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ABSTRACT

The success of Artificial Intelligence (AI) can be largely attributed to the availabil-
ity of high-quality data for constructing machine learning models. Recently, the
importance of data in AI has been significantly emphasized, leading to concerns
regarding the secure utilization of data, particularly in the context of unauthorized
usage. To address data exploitation, data unlearning has been introduced as a
method to render data unexploitable by generating unlearnable examples. However,
existing unlearnable examples lack the necessary generalization for broad appli-
cability. In this paper, we propose a novel data protection method that generates
robust transferable unlearnable examples, ensuring their effectiveness across di-
verse network architectures, even under challenging adversarial training conditions.
To the best of our knowledge, our approach is the first to generate transferable
unlearnable examples by leveraging data collapse as a means to reduce the informa-
tion contained in data. Moreover, we modify the conventional adversarial training
process to ensure that our unlearnable examples maintain robust transferability,
even when the targeted model undergoes adversarial training. Comprehensive
experiments demonstrate that the unlearnable examples generated by our method
exhibit superior robust transferability compared to other state-of-the-art techniques.

1 INTRODUCTION

Over the last decade, the field of Artificial Intelligence (AI) has experienced significant advancements,
leading to a substantial impact on nearly every domain. One of the crucial factors contributing to this
success has been the access to an abundance of high-quality data for training machine learning models.
Lately, the importance of data in AI has been greatly emphasized. Many major AI breakthroughs
in natural language processing (Devlin et al., 2019; OpenAI, 2023), computer vision (Rombach
et al., 2022; Oppenlaender, 2022) and computational biology (Jumper et al., 2021) have been realized
only after obtaining the appropriate training data. As the role of data in artificial intelligence has
been significantly magnified, concerns have arisen regarding the secure utilization of data. On
one hand, some technology companies utilize unauthorized private data to train their commercial
models (Vermes, 2023; Brittain, 2023; Growcoot, 2022); on the other hand, there are enterprises
that wish to protect their data assets, ensuring that they are not exploited by competitors for model
training, thereby maintaining a leading advantage in their own models (Fowl et al., 2021b).
To meet various data protection needs, recent research indicates that by injecting imperceptible
noise into data, the performance of models employing such poisoned data can be significantly

Figure 1: The generation and evaluation stages of unlearnable examples.
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impaired (Fowl et al., 2021a;c; Yuan & Wu, 2021; Huang et al., 2021; Yu et al., 2022; Sadasivan et al.,
2023; Zhang et al., 2023). The imperceptible noise is called unlearnable noise, while the poisoned
data is also referred to as unlearnable data or unlearnable examples. Figure 1 shows the generation
and evaluation stages of unlearnable examples. There are numerous methods to protect data from
unauthorized use, such as LSP (Yu et al., 2022), EM (Huang et al., 2021), AR (Segura et al., 2022),
TAP (Fowl et al., 2021c), NTGA (Yuan & Wu, 2021), CUDA (Sadasivan et al., 2023), and TUE (Ren
et al., 2023). However, these methods are vulnerable to adversarial training in the evaluation stage.
Once the targeted model undergoes adversarial training on these unlearnable examples (UEs), the
protective effects of UEs are lost, and the model can still perform well on clean data. To maintain the
protective effects of UEs under adversarial training, recent research has proposed REM (Fu et al.,
2022) and EntF (Wen et al., 2023). While both of these methods offer protection under adversarial
training, they do not explicitly consider transferability, which refers to the protective effects of UEs
generated by distinct surrogate models when evaluated on various target models.

In practical scenarios, we hope that unlearnable examples generated by different surrogate models
provide protective effects across various targeted model architectures, which is why we are more
concerned about the issue of transferability. In this paper, we investigate unlearnable examples from
the perspective of data distribution, aiming to enhance the transferability of unlearnable examples
through the data itself. Specifically, we induce data collapse by utilizing the probability distribution
of the data. In this approach, the data becomes more centralized, and the variation between different
samples is effectively reduced, thereby diminishing the amount of useful information that can be
learned by the model. Moreover, altering the data distribution is independent of any surrogate model,
ensuring that our method exhibits high transferability.

Figure 2: Protective effects of five type unlearnable methods
on CIFAR-10 and CIFAR-100 with different adversarially
trained target models.

To further advance our method’s ro-
bust transferability, we propose a mod-
ified adversarial training process tai-
lored to the task of unlearnable exam-
ples generation. Here, robust trans-
ferability refers to our unlearnable ex-
amples’ ability to maintain effective
unlearning protection across different
network architectures during the eval-
uation phase, even under challeng-
ing adversarial training conditions.
The following Figure 2 clearly dis-
plays the protective effects of the un-
learnable examples generated by our
method on different models across
various datasets. We denote the test
accuracy of models trained on clean
data as Accc and the test accuracy of
models trained on unlearnable examples as Accu. Typically, Accc is greater than Accu. Conse-
quently, the protective effects of unlearnable examples can be defined as the difference between these
accuracies, represented by Accc −Accu. A larger value indicates better performance. We can clearly
observe a significant improvement in transferability compared to existing methods.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to generate unlearnable examples by inducing data
collapse, which can not only reduce the information contained in the data but also improve the
transferability of unlearnable examples.

• We propose a refined adversarial training process specifically tailored for the generation of unlearn-
able examples with robust transferability. This modified process ensures that unlearnable examples
maintain effective unlearning protection and exhibit high transferability, even under demanding
adversarial training conditions.

• We evaluate our method on CIFAR-10, CIFAR-100, and ImageNet-Subset with different categories
and resolutions. Extensive experiments have verified our method outperforms other unlearnable
methods both in protective effects and transferability.
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2 RELATED WORK

Non-robust unlearnable methods. Methods of this nature typically generate non-robust unlearnable
examples, implying that these examples can be readily compromised by adversarial training and
consequently lose their protective effects. Notable instances of such methods include LSP (Yu et al.,
2022), TUE (Ren et al., 2023), CUDA (Sadasivan et al., 2023), AR (Segura et al., 2022), TAP (Fowl
et al., 2021c), NTGA (Yuan & Wu, 2021), and EM (Huang et al., 2021).

Methods such as LSP (Yu et al., 2022), AR (Segura et al., 2022), TUE (Ren et al., 2023), and
CUDA (Sadasivan et al., 2023) generate unlearnable noise directly at the pixel level, devoid of any
data information. Conversely, TAP (Fowl et al., 2021c), NTGA (Yuan & Wu, 2021), and EM (Huang
et al., 2021) produce unlearnable noise by standardly training a surrogate model. This constraint
limits the unlearnable noise, rendering it capable of protecting data only against standard training.
Recent research (Fu et al., 2022) has demonstrated that these non-robust unlearnable methods are
highly susceptible to adversarial training.

Robust unlearnable methods. Methods of this nature involve training robust surrogate models that
learn robust features, such as REM (Fu et al., 2022) and EntF (Wen et al., 2023). REM (Fu et al.,
2022) generates unlearnable noise for adversarial examples, as it posits that models can still acquire
knowledge from adversarial examples. EntF (Wen et al., 2023) employs a pre-trained robust surrogate
model to produce robust unlearnable examples.

Although these methods can provide protection under both standard training and adversarial training
conditions, they do not address the issue of transferability. Furthermore, their focus is solely on
protection from the perspective of training loss. Consequently, we propose enhancing protection by
considering the data distribution and employing data collapse to improve the transferability of our
approach. In contrast to these methods, we have adapted our approach to the unique characteristics
of unlearnable examples by modifying the conventional adversarial training process. Through this
modified adversarial training process, our unlearnable examples exhibit robust transferability.

3 METHODOLOGY

3.1 NOTATION

In this study, we address the problem of image classification using deep neural networks (DNNs) in
the context of a K-class classification task. We define the clean training dataset as Dc and the test
dataset asDt. Furthermore, we represent the classification DNN, which is trained on the clean dataset
Dc, by fθ, where θ denotes the parameters of the network. The primary objective of this research is
to devise a method for transforming the training dataset Dc into an unlearnable dataset Du, such that
any DNN trained on Du exhibits poor performance when tested on the dataset Dt.

Consider an original clean dataset Dc = {(x1, y1), (x2, y2), . . . , (xn, yn)}, consisting of n clean
samples, where xi ∈ X denotes the i-th sample and yi ∈ Y = {1, . . . ,K} represents the correspond-
ing label. We define a surrogate model as f ′

θ : X → Y , with θ ∈ Ω signifying the model parameter.
Furthermore, we introduce ℓ as a loss function. We also consider three types of perturbations: data
collapse perturbation, denoted by δd, adversarial perturbation, denoted by δa, and unlearnable per-
turbation, denoted by δu. Correspondingly, we define the data collapse perturbation radius as ρd,
adversarial perturbation radius as ρa and the unlearnable perturbation radius as ρu.

3.2 MOTIVATION

In real-world applications, it is desirable for unlearnable examples (UEs) generated by distinct
surrogate models to be effective against a wide range of victim models. However, as discussed in
Section 2, UEs created using non-robust methods are susceptible to being undermined by adversarial
training. While current robustness approaches can be effective under both standard and adversarial
training conditions, they do not adequately address the transferability of UEs.

In view of the aforementioned challenges, our primary goal is to develop a method for generating
robust and transferable unlearnable examples. We approach this issue from two perspectives. Firstly,
transferability is closely related to the underlying data; hence, we aim to enhance the transferability
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of unlearnable examples by taking into account the data distribution. To achieve this, we initially
train a data distribution gradient estimator, which is employed to modify the distribution of the data.

Figure 3: t-SNE visualizations of CIFAR-10 (left) and CIFAR-
100 (right). We illustrate the t-SNE plots for clean (purple) exam-
ples, unlearnable examples generated by our method (green).

Subsequently, this estimator is
utilized to induce data collapse,
causing the data points to cluster
together. Consequently, the dif-
ferences between data points di-
minish, effectively concealing a
portion of the data information.
Obviously, modifying the data
distribution from the perspective
of the data itself is independent of
the surrogate models and features,
thereby exhibiting superior trans-
ferability. Secondly, To reinforce
the robustness of transferability,
we propose a modified adversar-
ial training process for training
the surrogate models. This pro-
cess is designed to ensure that un-
learnable examples maintain ef-
fective data protection, even under demanding adversarial training (Madry et al., 2018) conditions.
We contend that only robust surrogate models can generate unlearnable examples that are capable
of withstanding the negative impacts of adversarial training. Figure 3 offers a persuasive visual
illustration of the successful alteration of the data distribution achieved by inducing data collapse.
This process effectively conceals the inherent knowledge contained within the data.

3.3 TRAINING DATA COLLAPSE INDUCER

Data collapse refers to the process of making data more concentrated, thereby reducing the amount
of useful information that can be learned by a model. From the perspective of data distribution,
this essentially involves altering the data distribution. We define the original data distribution as
pD, the collapsed distribution as p′D, and the distribution transformation function as T : pD → p′D.
By employing this distribution transformation function, we can induce data collapse, which in turn
facilitates data unlearning from the perspective of data distribution. There are various methods for
transforming data distribution. In this paper, we introduce the score matching technique to induce
data collapse, owing to the widespread and mature application of diffusion models in the current
research landscape. Let xt represent the sample at step t; ∇ log pD(xt) denote the log gradient of
the data distribution concerning the sample xt; α signify the step size; ϵ represents random noise
following a distribution. sθ indicate the data distribution gradient estimator, while x̃ refer to the
sample after adding noise. According to Stochastic Gradient Langevin Dynamics (SGLD) (Zhu et al.,
2021; Welling & Teh, 2011), we can iteratively update the original sample by:

xt = xt−1 + α · ∇xt−1 log pD(xt−1) +
√
2α · ϵ. (1)

As α → 0 and t → ∞, xt converges to a sample from pD(x). In pursuit of data collapse, we
eliminate the random noise term

√
2α · ϵ present in Equation 1 within our proposed method. Drawing

inspiration from this function, we can readily manipulate the data distribution once we obtain the
gradient of the ground truth data distribution.

In this section, we propose matching the gradient of the log ground truth data distribution, denoted by
sθ(x) = ∇x log pθ(x). To accomplish this, we require training an estimator for the gradient of the
log ground truth data distribution. The optimization objective is formulated as follows:

1

2
EpD

[∥sθ(x)−∇x log pD(x)∥22]. (2)

However, since the real data distribution is unknown, we require some preprocessing to transform it
into a distribution that we can explicitly comprehend. Our approach involves adding Gaussian noise
to the original data, thereby altering the data distribution pD into our predefined distribution. Let
the training sample be denoted by x, the noise-added sample by x̃, and the predefined distribution
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by qσ(x̃|x) ∼ N
(
x̃;x, σ2I

)
. Subsequently, the distribution of data after noise addition can be

expressed as qσ(x̃) ≡
∫
qσ(x̃|x)pD(x)dx. By employing this method, the training objective can be

reformulated as follows:
1

2
Eqσ(x̃|x)pD(x)

[
∥sθ(x̃)−∇x̃ log qσ(x̃|x)∥22

]
, (3)

where ∇x̃ log qσ(x̃|x) = − x̃−x
σ2 . Then, the final optimization object is as follows:

1

2
Eqσ(x̃|x)pD(x)

[∥∥∥∥sθ(x̃) + x̃− x

σ2

∥∥∥∥2
2

]
. (4)

In this approach, we sample random noise, denoted by ϵ, from the standard Gaussian distribution
N(0, I). Subsequently, we multiply it by our predefined σ and add it to the sample x. As a result,
this produces the noisy sample x̃ = x + σϵ. and the noise-added distribution qσ(x̃|x) satisfies
N

(
x̃;x, σ2I

)
. By employing this method, we train an independent log gradient estimator, sθ, of the

gradient of the log ground truth data distribution∇x log pθ(x).

3.4 ROBUST TRANSFERABLE UNLEARNABLE EXAMPLES

By employing the log gradient estimator sθ, we can manipulate the data distribution to effectively
conceal the inherent information. Instead of guiding the model to learn misinformation, we steer
the data towards the gradient, ultimately inducing data collapse. In an ideal scenario, similar data
points collapse at the same location, thereby minimizing variability between analogous data. As this
approach focuses on alterations in the data distribution itself, it demonstrates superior transferability.
The specific processing procedure can be outlined as follows:

xt
i = xt−1

i + α · sθ(xt−1
i ), (5)

where α represents the step size. Then the data collapse perturbation is defined as δdi = xt
i − x0

i .

Algorithm 1 Training our unlearnable examples’ generator
Input: Training data set D, training iteration M , score estimator sθ, learning rate η,

1: Data collapse parameters ρd, αd and Kd,
2: PGD parameters ρu, αu, αs and Ku,
3: PGD parameters ρa, αa and Ka.

Output: unlearnable examples generator f ′
θ.

4: Initialize source model parameter θ.
5: for i in 1, · · · ,M do
6: Sample a minibatch (x, y) ∼ D.
7: Initialize δd.
8: for s in 1, · · · ,Kd do ▷ data collapse
9: x← x+ αd · sθ(x)

10: δd ← δd + αd · sθ(x)
11: end for
12: δu = δd

13: for k in 1, · · · ,Ku do ▷ generate robust unlearnable examples
14: gk ← ∂

∂δu ℓ(f
′
θ(x+ δu), y)

15: δu ←
∏

∥δ∥≤ρu
(δu − αu · sign(gk))

16: end for
17: for k in 1, · · · ,Ka do
18: gk ← ∂

∂δu ℓ(f
′
θ(x+ δu + δa), y)

19: δa ←
∏

∥δ∥≤ρa
(δa + αa · sign(gk))

20: end for
21: gk ← ∂

∂θ ℓ(f
′
θ(x+ δu + δa), y)

22: θ ← θ − η · gk ▷ update θ of f ′
θ

23: end for
24: return f ′

θ
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Modified Adversarial Training. As previously stated, our objective is to generate transferable
unlearnable examples that exhibit robustness. Even when the targeted model undergoes adversarial
training, our unlearnable examples can still offer effective data protection and maintain high trans-
ferability across diverse target model architectures. However, the generation process of unlearnable
examples is rather distinctive, necessitating modifications to the conventional adversarial training in
order to enhance the robustness of these unlearnable examples. As a result, we propose the following
optimization objectives for adversarially training the surrogate model in our data unlearning task:

min
θ

1

n

n∑
i=1

max
||δai ||≤ρa

min
||δui ||≤ρu

ℓ(f ′
θ(xi + δui + δai ), yi). (6)

Introducing noise along the score function sθ(xi+δdi ) can induce data collapse, effectively altering the
data distribution. This process not only diminishes the differences between samples but also bolsters
the transferability of unlearnable examples from the standpoint of the data itself. Subsequently, we
assign δdi to δui , with the aim of enhancing the robustness of unlearnable examples for the collapsed
distribution. After data collapse, we train the surrogate model by optimizing the aforementioned
Equation 6. As for the modified adversarail training, the Projected Gradient Descent (PGD) (Madry
et al., 2018) algorithm is firstly employed to modify δu, which yields x+ δu. Subsequently, PGD
is applied to the modified samples, x + δu, in order to produce adversarial noise, thus obtaining
x+ δu + δa. Lastly, this resultant sample, x+ δu + δa, is fed into the surrogate model to update f ′

θ.
Details can be found in Algorithm 1. A robust transferable unlearnable example, denoted by x′, is
constructed by adding the noise generated by the trained robust transferable noise generator f ′

θ to its
clean counterpart x. Consequently, the resulting unlearnable example is represented as x′ = x+ δu.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. To verify the effectiveness of our method on images of different categories and sizes, three
commonly used datasets, namely CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet
subset (Russakovsky et al., 2015) (consists of the first 100 classes), are used in our experiments. The
data augmentation technique (Shorten & Khoshgoftaar, 2019) is adopted in every experiment.

Models. (1) As for the log gradient distribution estimator sθ, we employ U-Net (Ronneberger et al.,
2015). (2) As for the surrogate model f ′

θ in Eq.( 6), we employ VGG-16(Simonyan & Zisserman,
2015), ResNet-50(He et al., 2016), DenseNet-121(Huang et al., 2016), and ViT (Dosovitskiy et al.,
2021). (3) VGG-16, ResNet-18, ResNet-50, DenseNet-121, ViT and Wide ResNet-34-10 (Zagoruyko
& Komodakis, 2016) are used to evaluate the transferability of our method. (4) The L∞-bounded
perturbation ∥δu∥∞ ≤ ρu is adopted in our experiments.

Metric. We evaluate the data protection ability of unlearnable examples by measuring the test
accuracy of the target models. A low test accuracy indicates that the model has learned little from the
unlearnable examples, implying a strong protection ability.

4.2 EXPERIMENT RESULTS

4.2.1 ROBUST EFFECTIVENESS OF OUR METHOD

To evaluate the robustness of our method against adversarial training, we initially introduce unlearn-
able noise to the entire training set, generating unlearnable examples. We train models using different
adversarial training perturbation radii ρa on these unlearnable examples, with ρa ranging from 0/255
to 4/255. The unlearnable noise perturbation radius, denoted as ρu, is set to 8/255 for all data
unlearning methods, and the adversarial perturbation radius ρa is set to 4/255 for REM (Fu et al.,
2022), EntF (Wen et al., 2023), and our method. The data collapse perturbation radius, denoted as ρd,
is set to 8/255. Table 1 presents the accuracies of the trained models on the unlearnable examples
generated by different unlearnable methods.

The surrogate models in Table 1 are based on ResNet-18 (He et al., 2016). For adversarial training,
we observe that even a minimal adversarial training perturbation radius of 2/255 can undermine the
protective effects of TAP (Fowl et al., 2021c), NTGA (Yuan & Wu, 2021), EM (Huang et al., 2021),
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Table 1: Test accuracy (%) of models trained on unlearnable examples generated by different data
unlearnable methods via adversarial training with different perturbation radii.

Dataset Adv. Train.
ρa

Clean EM TAP NTGA TUE REM EntF Ours

ρa = 4/255 ρa = 4/255 ρa = 4/255

CIFAR-
10

0 94.66 13.20 22.51 16.27 16.80 22.93 94.56 10.47
1/255 93.74 22.08 92.16 41.53 92.58 30.00 93.56 14.33
2/255 92.37 71.43 90.53 85.13 91.41 30.04 92.00 15.02
3/255 90.90 87.71 89.55 89.41 90.51 31.75 91.04 17.33
4/255 89.51 88.62 88.02 88.96 88.79 48.16 89.52 25.77

CIFAR-
100

0 76.27 1.60 13.75 3.22 1.71 11.63 75.83 2.70
1/255 71.90 71.47 70.03 65.74 69.54 14.48 71.88 4.07
2/255 68.91 68.49 66.91 66.53 67.66 16.60 68.94 9.83
3/255 66.45 65.66 64.30 64.80 65.26 20.70 66.43 11.56
4/255 64.50 63.43 62.39 62.44 63.33 27.35 63.94 17.35

ImageNet
Subset

0 80.66 1.26 9.10 8.42 61.24 13.74 78.96 7.96
1/255 76.20 74.88 75.14 63.28 63.43 21.58 75.34 13.20
2/255 72.52 71.74 70.56 66.96 65.49 29.40 72.10 17.00
3/255 69.68 66.90 67.64 65.98 64.89 35.76 67.88 21.42
4/255 66.62 63.40 63.56 63.06 63.12 41.66 63.60 29.28

TUE (Ren et al., 2023), and EntF (Wen et al., 2023). However, our method exhibits generalizability
to different perturbations while consistently maintaining effective protection. Even with a large
perturbation of 4/255, our method outperforms state-of-the-art techniques by 5% ∼ 19%. Our
approach demonstrates effectiveness on three datasets, with varying numbers of categories and reso-
lutions, indicating its applicability to images with different resolutions. Furthermore, as mentioned in
Section 3.2, inducing data collapse can result in a more concentrated data distribution. We visualized
the t-SNE plots of the CIFAR-10 and CIFAR-100 datasets before (purple) and after (green) protection
in Figure 3. The t-SNE visualization reveals that the unlearnable examples generated by our method
are more compact compared to the original data, effectively concealing sample differences. The
experimental results further suggest that the unlearnable examples produced by our approach can
efficiently reduce information, thereby diminishing the knowledge acquired by the model. These
experiments and visualization demonstrate that our method can be applied to different datasets and
adversarial training perturbation radii while maintaining substantial protective effects.

4.2.2 ROBUST TRANSFERABILITY OF OUR METHOD

Up until now, all our unlearnable examples have been generated using the ResNet-18 (He et al.,
2016) surrogate model. As emphasized in Section 3.2, the enhancement of unlearnable examples’
transferability is achieved through data collapse, indicating that it is not reliant on the choice of
surrogate models. To further corroborate the transferability of our method, we aim to evaluate the
protective effect of unlearnable examples generated by differnet surrogate models.

We investigate four surrogate models, including VGG-16, ResNet-18, ResNet-50, DenseNet-121, and
ViT. Each type of unlearnable example is tested on five models, comprising VGG-16, ResNet-18,
ResNet-50, DenseNet-121, WRN-34-10, and ViT. Experiments are conducted under both standard
and adversarial training scenarios. The data collapse perturbation radius ρd is set to 8/255. The
adversarial training perturbation radius is set to 4/255, while the defensive perturbation radius ρu for
each unlearnable method is set to 8/255.

Test accuracies of different standardly and adversarially trained target models on unlearnable CIFAR-
10 examples generated by various surrogate models are presented in Table 2. Additional results on
different datasets can be found in Appendix B. As depicted in Table 2, it is evident that our method
can be applied to a variety of surrogate models while consistently achieving superior protective effects
compared to other approaches. Notably, other methods exhibit sensitivity to the choice of surrogate
models. In contrast, our method remains stable and effective, irrespective of the surrogate model’s
architecture. The absolute average accuracies of our unlearnable examples can reach 10% ∼ 30%
lower than other state-of-the-art methods.

In addition to the effectiveness and enhanced transferability under standard training conditions, our
approach also attains remarkable transferability under adversarial training conditions. The unlearnable
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Table 2: Test accuracy (%) of models standardly and adversarially trained on unlearnable examples
generated by different surrogate models on CIFAR-10.

Training Surrogate Method VGG-16 ResNet-18 ResNet-50 DenseNet-121 WRN-34-10 ViT AverageStrategy Model

Standard

VGG-16
EM 70.35 77.84 62.63 71.24 66.43 39.25 64.62

REM 46.27 45.25 40.29 43.29 42.95 32.82 41.81
Ours 26.59 26.23 29.41 32.98 30.25 22.82 28.05

ResNet-18
EM 15.70 13.20 10.19 14.59 10.56 72.62 22.81

REM 23.55 22.93 22.98 28.47 23.19 25.36 24.41
Ours 10.97 10.47 10.04 12.26 10.75 17.55 12.01

ResNet-50
EM 18.77 17.89 19.31 26.08 19.41 12.15 18.94

REM 24.64 23.22 23.91 30.04 22.82 35.57 26.37
Ours 10.01 11.23 11.51 11.91 10.41 18.38 12.24

DenseNet-121
EM 17.67 12.30 11.76 18.85 11.23 22.75 15.76

REM 35.46 35.91 33.09 33.26 33.49 33.73 34.16
Ours 16.14 11.30 11.10 18.38 10.91 21.68 14.92

ViT
EM 30.35 29.66 31.63 70.85 23.83 67.61 42.32

REM 41.70 34.39 36.73 33.17 42.53 29.09 36.27
Ours 23.41 23.01 22.17 24.73 23.05 24.92 23.55

Adversarial

VGG-16
EM 87.75 89.21 90.19 83.58 90.83 44.68 81.04

REM 73.60 74.73 74.16 77.63 74.94 46.52 70.26
Ours 64.72 54.17 62.35 70.21 62.36 29.01 57.14

ResNet-18
EM 87.24 88.62 89.66 81.77 90.96 46.94 80.87

REM 65.23 48.16 40.65 82.38 48.39 46.30 55.19
Ours 35.19 25.77 25.19 64.46 20.56 38.90 35.01

ResNet-50
EM 87.57 89.17 89.83 82.64 90.68 49.82 81.62

REM 51.88 44.27 37.79 82.01 42.09 55.72 52.29
Ours 42.64 30.04 28.78 74.42 30.44 47.09 42.24

DenseNet-121
EM 87.59 84.51 85.57 82.76 85.68 49.48 79.27

REM 67.30 69.62 66.42 60.51 72.09 48.61 64.09
Ours 35.88 36.61 31.39 39.35 34.78 41.40 36.57

ViT
EM 87.40 89.12 89.59 82.51 90.54 51.96 81.85

REM 87.58 89.25 89.54 81.17 90.81 55.45 82.30
Ours 71.01 74.84 73.87 66.50 76.56 39.67 67.08

examples generated by surrogate models with diverse architectures exhibit superior protective effects
on both standardly and adversarially trained target models, signifying that our method achieves robust
transferability. The experimental results presented in Table 2 convincingly demonstrate that the
combination of our proposed data collapse and the modified adversarial training process enables
unlearnable examples to achieve robust transferability.

4.2.3 ABLATION STUDY

Through Sections 4.2.1 and 4.2.2, we have presented sufficient evidence that the unlearnable examples
generated by our method exhibit robust transferability. As previously mentioned, we posited that data
collapse could not only reduce the learnable knowledge contained within the data but also, owing to
the inherent nature of data processing, result in unlearnable examples with strong transferability when
employing data collapse techniques. Furthermore, to ensure that our generated unlearnable examples
exhibit robust transferability, we modified the conventional adversarial training process when training
the surrogate model. To further verify the individual effects of data collapse and the modified
adversarial training process, we designed the following experiments. We employed ResNet-18 (He
et al., 2016) as the surrogate model and separately removed the data collapse step and the modified
adversarial training process to observe the test accuracy of the corresponding unlearnable examples
on different target models. Target models are trained under standard or adversarial conditions. Table 3
presents the experimental results on CIFAR-10 and CIFAR-100.

In Table 3, w/o(Collapse + Adv) represents the removal of both data collapse and modified adversarial
training, causing our method to degenerate into EM (Huang et al., 2021), denoted as M1. Additionally,
w/o(Adv) indicates the removal of the modified adversarial training, employing only data collapse,
denoted as M2. Meanwhile, w/o(Collapse) signifies the removal of the data collapse, incorporating
modified adversarial solely during the surrogate model’s training phase, denoted as M3.

Compared to M1, M2 incorporates only the data collapse technique. We observe a significant
improvement in transferability for the test accuracy of targeted models under standard training when

8



Under review as a conference paper at ICLR 2024

Table 3: Test accuracy (%) of targeted models trained on unlearnable examples generated by different
ablation conditions. The surrogate model is ResNet-18.

Dataset Training Training VGG-16 ResNet-18 ResNet-50 DenseNet-121 WRN-34-10Strategy Method

CIFAR-10

Standard

w/o(Collapse + Adv) 15.70 13.20 10.19 14.59 10.56
w/o(Adv) 11.20 11.44 10.72 12.50 10.23
w/o(Collapse) 16.68 20.19 14.28 17.93 13.53
Ours 10.97 10.47 10.04 12.26 10.75

Adversarial

w/o(Collapse + Adv) 87.24 88.62 89.66 81.77 90.96
w/o(Adv) 87.21 89.31 89.74 82.26 89.74
w/o(Collsape) 54.25 37.40 36.42 77.61 36.36
Ours 35.19 25.77 25.19 64.46 20.56

CIFAR-100

Standard

w/o(Collapse + Adv) 4.59 1.61 4.77 12.98 3.59
w/o(Adv) 1.89 2.11 2.20 2.63 2.18
w/o(Collsape) 5.42 8.41 8.55 9.31 10.03
Ours 4.38 2.70 3.30 7.84 2.50

Adversarial

w/o(Collapse + Adv) 56.94 64.17 66.43 53.52 68.27
w/o(Adv) 57.45 64.43 66.38 53.89 67.82
w/o(Collsape) 59.24 22.83 22.81 52.50 20.41
Ours 55.12 17.35 17.26 52.12 15.39

comparing M2 to M1. This result validates that inducing data collapse not only reduces the learnable
information contained in the data but also enhances the transferability of unlearnable examples.
In contrast, M3 introduces the modified adversarial training process during the surrogate model’s
training phase when compared to M1. We observe a substantial decrease in test accuracy for targeted
models under adversarial training when comparing M3 to M1. However, there is a slight increase
in test accuracy for targeted models under standard training when comparing M3 to M1, which is a
common phenomenon. By integrating data collapse and the modified adversarial training process, the
unlearnable examples generated by our method are endowed with robust transferability.

4.2.4 DIFFERENT PROTECTION PERCENTAGES.

In a more realistic and challenging scenario, only a portion of the data is protected, while the
remainder is clean. The detailed settings and results for this scenario can be found in Appendix C.

5 CONCLUSION AND LIMITATION

Conclusion. In summary, in practical scenarios, we aim for unlearnable examples (UEs) generated
by different surrogate models to provide protective effects across various target model architectures,
which is why we place greater emphasis on the issue of transferability. In this paper, we approach this
problem from the perspective of data collapse. We introduce data distribution gradients, which reflect
the direction of concentrated areas in the data probability density. By inducing data collapse, we make
the data more concentrated, thereby concealing the differences between data samples and reducing
the knowledge that models can learn. Moreover, since this process alters the data distribution and
involves manipulation of the data itself, it exhibits strong transferability. Through this approach, we
can generate unlearnable examples with high transferability. Furthermore, we strive to enhance the
robustness of the unlearnable examples generated by our method. However, the existing adversarial
training process is unsuitable for this task. Consequently, we propose a modified adversarial training
process to endow our unlearnable examples with robust transferability. A wealth of empirical evidence
substantiates that only by incorporating data collapse and the modified adversarial training process
can our method achieve superior data protection effects and robust transferability.

Limitations. The proposed method in this paper requires the introduction of a modified adversarial
training process to generate robust transferable unlearnable examples. This leads to a significant
computational cost when extending the method to large-scale datasets, such as ImageNet. As a
result, the scalability of the proposed approach may be limited, especially when dealing with massive
datasets. Furthermore, the method necessitates the additional training of a score model to represent
the data distribution. Compared to other approaches, this requirement increases the generation cost of
protective noise to a certain extent. Future research could explore ways to optimize the process or
develop alternative techniques that can achieve similar results with lower computational overhead.
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A DETAILED EXPERIMENTAL SETTINGS

A.1 DATA AUGMENTATION

In our experiments, we employ distinct data augmentation techniques tailored to different datasets.
For CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), we apply data augmentation comprising
random flipping, padding of 4 pixels on each side, random cropping to a size of 32×32, and rescaling
per pixel in the range [−0.5, 0.5] for individual images. In the case of the ImageNet subset, we
implement data augmentation through random cropping, resizing to dimensions of 224×224, random
flipping, and rescaling per pixel in the range [−0.5, 0.5] for each image.

A.2 ADVERSARIAL TRAINING

Adversarial training (Madry et al., 2018) is a commonly used method to improve model robustness.
Standard adversarial training aims to solve the following min-max optimization problem:

min
θ

1

n

n∑
i=1

max
||δi||≤ρa

ℓ(fθ(xi + δi), yi) (7)

A.3 PROJECTED GRADIENT DESCENT

PGD (Madry et al., 2018) is a standard approach for solving inner maximization and minimization
problems. It performs iterative projection updates to search for the optimal perturbation as follows:

δ(k) =
∏

∥δ∥≤ρ

[
δ(k−1) + c · α · sign

(
∂

∂δ
ℓ(fθ(x+ δ(k−1)), y)

)]
(8)

where k is the current iteration step (K steps at all), δ(k) is the perturbation found in the k-th iteration,
c ∈ {−1, 1} is a factor for controlling the gradient direction, α is the step size, and

∏
∥δ∥≤ρ means

the projection is calculated in the ball sphere {δ : ∥δ∥ ≤ ρ}. The final output perturbation is δ(K).
Throughout this paper, the coefficient c is set as 1 when solving maximization problems and−1 when
solving minimization problems.

A.4 DETAILED SETTINGS FOR OUR METHOD

Models. As for the log gradient distribution estimator, we employ U-Net (Ronneberger et al., 2015).
Following (Huang et al., 2021) and (Fu et al., 2022), we employ ResNet-18(He et al., 2016) as
the surrogate model f ′

θ for trainging our unlearnable examples generator with Eq. (6). The L∞-
bounded perturbation ∥δu∥∞ ≤ ρu is adopted in our experiments. Additionally, we also use other
surrogate models, including VGG-16(Simonyan & Zisserman, 2015), ResNet-50(He et al., 2016),
DenseNet-121(Huang et al., 2016), and ViT (Dosovitskiy et al., 2021) to test the generalizability of
our method.

Unlearnable Examples’ Evaluation. Unlearnable examples generated by different methods are
evaluated both on standard training and adversarial training (Madry et al., 2018). We focus on L∞-
bounded noise ∥ρa∥∞ ≤ ρa in adversarial training. We conduct adversarial training on unlearnable
examples with different target models, including VGG-16, ResNet-18, ResNet-50, DenseNet-121, and
Wide ResNet-34-10 (Zagoruyko & Komodakis, 2016). including VGG-16 (Simonyan & Zisserman,
2015), ResNet-18, ResNet-50 (He et al., 2016), DenseNet-121 (Huang et al., 2016), and wide
ResNet-34-10 (Zagoruyko & Komodakis, 2016). Note that when ρa takes 0, the adversarial training
degenerates to the standard training.

In our approach, we build upon REM (Fu et al., 2022) and utilize ResNet-18 (He et al., 2016) as
the surrogate model f ′

θ. In our experiments, we employ L∞-bounded noise constraints, denoted as
∥δu∥∞ ≤ ρu and ∥δa∥∞ ≤ ρa, where ρu represents the unlearnable noise perturbation radius and ρa
denotes the adversarial perturbation radius. Both quantities may assume various values. The PGD
settings are detailed in Table 4.
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Regarding the CIFAR-10 and CIFAR-100 datasets, each surrogate model undergoes training via SGD
over 5, 000 iterations, utilizing a batch size of 128, a momentum factor of 0.9, a weight decay factor
of 0.0005, an initial learning rate of 0.1, and a learning rate scheduler that reduces the learning rate
by a factor of 0.1 every 2, 000 iteration.

Similarly, for the ImageNet subset, we train each surrogate model using SGD for 3, 000 iterations
with a batch size of 128, a momentum factor of 0.9, a weight decay factor of 0.0005, an initial
learning rate of 0.1, and a learning rate scheduler that decays the learning rate by a factor of 0.1 every
1, 200 iteration.

Table 4: The settings of PGD (Madry et al., 2018) for the noise generations of error-minimizing
noise (EM) (Huang et al., 2021), targeted adversarial poisoning noise (TAP) (Fowl et al., 2021c),
neural tangent generalization attack noise (NTGA) (Yuan & Wu, 2021), robust error-minimizing
noise (REM) (Fu et al., 2022), entangled features (EntF) (Wen et al., 2023) and our method in
different experiments. ρu denotes the defensive perturbation radius of different types of noise, while
ρa denotes the adversarial perturbation radius.

Datasets Noise Type αu Ku αa Ka αd Kd

CIFAR-10
CIFAR-100

EM ρu/5 10 - - - -
TAP ρu/125 250 - - - -

NTGA ρu/10 × 1.1 10 - - - -
REM ρu/5 10 ρa/5 10 - -
EntF ρu/5 10 ρa/5 10 - -
Ours ρu/5 10 ρa/5 10 0.000002 20

ImageNet
Subset

EM ρu/5 7 - - - -
TAP ρu/50 100 - - - -

NTGA ρu/8 × 1.1 8 - - - -
REM ρu/4 7 ρa/5 10 - -
EntF ρu/4 7 ρa/5 10 - -
Ours ρu/4 7 ρa/5 10 0.000002 20

A.5 MODEL TRAINING DETAILS

In accordance with Eq. (7), we carry out adversarial training (Madry et al., 2018) as described in
appendix A.2. Analogous to the training of the unlearnable examples generator, we focus on the
L∞-bounded noise, denoted as ∥ρa∥∞ ≤ ρa, during the adversarial training process.

Throughout our experiment, the model undergoes training using SGD for 40, 000 iterations with a
batch size of 128, a momentum factor of 0.9, a weight decay factor of 0.0005, an initial learning rate
of 0.1, and a learning rate scheduler that reduces the learning rate by a factor of 0.1 every 16, 000
iteration. For the CIFAR-10 and CIFAR-100 datasets, the step number Ka and the step size αa in
PGD are set to 10 and ρa/5, respectively.

For the ImageNet subset, we set the step number Ka and step size αa to 8 and ρa/4, respectively.
This ensures a consistent and well-structured experimental setup across various datasets.

B ROBUST TRANSFERABILITY

As mentioned in Section 4.2.2, Table 5 shows the test accuracies of different standardly and adver-
sarially trained targeted models on unlearnable CIFAR-100. We examine four surrogate models,
including VGG-16 (Simonyan & Zisserman, 2015), ResNet-18(He et al., 2016), ResNet-50 (He et al.,
2016), and DenseNet-121 (Huang et al., 2016). Each type of unlearnable example is tested on five
models, comprising VGG-16, ResNet-18, ResNet-50, DenseNet-121, and WRN-34-10 (Zagoruyko &
Komodakis, 2016). Experiments are conducted under both standard and adversarial training scenarios.
The adversarial training perturbation radius is set to 4/255, while the defensive perturbation radius
ρu for each unlearnable method is set to 8/255.

The experimental results presented in Table 5 further substantiate the high robust transferability of
our method. In terms of average accuracy, our approach demonstrates a reduction of 6% ∼ 15%
when compared to the state-of-the-art methods. In conjunction with Table 2, our method maintains
superior protective effects even when applied to different datasets.
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Table 5: Test accuracy (%) of models standardly and adversarially trained on unlearnable examples
generated by different surrogate models on CIFAR-100. The surrogate model is ResNet-18.

Training Surrogate Method VGG-16 ResNet-18 ResNet-50 DenseNet-121 WRN-34-10 AverageStrategy Model

Standard

VGG-16
EM 17.45 21.79 28.94 61.85 34.50 32.91

REM 11.89 21.08 19.76 17.95 26.72 19.48
Ours 9.27 11.50 11.00 13.86 10.97 11.32

ResNet-18
EM 4.59 1.60 4.77 12.98 3.59 5.51

REM 9.15 11.63 9.23 13.06 11.74 10.97
Ours 4.38 2.70 3.30 7.84 2.50 4.14

ResNet-50
EM 69.10 74.79 74.16 65.18 76.71 71.99

REM 10.24 10.53 9.43 23.28 10.15 12.73
Ours 4.21 6.92 6.86 6.38 7.63 6.40

DenseNet-121
EM 1.00 7.84 7.53 64.76 11.15 18.46

REM 16.62 20.28 18.88 17.96 20.91 18.93
Ours 3.52 5.07 5.20 8.32 10.22 6.47

Adversarial

VGG-16
EM 57.33 63.55 65.44 53.45 68.23 61.60

REM 41.13 52.00 51.77 48.92 56.05 49.97
Ours 34.02 46.66 46.55 41.93 49.23 43.68

ResNet-18
EM 56.94 64.17 66.43 53.52 68.27 61.87

REM 58.07 27.35 26.03 56.63 27.71 39.16
Ours 55.12 17.35 17.26 52.12 15.39 31.45

ResNet-50
EM 56.82 64.19 66.93 54.51 68.56 62.20

REM 54.61 35.50 30.43 54.26 35.11 41.98
Ours 51.24 26.01 21.81 52.32 22.89 34.85

DenseNet-121
EM 57.39 63.73 66.37 54.62 68.43 62.11

REM 47.22 41.89 45.49 41.15 50.66 45.28
Ours 33.67 29.80 28.85 31.45 30.39 30.83

C DIFFERENT PROTECTION PERCENTAGES.

In a more challenging and realistic scenario, one might encounter a situation where only a subset of
the data is protected by unlearnable noise, while the remainder is clean. To simulate this scenario, we
randomly select a portion of the training data from the complete training set and introduce unlearnable
noise to this selected data. Subsequently, we conduct adversarial training using ResNet-18 on the
combination of mixed data (containing both unlearnable and clean examples).

The unlearnable perturbation radius for each noise instance is established at 8/255, while the
adversarial perturbation radius ρa for both REM (Fu et al., 2022), EntF (Wen et al., 2023), and our
method is set at 4/255. The discrepancy between test accuracies obtained using mixed data and clean
data serves as an indicator of the knowledge acquired from the protected training data.

The reported accuracies on clean test data are presented in Table 6, showcasing the impact of our
approach when dealing with mixed datasets containing both protected and clean data samples. Table 6
reveals that, across varying mixture percentages, our proposed method consistently achieves superior
data protection.

As previously mentioned, we manipulate the data distribution to induce data collapse, thereby
reducing information. The obtained results corroborate our hypothesis. Furthermore, this evidence
indicates that the unlearnable examples generated by our approach can provide enhanced protection,
even when combined with clean data.

C.1 PROTECTIVE EFFECTS AGAINST OTHER PURIFYING METHODS.

Before our method was proposed, there were two methods that could be used to undermine the
protective effect of existing unlearnable examples generation methods, namely ISS (Liu et al., 2023)
and Ueraser (Qin et al., 2023). ISS exploits the low-frequency and high-frequency characteristics of
noise by using Gray and JPEG compression processing, respectively, thus disrupting the protective
effect of unlearnable examples. On the other hand, Ueraser (Qin et al., 2023) works by applying
a certain number of data augmentation methods, finding the augmentation method that maximizes
the error for the corresponding sample, and using this to disrupt the protective effect of unlearnable
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Table 6: Test accuracy (%) on CIFAR-10 and CIFAR-100 with different protection percentages.

Dataset
Adv.

Train.
ρa

Noise
Type

Data Protection Percentage

0% 20% 40% 60% 80% 100%Mixed Clean Mixed Clean Mixed Clean Mixed Clean

CIFAR-10

2/255

EM

92.37

92.33

91.30

92.18

90.31

92.00

88.65

92.06

83.37

71.43
TAP 92.17 91.62 91.32 91.48 90.53

NTGA 92.41 92.19 92.23 91.74 85.13
REM 92.23 90.79 88.85 83.70 30.04
Ours 92.16 90.51 88.40 82.97 18.80

4/255

EM

89.51

89.39

88.17

89.09

86.76

89.41

85.07

89.41

79.41

88.62
TAP 89.01 88.66 88.40 88.04 88.02

NTGA 89.56 89.35 89.22 89.17 88.96
REM 89.71 89.89 89.63 87.17 48.16
Ours 88.89 88.53 87.97 84.03 29.20

CIFAR-100

2/255

EM

68.91

68.68

66.54

68.80

64.21

68.28

58.35

68.70

47.99

68.49
TAP 68.40 67.93 67.25 67.09 66.91

NTGA 68.52 68.82 68.36 68.71 66.53
REM 68.90 68.29 61.42 51.99 16.60
Ours 66.16 67.58 60.04 48.70 5.21

4/255

EM

64.50

64.65

61.73

63.82

57.61

64.19

53.86

64.32

44.79

63.43
TAP 64.36 63.35 62.58 63.15 62.39

NTGA 63.48 63.59 63.64 62.83 62.44
REM 64.27 64.67 64.99 63.14 27.35
Ours 63.36 63.22 62.47 62.63 22.35

Table 7: Test accuracy (%) of models trained with ISS and Ueraser on unlearnable examples generated
by EM, REM, and our method.

Dataset Method EM REM Ours

CIFAR-10
ISS-Gray 21.73 79.52 20.99

ISS-JPEG10 85.12 85.39 83.56
Ueraser 53.17 70.28 29.64

CIFAR-100
ISS-Gray 60.19 45.38 5.67

ISS-JPEG10 67.48 63.82 29.07
Ueraser 72.08 55.65 25.28

examples. We have tested the protective effect of our method against ISS (Liu et al., 2023) and
Ueraser (Qin et al., 2023).

Additionally, we have also tested the performance of our method against ISS and Ueraser on the
ImageNet subset.

Clearly, Table 7 and Table 8 demonstrate that our method still provides superior protection against
existing defense methods.

Table 8: Test accuracy (%) of models trained with ISS and Ueraser on unlearnable ImageNet-Subset
generated by our method.

ISS-Gray ISS-JPEG10 Ueraser

24.12 12.21 10.35
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