rampášek et al.,
2022), which integrates structural encodings (SE, such as
SAN (Kreuzer et al., 2021) and RWSE (Dwivedi et al.,
2021)), message-passing neural networks (MPNN, such as
GAT/GATv2), and GT together to obtain comprehensive
representations.

Our proposed method (ALS) still aligns in the line of MPNN
and is orthogonal to GT and SE, which means that SE can
also augment the node features in ALS to boost its per-
formance, and ALS can be an advanced candidate of the
MPNN module in GraphGPS.

2.2. Personalized PageRank

Personalized PageRank (PPR) (Page et al., 1999) has been
introduced in graph representation learning (Gasteiger et al.,
2018) to resolve the over-smoothing problem (Oono &
Suzuki, 2019) emerged in long-range message passing.
Given initial representations X , the PPR is defined as an
iterative equation

Z(k+1) = (1− α)ÃZ(k) + αX, k = 0, 1, . . . (4)

2
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ALS: Attentive Long-Short-Range Message Passing

where α ∈ (0, 1] is the teleport probability which helps
every node to preserve its local information in the resulted
representations Z(k+1). The iteration converges exponen-
tially to

Z(∞) = α
(
I − (1− α)Ã

)−1

X ≜ ΠX, (5)

notated as the result of PPR(α, Ã,X).

Various approaches have been proposed to leverage the long-
range propagation capability of PPR. APPNP (Gasteiger
et al., 2018), MAGNA (Wang et al., 2020a), and
GPRGNN (Chien et al., 2020) iterate Equation 4 for K
steps starting from Z(0) = 0 and take Z(K) as the final
representations. However, the number K of propagation
steps is limited due to the increasing computation over-
head. Additionally, when Ã is dynamically generated, the
memory footprint for gradient computation grows linearly,
further restricting K. PPRGo (Bojchevski et al., 2020) and
PPRGAT (Choi, 2022) precompute Π and utilize it as the
weighted adjacency matrix in graph neural networks. To
avoid the O(n2) complexity of Π, they approximate it using
a sparsified version in which small elements are truncated.
Given that an element is typically small when it measures
the connection between two distant nodes in the original
graph, long-range dependencies are likely to be ignored due
to the sparsification. In summary, these approaches employ
various truncated versions of PPR, which compromises the
message passing distance.

Our work utilizes dynamic Ã and obtains the accurate Z(∞)

by iterating Equation 4 for an unlimited number of steps
till convergence. We derive an iterative algorithm from
the implicit differentiation theory (Bai et al., 2019) to com-
pute gradients without knowing intermediate representa-
tions, consuming only constant memory.

2.3. Implicit Differentiation

The implicit differentiation theory is adopted in implicit
graph neural networks (IGNN) (Gu et al., 2020; Liu et al.,
2021; Roth & Liebig, 2022; Liu et al., 2022; Chen et al.,
2022b) to derive their backpropagation algorithms. IGNN
outputs the equilibrium solution H∗ of the following equa-
tion

H = σ(Z) = σ(ÃHW + bθ(X)), (6)

where W and the network bθ are optimizable. This equation
is solved using the naive iteration method like Equation 4 if
the iteration is contractive. However, the equation may need
a large number of iterations to meet a convergence, con-
suming a prohibitive memory footprint to store intermediate
activations for gradient descent. Therefore, IGNN derives
its backpropagation algorithm from the implicit differentia-
tion theory. Specifically, gradients ∇H∗ of H∗ is given by

solving another equilibrium equation

∇H = ÃT · (∇H ⊙ ∂σ(Z)

∂Z
) · W̃ T +

∂L(H)

∂H
, (7)

where L is the loss function. Then, ∇H∗ is plugged into
the chain rule to derive the gradients of W and θ. Due to
the repeatedly injected bθ(X) during the forward iterations,
IGNNs are also a series of methods for long-range message
passing without the over-smoothing problem.

Our work ALS also derives its backpropagation algorithm
from the implicit differentiation theory to achieve the con-
stant memory footprint, but it has two differences from
IGNNs. First, Ã in ALS is optimizable, showing more pow-
erful adaptiveness in graph representation learning. Second,
we develop three acceleration techniques for PPR, mak-
ing ALS to have at least 3.67 times the speed of IGNN in
experiments.

3. Methodology
To capture long-range and complex data dependencies
within graphs, we propose Attentive Long-Short-range
message passing (ALS), as depicted in Figure 1.

ALS integrates attention mechanisms to generate the at-
tentive transition matrix for message passing, thereby en-
hancing its capability in capturing complex data dependen-
cies. The core innovations of ALS are the accelerated Dif-
ferentiable Personalized PageRank (DPPR) operator and
the short-range message passing module. The accelerated
DPPR operator allows central nodes to gather information
from distant nodes with optimized speed and a constant
memory footprint. The short-range message passing module
focuses on the diversified information within local neigh-
bourhoods, aiding in learning under heterophily. Overall,
the ALS layer can serve as a building block for constructing
graph neural networks. It is characterized by its ability to
capture long-range dependencies, and its robustness across
both homophilic graphs and heterophilic graphs.

In the following subsections, we sequentially describe our
algorithms for differentiating the Personalized PageRank
(PPR) process, techniques to accelerate PPR, and the mod-
ule of short-range message passing designed to handle het-
erophily.

3.1. DPPR: Differentiable Personalized PageRank

Due to the infinite memory footprint of PPR for error-
backpropagation, previous studies have resorted to truncated
versions of PPR, resulting in a compromise in their capa-
bilities for long-range message passing. In contrast, we
leverage the full capability of untruncated PPR by present-
ing a novel differentiation algorithm, which consumes only
constant memory.

3
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ALS: Attentive Long-Short-Range Message Passing

Figure 1. The architecture of the Attentive Long-Short-range message passing (ALS) layer (the middle part). The core innovations of
ALS are 1) the accelerated DPPR operator (the left lower part), which enables central nodes to gather information from distant nodes with
optimized speed and a constant memory footprint, and 2) the short-range message passing module (the left upper part), which helps ALS
learning under heterophily. We construct a single-layered ALS network (the right upper part) and a multi-layered ALS network (the right
lower part) for different experimental purposes.

The following theorem facilitates the differentiation of PPR,
with its proof provided in Appendix A:
Theorem 3.1. The gradients of

Z = PPR(α, Ãθ,V )

can be obtained by another PPR process:

∇Z = PPR(α, ÃT
θ ,

(
1

α
· ∂L(Z)

∂Z

)
),

where Ãθ is the attention matrix, V is the inputted repre-
sentations, and L(Z) is the loss.

By plugging ∇Z into the chain rule, we can compute the
gradients of V and Ãθ, thereby enabling gradient descent
to optimize the PPR process.{

∇V = α · ∇Z

∇Ãθ
= (1− α) ·A⊙ (∇Z ·ZT )

.

It is worth noting that we do not have to compute the dense
matrix of (∇Z · ZT ), which would have a complexity of
O(n2). Instead, we compute the resulting non-zeros of
A⊙ (∇Z ·ZT ) edge by edge, with a complexity of O(m),
where m is the number of edges.

The PPR optimized using this algorithm is termed Differ-
entiable PPR (DPPR). We have encapsulated DPPR as a

PyTorch (Paszke et al., 2019) operator in our code 1. Com-
munity researchers can replace their propagation operator
with DPPR to expand the receptive field to infinity without
increasing memory footprint.

3.2. Accelerated DPPR

In many cases, a relatively small α in PPR is necessary to
obtain expressive representations (Boldi et al., 2007). How-
ever, small α can lead to a deterioration in convergence
speed, especially when solving PPR with the naive itera-
tion method (Gleich, 2015). Therefore, we develop three
techniques to accelerate DPPR, which also benefit to the
computational efficiency of existing PPR-based methods
such as PPNP and MAGNA.

3.2.1. CONJUGATE GRADIENT (CG) WITH
SYMMETRIZED ATTENTIONS (SYMGAT)

Many previous works (Berkhin, 2005; Golub & Greif,
2006; Zhang et al., 2016) suggest treating the result Z of
PPR(α, Ãθ,V ) as a solution to the linear system

1

α

(
I − (1− α)Ãθ

)
Z = V (8)

1https://anonymous.4open.science/r/
ALS-A104
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and solving it using the Krylov subspace method (Liesen &
Strakos, 2013), such as GMRES and MINRES (Saad, 2003),
which can converge rapidly even when α is small. However,
the construction of the Krylov subspace may necessitate
tens of times the memory footprint consumed by the en-
tire node representations V , making these implementations
impractical for large-scale graphs.

To integrate the Krylov subspace method into practical graph
representation learning, we replace Ãθ in PPR with sym-
metrized attentions (Wang et al., 2021) defined as

Âij =
exp(sij)√
Di ⊙Dj

,

where we utilize Wq = Wk to ensure sij = sji. With
the symmetrized attentions Âθ, a space-saving implemen-
tation of the Krylov subspace method, known as conjugate
gradient (Hestenes et al., 1952), becomes feasible. This im-
plementation consumes only twice the memory footprint of
V to store the residuals and the conjugate vectors, making
it suitable for large-scale graph processing.

3.2.2. DOMINANT EIGENVECTOR INITIALIZATION
(EIGENINIT)

By default, both the naive iteration method and CG com-
mence their iterations from 0, which leverages no informa-
tion encoded in Aθ.

On the contrary, we start our iterations from a better
point V̄ = [v̄1; v̄2; . . . ; v̄n], where v̄i is the projection
of the i-row of V onto the dominant eigenvector of Aθ.
We notice that 1 is the dominant eigenvector of Ãθ and
(
√
D1,

√
D2, . . . ,

√
Dn) (defined in Equation 2) is the dom-

inant eigenvector of the symmetrized Âθ. Both dominant
eigenvalues are 1. Therefore, the residual after the first iter-
ation of Equation 8 starting from V̄ is ∥V̄ − V ∥, which is
not greater than the residual ∥V ∥ of starting from 0, mean-
ing that starting from V̄ is expected to converge in fewer
iterations.

3.2.3. ADAPTIVE BATCH-TERMINATING (ADATERM)

We observe that Equation 8 is composed of H ×C indepen-
dent linear systems, which may converge at different speeds.
Stopping iterations adaptively for linear systems that have
already converged saves computation and accelerates our
solvers.

Considering multi-heads attentions, the n × n attention
matrix Aθ in our previous discussion becomes an n×n×H
tensor, where H is the number of attention heads. Similarly,
the input tensor V and the resulting tensor Z are both n×
H × C, where C is the number of representation channels
in each attention head. There are H ×C independent linear
systems in Equation 8. As Algorithm 1 describes, after

Algorithm 1 PPR with AdaTerm
Input: f which iterates the naive iteration method or the
conjugate gradient for one step, α, the attention tensor Aθ,
the inputting tensor V , the convergence tolerance ϵ. Output:
the PPR result Z

1: mh := 1 ∈ {0, 1}H {indicators of active heads}
2: mc := 1 ∈ {0, 1}C {indicators of active channels}
3: r := 0 ∈ RH×C {linear system residuals}
4: Z := 0
5: repeat
6: Z ′ := Z
7: Z[:,mh,mc] := f(α,Aθ[:,mh],V [:,mh,mc]
8: r[h, c] := ∥Z[:, h, c]−Z ′[:, h, c]∥,∀h ≤ H, c ≤ C

{Terminate converged heads}
9: if ∃h ≤ H,∀c ≤ C, r[h, c] < ϵ then

10: mh[h] := 0
11: end if

{Terminate converged channels}
12: if ∃c ≤ C,∀h ≤ H, r[h, c] < ϵ then
13: mc[c] := 0
14: end if
15: until r[h, c] < ϵ,∀h ≤ H, c ≤ C
16: return Z

every iteration step, we check if any linear system meets
its stop condition for convergence. If the linear systems of
all channels within an attention head have all converged,
we stop iterating the entire head in subsequent iterations.
Likewise, we stop iterating an entire channel if the linear
systems of all heads along that channel have converged.
This adaptive terminating improves the efficiency of our
solvers by reducing unnecessary computation.

3.3. Short-Range Message Passing

In some graphs where adjacent nodes exhibit heterophilic
characteristics, it is necessary to differentiate the processing
of a node’s own features from the features of its neighbours
for improved performance (Zhu et al., 2020). To compen-
sate for the DPPR operator’s limitations in such diverse
processing, we design an additional short-range message
passing module for ALS. This module effectively handles
heterophily without negatively impacting the performance
on homophilic graphs.

An ALS layer with K steps of short-range message passing
outputs H as
H = σ(Z(K))

Z(k) = (1− α)AθZ
(k−1) + αXWk, k = 1, 2, . . . ,K

Z(0) = DPPR(α,Aθ,XW0)

,

where σ(·) is a non-linear activator such as
ReLU (Maas et al., 2013) or layer normalization.

5
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W0,W1,W2, . . . ,WK are optimizable parameters. The
short-range message passing module is placed after DPPR.
It propagates information in a manner akin to truncated PPR
but applies different transformations W1,W2, . . . ,WK

to information at different steps. When K is a positive
integer, short-range information about a node within its
K-hops neighbourhood is processed separately by the
diversified transformations to accommodate heterophily.
On graphs without such heterophily, W1,W2, . . . ,WK

can approximate W0 to implicitly disable the short-range
message passing module, thus avoiding any impact on the
DPPR results.

4. Experiments
We conduct node classification experiments on a variety
of graphs to elucidate the characteristics of our proposed
methods and show the powerfulness of ALS. The datasets
employed in our experiments are categorized as four groups.
The first group is homophilic graphs, where nearby nodes
share similar labels, including Amazon Computer, Ama-
zon Photo (McAuley et al., 2015), Coauthor CS, Coau-
thor Physics (Wang et al., 2020b; Shchur et al., 2018), and
WikiCS (Mernyei & Cangea, 2020). The second group
is heterophilic graphs, where adjacent nodes tend to have
different labels, including Roman Empire, Amazon Rat-
ings, Minesweeper, Tolokers, and Questions (Platonov et al.,
2023). The third group is the large-scale OGB-Arxiv and
OGB-Products dataset (Hu et al., 2020). The last group
is the long-range graph benchmarks, where labels strongly
depend on long-range interactions between nodes, includ-
ing PascalVOC-SP and COCO-SP (Dwivedi et al., 2022). 2

Details of the baselines and other experimental settings are
in Appendix E.

4.1. Efficiency of DPPR on Memory Saving

In this section, we utilize the OGB-Arxiv dataset to conduct
experiments aimed at validating the efficiency of DPPR in
terms of memory saving.

Figure 2 visually depicts the memory footprints involved in
optimizing a weighted version of the label propagation algo-
rithm (Zhu et al., 2005), which propagates label information
along edges. The edge weights in this implementation are
dynamically computed based on node features (Wang &
Leskovec, 2021). It is evident from the figure that as the
number of propagation steps increases, the conventional
hop-wise backpropagation method consumes an increas-
ing amount of memory, whereas DPPR maintains a con-

2PascalVOC-SP and COCO-SP are 2 of the 5 proposed datasets
from Dwivedi et al. (2022) used to assess a model’s capability
in capturing long-range dependencies. We exclude the other 3
datasets because they are recently found to be inadequate for this
purpose (Tonshoff et al., 2023).

Figure 2. Memory footprint of different optimization algorithms
on the OGB-Arxiv dataset

stant memory footprint. This is because DPPR obtains the
gradients of its results by another PPR process, thereby
consuming constant memory regardless of the number of
propagations.

In conclusion, the DPPR operator demonstrates efficiency
in memory saving compared to conventional GNNs.

4.2. Effectiveness of the Acceleration Techniques

In this section, we evaluate the effectiveness of our proposed
acceleration techniques: CG with SymGAT, EigenInit, and
AdaTerm, which are applied on a single-layered ALS.

We select IGNN (Gu et al., 2020) as a baseline for com-
parison due to its iterative nature, which is similar to ALS.
The maximum number of iterations for IGNN and ALS is
set to 300. Each model is trained for 20 epochs using an
NVIDIA GeForce RTX 3060 GPU, and the time taken for
each epoch is measured. The averaged training time per
epoch is reported in Figure 3, with the experimented graphs
sorted by their average node degrees and annotated as either
homophilic or heterophilic. AsymGAT refers to the ALS
using the original version of graph attentions (Equation 2).

As the figure illustrates, the speed of AsymGAT deteriorates
significantly when α decreases. ‘AsymGAT + AdaTerm’
consistently reduces the training time of AsymGAT by about
10% to 20%. ‘AsymGAT + EigenInit’ 3 demonstrates negli-
gible effects on homophilic graphs but is notably effective
on heterophilic graphs. ‘SymGAT + CG’ is the fastest tech-
nique. Its speed deteriorates more slowly than AsymGAT
when α decreases, and its efficiency is further improved as
the graphs become denser. With the incorporation of all

3While EigenInit accelerates both the forward and backward
iterations in SymGAT, it only accelerates the forward iterations in
AsymGAT, because the dominant eigenvector of AT

θ is unknown.

6
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Figure 3. Averaged time for an epoch of training when different acceleration techniques involved

these acceleration techniques, ‘SymGAT + All’ reduces the
training time by up to 89.51% (on Tolokers) compared to
the naive iteration method (AsymGAT), and is at least 3.67
times as fast (on Amazon Photo) as IGNN.

In conclusion, all three techniques are effective in accel-
erating PPR. Their combination significantly reduces the
computation time of ALS, making it notably faster than an-
other iterative baseline (IGNN) even when α is very small.

4.3. Compare ALS With State-of-the-Art Baselines

In this section, we demonstrate the node classification per-
formance of ALS on 14 graphs and compare ALS with
state-of-the-art baselines, including message-passing neural
networks (MPNN) and Graph Transformers (GT).

Table 1 presents the averaged accuracy scores of ALS and
16 competitive MPNNs, including GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017), GAT (Velick-

ovic et al., 2017), GAT-sep (Platonov et al., 2023), GC-
NII (Chen et al., 2020), GPRGNN (Chien et al., 2020),
APPNP (Gasteiger et al., 2018), PPRGo (Bojchevski et al.,
2020), GGCN (Yan et al., 2021), OrderedGNN (Song et al.,
2023), tGNN (Hua et al., 2022), H2GCN (Zhu et al., 2020),
FSGNN (Maurya et al., 2022), GloGNN (Li et al., 2022),
G2-GNN (Rusch et al., 2023), and LINKX (Lim et al., 2021).
As indicated in the table, ALS achieves state-of-the-art per-
formance scores on 11 out of 12 datasets. Even on the
Questions dataset where ALS is not the best, it still achieves
the second-best performance. These results underscore the
efficacy of ALS in handling homophilic, heterophilic, and
large graphs.

Table 2 presents the averaged accuracy scores of ALS and
other baselines across 4 runs on long-range graph bench-
marks. Methods in the table is grouped into two sections,
the message-passing neural networks (MPNN) category and
the ‘SE + GT/Mamba + MPNN’ category. Our ALS is
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Table 1. Averaged accuracy scores and the standard deviations
in 10 runs on homophilic graphs (the upper section), heterophilic
graphs (the middle section), and large graphs (the lower section).
In each section, the best score for each dataset is bolded. Detailed
scores of baselines are in Appendix E.

Baselines ALSRank-1 Rank-2

Amazon Computer 92.03±0.13 91.81±0.20 92.11±0.33
Amazon Photo 95.10±0.20 94.59±0.14 95.94±0.28
Coauthor CS 95.25±0.05 95.13±0.09 96.22±0.12
Coauthor Physics 97.07±0.05 97.00±0.08 97.54±0.07
WikiCS 79.01±0.68 78.87±0.11 80.97±0.75
Roman Empire 88.75±0.41 87.32±0.39 88.90±0.54
Amazon Ratings 53.63±0.39 52.74±0.83 54.10±0.37
Minesweeper 93.91±0.35 93.51±0.57 95.55±1.05
Tolokers 83.78±0.43 83.70±0.47 86.09±0.92
Questions 78.86±0.92 76.79±0.71 78.26±0.95
OGB-Arxiv 72.01±0.20 71.74±0.29 72.71±0.22
OGB-Products 79.76±0.59 79.45±0.59 81.40±0.24

based on pure message passing and falls under the MPNN
category, with baselines GCN, GINE (Hu et al., 2019), Gat-
edGCN (Bresson & Laurent, 2017), IGNN (Gu et al., 2020),
APPNP (Gasteiger et al., 2018), and GPRGNN (Chien
et al., 2020). 4 The second category refers to integretions
of structural encodings (SE), graph transformers (GT) or
Mamba (Gu & Dao, 2023), and MPNN. We integrate ALS
into GraphGPS (Rampášek et al., 2022), a framework of
‘SE + GT + MPNN’, as its MPNN module to compare with
other integrated baselines, including NAGphormer (Chen
et al., 2022a), GraphGPS (the original one) (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023b), Graph
Mamba (Behrouz & Hashemi, 2024), and GraphGPS (the
reassessed one) (Tonshoff et al., 2023). As shown in the
table, ALS only slightly lags behind Graph Mamba on the
COCO-SP dataset, while demonstrating its superiority in
capturing long-range dependencies compared with other
MPNNs and other ‘SE + GT + MPNN’ integrations.

In conclusion, ALS consistently exhibits state-of-the-art
performance on homophilic graphs, heterophilic graphs,

4Although there exists other newer implicit and PageRank-
based GNNs, such as EIGNN (Liu et al., 2021), LazyGNN (Xue
et al., 2023), PPRGo (Bojchevski et al., 2020), and PPRGAT (Choi,
2022), these approaches are not included in the baselines because
they necessitate preprocessing of the underlying graph prior to
training. For instance, EIGNN decomposes the adjacency matrix,
LazyGNN partitions the graph, and both PPRGo and PPRGAT
precompute the PageRank matrix. Consequently, training them
with dynamic batches of subgraphs, as is the case in PascalVOC-
SP and COCO-SP, consumes expensive time due to their repeated
preprocessing.

Table 2. Averaged accuracy scores and the standard deviations
of baselines, include MPNNs (the upper section) and their inte-
grations with GT or Mamba (the lower section), in 4 runs on the
long-range graph benchmarks. Each run has 60 hours of time
budget and IGNN on COCO-SP runs Out of Time (OoT). In each
section, the best score for each dataset is bolded, and the second
best is underlined.

PascalVOC-SP COCO-SP

GCN 20.78±0.31 13.38±0.07
GINE 27.18±0.54 21.25±0.09
GatedGCN 38.80±0.40 29.22±0.18
IGNN 21.66±0.39 OoT
APPNP 31.24±0.47 22.05±0.09
GPRGNN 37.47±0.81 27.46±0.47
ALS (as MPNN) 39.59±0.61 30.08±0.37
NAGphormer 40.06±0.61 34.58±0.70
GraphGPS (original) 37.48±1.09 34.12±0.44
Exphormer 39.60±0.27 34.30±0.08
Graph Mamba 43.93±1.12 39.74±1.01
GraphGPS (reassessed) 44.40±0.65 38.84±0.55
ALS (in GraphGPS) 44.93±0.75 39.23±0.65

and long-range graph benchmarks, and demonstrates com-
petitive performance on large graphs, thus highlighting its
effectiveness in handling diverse graph structures.

4.4. Other Experiments

Except for the previous experiments, we have also validated
the efficiency of DPPR in terms of parameter utilization in
Appendix B and the robustness of the short-range message
passing module on handling different graphs in Appendix C.
Comprehensive ablation studies on ALS, such as how im-
portant the attention is, are also conducted in Appendix D.

5. Conclusion
In this work, we introduce Attentive Long-Short-range mes-
sage passing (ALS), a graph representation learning method
that is characterized by its long-range receptiveness and ro-
bustness under heterophily. The pivotal innovation of ALS
lies in its differentiable and efficient PPR operator, which
enables the practical integration of PPR and GAT due to its
constant memory footprint and accelerated computations.
Extensive experiments have corroborated the superiority
of ALS on homophilic graphs, heterophilic graphs, large
graphs, and long-range graph benchmarks, underscoring the
efficacy of our method in diverse graph-based applications.
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Figure 4. Parameters and accracy scores for different models

A. Proof of Theorem 3.1
Proof. We rewrite PPR (Equation 5)

Z = α
(
I − (1− α)Ãθ

)−1

V

into the form of IGNN (Equation 6)
Z = ÃθZ · ((1− α)I) + (α · V )

and then derive the backpropagation algorithm as a corollary of Equation 7:

∇Z = ÃT
θ · ∇Z · (1− α) +

∂L(Z)

∂Z

= (1− α)ÃT
θ · ∇Z + α ·

(
1

α
· ∂L(Z)

∂Z

)
= PPR(α, ÃT

θ ,

(
1

α
· ∂L(Z)

∂Z

)
).

B. Efficiency of DPPR on Parameter Utilization
In this section, we utilize the OGB-Arxiv dataset to conduct experiments aimed at validating the efficiency of DPPR in
terms of parameter utilization.

Figure 4 presents the performance scores of a 3-layered GCN, a 3-layered GAT, and a single-layered ALS with varying
numbers of parameters. As depicted, ALS can achieve comparable performance to GCN and GATv2 with only about 20%
parameters. This is because ALS decouples its propagations (Wu et al., 2019) and uses DPPR to expand the receptive field,
thereby introducing no additional parameters rather than stacking graph convolutional layers.

In conclusion, the DPPR operator demonstrates efficiency in parameter utilization compared to conventional GNNs.

C. Short-Range Message Passing for Heterophily
In this section, we validate the robustness of the short-range message passing module on homophilic graphs and heterophilic
graphs.

Figure 5 visualizes the accuracy scores of a single-layered ALS with varying hops K of short-range message passing. As
illustrated in the figure, the short-range message passing module has negligible impact on the node classification performance
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Figure 5. Averaged accuracy scores in 10 runs with different hops of short-range message passing on homophilic graphs (dashed lines)
and heterophilic graphs (solid lines)

on homophilic graphs. However, in heterophilic graphs, the inclusion of this module significantly improves accuracy, and
the improvement becomes more pronounced as K increases.

In conclusion, the short-range message passing module aids ALS in better handling heterophily and has no adverse effect on
homophilic graphs.

D. Ablation Studies on ALS
In this section, we conduct ablation studies on ALS to gain a comprehensive understanding and address the following three
questions:

• Q1: How powerful is DPPR when combined with attention weights?

• Q2: Does the symmetrization of GAT degrade its performance?

• Q3: Since the propagation range of ALS is infinite, is it necessary to stack multiple ALS layers?

By constraining hyperparameters, we derive the following variations of ALS:

• NoGAT represents ALS with a constant Ã, which is either the row-normalized or symmetrically-normalized adjacency
matrix.

• AsymGAT employs the original version of GAT (Equation 2), with its influence scores computed by either Equation 1
or Equation 3.

• SymGAT is the symmetrized version of AsymGAT.

• MultiLayered refers to the multi-layerd ALS illustrated in Figure 1.

We present the accuracy scores for 10 runs of each ALS variation across 10 datasets in Figure 6. For Q1, the incorporation
of attention weights significantly enhances the classification performance. NoGAT performs weaker than its attentive
counterparts (AsymGAT and SymGAT) on 8 out of 10 graphs and only slightly better on Amazon Ratings and Tolokers. For
Q2, SymGAT lags behind AsymGAT on 3 out of 5 homophilic graphs but surpasses AsymGAT on 3 out of 5 heterophilic
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Figure 6. Testing F1-micro scores (%, the horizontal axes) in 10 runs of four ALS variations. The vertical line in the centre of each violin
plot represents the average score.

Table 3. Statistics of datasets used in our experiments

#Graphs Homophily (%) #Nodes #Edges Mean Deg. Features Classes

Amazon Computer 1 68.23 13752 245861 35.76 767 10
Amazon Photo 1 78.50 7650 119081 31.13 745 8
Coauthor CS 1 78.45 18333 81894 8.93 6805 15
Coauthor Physics 1 87.24 34493 247962 14.38 8415 5
WikiCS 1 57.90 11701 216123 36.85 300 10
Roman Empire 1 -4.68 22662 32927 2.91 300 18
Amazon Ratings 1 14.02 24492 93050 7.60 300 5
Minesweeper 1 0.94 10000 39402 7.88 7 2
Tolokers 1 9.26 11758 519000 88.28 10 2
Questions 1 2.07 48921 153540 6.28 301 2
OGB-Arxiv 1 58.92 169343 1166243 13.77 128 40
OGB-Products 1 80.76 2449029 61859140 50.52 100 47
PascalVOC-SP 11355 — 5443545 30777444 5.65 14 21
COCO-SP 123286 — 58793216 332091902 5.65 14 81

graphs. This suggests that symmetrizing GAT has no noticeable negative effect on performance. For Q3, there is no
observable difference between single-layered and multi-layered ALS on 6 out of 10 graphs, except Coauthor CS, Roman
Empire, Amazon Ratings, and Minesweeper. This indicates that the powerful propagation capability of ALS is sufficient for
most cases. Stacking multiple ALS layers can serve as a fallback strategy to enhance performance when needed.

E. Experimental Details
E.1. Datasets

Table 3 details the 13 datasets employed in our experiments. The first five datasets are characterized as homophilic
graphs (Shchur et al., 2018; Mernyei & Cangea, 2020). The subsequent five datasets are categorized as heterophilic
graphs (Platonov et al., 2023). We incorporate the adjusted homophily (Platonov et al., 2023) to quantify how homophilic
a graph is. As we can see, heterophilic graphs are all with lower homophily scores. In our experiments, the large-scale
OGB-Arxiv and OGB-Products datasets (Hu et al., 2020) serves as benchmarks to evaluate the efficiency and scalability of
the proposed methods. PascalVOC-SP and COCO-SP are recognized as long-range graph benchmarks (Dwivedi et al., 2022),
where each graph in these benchmarks possesses an average shortest path length exceeding 10 and an average diameter
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Table 4. Averaged accuracy scores and the standard deviations in 10 runs on homophilic (the upper section) and heterophilic graphs (the
lower section). In each section, the best score for each dataset is bolded, and the second best is underlined.

Amazon Computer Amazon Photo Coauthor CS Coauthor Physics WikiCS

GCN 89.65±0.52 92.70±0.20 92.92±0.12 96.18±0.07 77.47±0.85
GraphSAGE 91.20±0.29 94.59±0.14 93.91±0.13 96.49±0.06 74.77±0.95
GAT 90.78±0.13 93.87±0.11 93.61±0.14 96.17±0.08 76.91±0.82
GCNII 91.04±0.41 94.30±0.20 92.22±0.14 95.97±0.11 78.68±0.55
GPRGNN 89.32±0.29 94.49±0.14 95.13±0.09 96.85±0.08 78.12±0.23
APPNP 90.18±0.17 94.32±0.14 94.49±0.07 96.54±0.07 78.87±0.11
PPRGo 88.69±0.21 93.61±0.12 92.52±0.15 95.51±0.08 77.89±0.42
GGCN 91.81±0.20 94.50±0.11 95.25±0.05 97.07±0.05 78.44±0.53
OrderedGNN 92.03±0.13 95.10±0.20 95.00±0.10 97.00±0.08 79.01±0.68
tGNN 83.40±1.33 89.92±0.72 92.85±0.48 96.24±0.24 71.49±1.05
ALS 92.11±0.33 95.94±0.28 96.22±0.12 97.54±0.07 80.97±0.75

Roman Empire Amazon Ratings Minesweeper Tolokers Questions

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27
GraphSAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62
GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71
H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46
GPRGNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91
FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92
GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19
GGCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 71.10±1.57
OrderedGNN 77.68±0.39 47.29±0.65 80.58±1.08 75.60±1.36 75.09±1.00
G2-GNN 82.16±0.78 47.93±0.58 91.83±0.56 82.51±0.80 74.82±0.92
tGNN 79.95±0.75 48.21±0.53 91.93±0.77 70.84±1.75 76.38±1.79
ALS 88.90±0.54 54.10±0.37 95.55±1.05 86.09±0.92 78.26±0.95

exceeding 27.

For the homophilic graphs, we partition the nodes into training (60%), validation (20%), and testing (20%) sets, aligning
with the approach outlined in Shirzad et al. (2023a). For the other graphs, we utilize the default data splits provided alongside
the original datasets.

E.2. Baselines

We have conducted extensive evaluations of ALS in Table 4 and Table 5, which are summarized as Table 1 in Section 4.3. In
the tables, we compare ALS with more than 10 competitive graph neural networks, including GCN (Kipf & Welling, 2016),
GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2017), GAT-sep (Platonov et al., 2023), GCNII (Chen et al.,
2020), GPRGNN (Chien et al., 2020), APPNP (Gasteiger et al., 2018), PPRGo (Bojchevski et al., 2020), GGCN (Yan et al.,
2021), OrderedGNN (Song et al., 2023), tGNN (Hua et al., 2022), H2GCN (Zhu et al., 2020), FSGNN (Maurya et al., 2022),
GloGNN (Li et al., 2022), G2-GNN (Rusch et al., 2023), and LINKX (Lim et al., 2021). To ensures that the accuracy scores
of the baselines being compared are produced by well-tuned models, we retrieve scores of baselines for heterophilic and
large graphs from Platonov et al. (2023), and for homophilic graphs from Deng et al. (2024).

In the upper section of Table 2, we compare ALS with MPNNs including GCN, GINE (Hu et al., 2019), GatedGCN (Bresson
& Laurent, 2017), IGNN (Gu et al., 2020), APPNP (Gasteiger et al., 2018), and GPRGNN (Chien et al., 2020). In the lower
section of Table 2, we integrate ALS into a reassessed version of GraphGPS (Tonshoff et al., 2023) and compare it with
other ‘SE + GT/Mamba + MPNN’ methods, including NAGphormer (Chen et al., 2022a), GraphGPS (Rampášek et al.,
2022), Exphormer (Shirzad et al., 2023b), and Graph Mamba (Behrouz & Hashemi, 2024; Wang et al., 2024). NAGphormer
utilizes a Hop2Token module to encode information from local neighbourhoods based on message passing before applying a
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Table 5. Averaged accuracy scores and the standard deviations in 10 runs on large graphs. The best score for each dataset is bolded, and
the second best is underlined.

OGB-Arxiv OGB-Products

GCN 71.74±0.29 75.64±0.21
GAT 72.01±0.20 79.45±0.59
GPRGNN 71.10±0.12 79.76±0.59
LINKX 66.18±0.33 71.59±0.71
ALS 72.71±0.22 81.40±0.24

GT backbone. GraphGPS is a framework that integrates structural encodings, MPNN, and GT to obtain comprehensive node
representations. Exphormer enhances the GT module in GraphGPS with two novel sparse attention mechanisms: virtual
global nodes and expander graphs. Graph Mamba replaces the GT module in GraphGPS with its long-range dependencies
capturing modules based on random walks. The scores of baselines are sourced from previous works (Rampášek et al., 2022;
Tonshoff et al., 2023; Behrouz & Hashemi, 2024; Wang et al., 2024), including their original papers and leaderboards of the
respective datasets.

E.3. Settings

As illustrated in Figure 1, we have implemented two networks using the ALS layer as a building block. The single-layered
ALS is composed of an optional multi-layered perceptron (MLP) with 1 to 2 layers, an ALS layer, and a linear predictor
for node classification. The multi-layered ALS is implemented like the multi-layered GCN model described in Platonov
et al. (2023), with the exception that we replace the GCNConv layers with our ALS layers. In detail, the multi-layered
ALS consists of a linear encoder, L residual blocks, and a linear predictor. Each residual block is equipped with a skip
connection (He et al., 2015) and comprises a layer normalization, an ALS layer, and a two-layered MLP.

Unless otherwise specified, we employ the Adam optimizer (Kingma & Ba, 2014) to train models with a learning rate of
r = 0.01. The training process is limited to a maximum of 1000 epochs and employs an early stopping strategy to halt
training if the performance on the validation set stagnates for 100 consecutive epochs. The default Dropout probability is set
to p = 0.

In the following subsections, we describe the experimental settings for all figures and tables.

E.3.1. FIGURE 2

To study the memory footprint of differentiable PPR (DPPR), We implement the weighted label propagation algorithm to
propagate label information with a dynamic transition matrix as

Ã = σ((xiW + b) ·B · (xjW + b)T ),

where σ is the row-wise Softmax function, W , b and B are optimizable. The α for label propagation is set to 0.2.

E.3.2. FIGURE 3

To assess the speed of the accelerated DPPR, we train IGNN and ALS with various acceleration techniques for 20 epochs
and report the averaged training time per epoch. The maximum number of iterations is set to 300. ALS is configured with
16 attention heads, each of which is 16-dimensional. Short-range message passing is disabled for this experiment.

E.3.3. TABLE 1, TABLE 5, FIGURE 5, AND FIGURE 6

We fine-tune ALS on homophilic, heterophilic, and large graphs using Optuna (Akiba et al., 2019) to determine the
optimal number of ASL layers L ∈ {1, 2, 3, 4, 5}, the number of attention heads H ∈ {1, 2, . . . , 10}, α ∈ [0.05, 0.8],
the number of hops for short-range message passing K ∈ {0, 1, 2, . . . , 6}, whether to apply attention weights, whether
to symmetrize attentions, the way to compute influential scores (Equation 1 or Equation 3), the Dropout probability
p ∈ {0, 0.1, 0.2, . . . , 0.7}, and the learning rate r ∈ {0.01, 0.005, 0.001}. The results are shown in Table 1. During the
fine-tuning, an adequate number of trials for ablation studies are conducted to generate Figure 6. Trials with L = 1 is
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grouped by K to study the effect of short-range message passing in Figure 5.

E.3.4. TABLE 2

We inherit the code of GatedGCN and GraphGPS from Tonshoff et al. (2023) with few modifications to conduct our
experiments on the long-range graph benchmarks. Specifically, we replace the GatedGCN layer with our ALS layer,
maintaining the number of layers L and the hidden dimensions d unchanged. The number of attention heads H is adjusted
bellow 6 to ensure that the hidden dimensions d is evenly divided by the heads H . The hops of short-range message passing
K is fixed to 2 to comply with the 500k parameter budget. For ALS as MPNN, no structural encodings are enabled. For
ALS in GraphGPS, we use LapPE (Dwivedi & Bresson, 2020) to augment node features. To avoid tuning α, we implement
it as a (1, H,C)-sized tensor activated by the Sigmoid function and optimize it with its gradients computed as:

∇α = −ÃθZ ⊙∇Z = −Z − αV

1− α
⊙∇Z .

Thus, we only fine-tune the formula for influential scores (Equation 1 or Equation 3) and whether to symmetrize attentions.
Other configurations, such as the optimizer and the maximum number of epochs, remain unchanged.

For baselines, including IGNN, APPNP, and GPRGNN, we also reuse the configuration file for GatedGCN but replace the
GatedGCN layer with the evaluated baseline. We maintain the number of layers L = 10 for PascalVOC-SP and L = 6 for
COCO-SP, respectively. The hidden dimensions d is adjusted as large as possible within the 500k parameter budget. The
hyperparameter α for APPNP and GPRGNN is tuned in the scope of {0.15, 0.5, 0.85}.

E.3.5. FIGURE 4

We illustrate the parameters and accuracy scores for 3-layered GCN, 3-layered GAT, and the single-layered ALS. ALS is
with α = 0.15 and without short-range message passing. The number of attention heads is fixed to be 8 in both GAT and
ALS. The probability of Dropout is 0.5. Each model is run for 4 times and the average accuracy score is reported.
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