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Abstract

Equipped with Chain-of-Thought (CoT), Large
language models (LLMs) have shown impres-
sive reasoning ability in various downstream
tasks. However, suffering from hallucinations
and the inability to access external knowl-
edge, LLMs often come with incorrect or un-
faithful reasoning, especially when solving
knowledge-intensive tasks such as KBQA. To
alleviate this issue, we propose a framework
called Knowledge-Driven Chain-of-Thought
(KD-CoT) to verify and modify reasoning
traces in CoT via interaction with external
knowledge, and thus overcome the hallucina-
tions and error propagation. Concretely, we
formulate the CoT rationale of LLMs into a
structured multi-round QA format. In each
round, a QA system retrieves external knowl-
edge related to the sub-question and returns a
more precise answer, and then LLMs gener-
ate subsequent reasoning steps based on the
returned answer. Moreover, we construct a
KBQA CoT collection, which can serve as
In-Context Learning demonstrations, and be
utilized as feedback augmentation to train a
multi-hop question retriever. Extensive exper-
iments on WebQSP and ComplexWebQues-
tion datasets demonstrate the effectiveness of
the proposed KD-CoT, which outperforms the
vanilla CoT ICL with 8.0% and 5.1%. Fur-
thermore, our proposed feedback-augmented
retriever can retrieve more valuable knowledge
in the multi-hop scenario, achieving significant
improvement in Hit and Recall performance.

1 Introduction

Large language models (LLMs) pre-trained on mas-
sive language corpora have shown impressive per-
formance in various NLP tasks (Brown et al., 2020;
Du et al., 2022; Touvron et al., 2023a). The abil-
ity of LLMs can be further unleashed through in-
context learning conditioning on a few concate-
nated demonstrations without task-specific training
or fine-tuning. Recent works have explored LLMs’

Failures of LLM

Question: What is the daughter of the actor that played the character Xania?

Thought 1: | need to find out who played Xania and then determine the name of
their daughter.

Action 1: Question[Who played Xania?]

Answer 1: I'm sorry, | could not find any information on a character named
Xania.

Question: Who is the head coach of the team that won 2009 AFC Championship
Game?

Thought 1: | need to find out which team won the 2009 AFC Championship
Game and then determine their head coach.

Action 1: Question[Which team won the 2009 AFC Championship Game?]
Answer 1: Indianapolis Colts

Thought 2: The Indianapolis Colts won the 2009 AFC Championship Game. |
now need to find out who their head coach is.

Action 4: Finish[Jim Caldwell]

Figure 1: LLMs suffer from hallucination or inability
to answer sub-questions while solving QA tasks that
require encyclopedic knowledge, resulting in erroneous
subsequent reasoning and final answer. We highlight
the errors with red blocks.

reasoning ability to tackle complex reasoning prob-
lems through prompting (Wei et al., 2023; Zhou
et al., 2023) and decoding (Wang et al., 2023b).

Despite advancements, LLM:s still encounter hal-
lucinations or lack of knowledge while solving
knowledge-intensive tasks. As shown in Figure
1, both these failures will lead to error propagation
and incorrect final answers. A naive method is to
directly input retrieved contextual knowledge into
LLMs (Xu et al., 2023; Yao et al., 2023; Wang et al.,
2023a) as augmentation. However, ensuring com-
prehensive knowledge coverage necessitates a large
amount of context, making it difficult for LLMs to
fully understand (Liu et al., 2023). Considering that
current state-of-the-art methods leverage a retrieve-
then-read pipeline for solving knowledge-intensive
QA tasks, we can address the aforementioned issue
by applying such a paradigm.



In this paper, we propose a Knowledge-Driven
Chain-of-Thought (KD-CoT), an interactive frame-
work that utilizes a QA system to access exter-
nal knowledge and provide high-quality answers
to LLMs for solving knowledge-intensive KBQA
tasks. Specifically, we formulate the CoT ratio-
nale of LLMs into a multi-round QA format, and
leverage a retriever-reader-verifier QA system to
solve sub-questions iteratively. In each round, the
retriever first retrieves knowledge related to the
sub-question and the reader generates candidate
answers based on the retrieved information. The
verifier then compares the candidate answers with
the original sub-answers generated by LLMs, and
delivers the final sub-answers to replace the current
one. We re-request LLMs for subsequent reasoning
using the preceding corrected rationale. KD-CoT
is designed to facilitate dynamic reasoning where
we can verify and adjust intermediate reasoning
steps by accessing external knowledge. We also
construct a KBQA CoT collection that can be ap-
plied as demonstrations for ICL to improve the
performance of LLMs.

To obtain accurate sub-answers for intermediate
sub-questions, a high-quality external QA system
is essential. Previous studies leverage a retrieve-
then-read pipeline on linearised KB knowledge,
achieving SOTA results in KBQA (Oguz et al.,
2022; Yu et al., 2023). However, none of these
studies focused on knowledge retrieval for complex
multi-hop questions. To address the challenge of
knowledge retrieval for multi-hop questions (where
sub-questions within the CoT may still be multi-
hop), we propose a robust retriever that leverages
the feedback from the constructed CoT collection.
Concretely, as the sub-question of the last round
QA is more likely to be one-hop, we leverage it as
the augmentation to the original query to identify
more valuable positive or hard negative instances,
which are then used as training data for the re-
triever.

Our main contributions can be summarized as:

* We present a KBQA CoT collection by
prompting LLMs, which could be used for
fine-tuning smaller LMs to acquire CoT rea-
soning ability and be applied to perform ICL.

* We propose a retriever-reader-verifier QA sys-
tem to access external knowledge and interact
with LLM. We leverage the constructed CoT
collection as feedback augmentation to train

a more robust retriever for solving multi-hop
question retrieval, which achieves significant
improvement on WebQSP and CWQ.

* We introduce an interactive framework to im-
prove the reasoning performance of LLMs.
Experimental results demonstrate the effec-
tiveness of our proposed framework, achiev-
ing 8.0 and 5.1 Hit@1 improvement on We-
bQSP and CWQ compared to the vanilla ICL
method.

2 Methodology

In this section, we first present the procedure for
constructing the CoT Collection. Then we in-
troduce the Knowledge-Driven CoT framework,
which encompasses the implementation of the inter-
action and the training of the external QA system.

2.1 CoT Collection

We first manually write several accurate CoT
demonstrations as the anchor set to perform ICL,
and then we employ an iterative algorithm to con-
struct our full collection. In each iteration, we
choose the candidate in the current collection that
holds the highest cosine similarity with the ques-
tion in the training set to serve as the demonstration.
We use RoBERTa (Reimers and Gurevych, 2019)!
to embed questions and compute the cosine simi-
larity between them. Next, we request ChatGPT?
to generate the structured CoT, and append gener-
ated results "Finish" with the correct answer to the
collection. The construction details are referred to
Algorithm 1. Notably, we observe that concatenat-
ing the ground truth answer and the composition
answer (if have) as "Hint" before the rationale can
greatly improve the efficiency of collection con-
struction, so the final demonstration is presented in
the format of <Question, Hint, CoT> as illustrated
in Appendix B.

2.2 Knowledge-Driven CoT

Due to hallucinations and the inability to access
external knowledge, LLMs struggle to generate
faithful reasoning steps for knowledge-intensive
QA tasks. To address this issue, we propose
Knowledge-Driven Chain-of-Thought Reasoning
(KD-CoT), which incorporates a QA system to in-
teract with LLMs (ChatGPT in this paper). The

"Downloaded from Sentence Transformers; Roberta-large-
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CoT

Question: What was the name of music producer of The Don Killuminati:
The 7 Day Theory in juice?

Thought 1: | need to find out who produced The Don Killuminati: The 7
Day Theory.

The 7 Day Theory + Juice]

Answer 1: There are two possible producers - QD Il and Living Legend
Thought 2: | have multiple answers. | need to find out the Tame of the
producer who was also credited in Juice.

Action 2: Question[Who was the music producer of The Don Killuminati: B
The 7 Day Theory and credited in Juice?]
Answer 2: QD lIl

Thought 3: QD Il was the music producer of The Don Killuminati: The 7
Day Theory and was also ¢ X 3d in Juice.
Action 3: Finish[QD IIl.]

:,
I:

Tupac

CoT

Question: What was the name of music producer of The Don
Killuminati: The 7 Day Theory in juice?

Thought 1: | need to find out who produced The Don Killuminati: The 7
Day Theory and where they were born.

Action 1: Multi_Answer_Question[music producer + The Don
Killuminati: The 7 Day Theory + Juice]
Answer 1: Tupac

-y

Th-o.ught 2: Tupac was the music producer of The Don Killuminati: The
7 Day Theory in Juice. Now | need to find out his name in the movie.

Action 2: Question[What was Tupac's character name in Juice?]
Answer 2: Bishop

Thought 3: Tupac's character name in Juice was Bishop.

Action 3: Finish[Bishop.] /

Figure 2: The overall framework of Knowledge-Driven CoT, including a prompted large model and a QA system
that accesses external knowledge. By modifying sub-answers of intermediate questions, LLLM can generate more
faithful subsequent inference steps, which lead to correct final answers. Blue, Green, and Red blocks represent the
sub-question fed to QA system, correct/incorrect reasoning and answers, respectively

Algorithm 1 Construct CoT Collection

Require: Human-annotated demonstrations, D,
Require: A fixed human-annotated instruction, /
Require: Question-Answer training set, (), A
Require: Large language model, LLM
Require: Demonstration selection pool, P
P+ Dh
iteration < 0
while () is not empty and iteration < 5 do
Demons < SimilaritySelection(Q, P)
Inputs < Concat(I, Demons, Q)
Outputs <— LLM (inputs)
Constructed < Match(outputs, A)
P < Eztend(P, Constructed)
Q—Q\4
iteration < iteration + 1
end while
return P

overall framework of our proposed KD-CoT is
shown in Figure 2.

For each question in the test set, we select the
instance with the highest cosine similarity from the
collection, and utilize its rationale as the demonstra-
tion to perform one-shot ICL?. Then the extracted
intermediate sub-question is taken as the input of
the QA system to perform interaction, which is
comprised of a retrieve-then-read pipeline and an
answer verifier. The former module retrieves ex-

*Increasing the number of ICL demonstrations will im-
prove the performance of LLMs, but also much more costly.
We only concatenate a single demonstration for CoT-ICL if
not specified.

ternal knowledge and proposes candidate answers
based on the retrieved information, while the latter
chooses between the original sub-answers gener-
ated by LLM and the proposed candidate answers.
We repeat the above interaction until the CoT is
finished.

2.3 Implementation of the external QA system

Our QA system contains three components: a re-
triever, a reader and a verifier. In this subsection,
we first describe how we convert the structured KB
knowledge into unstructured text, and then elabo-
rate on these three components in detail.
KB Linearization We aim to interact with both
structural (Freebase) and unstructured (Wikipedia)
external knowledge. However, directly retrieving
information from KB is non-trivial due to its large
scale and complications with semantics and struc-
ture. To address this issue, we simply follow the
linearization method proposed in (Yu et al., 2023)
to process Freebase KB data (Bollacker et al., 2008)
into unstructured text. Given a head entity, we ex-
tract its 1-hop subgraph and concatenate the KB
triplets with spaces, then group the entire subgraph
into a single passage. For example (music record-
ing, releases, Palavras de Guerra Ao Vivo) and (mu-
sic recording, artist, Olivia Hime) will be processed
into "music recording releases Palavras de Guerra
Ao Vivo. music recording artist Olivia Hime".
After pre-processing, we concatenate Wikipedia
passages with KB passages to perform knowledge
retrieval.
FeedBack-Augmented Retriever To align with



previous work (Oguz et al., 2022; Yu et al.,
2023), we apply Dense Passage Retrieval (DPR)
(Karpukhin et al., 2020) as the model architecture
of the retrieval system. To obtain a robust retriever,
we propose to utilize the constructed CoT as feed-
back to identify relevant passages. Specifically, we
extract the last reasoning sub-question from the
CoT rationale as the augmentation and concatenate
it with the original question and the answer*. Then
we apply the BM25 algorithm on the concatenated
query and extract the top 100 related passages. We
identify passages that contain entities present in
both the question and answer as positive, while
passages that only contain the answer or question
entities are considered hard negatives. If no co-
occurrence passage is found, we use the passage
containing only the answer as positive to ensure
the recall rate of the multi-answer question. We
utilize Spacy’ to recognize named entities in the
query. Note that the feedback of LLM is only used
for identifying positive/negative passages, we use
the original questions to train our DPR model.
Fuse-in-Decoder Reader For our reader, we use
the mainstream Fuse-in-Decoder architecture (Izac-
ard and Grave, 2021) to train a Transformer
(Vaswani et al., 2017) model. Specifically, given
a question q and its top-N relevant passages P, the
FiD reader first separately encodes each passage
Dg; concatenated with g:

P; = Encoder(Concat[qg, pg,]) € REXH (1)

Where L and H represent sequence length and
hidden size, respectively. Then the token embed-
dings of all passages output from the encoder are
concatenated and fed to the decoder to generate
the final answer. Different from previous work, we
employ all answers as training targets instead of
selecting one randomly.

A = Decoder(Concat[Py, Py, ..., Py]) (2)

Verifier We train a Llama2-7B (Touvron et al.,
2023b) with Parameter-Efficient-Fine-Tuning
(PEFT) on the original KBQA training set as our
verifier. Specifically, we adopt LoRA with a low
rank equal to 16 for additional parameters.

During the training phase, we generate two train-
ing instances for each QA pair. The first instance

“Query mentioned below stands for <question, rationale
question>, and BM25 searches the relevant passages on <ques-
tion, rationale question, answers>

Shttps://spacy.io/

# Data WebQSP .CWQ
train  test | train  test
original 3098 1639 | 27625 3519
CoT collection | 2888 1639 | 26695 3519

Table 1: Data statistics of original datasets and our CoT
collections. After collection construction, we obtained
2888 and 26695 rationale data for WebQSP and CWQ,
respectively.

randomly selects the answer from a different ques-
tion, enabling the model to choose the correct one.
The second instance randomly selects the answers
from two other separate questions, encouraging the
model to produce the correct answer:

a™ = Decoder([g, a™, ay]) 3)

a™ = Decoder([q, a5, az]) 4)

During inference, the model takes the original
sub-answers generated by LLM and the candi-
date answers generated by the retrieve-then-read
pipeline as input, and outputs its preferred one. If
neither answer is selected, the verifier will generate
a new answer.

If not specified, greedy decoding is used for the
Reader and the Verifier during inference.

3 Experiment

3.1 Dataset

We evaluate KD-CoT on two KBQA datasets: We-
bQSP (Yih et al., 2016) and ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018). We use
the original datasets to train our external QA sys-
tem, and use the constructed CoT collection to ap-
ply ICL on ChatGPT. The data statistics are shown
in Table 1.

3.2 Experiment Settings

For our main experiment, we use ChatGPT as our
backbone model (which is denoted as "LLM" in the
subsequent sections of this paper) to interact with
an external QA system. The QA system includes
a BERT-base (Devlin et al., 2019) retriever, a T5-
large (Raffel et al., 2020) reader, and a Llama2-7B
verifier fine-tuned with LoRA (Hu et al., 2021) 6.
We prompt LLM to perform structured multi-round
QA reasoning with demonstrations selected from
our constructed CoT collection.

®All models are downloaded from Huggingface.
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We train our retriever on a merged dataset of
WebQSP and CWQ for saving the cost of embed-
ding massive knowledge and use the same DPR
architecture in the original paper (Karpukhin et al.,
2020). The number of retrieved passages is 100
if not specified. The reader is also trained on the
merged dataset to effectively tackle both single-hop
and multi-hop question scenarios.

To show the effectiveness and correctness of
our CoT collection, we also conduct experiments
that involve fine-tuning smaller models on the con-
structed CoT data. We use Flan-T5-3B (Chung
et al., 2022), T5-3B (Raffel et al., 2020), Llama2-
7B, 13B, and compare the results with direct QA
fine-tuning. To indicate the CoT paradigm that gen-
erates both rationale and answers, we incorporate
a trigger phrase "Let’s think step by step" into the
sequence during training and inference.
Evaluation metric We evaluate our model based
on metrics Hits@1 and F1, where Hits@ 1 focuses
on the single top-ranked answer while F1 considers
coverage of all the answers. To account for the fact
that it’s difficult to extract the desired answers from
LLM’s output, we adjust our evaluation criteria.
We deem the generated results to be correct if they
contain the ground truth answer.

3.3 Konwledge-Driven CoT Results

Table 2 reports the performance of our pro-
posed KD-CoT. The results show that KD-
CoT outperforms vanilla CoT ICL (denoted as
"LLM@A—CoT selected") by 8.0 and 5.1 points on
WebQSP and CWQ, respectively. This highlights
the effectiveness of interacting with the external
QA system, as it enables the LLM to generate more
accurate intermediate reasoning steps, leading to
more precise final answers. We illustrate several
cases in Appendix C.

It is not surprising that KD-CoT underperforms
the fine-tuned SOTA models, as we utilize chatGPT
as the backbone LLM and perform 1-shot ICL with
the greedy decoding strategy (Bang et al., 2023;
Sun et al., 2023). However, our main motivation is
to "explore faithful reasoning in LLMs", and our
method does improve the performance compared
to its vanilla ICL reasoning output. As for our
retrieve-then-read pipeline that is also not SOTA,
here we offer the analysis:

1) UnikQA links entities and relations extracted
from the query to the linearized KB text, resulting
in more accurate and less noisy retrieved results

Method \ Dataset Hi‘t)‘(f; II)QSEI I(-;n“éle
UnikQA (Oguz et al., 2022) 79.1 - -
DeCAF (Yu et al., 2023) 80.7 | 77.1| 67.0
DeCAF, ), L (Yuetal,2023) | 742 | 495 | 479
Our Retrieve—then—read 73.7 50.2 50.5
LLM Retrieval 4—passages 524 38.2 26.9
LLM QA pairs 4—shot 53.2 39.2 422
LLM cor fized 50.3 37.8 34.0
LLM 4_Co fired 566 | 425 | 424
LLM gA—CoT selected 60.6 | 47.8 | 50.6
KD-CoT 68.6 | 525 | 55.7
KD_COTUJ/O Retrieve—then—read 66.8 49.4 49.2
KD-CoTy /o verifier 509 |47.6 | 492

Table 2: Experimental results on WebQSP and CWQ.
KD-CoT significantly outperforms the vanilla CoT ICL.
The bottom two blocks are all conducted using Chat-
GPT.

and thus better performance on downstream QA
tasks. However, this method is not applicable for
multi-hop questions, as the head entity associated
with the answer will not appear in the query.

2) DeCAF generates both logic forms and the
target answers and utilizes the "beam search + re-
rank" strategy to obtain the final answer, which is
extremely computationally costly. Instead, we do
not generate logic form and only utilize greedy de-
coding for all experiments to save inference costs.
Even so, compared to their method without logic
form under the "beam search + re-rank" strategy,
our pipeline still achieves competitive or better re-
sults.

Despite not being SOTA, the faithful reasoning
of LLMs is of great value, enabling researchers to
construct high-quality CoT fine-tuning data.

To further demonstrate that our process of verify-
ing and correcting sub-answers can lead to faithful
reasoning so as to rectify previously incorrect re-
sponses, we tally the alterations in the count of
correct and incorrect answers before and after un-
dergoing our interactive framework. The results
are shown in Figure 3. On WebQSP and CWQ, we
correct 13.5% and 10.6% of questions that were
incorrectly answered previously, while only 5.8%
and 5.4% are modified to be incorrect.

Despite its efficiency in extracting sub-questions
to interact with the external QA system, structured
CoT also reduces its flexibility in formulating rea-
soning steps due to the structural constraint (Yao
et al.,, 2023). Once the output generated is in-
adequately structured and unable to extract sub-
questions, we consider it a failure in answering.
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Figure 3: Quantity percentage of questions answered
correctly/incorrectly by the LLM. The horizontal axis
represents the state before passing through the interac-
tion framework. Red and Green blocks represent the
proportion of questions answered correctly/incorrectly
after the entire interaction.

WebQSP CWQ
Method 7R @20 H/R@I00 | H/R @20 H/R@I00
BM25 | 66.8/49.8 83.8/69.8 | 47.8/427 65.4/59.3
DeCAF-DPR |  -/- 91.6/80.6 -- 71.4765.6
FBA-DPR | 89.0/75.6 954/884 | 68.7/625 81.3/76.5
wiowiki | 889/742 94.8/86.3 | 65.0/58.5 77.8/72.6

Table 3: Retrieval results on WebQSP and CWQ. H@N
and R@N stand for the answer hits rate and recall rate
of Top-N retrieved passages, respectively. DPR results
are copied from (Yu et al., 2023), BM25, and FBA-DPR
results are obtained in our setting.

Consequently, the capability of LLM might be un-
derestimated.

3.4 Retrieval Results

We evaluate the effectiveness of our FeedBack-
Augmented DPR (FBA-DPR) in Table 3. It can
be seen that FBA-DPR significantly outperforms
previous results in (Yu et al., 2023) on both We-
bQSP and CWQ, achieving 3.8 and 9.9 points of
improvement on Hit@100, and 7.8 and 9.9 points
on Recall@100. For a fair comparison, we also
conduct retrieval on external knowledge resources
excluding Wikipedia passages, which still signif-
icantly surpasses the previous results. This fur-
ther demonstrates the effectiveness of our proposed
method.

3.5 CoT Fine-tuning Results

This experiment is conducted to validate the cor-
rectness of the CoT collection we constructed. Ad-
ditionally, we aim to explore whether smaller mod-
els are capable of acquiring reasoning ability from
such structured CoT data. We conduct the exper-
iment under two different settings: Direct Fine-

tuning and CoT Fine-tuning. For Direct Fine-
tuning we train the model on the original QA pairs,
where the model takes the questions as input and
directly generates the answers. The results are re-
ported in Table 4.

WebQSP CWQ
Model \ Dataset |5 =~ Direct CoT
T5-3B 408 419 | 394 386
FlanT5-3B 461 470| 505 438

Llama2-7B-LoRA | 63.8 64.1 | 484 45.1
Llama2-13B-LoRA | 75.0 73.8 | 53.5 54.7

Table 4: Comparison of Direct Fine-tuning and CoT
Fine-tuning. Hits@]1 score is reported.

We observe that for smaller models, fine-tuning
LMs with CoT rationales slightly outperforms Di-
rect Fine-tuning for solving simpler questions. In
complex multi-hop question scenarios, CoT fine-
tuning brings negative gains. This might be be-
cause 1) The reasoning procedure of the original
LM differs from that of the CoT collection. Fine-
tuning the LM may potentially disrupt the origi-
nal knowledge, resulting in a degradation in per-
formance; 2) LMs still struggle to generate faith-
ful multi-step reasoning even fine-tuned with CoT
when solving knowledge-intensive tasks. However,
when the number of model parameters is increased
to 13B, the benefits of CoT fine-tuning become ev-
ident, yielding better results than direct fine-tuning
on the CWQ dataset. This suggests the larger the
model, the more reasoning capacity it can acquire
from the CoT fine-tuning, and demonstrates the
correctness of our constructed collection.

3.6 Analysis & Ablation Study

This section aims to address the following question
through analysis and ablation experiments.
Benefits of structured CoT and CoT collection?
To discuss the benefits of structured multi-round
QA rationale, and to highlight the significance
of the CoT collection we construct, we evaluate
the following model settings, with the name corre-
sponding to the rows in Table 2:

* LLM Retrieval 4—passages We roughly concate-
nate the top-ranked retrieved passages with
the question as input and instruct LLM to an-
swer the question.

* LLM QA pairs 4—shot We utilize other QA
pairs with the highest cosine similarity to the
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Figure 4: a) LLM performance after each iteration of interaction. b) Answer source during each iteration.

target question as the demonstrations to per-
form ICL.

LLM cor fizea We manually design unstruc-
tured rationales aligned with the content of our
structured CoT, and utilize them as demonstra-
tions to prompt LLM. The in-context demon-
stration is selected within human-annotated
unstructured rationales.

LLM ga—cot fizea The in-context demon-
stration is selected within human-annotated
structured rationales.

LLM gA—cCoT selectea The in-context demon-
stration is selected within our constructed CoT
collection.

To align with one-shot CoT ICL, we restrict the
input length and concatenate only 4 passages/QA
pairs as the context that fed into LLM. Experimen-
tal results are shown in Table 2. We observe that
LLM achieves superior performance when utilizing

structured rationale as the demonstration, outper-
forming other ICL methods. This suggests that our
proposed multi-round QA format rationale is more
effective in unleashing LLLM’s reasoning capability.

Directly concatenating the retrieved knowledge
does not have a positive contribution to the model’s
ability, especially in complex multi-hop question
scenarios, and it performs the worst among all ICL
methods. The low accuracy in knowledge retrieval
could be the cause of this, as evidenced by the
Hit@20 and Recall @20 scores reported in Table 3,
which are only 68.7 and 62.5 respectively. The top-
4 contexts might contain a significant amount of
noise, which is not beneficial for the ICL of LLMs.
It’s worth noting that previous work primarily uti-
lized a similar methodology(Yao et al., 2023; Xu
et al., 2023).

By employing our constructed CoT collection,
we further improve the LLM’s ability, highlighting
the effectiveness and necessity of the collection
construction.

Benefits of QA system?



To assess the effectiveness of the QA system, we
conduct two supplementary experiments by remov-
ing the retrieve-then-read pipeline and the verifier
separately. The results are shown in Table 2. We
observe that the performance degrades when the
retrieve-then-read pipeline is removed, showing
the importance of accessing external knowledge
for precise sub-answers generation. Moreover, the
performance without the verifier is worse, show-
ing that in certain cases the sub-answers generated
by the LLM are superior. Further combining the
output of the reader and LLM to generate better
answers is important for improving performance.

We further investigate the performance gain after
each iteration and count the source of the modified
answer. The results are shown in Figure 4. As can
be seen in Figure 4(a), the highest performance of
LLM is achieved in the first iteration for WebQSP
and the last iteration for CWQ, as WebQSP is pri-
marily comprised of single-hop questions, whereas
CWQ contains more complex multi-hop questions.
We also observe that LLM tends to produce redun-
dant inference steps despite being able to answer
questions within two hops of reasoning. This leads
to the necessity of second and third iterations to ter-
minate the CoT while solving WebQSP questions.
An extra Halter (Creswell and Shanahan, 2022) to
determine whether the current reasoning step can
answer the questions can be a possible method for
solving this issue. As the number of iterations in-
creases, the performance on the CWQ dataset also
improves. This suggests that our interaction frame-
work can assist the model in better reasoning for
complex multi-hop questions.

Figure 4(b) shows the source of modified an-
swers. In most cases, the verifier will keep the
original sub-answers generated by ChatGPT, about
half of the sub-answers are modified and fed to
the next iteration. This implies that a robust reader
capable of producing varied and accurate answers
is crucial in fully unleashing the potential of LLM.

4 Related Work

4.1 Chain-of-thought Prompting

Wei et al. (2023) have shown the Chain-of-Thought
(CoT) to be effective in enhancing LLMs reasoning.
Several studies have been conducted to improve the
effectiveness. For example, some studies focus on
how to make LLM generate more accurate and reli-
able chains of thought (He et al., 2022; Wang et al.,
2023b; Lyu et al., 2023), while some works inves-

tigate more efficient ways of generating chains of
thought to unleash the potential of LLM reasoning
(Creswell et al., 2022; Zhou et al., 2023; Jin and
Lu, 2023). As LLMs are confined to the knowl-
edge learned from the training corpus, extensive
efforts have been made recently to facilitate LLMs
in dynamically interacting with the real world (Yao
et al., 2023; Zhao et al., 2023; Peng et al., 2023) or
KGs (Baek et al., 2023; Li et al., 2023) to obtain the
information required for model reasoning. These
works follow a fixed pipeline that retrieves extra in-
formation to augment the LLM prompt. In contrast,
we make use of a more advanced retriever-reader
pipeline to furnish the model with more accurate
and targeted knowledge.

4.2 Knowledge Base Question Answering

The retrieve-then-read pipeline is a commonly em-
ployed technique for solving KBQA tasks. Certain
studies concentrate on enhancing the retriever’s
efficiency (Karpukhin et al., 2020; Izacard et al.,
2021; Chuang et al., 2023), whereas others priori-
tize the reader’s performance (Izacard and Grave,
2021; Yu et al., 2022) or both (Dong et al., 2023).
Additionally, some studies delve into the incorpora-
tion of structured knowledge from the knowledge
base into the QA system (Oguz et al., 2022; Yu
et al., 2023), or utilize contexts generated by LLM
as knowledge enhancement (Zhang et al., 2023).
Previous works have formed an efficient system
of information retrieval, condensing the extracted
knowledge corpus into brief statements. Therefore,
our research integrates this system with LLMs to
offer necessary knowledge and aid the LLMs in
producing more dependable chains of thought.

5 Conclusion

In this paper, we investigate the faithful reasoning
of LLMs on knowledge-intensive KBQA tasks. We
propose a Knowledge-Driven Chain-of-Thought
framework to improve the reasoning performance
of LLMs. Through experiments on knowledge-
intensive KBQA tasks, we show that KD-CoT leads
to superior performance with interpretable infer-
ence steps. We also present a CoT collection on
the KBQA datasets that can be utilized for CoT
fine-tuning and few-shots ICL. Additionally, we
propose a feedback-augmented retriever that can
efficiently access external knowledge, which re-
sults in a substantial improvement in Hit and recall
scores in the multi-hop question scenario.



Limitations

Although our method can efficiently access external
knowledge and correct the sub-answers generated
by LLMs, the final performance of LLM still leaves
behind the current SOTA. This could be caused
by: 1) The inability of the QA system to generate
precise answers for all sub-questions, as our sim-
ply designed reader achieves only 73.7 Hit@1 on
the WebQSP dataset. 2) The sub-question halluci-
nation. LLM can still hallucinate producing sub-
question despite our corrections to sub-answers.
Future work can focus on supervising both the in-
termediate reasoning questions and answers.

Besides, with a limited budget, we only use Chat-
GPT for 1-shot ICL and greedy decoding in CoT
reasoning. As budget allows, performance can be
improved by 1) using a stronger LLM like GPT-4;
2) adding more demonstrations for ICL or generat-
ing multiple reasoning paths and all interact with
the QA system.
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A Implementation details

We present here in detail the parameter settings we
used to train the QA system and to perform CoT
fine-tuning.

Model # Params # Total Params
BERT-base-uncased 110M 110M
T5-large 770M 770M
Llama2-7B_lora 12M 7B
T5-3B 3B 3B
flan-T5-3B 3B 3B
Llama2-7B_lora 12M B

Table 5: Models utilized and their number of parameters.
# Params represents the trainable parameters.

B Demonstration illustration

We add final answers and composition answers as
"Hint" before structured rationale to construct our
CoT collection. When conducting in-context learn-
ing during inference, we eliminate the "Hint" from
the chosen demonstration. We provide two exam-
ples as illustrated in Figure 5, one for constructing
the CoT collection and the other for performing
ICL on large language models during inference.

CoT collection

Instruction: Solve a question answering task with interleaving Thought, Action,
Answer steps. Thought can reason about the current situation, and Action can be three
types:

(1) Question[question], which returns a sub-question with single answer that helps solve;
the original problem.

(2) Multi_Answer_Question[keyword], which returns a sub-question with multiple
answers.

(3) Finish[answer], which returns the answer and finishes the task.

Question: Who are the children of Ike and the woman who composed Nutbush City
Limits?

Hint: answer: ["Ronnie Turner", "Raymond Craig Turner"], composition_answer: ["tina
turner"]

Thought 1: | need to find out who lke is and who composed Nutbush City Limits, and
then determine their children.

Action 1: Question[Who is lke?]

Answer 1: Ike Turner

Thought 2: Ike Turner is the person being referred to. | now need to find out who
composed Nutbush City Limits.

Action 2: Question[Who composed Nutbush City Limits?]

Answer 2: Tina Turner

Thought 3: Tina Turner composed Nutbush City Limits. | now need to find out who
the children of lke and Tina Turner are.

Action 3: Multi_Answer_Question[Who are the children of Ike and Tina Turner?]
Answer 3: Ronnie Turner and Raymond Craig Turner

Thought 4: | found the children of ke and Tina Turner: Ronnie Turner and Raymond
Craig Turner.

Action 4: Finish[Ronnie Turner and Raymond Craig Turner.]

Question: What disease did the music producer of Sometimes Late at Night have?
Hint: answer: ["Mysophobia"], composition_answer: ['michael jackson"]

LLM inference

Instruction: Solve a question answering task with interleaving Thought, Action,
Answer steps. Thought can reason about the current situation, and Action can be
three types:

(1) Question[question], which returns a sub-question with single answer that helps

| BERT T5-large Llama-7B | T5-3B  Flan-T5-

solve the original problem.

Lr 2e-5 5e-5 le-4 le-4 le-4
Batch Size | 128 16 32 32 32
Epoch 40 - 5 5 5
Clip Norm | 2.0 1.0 1.0 1.0 1.0

(2) Multi_Answer_Question[keyword], which returns a sub-question with multiple
answers.
(3) Finish[answer], which returns the answer and finishes the task.

Question What movie did Ron Howard direct that was produced designed by
James L. Schoppe? Thought 1 | need to find out which movie Ron Howard directed

Table 6: Hyper-params settings for training QA system
and for CoT fine-tuning.

Specifically, we train our model using Deep-
speed, with pytorch==2.0.0, peft==0.2.0, and trans-
formers==4.29.1. For models larger than 1B, we
train with precision bfloat16. For the optimizer
and learning scheduler, we apply AdamW with
Beta=[0.9, 0.95] and LinearDecay with a warmup
ratio equal to 0.1. All experiments except the in-
ference of ChatGPT are conducted on 8 x 40G
Nvidia A100.
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that was designed by James L. Schoppe.

Action 1 Question[Which movie did Ron Howard direct that was designed by
James L. Schoppe?]

Answer 1 Gung Ho

Thought 2 Ron Howard directed the movie Gung Ho that was designed by James
L. Schoppe.

Action 2 Finish[Gung Ho]

Question What movie involving Toonexplainers that Ron Howard worked on?

Figure 5: Input for constructing CoT collection (up) and
input for LLM inference (down).

C Case Analysis

We present in Figure 6 and 7 several cases before
and after our Knowledge-Driven Chain-of-Thought.
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We observe that by correcting the sub-answers, the
subsequent reasoning steps become more depend-
able and accurate, ultimately resulting in the correct
final answers.

[ ewacaca |
CWaQ case

Question: What founder of New York University had a position in the 4th United
States Congress?

Thought 1 | need to find out which founder of New York University held a position
in the 4th United States Congress.

Action 1 Multi_Answer_Question[founder + New York University + 4th United
States Congress]

Answer 1 1. Albert Gallatin 2. Samuel L. Mitchill 3. James Kent 4. Gouverneur
Morris Albert Gallatin

Thought 2 There are four founders of New York University who held a position in
the 4th United States Conaress - Albert Gallatin, Samuel L. Mitchill, James Kent,
and Gouverneur Morris. Albert Gallatin is the founder of New York University who
held a position in the 4th United States Congress.

Action 2 Question/Which one of the four founders of New York University held a
position in the 4th United States Congress?]Finish[Albert Gallatin]

Answer 2 Gouverneur Morris

Thought 3 Gouverneur Morris is the founder of New York University who held a
position in the 4th United States Congress.
Action 3 Finish[Gouverneur Morris]

Question: Who was the Arizona's Governor in 2009 who also suffered with Breast
cancer?

Thought 1 | need to find out who was the Arizona's Governor in 2009 and also
suffered with Breast cancer.

Action 1 Question[Who was the Arizona's Governor in 20097?]

Answer 1 Jan Brewer Janet Napolitano

Thouaht 2 Jan Brewer was the Arizona's Governor in 2009. | now need to find out
if she suffered with Breast cancer. Janet Napolitano was the Arizona's Governor in
2009. Now, | need to find out if she suffered from Breast cancer.

Action 2 Multi Answer QuestionlJan Brewer Breast cancer] Question[Did Janet
Napolitano suffer from Breast cancer]

Answer 2 Jan Brewer was diagnosed with Breast cancer in 2006. Breast cancer.

Thought 3 Jan Brewer was diagnosed with Breast cancer in 2006. | now need to
find out if she continued to suffer from it in 2009. Janet Napolitano suffered from
Breast cancer. | need to find out if she had it in 2009.

Action 3 Question[Did Jan Brewer continue to suffer from Breast cancer in 20097?]
Question[Did Janet Napolitano have Breast cancer in 20097?]

Answer 3 No Yes

Thouaht 4 Jan Brewer was the Arizona's Governor in 2009 and was diaanosed
with Breast cancer in 2006. but did not continue to suffer from it in 2009. Janet
Napolitano was the Governor of Arizona in 2009 and she suffered from Breast
cancer during that time.

Action 4 Finish[Jan Brewer was the Arizona's Governor in 2009 and was
diaanosed with Breast cancer in 2006. but did not continue to suffer from it in
2009.] Finish[Janet Napolitano was the Arizona's Governor in 2009 and suffered
from Breast cancer.]

WebQSP case
Question: What episode of how i met your mother is carrie underwood on?

Thought 1 | need to find out which episode of How | Met Your Mother features
Carrie Underwood.

Action 1: Multi_Answer_Question[Carrie Underwood How | Met Your Mother
episode]

Answer 1 How | Met Your Mother: Sandcastles in the Sand (Season 3. Episode
16) - How | Met Your Mother: Ultimate Playbook (Season 9, Episode 2) Hooked

Thouaht 2 Carrie Underwood appeared in two episodes of How | Met Your
Mother: ""Sandcastles in the Sand"" in season 3 and ""Ultimate Plavbook™"" in
season 9.The episode of How | Met Your Mother featuring Carrie Underwood is
called Hooked.

Action 2: Finish["'Sandcastles in the Sand"" and ""Ultimate Playbook"']Hooked

Question: What type of cancer did eva peron have?

Thought 1 | need to find out what type of cancer Eva Peron had.
Action 1 Multi Answer Question[cancer tvpe in Eva Peronl
Answer 1 (1) Cervical Cancer, (2) Uterine Cancer, (3) Ovarian Cancer

Tho_ught 2 Eva Peron had one of three types of cancer: cervical, uterine, or
ovarian.

Action 2 Question[Which type of cancer did Eva Peron have?]

Answer 2 Uterine CancerCervical Cancer

Thought 3 Eva Peron had uterine cancer. Eva Peron had cervical cancer.
Action 2: Finish[Uterine Cancer]Cervical Cancer

Figure 6: Cases of CWQ. Red and Green blocks repre-
sent the original hallucinations of LLM and the faithful
reasoning after sub-answer correction. The yellow block
signifies that the answer generated by the QA system is
not entirely precise, but it does not impact the inference
of the subsequent models.
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Figure 7: Cases of WebQSP, by applying KD-CoT we
rectify the sub-answers and make the reasoning of LLM
more faithful. Red and Green blocks represent the orig-
inal hallucinations of LLM and the faithful reasoning
after sub-answer correction.



