
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

ALS: Attentive Long-Short-Range Message Passing

Anonymous Authors1

Abstract

The graph attention (GAT) mechanism has been
instrumental in enabling nodes to aggregate in-
formation from their neighbours based on rele-
vancies, significantly enhancing the adaptiveness
of graph neural networks across various graph
representation learning tasks. Recent research
has sought to further leverage the power of GAT
for tasks that require capturing long-range data
dependencies. However, the conventional stack-
ing of GAT layers leads to excessive memory
footprint, computation overhead, and the issue
of over-smoothing. To address these challenges,
this study proposes Attentive Long-Short-range
message passing (ALS), which integrates person-
alized PageRank to mitigate the over-smoothing
problem in long-range message passing and lever-
ages GAT to capture complex data dependencies.
Compared with the naive L-step message passing,
which has a space complexity of O(L) for its opti-
mization, ALS employs implicit differentiation to
achieve O(1) memory footprint and three acceler-
ation techniques to reduce up to 89.51% computa-
tion time. Extensive experiments validate ALS’s
robustness and state-of-the-art performance on
homophilic graphs, heterophilic graphs, and long-
range graph benchmarks, with strong baselines
including recently studied Graph Transformers
and Graph Mambas.

1. Introduction
The graph attention (GAT) mechanism (Velickovic et al.,
2017; Brody et al., 2021) facilitates the soft selection of
passing messages by assigning dynamic weights to edges
based on the relevancies between adjacent nodes. It ef-
fectively captures data dependencies with more complex
patterns than its non-attentive counterparts (Kipf & Welling,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2016) and has been widely adopted in various graph repre-
sentation learning tasks (Huang & Carley, 2019; Kosaraju
et al., 2019; Ma et al., 2020).

Recently, researchers have shown an increasing interest in
graphs where data dependencies are both complex and dis-
tant (Dwivedi et al., 2022), such as chemical interaction
modeling (Ying et al., 2021) and graph-based robotic con-
trolling (Kurin et al., 2020). While stacking multiple GAT
layers expands the receptive field (Chen et al., 2018) and
enables a node to receive long-range messages from dis-
tant nodes, the number of stacked layers and the distance
of message passing are still constrained by the emerging
over-smoothing problem (Oono & Suzuki, 2019). Specif-
ically, node representations tend to become too similar to
one another, making them indistinguishable as messages are
repeatedly passing. Moreover, the growing memory foot-
print and computational overhead often limit the number of
GAT layers, particularly in training on large-scale graphs.

Previous studies (Wang et al., 2020a; Choi, 2022) have com-
bined GAT with the Personalized PageRank (PPR) (Page
et al., 1999) to resolve the over-smoothing problem. PPR
is to propagate information while retaining a fraction of the
initial representations (Chen et al., 2020), ensuring the exis-
tence of a converged and distinguishable representation for
each node after repeatedly message passing (Gasteiger et al.,
2018; Bojchevski et al., 2020; Chien et al., 2020; Roth &
Liebig, 2022). However, applying GAT into every propaga-
tion step of PPR requires infinite memory footprint for gra-
dient descent. Existing approaches have developed various
truncated versions of PPR to bypass this challenge (Wang
et al., 2020a; Choi, 2022), but resulted in compromised
message passing distance.

To capture long-range and complex data dependencies in
diverse graph-based applications without the drawbacks
of increasing memory footprint and the over-smoothing
problem, this work proposes Attentive Long-Short-range
Message Passing (ALS). Our contributions are as follows:

• We derive an optimization algorithm for the infinite-
step PPR and reduce the memory footprint from the
traditional hop-wise backpropagation’s infinity to a
constant. The resulting Differentiable PPR (DPPR) al-
lows ALS to extend the propagation distance to infinity

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

ALS: Attentive Long-Short-Range Message Passing

without necessitating an increase in memory footprint.

• We develop three acceleration techniques—conjugate
gradient with symmetrized attentions, dominant
eigenvector initialization, and adaptive batch-
terminating—to expedite the computation of DPPR,
achieving up to an 89.51% reduction in computation
time compared to naive message passing. These
techniques are also advantageous for enhancing the
efficiency of existing PPR-based methods.

• We design a short-range message passing module to
combine with DPPR, ensuring the robustness of ALS
in learning under heterophily (Platonov et al., 2023).
Node classification experiments on homophilic graphs,
heterophilic graphs, and long-range graph benchmarks
reveal that ALS outperforms state-of-the-art baselines,
including the recently studied Transformers (Rampášek
et al., 2022) and Mambas (Behrouz & Hashemi, 2024;
Wang et al., 2024).

2. Background and Related Works
We assume that the adjacency matrix A ∈ {0, 1}n×n repre-
sents a graph’s connectivity, with element Aij = 1 if graph
node i is connected to node j, and 0 otherwise. The feature
matrix X ∈ Rn×d contains the node features, where the
i-th row xi is a feature vector associated with node i.

2.1. Graph Attentions

The attention mechanism, which dynamically weighs the
influence of a part in an inputted sequence to another
part, is the core innovation of Transformer (Vaswani et al.,
2017). Supposing the initial representation of part i is
a d-dimensional row vector xi, the attention mechanism
relies on three vectors derived from xi: (qi,ki,vi) =
xi · (Wq,Wk,Wv), where Wq,Wk,Wv ∈ Rd×c are op-
timizable parameters. The influencial score sij of part i to
part j is given by

sij =
qi · kT

j√
c

, (1)

where qi and kj are the query and key vectors derived from
xi and xj , respectively. Then, normalizing exp(sij) within
the context (the sequence) N gets the attention weights

Ãij =
exp(sij)

Di
, Di =

∑
j∈N

exp(sij). (2)

Finally, The representations hi of part i are obtained by gath-
ering weighted information from all parts within the context,
as hi =

∑
j∈N

Ãijvj . The attention mechanism inspires many

subsequent works in natural language processing (Kalyan

et al., 2021) due to its prominent performance and is soon
applied in other domains such as computer vision (Han et al.,
2020).

Graph attention networks (GAT) (Velickovic et al., 2017)
has brought the attention mechanism into graph neural net-
works (Wu et al., 2020) to empower their adaptiveness and
is later improved to GATv2 (Brody et al., 2021). The influ-
encial score sij of a graph node i to its adjacent node j is
given by

sij = σ(qi + kj)v
T , (3)

where v is optimizable and σ(·) is a nonlinear function usu-
ally implemented as LeakyReLU (Maas et al., 2013) with
its negative slope as 0.2. The key feature of GAT/GATv2 is
that the attention context is decided by the graph structure:
The attention context of node i is its neighbourhood N(i).

Researchers have also investigated another combination of
graph and Transformer as Graph Transformers (GT) (Ying
et al., 2021; Wu et al., 2021) where the attention context is
the whole node set. By allowing to attend to all nodes, GT
captures data dependencies between arbitrary node pairs,
alleviating the over-smoothing problem in message pass-
ing. However, GT confronts with a new challenge of the
over-globalizing problem (Xing et al., 2024) that useful
information on near nodes are weakened. Besides, sim-
ilar to the reliance of Transformer on positional encod-
ings, which convey positional information of the processing
part in the sequence, GT has a severe performance down-
grade if it works without information about the graph struc-
ture (Dwivedi & Bresson, 2020). Therefore, many recent
studies on GT (Shirzad et al., 2023a; Ma et al., 2023) lo-
cated in a framework termed GraphGPS (Rampášek et al.,
2022), which integrates structural encodings (SE, such as
SAN (Kreuzer et al., 2021) and RWSE (Dwivedi et al.,
2021)), message-passing neural networks (MPNN, such as
GAT/GATv2), and GT together to obtain comprehensive
representations.

Our proposed method (ALS) still aligns in the line of MPNN
and is orthogonal to GT and SE, which means that SE can
also augment the node features in ALS to boost its per-
formance, and ALS can be an advanced candidate of the
MPNN module in GraphGPS.

2.2. Personalized PageRank

Personalized PageRank (PPR) (Page et al., 1999) has been
introduced in graph representation learning (Gasteiger et al.,
2018) to resolve the over-smoothing problem (Oono &
Suzuki, 2019) emerged in long-range message passing.
Given initial representations X , the PPR is defined as an
iterative equation

Z(k+1) = (1− α)ÃZ(k) + αX, k = 0, 1, . . . (4)

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

ALS: Attentive Long-Short-Range Message Passing

where α ∈ (0, 1] is the teleport probability which helps
every node to preserve its local information in the resulted
representations Z(k+1). The iteration converges exponen-
tially to

Z(∞) = α
(
I − (1− α)Ã

)−1

X ≜ ΠX, (5)

notated as the result of PPR(α, Ã,X).

Various approaches have been proposed to leverage the long-
range propagation capability of PPR. APPNP (Gasteiger
et al., 2018), MAGNA (Wang et al., 2020a), and
GPRGNN (Chien et al., 2020) iterate Equation 4 for K
steps starting from Z(0) = 0 and take Z(K) as the final
representations. However, the number K of propagation
steps is limited due to the increasing computation over-
head. Additionally, when Ã is dynamically generated, the
memory footprint for gradient computation grows linearly,
further restricting K. PPRGo (Bojchevski et al., 2020) and
PPRGAT (Choi, 2022) precompute Π and utilize it as the
weighted adjacency matrix in graph neural networks. To
avoid the O(n2) complexity of Π, they approximate it using
a sparsified version in which small elements are truncated.
Given that an element is typically small when it measures
the connection between two distant nodes in the original
graph, long-range dependencies are likely to be ignored due
to the sparsification. In summary, these approaches employ
various truncated versions of PPR, which compromises the
message passing distance.

Our work utilizes dynamic Ã and obtains the accurate Z(∞)

by iterating Equation 4 for an unlimited number of steps
till convergence. We derive an iterative algorithm from
the implicit differentiation theory (Bai et al., 2019) to com-
pute gradients without knowing intermediate representa-
tions, consuming only constant memory.

2.3. Implicit Differentiation

The implicit differentiation theory is adopted in implicit
graph neural networks (IGNN) (Gu et al., 2020; Liu et al.,
2021; Roth & Liebig, 2022; Liu et al., 2022; Chen et al.,
2022b) to derive their backpropagation algorithms. IGNN
outputs the equilibrium solution H∗ of the following equa-
tion

H = σ(Z) = σ(ÃHW + bθ(X)), (6)

where W and the network bθ are optimizable. This equation
is solved using the naive iteration method like Equation 4 if
the iteration is contractive. However, the equation may need
a large number of iterations to meet a convergence, con-
suming a prohibitive memory footprint to store intermediate
activations for gradient descent. Therefore, IGNN derives
its backpropagation algorithm from the implicit differentia-
tion theory. Specifically, gradients ∇H∗ of H∗ is given by

solving another equilibrium equation

∇H = ÃT · (∇H ⊙ ∂σ(Z)

∂Z
) · W̃ T +

∂L(H)

∂H
, (7)

where L is the loss function. Then, ∇H∗ is plugged into
the chain rule to derive the gradients of W and θ. Due to
the repeatedly injected bθ(X) during the forward iterations,
IGNNs are also a series of methods for long-range message
passing without the over-smoothing problem.

Our work ALS also derives its backpropagation algorithm
from the implicit differentiation theory to achieve the con-
stant memory footprint, but it has two differences from
IGNNs. First, Ã in ALS is optimizable, showing more pow-
erful adaptiveness in graph representation learning. Second,
we develop three acceleration techniques for PPR, mak-
ing ALS to have at least 3.67 times the speed of IGNN in
experiments.

3. Methodology
To capture long-range and complex data dependencies
within graphs, we propose Attentive Long-Short-range
message passing (ALS), as depicted in Figure 1.

ALS integrates attention mechanisms to generate the at-
tentive transition matrix for message passing, thereby en-
hancing its capability in capturing complex data dependen-
cies. The core innovations of ALS are the accelerated Dif-
ferentiable Personalized PageRank (DPPR) operator and
the short-range message passing module. The accelerated
DPPR operator allows central nodes to gather information
from distant nodes with optimized speed and a constant
memory footprint. The short-range message passing module
focuses on the diversified information within local neigh-
bourhoods, aiding in learning under heterophily. Overall,
the ALS layer can serve as a building block for constructing
graph neural networks. It is characterized by its ability to
capture long-range dependencies, and its robustness across
both homophilic graphs and heterophilic graphs.

In the following subsections, we sequentially describe our
algorithms for differentiating the Personalized PageRank
(PPR) process, techniques to accelerate PPR, and the mod-
ule of short-range message passing designed to handle het-
erophily.

3.1. DPPR: Differentiable Personalized PageRank

Due to the infinite memory footprint of PPR for error-
backpropagation, previous studies have resorted to truncated
versions of PPR, resulting in a compromise in their capa-
bilities for long-range message passing. In contrast, we
leverage the full capability of untruncated PPR by present-
ing a novel differentiation algorithm, which consumes only
constant memory.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

ALS: Attentive Long-Short-Range Message Passing

Figure 1. The architecture of the Attentive Long-Short-range message passing (ALS) layer (the middle part). The core innovations of
ALS are 1) the accelerated DPPR operator (the left lower part), which enables central nodes to gather information from distant nodes with
optimized speed and a constant memory footprint, and 2) the short-range message passing module (the left upper part), which helps ALS
learning under heterophily. We construct a single-layered ALS network (the right upper part) and a multi-layered ALS network (the right
lower part) for different experimental purposes.

The following theorem facilitates the differentiation of PPR,
with its proof provided in Appendix A:
Theorem 3.1. The gradients of

Z = PPR(α, Ãθ,V )

can be obtained by another PPR process:

∇Z = PPR(α, ÃT
θ ,

(
1

α
· ∂L(Z)

∂Z

)
),

where Ãθ is the attention matrix, V is the inputted repre-
sentations, and L(Z) is the loss.

By plugging ∇Z into the chain rule, we can compute the
gradients of V and Ãθ, thereby enabling gradient descent
to optimize the PPR process.{

∇V = α · ∇Z

∇Ãθ
= (1− α) ·A⊙ (∇Z ·ZT )

.

It is worth noting that we do not have to compute the dense
matrix of (∇Z · ZT ), which would have a complexity of
O(n2). Instead, we compute the resulting non-zeros of
A⊙ (∇Z ·ZT ) edge by edge, with a complexity of O(m),
where m is the number of edges.

The PPR optimized using this algorithm is termed Differ-
entiable PPR (DPPR). We have encapsulated DPPR as a

PyTorch (Paszke et al., 2019) operator in our code 1. Com-
munity researchers can replace their propagation operator
with DPPR to expand the receptive field to infinity without
increasing memory footprint.

3.2. Accelerated DPPR

In many cases, a relatively small α in PPR is necessary to
obtain expressive representations (Boldi et al., 2007). How-
ever, small α can lead to a deterioration in convergence
speed, especially when solving PPR with the naive itera-
tion method (Gleich, 2015). Therefore, we develop three
techniques to accelerate DPPR, which also benefit to the
computational efficiency of existing PPR-based methods
such as PPNP and MAGNA.

3.2.1. CONJUGATE GRADIENT (CG) WITH
SYMMETRIZED ATTENTIONS (SYMGAT)

Many previous works (Berkhin, 2005; Golub & Greif,
2006; Zhang et al., 2016) suggest treating the result Z of
PPR(α, Ãθ,V ) as a solution to the linear system

1

α

(
I − (1− α)Ãθ

)
Z = V (8)

1https://anonymous.4open.science/r/
ALS-A104

4

https://anonymous.4open.science/r/ALS-A104
https://anonymous.4open.science/r/ALS-A104


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

ALS: Attentive Long-Short-Range Message Passing

and solving it using the Krylov subspace method (Liesen &
Strakos, 2013), such as GMRES and MINRES (Saad, 2003),
which can converge rapidly even when α is small. However,
the construction of the Krylov subspace may necessitate
tens of times the memory footprint consumed by the en-
tire node representations V , making these implementations
impractical for large-scale graphs.

To integrate the Krylov subspace method into practical graph
representation learning, we replace Ãθ in PPR with sym-
metrized attentions (Wang et al., 2021) defined as

Âij =
exp(sij)√
Di ⊙Dj

,

where we utilize Wq = Wk to ensure sij = sji. With
the symmetrized attentions Âθ, a space-saving implemen-
tation of the Krylov subspace method, known as conjugate
gradient (Hestenes et al., 1952), becomes feasible. This im-
plementation consumes only twice the memory footprint of
V to store the residuals and the conjugate vectors, making
it suitable for large-scale graph processing.

3.2.2. DOMINANT EIGENVECTOR INITIALIZATION
(EIGENINIT)

By default, both the naive iteration method and CG com-
mence their iterations from 0, which leverages no informa-
tion encoded in Aθ.

On the contrary, we start our iterations from a better
point V̄ = [v̄1; v̄2; . . . ; v̄n], where v̄i is the projection
of the i-row of V onto the dominant eigenvector of Aθ.
We notice that 1 is the dominant eigenvector of Ãθ and
(
√
D1,

√
D2, . . . ,

√
Dn) (defined in Equation 2) is the dom-

inant eigenvector of the symmetrized Âθ. Both dominant
eigenvalues are 1. Therefore, the residual after the first iter-
ation of Equation 8 starting from V̄ is ∥V̄ − V ∥, which is
not greater than the residual ∥V ∥ of starting from 0, mean-
ing that starting from V̄ is expected to converge in fewer
iterations.

3.2.3. ADAPTIVE BATCH-TERMINATING (ADATERM)

We observe that Equation 8 is composed of H ×C indepen-
dent linear systems, which may converge at different speeds.
Stopping iterations adaptively for linear systems that have
already converged saves computation and accelerates our
solvers.

Considering multi-heads attentions, the n × n attention
matrix Aθ in our previous discussion becomes an n×n×H
tensor, where H is the number of attention heads. Similarly,
the input tensor V and the resulting tensor Z are both n×
H × C, where C is the number of representation channels
in each attention head. There are H ×C independent linear
systems in Equation 8. As Algorithm 1 describes, after

Algorithm 1 PPR with AdaTerm
Input: f which iterates the naive iteration method or the
conjugate gradient for one step, α, the attention tensor Aθ,
the inputting tensor V , the convergence tolerance ϵ. Output:
the PPR result Z

1: mh := 1 ∈ {0, 1}H {indicators of active heads}
2: mc := 1 ∈ {0, 1}C {indicators of active channels}
3: r := 0 ∈ RH×C {linear system residuals}
4: Z := 0
5: repeat
6: Z ′ := Z
7: Z[:,mh,mc] := f(α,Aθ[:,mh],V [:,mh,mc]
8: r[h, c] := ∥Z[:, h, c]−Z ′[:, h, c]∥,∀h ≤ H, c ≤ C

{Terminate converged heads}
9: if ∃h ≤ H,∀c ≤ C, r[h, c] < ϵ then

10: mh[h] := 0
11: end if

{Terminate converged channels}
12: if ∃c ≤ C,∀h ≤ H, r[h, c] < ϵ then
13: mc[c] := 0
14: end if
15: until r[h, c] < ϵ,∀h ≤ H, c ≤ C
16: return Z

every iteration step, we check if any linear system meets
its stop condition for convergence. If the linear systems of
all channels within an attention head have all converged,
we stop iterating the entire head in subsequent iterations.
Likewise, we stop iterating an entire channel if the linear
systems of all heads along that channel have converged.
This adaptive terminating improves the efficiency of our
solvers by reducing unnecessary computation.

3.3. Short-Range Message Passing

In some graphs where adjacent nodes exhibit heterophilic
characteristics, it is necessary to differentiate the processing
of a node’s own features from the features of its neighbours
for improved performance (Zhu et al., 2020). To compen-
sate for the DPPR operator’s limitations in such diverse
processing, we design an additional short-range message
passing module for ALS. This module effectively handles
heterophily without negatively impacting the performance
on homophilic graphs.

An ALS layer with K steps of short-range message passing
outputs H as
H = σ(Z(K))

Z(k) = (1− α)AθZ
(k−1) + αXWk, k = 1, 2, . . . ,K

Z(0) = DPPR(α,Aθ,XW0)

,

where σ(·) is a non-linear activator such as
ReLU (Maas et al., 2013) or layer normalization.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

ALS: Attentive Long-Short-Range Message Passing

W0,W1,W2, . . . ,WK are optimizable parameters. The
short-range message passing module is placed after DPPR.
It propagates information in a manner akin to truncated PPR
but applies different transformations W1,W2, . . . ,WK

to information at different steps. When K is a positive
integer, short-range information about a node within its
K-hops neighbourhood is processed separately by the
diversified transformations to accommodate heterophily.
On graphs without such heterophily, W1,W2, . . . ,WK

can approximate W0 to implicitly disable the short-range
message passing module, thus avoiding any impact on the
DPPR results.

4. Experiments
We conduct node classification experiments on a variety
of graphs to elucidate the characteristics of our proposed
methods and show the powerfulness of ALS. The datasets
employed in our experiments are categorized as four groups.
The first group is homophilic graphs, where nearby nodes
share similar labels, including Amazon Computer, Ama-
zon Photo (McAuley et al., 2015), Coauthor CS, Coau-
thor Physics (Wang et al., 2020b; Shchur et al., 2018), and
WikiCS (Mernyei & Cangea, 2020). The second group
is heterophilic graphs, where adjacent nodes tend to have
different labels, including Roman Empire, Amazon Rat-
ings, Minesweeper, Tolokers, and Questions (Platonov et al.,
2023). The third group is the large-scale OGB-Arxiv and
OGB-Products dataset (Hu et al., 2020). The last group
is the long-range graph benchmarks, where labels strongly
depend on long-range interactions between nodes, includ-
ing PascalVOC-SP and COCO-SP (Dwivedi et al., 2022). 2

Details of the baselines and other experimental settings are
in Appendix E.

4.1. Efficiency of DPPR on Memory Saving

In this section, we utilize the OGB-Arxiv dataset to conduct
experiments aimed at validating the efficiency of DPPR in
terms of memory saving.

Figure 2 visually depicts the memory footprints involved in
optimizing a weighted version of the label propagation algo-
rithm (Zhu et al., 2005), which propagates label information
along edges. The edge weights in this implementation are
dynamically computed based on node features (Wang &
Leskovec, 2021). It is evident from the figure that as the
number of propagation steps increases, the conventional
hop-wise backpropagation method consumes an increas-
ing amount of memory, whereas DPPR maintains a con-

2PascalVOC-SP and COCO-SP are 2 of the 5 proposed datasets
from Dwivedi et al. (2022) used to assess a model’s capability
in capturing long-range dependencies. We exclude the other 3
datasets because they are recently found to be inadequate for this
purpose (Tonshoff et al., 2023).

Figure 2. Memory footprint of different optimization algorithms
on the OGB-Arxiv dataset

stant memory footprint. This is because DPPR obtains the
gradients of its results by another PPR process, thereby
consuming constant memory regardless of the number of
propagations.

In conclusion, the DPPR operator demonstrates efficiency
in memory saving compared to conventional GNNs.

4.2. Effectiveness of the Acceleration Techniques

In this section, we evaluate the effectiveness of our proposed
acceleration techniques: CG with SymGAT, EigenInit, and
AdaTerm, which are applied on a single-layered ALS.

We select IGNN (Gu et al., 2020) as a baseline for com-
parison due to its iterative nature, which is similar to ALS.
The maximum number of iterations for IGNN and ALS is
set to 300. Each model is trained for 20 epochs using an
NVIDIA GeForce RTX 3060 GPU, and the time taken for
each epoch is measured. The averaged training time per
epoch is reported in Figure 3, with the experimented graphs
sorted by their average node degrees and annotated as either
homophilic or heterophilic. AsymGAT refers to the ALS
using the original version of graph attentions (Equation 2).

As the figure illustrates, the speed of AsymGAT deteriorates
significantly when α decreases. ‘AsymGAT + AdaTerm’
consistently reduces the training time of AsymGAT by about
10% to 20%. ‘AsymGAT + EigenInit’ 3 demonstrates negli-
gible effects on homophilic graphs but is notably effective
on heterophilic graphs. ‘SymGAT + CG’ is the fastest tech-
nique. Its speed deteriorates more slowly than AsymGAT
when α decreases, and its efficiency is further improved as
the graphs become denser. With the incorporation of all

3While EigenInit accelerates both the forward and backward
iterations in SymGAT, it only accelerates the forward iterations in
AsymGAT, because the dominant eigenvector of AT

θ is unknown.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

ALS: Attentive Long-Short-Range Message Passing

Figure 3. Averaged time for an epoch of training when different acceleration techniques involved

these acceleration techniques, ‘SymGAT + All’ reduces the
training time by up to 89.51% (on Tolokers) compared to
the naive iteration method (AsymGAT), and is at least 3.67
times as fast (on Amazon Photo) as IGNN.

In conclusion, all three techniques are effective in accel-
erating PPR. Their combination significantly reduces the
computation time of ALS, making it notably faster than an-
other iterative baseline (IGNN) even when α is very small.

4.3. Compare ALS With State-of-the-Art Baselines

In this section, we demonstrate the node classification per-
formance of ALS on 14 graphs and compare ALS with
state-of-the-art baselines, including message-passing neural
networks (MPNN) and Graph Transformers (GT).

Table 1 presents the averaged accuracy scores of ALS and
16 competitive MPNNs, including GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017), GAT (Velick-

ovic et al., 2017), GAT-sep (Platonov et al., 2023), GC-
NII (Chen et al., 2020), GPRGNN (Chien et al., 2020),
APPNP (Gasteiger et al., 2018), PPRGo (Bojchevski et al.,
2020), GGCN (Yan et al., 2021), OrderedGNN (Song et al.,
2023), tGNN (Hua et al., 2022), H2GCN (Zhu et al., 2020),
FSGNN (Maurya et al., 2022), GloGNN (Li et al., 2022),
G2-GNN (Rusch et al., 2023), and LINKX (Lim et al., 2021).
As indicated in the table, ALS achieves state-of-the-art per-
formance scores on 11 out of 12 datasets. Even on the
Questions dataset where ALS is not the best, it still achieves
the second-best performance. These results underscore the
efficacy of ALS in handling homophilic, heterophilic, and
large graphs.

Table 2 presents the averaged accuracy scores of ALS and
other baselines across 4 runs on long-range graph bench-
marks. Methods in the table is grouped into two sections,
the message-passing neural networks (MPNN) category and
the ‘SE + GT/Mamba + MPNN’ category. Our ALS is

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

ALS: Attentive Long-Short-Range Message Passing

Table 1. Averaged accuracy scores and the standard deviations
in 10 runs on homophilic graphs (the upper section), heterophilic
graphs (the middle section), and large graphs (the lower section).
In each section, the best score for each dataset is bolded. Detailed
scores of baselines are in Appendix E.

Baselines ALSRank-1 Rank-2

Amazon Computer 92.03±0.13 91.81±0.20 92.11±0.33
Amazon Photo 95.10±0.20 94.59±0.14 95.94±0.28
Coauthor CS 95.25±0.05 95.13±0.09 96.22±0.12
Coauthor Physics 97.07±0.05 97.00±0.08 97.54±0.07
WikiCS 79.01±0.68 78.87±0.11 80.97±0.75
Roman Empire 88.75±0.41 87.32±0.39 88.90±0.54
Amazon Ratings 53.63±0.39 52.74±0.83 54.10±0.37
Minesweeper 93.91±0.35 93.51±0.57 95.55±1.05
Tolokers 83.78±0.43 83.70±0.47 86.09±0.92
Questions 78.86±0.92 76.79±0.71 78.26±0.95
OGB-Arxiv 72.01±0.20 71.74±0.29 72.71±0.22
OGB-Products 79.76±0.59 79.45±0.59 81.40±0.24

based on pure message passing and falls under the MPNN
category, with baselines GCN, GINE (Hu et al., 2019), Gat-
edGCN (Bresson & Laurent, 2017), IGNN (Gu et al., 2020),
APPNP (Gasteiger et al., 2018), and GPRGNN (Chien
et al., 2020). 4 The second category refers to integretions
of structural encodings (SE), graph transformers (GT) or
Mamba (Gu & Dao, 2023), and MPNN. We integrate ALS
into GraphGPS (Rampášek et al., 2022), a framework of
‘SE + GT + MPNN’, as its MPNN module to compare with
other integrated baselines, including NAGphormer (Chen
et al., 2022a), GraphGPS (the original one) (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023b), Graph
Mamba (Behrouz & Hashemi, 2024), and GraphGPS (the
reassessed one) (Tonshoff et al., 2023). As shown in the
table, ALS only slightly lags behind Graph Mamba on the
COCO-SP dataset, while demonstrating its superiority in
capturing long-range dependencies compared with other
MPNNs and other ‘SE + GT + MPNN’ integrations.

In conclusion, ALS consistently exhibits state-of-the-art
performance on homophilic graphs, heterophilic graphs,

4Although there exists other newer implicit and PageRank-
based GNNs, such as EIGNN (Liu et al., 2021), LazyGNN (Xue
et al., 2023), PPRGo (Bojchevski et al., 2020), and PPRGAT (Choi,
2022), these approaches are not included in the baselines because
they necessitate preprocessing of the underlying graph prior to
training. For instance, EIGNN decomposes the adjacency matrix,
LazyGNN partitions the graph, and both PPRGo and PPRGAT
precompute the PageRank matrix. Consequently, training them
with dynamic batches of subgraphs, as is the case in PascalVOC-
SP and COCO-SP, consumes expensive time due to their repeated
preprocessing.

Table 2. Averaged accuracy scores and the standard deviations
of baselines, include MPNNs (the upper section) and their inte-
grations with GT or Mamba (the lower section), in 4 runs on the
long-range graph benchmarks. Each run has 60 hours of time
budget and IGNN on COCO-SP runs Out of Time (OoT). In each
section, the best score for each dataset is bolded, and the second
best is underlined.

PascalVOC-SP COCO-SP

GCN 20.78±0.31 13.38±0.07
GINE 27.18±0.54 21.25±0.09
GatedGCN 38.80±0.40 29.22±0.18
IGNN 21.66±0.39 OoT
APPNP 31.24±0.47 22.05±0.09
GPRGNN 37.47±0.81 27.46±0.47
ALS (as MPNN) 39.59±0.61 30.08±0.37
NAGphormer 40.06±0.61 34.58±0.70
GraphGPS (original) 37.48±1.09 34.12±0.44
Exphormer 39.60±0.27 34.30±0.08
Graph Mamba 43.93±1.12 39.74±1.01
GraphGPS (reassessed) 44.40±0.65 38.84±0.55
ALS (in GraphGPS) 44.93±0.75 39.23±0.65

and long-range graph benchmarks, and demonstrates com-
petitive performance on large graphs, thus highlighting its
effectiveness in handling diverse graph structures.

4.4. Other Experiments

Except for the previous experiments, we have also validated
the efficiency of DPPR in terms of parameter utilization in
Appendix B and the robustness of the short-range message
passing module on handling different graphs in Appendix C.
Comprehensive ablation studies on ALS, such as how im-
portant the attention is, are also conducted in Appendix D.

5. Conclusion
In this work, we introduce Attentive Long-Short-range mes-
sage passing (ALS), a graph representation learning method
that is characterized by its long-range receptiveness and ro-
bustness under heterophily. The pivotal innovation of ALS
lies in its differentiable and efficient PPR operator, which
enables the practical integration of PPR and GAT due to its
constant memory footprint and accelerated computations.
Extensive experiments have corroborated the superiority
of ALS on homophilic graphs, heterophilic graphs, large
graphs, and long-range graph benchmarks, underscoring the
efficacy of our method in diverse graph-based applications.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

ALS: Attentive Long-Short-Range Message Passing

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In The 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
2623–2631, 2019.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium mod-
els. Advances in neural information processing systems,
32, 2019.

Behrouz, A. and Hashemi, F. Graph mamba: Towards
learning on graphs with state space models. In Knowledge
Discovery and Data Mining, 2024.

Berkhin, P. A survey on pagerank computing. Internet
mathematics, 2(1):73–120, 2005.

Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais,
M. J., R’ozemberczki, B., Lukasik, M., and Gunnemann,
S. Scaling graph neural networks with approximate pager-
ank. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2020.

Boldi, P., Santini, M., and Vigna, S. A deeper investigation
of pagerank as a function of the damping factor. Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2007.

Bresson, X. and Laurent, T. Residual gated graph convnets.
ArXiv, abs/1711.07553, 2017.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? arXiv preprint arXiv:2105.14491,
2021.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Chen, J., Gao, K., Li, G., and He, K. Nagphormer: A
tokenized graph transformer for node classification
in large graphs. In International Conference on
Learning Representations, 2022a. URL https:
//api.semanticscholar.org/CorpusID:
252846362.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In International
Conference on Machine Learning, 2020.

Chen, Q., Wang, Y., Wang, Y., Yang, J., and Lin, Z.
Optimization-induced graph implicit nonlinear diffusion.
In International Conference on Machine Learning, pp.
3648–3661. PMLR, 2022b.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. arXiv
preprint arXiv:2006.07988, 2020.

Choi, J. Personalized pagerank graph attention networks.
In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
3578–3582. IEEE, 2022.

Deng, C., Yue, Z., and Zhang, Z. Polynormer: Polynomial-
expressive graph transformer in linear time. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. ArXiv, abs/2012.09699, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. Advances in Neural Information Processing Sys-
tems, 35:22326–22340, 2022.

Gasteiger, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. arXiv preprint arXiv:1810.05997, 2018.

Gleich, D. F. Pagerank beyond the web. siam REVIEW, 57
(3):321–363, 2015.

Golub, G. H. and Greif, C. An arnoldi-type algorithm for
computing page rank. BIT Numerical Mathematics, 46:
759–771, 2006.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. ArXiv, abs/2312.00752, 2023.

Gu, F., Chang, H., Zhu, W., Sojoudi, S., and El Ghaoui,
L. Implicit graph neural networks. Advances in Neural
Information Processing Systems, 33:11984–11995, 2020.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Neural Information
Processing Systems, 2017.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z.,
Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y.,
and Tao, D. A survey on vision transformer. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PP:
1–1, 2020.

9

https://api.semanticscholar.org/CorpusID:252846362
https://api.semanticscholar.org/CorpusID:252846362
https://api.semanticscholar.org/CorpusID:252846362


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

ALS: Attentive Long-Short-Range Message Passing

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2015.

Hestenes, M. R., Stiefel, E., et al. Methods of conjugate
gradients for solving linear systems, volume 49. NBS
Washington, DC, 1952.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P.,
Pande, V. S., and Leskovec, J. Strategies for pre-
training graph neural networks. arXiv: Learning,
2019. URL https://api.semanticscholar.
org/CorpusID:213085920.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Hua, C., Rabusseau, G., and Tang, J. High-order pooling
for graph neural networks with tensor decomposition.
Advances in Neural Information Processing Systems, 35:
6021–6033, 2022.

Huang, B. and Carley, K. M. Syntax-aware aspect level
sentiment classification with graph attention networks.
ArXiv, abs/1909.02606, 2019.

Kalyan, K. S., Rajasekharan, A., and Sangeetha, S. Ammus
: A survey of transformer-based pretrained models in
natural language processing, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kosaraju, V., Sadeghian, A., Martı́n-Martı́n, R., Reid, I. D.,
Rezatofighi, S. H., and Savarese, S. Social-bigat: Multi-
modal trajectory forecasting using bicycle-gan and graph
attention networks. ArXiv, abs/1907.03395, 2019.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Kurin, V., Igl, M., Rocktäschel, T., Boehmer, W., and White-
son, S. My body is a cage: the role of morphology
in graph-based incompatible control. arXiv preprint
arXiv:2010.01856, 2020.

Li, X., Zhu, R., Cheng, Y., Shan, C., Luo, S., Li, D., and
Qian, W. Finding global homophily in graph neural net-
works when meeting heterophily. In International Con-
ference on Machine Learning, pp. 13242–13256. PMLR,
2022.

Liesen, J. and Strakos, Z. Krylov subspace methods: prin-
ciples and analysis. Numerical Mathematics and Scie,
2013.

Lim, D., Hohne, F., Li, X., Huang, S., Gupta, V., Bhalerao,
O., and Lim, S.-N. Large scale learning on non-
homophilous graphs: New benchmarks and strong simple
methods. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.
org/CorpusID:239998578.

Liu, J., Kawaguchi, K., Hooi, B., Wang, Y., and Xiao, X.
Eignn: Efficient infinite-depth graph neural networks.
Advances in Neural Information Processing Systems, 34:
18762–18773, 2021.

Liu, J., Hooi, B., Kawaguchi, K., and Xiao, X. Mgnni:
Multiscale graph neural networks with implicit layers.
Advances in Neural Information Processing Systems, 35:
21358–21370, 2022.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P. H. S., and Lim, S. N. Graph
inductive biases in transformers without message passing.
In International Conference on Machine Learning, 2023.

Ma, N., Mazumder, S., Wang, H., and Liu, B. Entity-aware
dependency-based deep graph attention network for com-
parative preference classification. In Annual Meeting of
the Association for Computational Linguistics, 2020.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. Rectifier
nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

Maurya, S. K., Liu, X., and Murata, T. Simplifying approach
to node classification in graph neural networks. Journal
of Computational Science, 62:101695, 2022.

McAuley, J., Targett, C., Shi, Q., and Van Den Hengel, A.
Image-based recommendations on styles and substitutes.
In Proceedings of the 38th international ACM SIGIR
conference on research and development in information
retrieval, pp. 43–52, 2015.

Mernyei, P. and Cangea, C. Wiki-cs: A wikipedia-
based benchmark for graph neural networks. ArXiv,
abs/2007.02901, 2020.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947, 2019.

10

https://api.semanticscholar.org/CorpusID:213085920
https://api.semanticscholar.org/CorpusID:213085920
https://api.semanticscholar.org/CorpusID:239998578
https://api.semanticscholar.org/CorpusID:239998578


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

ALS: Attentive Long-Short-Range Message Passing

Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking : Bringing order to the web. In
The Web Conference, 1999.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
gnns under heterophily: Are we really making progress?
arXiv preprint arXiv:2302.11640, 2023.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Roth, A. and Liebig, T. Transforming pagerank into an
infinite-depth graph neural network. In ECML/PKDD,
2022.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bron-
stein, M. M., and Mishra, S. Gradient gating for deep
multi-rate learning on graphs. ICLR, 9:25, 2023.

Saad, Y. Iterative methods for sparse linear systems. SIAM,
2003.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transform-
ers for graphs. In International Conference on Machine
Learning, pp. 31613–31632. PMLR, 2023a.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transform-
ers for graphs. In International Conference on Machine
Learning, 2023b.

Song, Y., Zhou, C., Wang, X., and Lin, Z. Ordered gnn:
Ordering message passing to deal with heterophily and
over-smoothing. ArXiv, abs/2302.01524, 2023.

Tonshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where did the gap go? reassessing the long-range graph
benchmark. ArXiv, abs/2309.00367, 2023.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.

Attention is all you need. In Neural Information Process-
ing Systems, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017.

Wang, C., Tsepa, O., Ma, J., and Wang, B. Graph-mamba:
Towards long-range graph sequence modeling with se-
lective state spaces. arXiv preprint arXiv:2402.00789,
2024.

Wang, G., Ying, R., Huang, J., and Leskovec, J. Multi-hop
attention graph neural networks. In International Joint
Conference on Artificial Intelligence, 2020a.

Wang, H. and Leskovec, J. Combining graph convolutional
neural networks and label propagation. ACM Transac-
tions on Information Systems (TOIS), 40:1 – 27, 2021.

Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y., and
Kanakia, A. Microsoft academic graph: When experts are
not enough. Quantitative Science Studies, 1(1):396–413,
2020b.

Wang, Y., Jin, J., Zhang, W., Yu, Y., Zhang, Z., and Wipf,
D. Bag of tricks for node classification with graph neural
networks. arXiv preprint arXiv:2103.13355, 2021.

Wu, F., Zhang, T., de Souza, A. H., Fifty, C., Yu, T., and
Weinberger, K. Q. Simplifying graph convolutional net-
works. In International Conference on Machine Learning,
2019.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. Advances
in Neural Information Processing Systems, 34:13266–
13279, 2021.

Xing, Y., Wang, X., Li, Y., Huang, H., and Shi, C. Less
is more: on the over-globalizing problem in graph trans-
formers. arXiv preprint arXiv:2405.01102, 2024.

Xue, R., Han, H., Torkamani, M., Pei, J., and Liu, X.
Lazygnn: Large-scale graph neural networks via lazy
propagation. ArXiv, abs/2302.01503, 2023.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D.
Two sides of the same coin: Heterophily and oversmooth-
ing in graph convolutional neural networks. 2022 IEEE
International Conference on Data Mining (ICDM), pp.
1287–1292, 2021.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

ALS: Attentive Long-Short-Range Message Passing

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? Advances in neural information
processing systems, 34:28877–28888, 2021.

Zhang, H.-F., Huang, T.-Z., Wen, C., and Shen, Z.-L. Fom
accelerated by an extrapolation method for solving pager-
ank problems. Journal of Computational and Applied
Mathematics, 296:397–409, 2016.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804,
2020.

Zhu, X., Lafferty, J. D., and Rosenfeld, R. Semi-supervised
learning with graphs. 2005.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

ALS: Attentive Long-Short-Range Message Passing

Figure 4. Parameters and accracy scores for different models

A. Proof of Theorem 3.1
Proof. We rewrite PPR (Equation 5)

Z = α
(
I − (1− α)Ãθ

)−1

V

into the form of IGNN (Equation 6)
Z = ÃθZ · ((1− α)I) + (α · V )

and then derive the backpropagation algorithm as a corollary of Equation 7:

∇Z = ÃT
θ · ∇Z · (1− α) +

∂L(Z)

∂Z

= (1− α)ÃT
θ · ∇Z + α ·

(
1

α
· ∂L(Z)

∂Z

)
= PPR(α, ÃT

θ ,

(
1

α
· ∂L(Z)

∂Z

)
).

B. Efficiency of DPPR on Parameter Utilization
In this section, we utilize the OGB-Arxiv dataset to conduct experiments aimed at validating the efficiency of DPPR in
terms of parameter utilization.

Figure 4 presents the performance scores of a 3-layered GCN, a 3-layered GAT, and a single-layered ALS with varying
numbers of parameters. As depicted, ALS can achieve comparable performance to GCN and GATv2 with only about 20%
parameters. This is because ALS decouples its propagations (Wu et al., 2019) and uses DPPR to expand the receptive field,
thereby introducing no additional parameters rather than stacking graph convolutional layers.

In conclusion, the DPPR operator demonstrates efficiency in parameter utilization compared to conventional GNNs.

C. Short-Range Message Passing for Heterophily
In this section, we validate the robustness of the short-range message passing module on homophilic graphs and heterophilic
graphs.

Figure 5 visualizes the accuracy scores of a single-layered ALS with varying hops K of short-range message passing. As
illustrated in the figure, the short-range message passing module has negligible impact on the node classification performance

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

ALS: Attentive Long-Short-Range Message Passing

Figure 5. Averaged accuracy scores in 10 runs with different hops of short-range message passing on homophilic graphs (dashed lines)
and heterophilic graphs (solid lines)

on homophilic graphs. However, in heterophilic graphs, the inclusion of this module significantly improves accuracy, and
the improvement becomes more pronounced as K increases.

In conclusion, the short-range message passing module aids ALS in better handling heterophily and has no adverse effect on
homophilic graphs.

D. Ablation Studies on ALS
In this section, we conduct ablation studies on ALS to gain a comprehensive understanding and address the following three
questions:

• Q1: How powerful is DPPR when combined with attention weights?

• Q2: Does the symmetrization of GAT degrade its performance?

• Q3: Since the propagation range of ALS is infinite, is it necessary to stack multiple ALS layers?

By constraining hyperparameters, we derive the following variations of ALS:

• NoGAT represents ALS with a constant Ã, which is either the row-normalized or symmetrically-normalized adjacency
matrix.

• AsymGAT employs the original version of GAT (Equation 2), with its influence scores computed by either Equation 1
or Equation 3.

• SymGAT is the symmetrized version of AsymGAT.

• MultiLayered refers to the multi-layerd ALS illustrated in Figure 1.

We present the accuracy scores for 10 runs of each ALS variation across 10 datasets in Figure 6. For Q1, the incorporation
of attention weights significantly enhances the classification performance. NoGAT performs weaker than its attentive
counterparts (AsymGAT and SymGAT) on 8 out of 10 graphs and only slightly better on Amazon Ratings and Tolokers. For
Q2, SymGAT lags behind AsymGAT on 3 out of 5 homophilic graphs but surpasses AsymGAT on 3 out of 5 heterophilic

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

ALS: Attentive Long-Short-Range Message Passing

Figure 6. Testing F1-micro scores (%, the horizontal axes) in 10 runs of four ALS variations. The vertical line in the centre of each violin
plot represents the average score.

Table 3. Statistics of datasets used in our experiments

#Graphs Homophily (%) #Nodes #Edges Mean Deg. Features Classes

Amazon Computer 1 68.23 13752 245861 35.76 767 10
Amazon Photo 1 78.50 7650 119081 31.13 745 8
Coauthor CS 1 78.45 18333 81894 8.93 6805 15
Coauthor Physics 1 87.24 34493 247962 14.38 8415 5
WikiCS 1 57.90 11701 216123 36.85 300 10
Roman Empire 1 -4.68 22662 32927 2.91 300 18
Amazon Ratings 1 14.02 24492 93050 7.60 300 5
Minesweeper 1 0.94 10000 39402 7.88 7 2
Tolokers 1 9.26 11758 519000 88.28 10 2
Questions 1 2.07 48921 153540 6.28 301 2
OGB-Arxiv 1 58.92 169343 1166243 13.77 128 40
OGB-Products 1 80.76 2449029 61859140 50.52 100 47
PascalVOC-SP 11355 — 5443545 30777444 5.65 14 21
COCO-SP 123286 — 58793216 332091902 5.65 14 81

graphs. This suggests that symmetrizing GAT has no noticeable negative effect on performance. For Q3, there is no
observable difference between single-layered and multi-layered ALS on 6 out of 10 graphs, except Coauthor CS, Roman
Empire, Amazon Ratings, and Minesweeper. This indicates that the powerful propagation capability of ALS is sufficient for
most cases. Stacking multiple ALS layers can serve as a fallback strategy to enhance performance when needed.

E. Experimental Details
E.1. Datasets

Table 3 details the 13 datasets employed in our experiments. The first five datasets are characterized as homophilic
graphs (Shchur et al., 2018; Mernyei & Cangea, 2020). The subsequent five datasets are categorized as heterophilic
graphs (Platonov et al., 2023). We incorporate the adjusted homophily (Platonov et al., 2023) to quantify how homophilic
a graph is. As we can see, heterophilic graphs are all with lower homophily scores. In our experiments, the large-scale
OGB-Arxiv and OGB-Products datasets (Hu et al., 2020) serves as benchmarks to evaluate the efficiency and scalability of
the proposed methods. PascalVOC-SP and COCO-SP are recognized as long-range graph benchmarks (Dwivedi et al., 2022),
where each graph in these benchmarks possesses an average shortest path length exceeding 10 and an average diameter

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

ALS: Attentive Long-Short-Range Message Passing

Table 4. Averaged accuracy scores and the standard deviations in 10 runs on homophilic (the upper section) and heterophilic graphs (the
lower section). In each section, the best score for each dataset is bolded, and the second best is underlined.

Amazon Computer Amazon Photo Coauthor CS Coauthor Physics WikiCS

GCN 89.65±0.52 92.70±0.20 92.92±0.12 96.18±0.07 77.47±0.85
GraphSAGE 91.20±0.29 94.59±0.14 93.91±0.13 96.49±0.06 74.77±0.95
GAT 90.78±0.13 93.87±0.11 93.61±0.14 96.17±0.08 76.91±0.82
GCNII 91.04±0.41 94.30±0.20 92.22±0.14 95.97±0.11 78.68±0.55
GPRGNN 89.32±0.29 94.49±0.14 95.13±0.09 96.85±0.08 78.12±0.23
APPNP 90.18±0.17 94.32±0.14 94.49±0.07 96.54±0.07 78.87±0.11
PPRGo 88.69±0.21 93.61±0.12 92.52±0.15 95.51±0.08 77.89±0.42
GGCN 91.81±0.20 94.50±0.11 95.25±0.05 97.07±0.05 78.44±0.53
OrderedGNN 92.03±0.13 95.10±0.20 95.00±0.10 97.00±0.08 79.01±0.68
tGNN 83.40±1.33 89.92±0.72 92.85±0.48 96.24±0.24 71.49±1.05
ALS 92.11±0.33 95.94±0.28 96.22±0.12 97.54±0.07 80.97±0.75

Roman Empire Amazon Ratings Minesweeper Tolokers Questions

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27
GraphSAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62
GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71
H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46
GPRGNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91
FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92
GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19
GGCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 71.10±1.57
OrderedGNN 77.68±0.39 47.29±0.65 80.58±1.08 75.60±1.36 75.09±1.00
G2-GNN 82.16±0.78 47.93±0.58 91.83±0.56 82.51±0.80 74.82±0.92
tGNN 79.95±0.75 48.21±0.53 91.93±0.77 70.84±1.75 76.38±1.79
ALS 88.90±0.54 54.10±0.37 95.55±1.05 86.09±0.92 78.26±0.95

exceeding 27.

For the homophilic graphs, we partition the nodes into training (60%), validation (20%), and testing (20%) sets, aligning
with the approach outlined in Shirzad et al. (2023a). For the other graphs, we utilize the default data splits provided alongside
the original datasets.

E.2. Baselines

We have conducted extensive evaluations of ALS in Table 4 and Table 5, which are summarized as Table 1 in Section 4.3. In
the tables, we compare ALS with more than 10 competitive graph neural networks, including GCN (Kipf & Welling, 2016),
GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2017), GAT-sep (Platonov et al., 2023), GCNII (Chen et al.,
2020), GPRGNN (Chien et al., 2020), APPNP (Gasteiger et al., 2018), PPRGo (Bojchevski et al., 2020), GGCN (Yan et al.,
2021), OrderedGNN (Song et al., 2023), tGNN (Hua et al., 2022), H2GCN (Zhu et al., 2020), FSGNN (Maurya et al., 2022),
GloGNN (Li et al., 2022), G2-GNN (Rusch et al., 2023), and LINKX (Lim et al., 2021). To ensures that the accuracy scores
of the baselines being compared are produced by well-tuned models, we retrieve scores of baselines for heterophilic and
large graphs from Platonov et al. (2023), and for homophilic graphs from Deng et al. (2024).

In the upper section of Table 2, we compare ALS with MPNNs including GCN, GINE (Hu et al., 2019), GatedGCN (Bresson
& Laurent, 2017), IGNN (Gu et al., 2020), APPNP (Gasteiger et al., 2018), and GPRGNN (Chien et al., 2020). In the lower
section of Table 2, we integrate ALS into a reassessed version of GraphGPS (Tonshoff et al., 2023) and compare it with
other ‘SE + GT/Mamba + MPNN’ methods, including NAGphormer (Chen et al., 2022a), GraphGPS (Rampášek et al.,
2022), Exphormer (Shirzad et al., 2023b), and Graph Mamba (Behrouz & Hashemi, 2024; Wang et al., 2024). NAGphormer
utilizes a Hop2Token module to encode information from local neighbourhoods based on message passing before applying a

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

ALS: Attentive Long-Short-Range Message Passing

Table 5. Averaged accuracy scores and the standard deviations in 10 runs on large graphs. The best score for each dataset is bolded, and
the second best is underlined.

OGB-Arxiv OGB-Products

GCN 71.74±0.29 75.64±0.21
GAT 72.01±0.20 79.45±0.59
GPRGNN 71.10±0.12 79.76±0.59
LINKX 66.18±0.33 71.59±0.71
ALS 72.71±0.22 81.40±0.24

GT backbone. GraphGPS is a framework that integrates structural encodings, MPNN, and GT to obtain comprehensive node
representations. Exphormer enhances the GT module in GraphGPS with two novel sparse attention mechanisms: virtual
global nodes and expander graphs. Graph Mamba replaces the GT module in GraphGPS with its long-range dependencies
capturing modules based on random walks. The scores of baselines are sourced from previous works (Rampášek et al., 2022;
Tonshoff et al., 2023; Behrouz & Hashemi, 2024; Wang et al., 2024), including their original papers and leaderboards of the
respective datasets.

E.3. Settings

As illustrated in Figure 1, we have implemented two networks using the ALS layer as a building block. The single-layered
ALS is composed of an optional multi-layered perceptron (MLP) with 1 to 2 layers, an ALS layer, and a linear predictor
for node classification. The multi-layered ALS is implemented like the multi-layered GCN model described in Platonov
et al. (2023), with the exception that we replace the GCNConv layers with our ALS layers. In detail, the multi-layered
ALS consists of a linear encoder, L residual blocks, and a linear predictor. Each residual block is equipped with a skip
connection (He et al., 2015) and comprises a layer normalization, an ALS layer, and a two-layered MLP.

Unless otherwise specified, we employ the Adam optimizer (Kingma & Ba, 2014) to train models with a learning rate of
r = 0.01. The training process is limited to a maximum of 1000 epochs and employs an early stopping strategy to halt
training if the performance on the validation set stagnates for 100 consecutive epochs. The default Dropout probability is set
to p = 0.

In the following subsections, we describe the experimental settings for all figures and tables.

E.3.1. FIGURE 2

To study the memory footprint of differentiable PPR (DPPR), We implement the weighted label propagation algorithm to
propagate label information with a dynamic transition matrix as

Ã = σ((xiW + b) ·B · (xjW + b)T ),

where σ is the row-wise Softmax function, W , b and B are optimizable. The α for label propagation is set to 0.2.

E.3.2. FIGURE 3

To assess the speed of the accelerated DPPR, we train IGNN and ALS with various acceleration techniques for 20 epochs
and report the averaged training time per epoch. The maximum number of iterations is set to 300. ALS is configured with
16 attention heads, each of which is 16-dimensional. Short-range message passing is disabled for this experiment.

E.3.3. TABLE 1, TABLE 5, FIGURE 5, AND FIGURE 6

We fine-tune ALS on homophilic, heterophilic, and large graphs using Optuna (Akiba et al., 2019) to determine the
optimal number of ASL layers L ∈ {1, 2, 3, 4, 5}, the number of attention heads H ∈ {1, 2, . . . , 10}, α ∈ [0.05, 0.8],
the number of hops for short-range message passing K ∈ {0, 1, 2, . . . , 6}, whether to apply attention weights, whether
to symmetrize attentions, the way to compute influential scores (Equation 1 or Equation 3), the Dropout probability
p ∈ {0, 0.1, 0.2, . . . , 0.7}, and the learning rate r ∈ {0.01, 0.005, 0.001}. The results are shown in Table 1. During the
fine-tuning, an adequate number of trials for ablation studies are conducted to generate Figure 6. Trials with L = 1 is

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

ALS: Attentive Long-Short-Range Message Passing

grouped by K to study the effect of short-range message passing in Figure 5.

E.3.4. TABLE 2

We inherit the code of GatedGCN and GraphGPS from Tonshoff et al. (2023) with few modifications to conduct our
experiments on the long-range graph benchmarks. Specifically, we replace the GatedGCN layer with our ALS layer,
maintaining the number of layers L and the hidden dimensions d unchanged. The number of attention heads H is adjusted
bellow 6 to ensure that the hidden dimensions d is evenly divided by the heads H . The hops of short-range message passing
K is fixed to 2 to comply with the 500k parameter budget. For ALS as MPNN, no structural encodings are enabled. For
ALS in GraphGPS, we use LapPE (Dwivedi & Bresson, 2020) to augment node features. To avoid tuning α, we implement
it as a (1, H,C)-sized tensor activated by the Sigmoid function and optimize it with its gradients computed as:

∇α = −ÃθZ ⊙∇Z = −Z − αV

1− α
⊙∇Z .

Thus, we only fine-tune the formula for influential scores (Equation 1 or Equation 3) and whether to symmetrize attentions.
Other configurations, such as the optimizer and the maximum number of epochs, remain unchanged.

For baselines, including IGNN, APPNP, and GPRGNN, we also reuse the configuration file for GatedGCN but replace the
GatedGCN layer with the evaluated baseline. We maintain the number of layers L = 10 for PascalVOC-SP and L = 6 for
COCO-SP, respectively. The hidden dimensions d is adjusted as large as possible within the 500k parameter budget. The
hyperparameter α for APPNP and GPRGNN is tuned in the scope of {0.15, 0.5, 0.85}.

E.3.5. FIGURE 4

We illustrate the parameters and accuracy scores for 3-layered GCN, 3-layered GAT, and the single-layered ALS. ALS is
with α = 0.15 and without short-range message passing. The number of attention heads is fixed to be 8 in both GAT and
ALS. The probability of Dropout is 0.5. Each model is run for 4 times and the average accuracy score is reported.

18


