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Abstract

Denoising diffusion probabilistic models are a promising new class of generative models that
mark a milestone in high-quality image generation. This paper showcases their ability to
sequentially generate video, surpassing prior methods in perceptual and probabilistic fore-
casting metrics. We propose an autoregressive, end-to-end optimized video diffusion model
inspired by recent advances in neural video compression. The model successively generates
future frames by correcting a deterministic next-frame prediction using a stochastic residual
generated by an inverse diffusion process. We compare this approach against six baselines
on four datasets involving natural and simulation-based videos. We find significant im-
provements in terms of perceptual quality and probabilistic frame forecasting ability for all
datasets.

1 Introduction

The ability to anticipate future frames of a video is intuitive for humans but challenging for a computer
(Oprea et al., 2020). Applications of such video prediction tasks include anticipating events (Vondrick et al.,
2016a), model-based reinforcement learning (Ha & Schmidhuber, 2018), video interpolation (Liu et al., 2017),
predicting pedestrians in traffic (Bhattacharyya et al., 2018), precipitation nowcasting (Ravuri et al., 2021),
neural video compression (Han et al., 2019; Lu et al., 2019; Agustsson et al., 2020; Yang et al., 2020; 2021a;
2022), and many more.

The goals and challenges of video prediction include (i) generating multi-modal, stochastic predictions that
(ii) accurately reflect the high-dimensional dynamics of the data long-term while (iii) identifying architectures
that scale to high-resolution content without blurry artifacts. These goals are complicated by occlusions,
lighting conditions, and dynamics on different temporal scales. Broadly speaking, models relying on sequen-
tial variational autoencoders (Babaeizadeh et al., 2018; Denton & Fergus, 2018; Castrejon et al., 2019) tend
to be stronger in goals (i) and (ii), while sequential extensions of generative adversarial networks (Aigner
& Körner, 2018; Kwon & Park, 2019; Lee et al., 2018) tend to perform better in goal (iii). A probabilistic
method that succeeds in all the three desiderata on high-resolution video content is yet to be found.

Recently, diffusion probabilistic models have achieved considerable progress in image generation, with per-
ceptual qualities comparable to GANs while avoiding the optimization challenges of adversarial training
(Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021c;b). In this paper, we
extend diffusion probabilistic models for stochastic video generation. Our ideas are inspired by the principles
of predictive coding (Rao & Ballard, 1999; Marino, 2021) and neural compression algorithms (Yang et al.,
2021b) and draw on the intuition that residual errors are easier to model than dense observations (Marino
et al., 2021). Our architecture relies on two prediction steps: first, we employ a deterministic convolutional
RNN to deterministically predict the next frame conditioned on a sequence of frames. Second, we correct
this prediction by an additive residual generated by a denoising diffusion process, also conditioned on a
temporal context (see Figs. 1a and 1b). This approach is scalable to high-resolution video, stochastic, and
relies on likelihood-based principles. Our ablation studies strongly suggest that predicting video frame resid-
uals instead of naively predicting the next frames improves generative performance. By investigating our
architecture on various datasets and comparing it against multiple baselines, we prove superior results on
both probabilistic (CRPS) and perceptual (LPIPS, FID) metrics. In more detail, our achievements are as
follows:
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(a) Overview. (b) Detailed model.

Figure 1: Overview: Our approach predicts the next frame µt of a video autoregressively along with an
additive correction yt

0 generated by a denoising process. Detailed model: Two convolutional RNNs (blue
and red arrows) operate on a frame sequence x0:t−1 to predict the most likely next frame µt (blue box) and
a context vector for a denoising diffusion model. The diffusion model is trained to model the scaled residual
yt

0 = (xt − µt)/σ conditioned on the temporal context. At generation time, the generated residual is added
to the next-frame estimate µt to generate the next frame as xt = µt + σyt

0.

1. We show how to use diffusion probabilistic models to autoregressively generate videos. This enables
a new path towards probabilistic video forecasting while achieving perceptual qualities better than
or comparable with likelihood-free methods such as GANs.

2. We also study our model based on three metrics, FVD/LPIPS/CRPS, that can cover both forecasting
ability and perceptual quality. The result demonstrates that our model perform better than modern
GAN and VAE baselines such as IVRNN, SVG-LP, SLAMP, RetroGAN, DVD-GAN and FutureGAN
(Castrejon et al., 2019; Denton & Fergus, 2018; Akan et al., 2021; Kwon & Park, 2019; Clark et al.,
2019; Aigner & Körner, 2018).

3. Our ablation studies demonstrate that modeling residuals from the predicted next frame yields better
results than directly modeling the next frames. This observation is consistent with recent findings
in neural video compression. Figure 1a summarizes the main idea of our approach (Figure 1b has
more details).

The structure of our paper is as follows. We first describe our method, which is followed by a discussion
about our experimental findings along with ablation studies. We then discuss connections to the literature,
summarize our contributions.

2 A Diffusion Probabilistic Model for Video

We begin by reviewing the relevant background on diffusion probabilistic models. We then discuss our design
choices for extending these models to sequential models for video.

2.1 Background on Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) are a recent class of generative models with promising
properties (Sohl-Dickstein et al., 2015; Ho et al., 2020). Unlike GANs, these models rely on the maximum
likelihood training paradigm (and are thus stable to train) while producing samples of comparable perceptual
quality as GANs (Brock et al., 2019).

Similar to hierarchical variational autoencoders (VAEs) (Kingma & Welling, 2013), DDPMs are deep latent
variable models that model data x0 in terms of an underlying sequence of latent variables x1:N such that
pθ(x0) =

∫
pθ(x0:N )dx1:N . The main idea is to impose a diffusion process on the data that incrementally

destroys the structure. The diffusion process’s incremental posterior yields a stochastic denoising process
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that can be used to generate structure (Sohl-Dickstein et al., 2015; Ho et al., 2020). The forward, or diffusion
process is given by

q(x1:N |x0) =
N∏

n=1
q(xn|xn−1);

q(xn|xn−1) = N (xn|
√

1 − βnxn−1, βnI).

(1)

Besides a predefined incremental variance schedule with βn ∈ (0, 1) for n ∈ {1, · · · , N}, this process is
parameter-free (Song & Ermon, 2019; Ho et al., 2020). The reverse process is called denoising process,

pθ(x0:N ) = p(xN )
N∏

n=1
pθ(xn−1|xn);

pθ(xn−1|xn) = N (xn−1|Mθ(xn, n), γI).
(2)

The reverse process can be thought of as approximating the posterior of the diffusion process. Typically, one
fixes the covariance matrix (with hyperparameter γ) and only learns the posterior mean function Mθ(xn, n).
The prior p(xN ) = N (0, I) is typically fixed. The parameter θ can be optimized by maximizing a variational
lower bound on the log-likelihood, Lvariational = Eq[− log pθ(x0:N )

q(x1:N |x0) ]. This bound can be efficiently estimated
by stochastic gradients by subsampling time steps n at random since the marginal distributions q(xn|x0)
can be computed in closed form (Ho et al., 2020).

In this paper, we use a simplified loss due Ho et al. (2020) who showed that the variational bound could be
simplified to the following denoising score matching loss,

L(θ) = Ex0,n,ϵ||ϵ − fθ(xn, n)||2

where xn =
√

ᾱnx0 +
√

1 − ᾱnϵ.
(3)

We thereby define ᾱn =
∏n

i=1(1 − βi). The intuitive explanation of this loss is that fθ tries to predict the
noise ϵ ∼ N (0, I) at the denoising step n (Ho et al., 2020). Once the model is trained, it can be used to
generate data by ancestral sampling, starting with a draw from the prior p(xN ) and successively generating
more and more structure through an annealed Langevin dynamics procedure (Song & Ermon, 2019; Song
et al., 2021c).

2.2 Residual Video Diffusion Model

Experience shows that it is often simpler to model differences from our predictions than the predictions
themselves. For example, masked autoregressive flows (Papamakarios et al., 2017) transform random noise
into an additive prediction error residual and boosting algorithms train a sequence of models to predict the
error residuals of earlier models (Schapire, 1999). Residual errors also play an important role in modern
theories of the brain. For example, predictive coding (Rao & Ballard, 1999) postulates that neural circuits
estimate probabilistic models of other neural activity, iteratively exchanging information about error resid-
uals. This theory has interesting connections to VAEs (Marino, 2021; Marino et al., 2021) and neural video
compression (Agustsson et al., 2020; Yang et al., 2021a), where one also compresses the residuals to the most
likely next-frame predictions.

This work uses a diffusion model to generate residual corrections to a deterministically predicted next frame,
adding stochasticity to the video generation task. Both the deterministic prediction as well as the denoising
process are conditioned on a long-range context provided by a convolutional RNN. We call our approach
"Residual Video Diffusion" (RVD). Details will be explained next.

Notation. We consider a frame sequence x0:T and a set of latent variables y1:T ≡ y1:T
0:N specified by a

diffusion process over the lower indices. We refer to y1:T
0 as the (scaled) frame residuals.

Generative Process. We consider a joint distribution over x0:T and y1:T of the following form:

p(x0:T , y1:T ) = p(x0)
T∏

t=1
p(xt|yt, x<t)p(yt|x<t). (4)
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We first specify the data likelihood term p(xt|yt, x<t), which we model autoregressively as a Masked Au-
toregressive Flow (MAF) (Papamakarios et al., 2017) applied to the frame sequence. This involves an
autoregressive prediction network outputting µϕ and a scale parameter σ,

xt = µϕ(x<t) + σ ⊙ yt
0 ⇐⇒ yt

0 = xt − µϕ(x<t)
σ

. (5)

Conditioned on yt
0, this transformation is deterministic. The forward MAF transform (y → x) converts the

residual into the data sequence; the inverse transform (x → y) decorrelates the sequence. The temporally
decorrelated, sparse residuals y1:T

0 involve a simpler modeling task than generating the frames themselves.
While the scale parameter σ can also be conditioned on past frames, we did not find a benefit in practice.

The autoregressive transform in Equation 5 has also been adapted in a VAE model (Marino et al., 2021) as
well as in neural video compression architectures (Agustsson et al., 2020; Yang et al., 2020; 2021a;b). These
approaches separately compress latent variables that govern the next-frame prediction as well as frame
residuals, thereby achieving state-of-the-art rate-distortion performance on high-resolution video content.
While these works focused on compression, this paper focuses on generation.

We now specify the second factor in Eq. 4, the generative process of the residual variable, as

pθ(yt
0:N |x<t) = p(yt

N )
N∏

n=1
pθ(yt

n−1|yt
n, x<t). (6)

We fix the top-level prior distribution to be a multivariate Gaussian with identity covariance. All other
denoising factors are conditioned on past frames and involve prediction networks Mθ,

pθ(yn−1|yn, x<t) = N (yn−1|Mθ(yn, n, x<t), γI). (7)
As in Eq. 2, γ is a hyperparameter. Our goal is to learn θ.

Inference Process. Having specified the generative process, we next specify the inference process condi-
tioned on the observed sequence x0:T :

qϕ(yt
0:N |x≤t) = qϕ(yt

0|x≤t)
N∏

n=1
q(yt

n|yt
n−1). (8)

Since the residual noise is a deterministic function of the observed and predicted frame, the first factor is
deterministic and can be expressed as qϕ(yt

0|x≤t) = δ(yt
0− xt−µϕ(x<t)

σ ). The remaining N factors are identical
to Eq. 1 with xn being replaced by yn. Following Nichol & Dhariwal (2021), we use a cosine schedule to
define the variance βn ∈ (0, 1). The architecture is shown in Figure 1b.

Equations 7 and 8 generalize and improve the previously proposed TimeGrad (Rasul et al., 2021) method.
This approach showed promising performance in forecasting time series of comparatively smaller dimensions
such as electricity prices or taxi trajectories and not video. Besides differences in architecture, this method
neither models residuals nor considers the temporal dependency in posterior, which we identify as a crucial
aspect to make the model competitive with strong VAE and GAN baselines (see Section 3.6 for an ablation).

Optimization and Sampling. In analogy to time-independent diffusion models, we can derive a variational
lower bound that we can optimize using stochastic gradient descent. In analogy to to the derivation of Eq. 3
(Ho et al., 2020) and using the same definitions of ᾱn and ϵ, this results in

L(θ, ϕ) = Ex,n,ϵ

T∑
t=1

||ϵ − fθ(yt
n(ϕ), n, x<t)||2;

yt
n(ϕ) =

√
ᾱnyt

0(ϕ) +
√

1 − ᾱnϵ; yt
0(ϕ) = xt − µϕ(x<t)

σ
.

(9)

We can optimize this function using the reparameterization trick Kingma & Welling (2013), i.e., by randomly
sampling ϵ and n, and taking stochastic gradients with respect to ϕ and θ. For a practical scheme involving
multiple time steps, we also employ teacher forcing Kolen & Kremer (2001). See Algorithm 1 for the detailed
training and sampling procedure, where we abbreviated fθ,ϕ(yt

n, n, x<t) ≡ fθ(yt
n(ϕ), n, x<t).

4



Under review as submission to TMLR

Algorithm 1: Training (left) and Video Generation (right)
while not converged do

Sample x0:T ∼ q(x0:T );
n ∼ U(0, 1, 2, .., N);
L = 0;
for t=1 to T do

ϵ ∼ N (0, I);
yt

0 = (xt − µϕ(x<t))/σ;
yt

n =
√

ᾱnyt
0 +

√
1 − ᾱnϵ;

L = L + ||ϵ − fθ,ϕ(yt
n, n, x<t)||2

end
(θ, ϕ) = (θ, ϕ) − ∇θ,ϕL

end

Get initial context frame x0 ∼ q(x0);
for t=1 to T do

yt
N ∼ N (0, I);

for n=N to 1 do
z ∼ N (0, I);
ϵθ = fθ,ϕ(yt

n, n, x<t);
ỹt

n−1 = yt
n − βn√

1−ᾱn
ϵθ;

yt
n−1 = 1√

αn
ỹt

n−1 + 1−ᾱn−1
1−ᾱn

βnz;
end
xt = σ ⊙ yt

0 + µϕ(x<t)
end

3 Experiments

We compare Residual Video Diffusion (RVD) against five strong baselines, including three GAN-based models
and two sequential VAEs. We consider four different video datasets and consider both probabilistic (CRPS)
and perceptual (FVD, LPIPS) metrics, discussed below. Our model achieves a new state of the art in terms
of perceptual quality while being comparable with or better than the best-performing sequential VAE in its
frame forecasting ability.

3.1 Datasets

We consider four video datasets of varying complexities and resolutions. Among the simpler datasets of
frame dimensions of 64 × 64, we consider the BAIR Robot Pushing arm dataset (Ebert et al., 2017) and
KTH Actions (Schuldt et al., 2004). Amongst the high-resolution datasets (frame sizes of 128×128), we use
Cityscape (Cordts et al., 2016), a dataset involving urban street scenes, and a two-dimensional Simulation
dataset for turbulent flow of our own making that has been computed using the Lattice Boltzmann Method
(Chirila, 2018). These datasets cover various complexities, resolutions, and types of dynamics.

Preprocessing. For KTH and BAIR, we preprocess the videos as commonly proposed (Denton & Fergus,
2018; Marino et al., 2021). For Cityscape, we download the portion titled leftImg8bit_sequence_trainvaltest
from the official website1. Each video is a 30-frame sequence from which we randomly select a sub-sequence.
All the videos are center-cropped and downsampled to 128x128. For the simulation dataset, we use an LBM
solver to simulate the flow of a fluid (with pre-specified bulk and shear viscosity and rate of flow) interacting
with a static object. We extract 10000 frames sampled every 128 ticks, using 8000 for training and 2000 for
testing.

3.2 Training and Testing Details

The diffusion models are trained with 8 consecutive frames for all the datasets of which the first two frames as
used as context frames. We set the batchsize to 4 for all high-resolution videos and to 8 for all low-resolution
videos. The pixel values of all the video frames are normalized to [−1, 1]. The models are optimized using
the Adam optimizer with an initial learning rate of 5 × 10−5, which decays to 2 × 10−5. All the models are
trained on four NVIDIA RTX Titan GPUs in parallel for around 4-5 days. The number of diffusion depth
is fixed to N = 1600 and the scale term is set to σ = 2. For testing, we use 4 context frames and predict
16 future frames for each video sequence. Wherever applicable, these frames are recursively generated. The
model size is about 123 MegaBytes (32-bits float numbers) for high resolution models (128x128). To sample
a 128x128 video frame, the model takes 18.5 seconds per 1000 iterations.

1https://www.cityscapes-dataset.com/downloads/
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Figure 2: Generated frames on Cityscape (128x128). Compared to RVD (proposed), VAE-based models tend
to become more blurry over time, while GAN-based methods generate artifacts and temporal inconsistencies.

3.3 Baseline Models

SVG-LP (Denton & Fergus, 2018) is an established sequential VAE baseline. It leverages recurrent ar-
chitectures in all of encoder, decoder, and prior to capture the dynamics in videos. We adapt the official
implementation from the authors while replacing all the LSTM with ConvLSTM layers, which helps the
model scale to different video resolutions. IVRNN (Castrejon et al., 2019) is currently the state-of-the-art
video-VAE model trained end-to-end from scratch. The model improves SVG by involving a hierarchy of
latent variables. We use the official codebase to train the model. SLAMP (Akan et al., 2021) is a recent
algorithm yielding stochastic predictions, similar to ours. It is also similar in spirit to our idea because it
incorporates “motion history” to predict the dynamics for future frames. FutureGAN (Aigner & Körner,
2018) relies on an encoder-decoder GAN model that uses spatio-temporal 3D convolutions to process video
tensors. In order to make the quality of the output more perceptually appealing, the paper employs the
concept of progressively growing GANs. We use the official codebase to train the model. Retrospective
Cycle GAN (Kwon & Park, 2019) employs a single generator that can predict both future and past frames
given a context and enforces retrospective cycle constraints. Besides the usual discriminator that can identify
fake frames, the method also introduces sequence discriminators to identify sequences containing the said
fake frames. We used an available third-party implementation 2. DVD-GAN (Clark et al., 2019) proposes
an alternative dual-discriminator architecture for video generation on complex datasets. We also adapt a
third-party implementation of the model to conduct our experiment 3.

3.4 Evaluation Metrics

We address two key aspects for determining the quality of generated sequences: perceptual quality and the
models’ probabilistic forecasting ability. For the former, we adopt FVD (Unterthiner et al., 2019) and LPIPS
(Zhang et al., 2018), while the latter is evaluated using CRPS (Matheson & Winkler, 1976) to assess the
marginal (pixel-based) predictions of future frames.

Fréchet Video Distance (FVD) compares sample realism by calculating 2-Wasserstein distance between
the ground truth video distribution and the distribution defined by the generative model. Typically, an I3D
network pretrained on an action-recognition dataset is used to capture low dimensional feature representa-
tions, the distributions of which are used in the metric. Learned Perceptual Image Patch Similarity
(LPIPS), on the other hand, computes the ℓ2 distance between deep embeddings across all the layers of

2https://github.com/SaulZhang/Video_Prediction_ZOO/tree/master/RetrospectiveCycleGAN
3https://github.com/Harrypotterrrr/DVD-GAN
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Figure 3: 1st row: Inverse CRPS scores (higher is better) as a function of the future frame index. The
best performances are obtained by RVD (proposed) and IVRNN. Scores also monotonically decrease as the
predictions worsen over time. 2nd row: LPIPS scores (Lower is better) show the per-frame-step perceptual
quality, where the shaded region reflects the standard deviation of the sampled frames at the corresponding
index.

a pretrained network which are then averaged spatially. The LPIPS score is calculated on the basis of
individual frames and then averaged.

Another desirable property of video prediction methods is to reliably forecast future frames. Since ground
truth videos exhibit multi-modal conditional distributions (e.g., a traffic light may switch from yellow to
green or red), such multi-modality is best captures by proper Scoring Rules such as the Continuous Ranked
Probability Score (CRPS). These metrics are frequently used in probabilistic forecasting problems in, e.g.,
meteorology or finance (Hersbach, 2000; Gneiting & Ranjan, 2011).

In a nutshell, CRPS compares a single-sample estimate of the ground truth CDF (a step function) with the
model’s CDF for the next frame. The latter can be efficiently estimated in one dimension by repeatedly
sampling from the model. In expectation, CRPS not only rewards high accuracy of the mean prediction,
but also good uncertainty estimates of the model. While CRPS is not commonly used in evaluating video
prediction methods, we argue that it adds a valuable perspective on a model’s uncertainty calibration.

3.5 Qualitative and Quantitative Analysis

Using the perceptual and probabilistic metrics mentioned above, we compare test set predictions of our video
diffusion architecture against a wide range of baselines, which model underlying data density both explicitly
and implicitly.
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Figure 4: Spatially-resolved CRPS scores (right two plots, lower is better). We compare the performance
of RVD (proposed) against IVRNN on predicting the 10th future frame of a video from CityScape. Darker
areas point to larger disagreements with respect to the ground truth.

FVD↓ LPIPS↓ CRPS↓
KTH BAIR Sim City KTH BAIR Sim City KTH BAIR Sim City

RVD (ours) 1351 1272 20 997 0.06 0.06 0.01 0.11 6.51 12.86 0.58 9.84
IVRNN 1375 1337 24 1234 0.08 0.07 0.008 0.18 6.17 11.74 0.65 11.00
SLAMP 1451 N/A N/A 1853 0.05 N/A N/A 0.23 6.18 N/A N/A 23.6
SVG-LP 1783 1631 21 1465 0.12 0.08 0.01 0.20 18.24 13.96 0.75 19.34

RetroGAN 2503 2038 28 1769 0.28 0.07 0.02 0.20 27.49 19.42 1.60 20.13
DVD-GAN 2592 3097 147 2012 0.18 0.10 0.06 0.21 12.05 27.2 1.42 21.61

FutureGAN 4111 3297 319 5692 0.33 0.12 0.16 0.29 37.13 27.97 6.64 29.31

Table 1: Test set perceptual (FVD, LPIPS) and forecasting (CRPS) metrics, lower is better (see Section 3
for details).

Table 1 lists all the metric scores for our model and the baselines. Our model performs best in all cases
in terms of FVD, a no-reference metric that measures frame quality irrespective of context and without
reference to the ground truth. For LPIPS, a reference metric, our model also performs best in 3 out of 4
datasets. The perceptual performance is also verified visually in Figure 2, where RVD shows higher clarity
on the generated frames and shows less blurriness in regions that are less predictable due to the fast motion.

We also reported CRPS scores in Table 1. Figure 3 shows 1/CRPS (higher is better) as a function of the
frame index, revealing a monotonically decreasing trend along the time axis. This follows our intuition
that long-term predictions become worse over time for all models. Our method performs best in 3 out of 4
cases. We can resolve this score also spatially in the images, as we do in Figure 4. Areas of distributional
disagreement within a frame are shown in blue (right). See supplemental materials for the generated videos
on other datasets.

3.6 Ablation Studies

We consider two ablations of our model. The first one studies the impact of applying the diffusion generative
model for modeling residuals as opposed to directly predicting the next frames. The second ablation studies
the impact of the number of frames that the model sees during training.

Modeling Residuals vs. Dense Frames Our proposed method uses a denoising diffusion generative
model to generate residuals to a deterministic next-state prediction (see Figure 1b). A natural question
arises whether this architecture is necessary or whether it could be simplified by directly generating the next
frame xt

0 instead of the residual yt
0. To address this, we make the following adjustment. Since yt

0 and xt
0

have equal dimensions, the ablation can be realized by setting µt = 0 and σ = 1. To distinguish from our
proposed “Residual Video Diffusion” (RVD), we call this ablation “Video Diffusion” (VD). Note that this
ablation can be considered a customized version of TimeGrad (Rasul et al., 2021) applied to video.
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Table 2 shows the results. Across all perceptual metrics, the residual model performs better on all data
sets. In terms of CRPS, VD performs slightly better on the simpler KTH and Bair datasets, but worse on
the more complex Simulation and Cityscape data. We, therefore, confirm our earlier claims that modeling
residuals over frames is crucial for obtaining better performance, especially on more complex high-resolution
video.

Frame Differences vs. Prediction Residuals One may also wonder if similar results could have been
obtained by modeling the residual relative to the last frame, as opposed to modeling the residual relative
to a predicted frame. We called this ablation "SimpleRVD" (shown in Table 2), where we set µt = x̂t−1.
While the model can run more efficiently with this simplified scheme, Table 2 shows that the video quality
is typically negatively affected. We conjecture that, since the predicted next frame may be already motion-
compensated, the resulting residual is sparser and hence easier to capture by the diffusion model. Similar
observations have been made in neural video compression (Agustsson et al., 2020; Yang et al., 2021b).

Influence of Training Sequence Length We train both our diffusion model and IVRNN on video se-
quences of varying lengths. As Table 2 reveals, we find that the diffusion model maintains a robust perfor-
mance, showing only a small degradation on significantly shorter sequences. In contrast, IVRNN is more
sensitive to the sequence length. We note that in most experiments, we outperform IVRNN even though we
trained our model on shorter sequences. We also note that IVRNN leverages dense-connected hierarchical
latent variables to capture long sequence dependency. Hence, optimizing the high-level latent variables can
be challenging when the training sequence is not sufficiently long. While the diffusion model is also hier-
archical, the model only learns a denoising mapping, which is much simpler scheme than dense-connected
latents (as shown in Figure 1).

FVD↓ LPIPS↓ CRPS↓
KTH BAIR Sim City KTH BAIR Sim City KTH BAIR Sim City

VD(2+6) 1523 1374 37 1321 0.066 0.066 0.014 0.127 6.10 12.75 0.68 13.42
SimpleRVD(2+6) 1532 1338 45 1824 0.065 0.063 0.024 0.163 5.80 12.98 0.65 10.78

RVD(2+6) 1351 1272 20 997 0.066 0.060 0.011 0.113 6.51 12.86 0.58 9.84
RVD(2+3) 1663 1381 33 1074 0.072 0.072 0.018 0.112 6.67 13.93 0.63 10.59

IVRNN(4+8) 1375 1337 24 1234 0.082 0.075 0.008 0.178 6.17 11.74 0.65 11.00
IVRNN(4+4) 2754 1508 150 3145 0.097 0.074 0.040 0.278 7.25 13.64 1.36 18.24

Table 2: Ablation studies on (1) modeling residuals (RVD, proposed) versus future frames (VD) and (2)
training with different sequence lengths, where (p + q) denotes p context frames and q future frames for
prediction.

4 Related Work

Our paper combines ideas from video generation, diffusion probabilistic models, and neural video compres-
sion. As follows, we discuss related work along these lines.

4.1 Video Generation Models

Since the advent of modern deep learning, video generation and prediction has been a topic of ongoing
interest; see (Oprea et al., 2020) and this paper’s introduction. Videos can be generated based on side
information of various types, such as images (Dorkenwald et al., 2021; Nam et al., 2019), text (Wu et al.,
2021b; Singer et al., 2022; Gafni et al., 2022; Ramesh et al., 2022; Zhang et al., 2021; Zhou et al., 2022)
or other videos (Wang et al., 2018). Alternatively, videos can also be generated unconditionally, e.g., from
white noise (Clark et al., 2019; Saito et al., 2020; Yu et al., 2022). This survey focuses on conditional video
generation, where one conditions the generation of future frames on a context of past frames.

Conditional video prediction is sometimes be treated as a supervised problem, where the focus is often on
error metrics such as PSNR and SSIM (Lotter et al., 2017a; Byeon et al., 2018; Finn et al., 2016). Early
works leverage deterministic methods to predict the most likely next-frames (Srivastava et al., 2015; Walker
et al., 2015; Villegas et al., 2017; Lotter et al., 2017b; Liang et al., 2017; Finn et al., 2016). Generally
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speaking, the downside of supervised approaches is that real-world videos display multi-modal behavior, i.e.,
the future is not uniquely predictable from the past (e.g., a traffic light may switch from yellow to red or
green, a new object may or may not enter the scene etc). Treating video prediction as a supervised problem
can therefore lead to mode averaging, perceived as blurriness.

Most recent methods focus on stochastic generation using deep generative models. In contrast to learning
the average video dynamics, these methods try to match the conditional distribution of future frames given
the past, typically by minimizing a divergence measure (as in GANs) or by optimizing a variational bound
to a model’s log likelihood (as in VAEs). Consequently, the evaluation has shifted to held-out likelihoods or
perceptual metrics, such as FID or LPIPS. A large body of video generation research relies on variational
deep sequential latent variable models (Babaeizadeh et al., 2018; Li & Mandt, 2018; Kumar et al., 2019;
Unterthiner et al., 2018; Clark et al., 2019; Villegas et al., 2019; Babaeizadeh et al., 2021; Villegas et al.,
2018; Yan et al., 2021; Rakhimov et al., 2020; Lee et al., 2021; Akan et al., 2021), to name a few. These works
often draw on ealier works for modeling stochastic dynamics, e.g, Bayer & Osendorfer (2014); Chung et al.
(2015), who included latent variables into recurrent neural networks. Later work (Denton & Fergus, 2018)
extended the sequential VAE by incorporating more expressive priors conditioned on a longer frame context.
IVRNN (Castrejon et al., 2019) further enhanced the generation quality by working with a hierarchy of latent
variables, which to our knowledge is currently the best end-to-end trained sequential VAE model that can
be further refined by greedy fine-tuning (Wu et al., 2021a). Normalizing flow-based models for video have
been proposed while typically suffering from high demands on memory and compute (Kumar et al., 2019).
Some works (Zhao et al., 2018; Franceschi et al., 2020; Marino, 2021; Marino et al., 2021) explored the use
of residuals for improving video generation in sequential VAEs but did not achieve state of the art results.

Overall, the downside of VAE-based models is that they are trained to reconstruct the data. Blau & Michaeli
(2018) theoretically showed that generative models are typically in conflict between data reconstruction tasks,
and achieving a high-degree of realism (defined as matching the target distribution unconditionally, without
artifacts). This suggests that VAEs may not be the final answer when it comes to video prediction.

Another line of sequential models rely on GANs (Vondrick et al., 2016b; Aigner & Körner, 2018; Kwon
& Park, 2019; Yu et al., 2022; Tulyakov et al., 2018; Gui et al., 2021), which–at inference time–can be
either deterministic and stochastic. In contrast to VAE-based models, these models tend to show fewer
blurry artifacts. A downside of GANs is that that their loss function is mode-seeking (as opposed to mass
covering), meaning that the data distribution is not covered at sufficient breadth, reflected in their typically
worse performance in probabilistic distribution matching and forecasting metrics.

4.2 Diffusion Probabilistic Models

DDPMs have recently shown impressive performance on high-fidelity image generation. Sohl-Dickstein et al.
(2015) first introduced and motivated this model class by drawing on a non-equilibrium thermodynamic
perspective. Song & Ermon (2019) proposed a single-network model for score estimation, using annealed
Langevin dynamics for sampling. Furthermore, Song et al. (2021c) used stochastic differential equations
(related to diffusion processes) to train a network to transform random noise into the data distribution.

DDPM by Ho et al. (2020) is the first instance of a diffusion model scalable to high-resolution images.
This work also showed the equivalence of DDPM and denoising score-matching methods described above.
Subsequent work includes extensions of these models to image super-resolution (Saharia et al., 2021) or
hybridizing these models with VAEs (Pandey et al., 2022). Apart from the traditional computer vision
tasks, diffusion models were proven to be effective in audio synthesis (Chen et al., 2021; Kong et al., 2021),
while Luo & Hu (2021) hybridized normalizing flows and diffusion model to generative 3D point cloud
samples.

To the best of our knowledge, TimeGrad (Rasul et al., 2021) is the first sequential diffusion model for
time-series forecasting. Their architecture was not designed for video but for traditional lower-dimensional
correlated time-series datasets. Two concurrent preprints also study a video diffusion model (Ho et al., 2022;
Voleti et al., 2022). Both works are based on alternative architectures and focuses primarily on perceptual
metrics.
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We will extend this survey in the camera-ready version.

4.3 Neural Video Compression Models

Video compression models typically employ frame prediction methods optimized for minimizing code length
and distortion. In recent years, sequential generative models were proven to be effective on video compression
tasks (Han et al., 2019; Yang et al., 2020; Agustsson et al., 2020; Yang et al., 2021a; Lu et al., 2019). Some of
these models show impressive rate-distortion performance with hierarchical structures that separately encode
the prediction and error residual. While compression models have different goals than generative models,
both benefit from predictive sequential priors (Yang et al., 2021b). Note, however, that these models are
ill-suited for generation since compression models typically have a small spatio-temporal context and are
constructed to preserve local information, rather than to generalize (Yang et al., 2022).

5 Discussion

We proposed “Residual Video Diffusion": a new model for stochastic video generation based on denoising
diffusion probabilistic models. Our approach uses a denoising process, conditioned on the context vector of
a convolutional RNN, to generate a residual to a deterministic next-frame prediction. We showed that such
residual prediction yields better results than directly predicting the next frame.

To benchmark our approach, we studied a variety of datasets of different degrees of complexity and pixel res-
olution, including Cityscape and a physics simulation dataset of turbulent flow. We compared our approach
against two state-of-the-art VAE and three GAN baselines in terms of both perceptual and probabilistic fore-
casting metrics. Our method leads to a new state of the art in perceptual quality while being competitive
with or better than state-of-the-art hierarchical VAE and GAN baselines in terms of probabilistic forecasting.
Our results provide several promising directions and could improve world model-based RL approaches as
well as neural video codecs.

Limitations The autoregressive setup of the proposed model allows conditional generation with at least one
context frame pre-selected from the test dataset. In order to achieve unconditional generation of a complete
video sequence, we need an auxiliary image generative model to sample the initial context frames. It’s also
worth mentioning that we only conduct the experiments on single-domain datasets with monotonic contents
(e.g. Cityscape dataset only contains traffic video recorded by a camera installed in the front of the car),
as training a large model for multi-domain datasets like Kinetics (Smaira et al., 2020) is demanding for our
limited computing resources. Finally, diffusion probabilistic models tend to be slow in training which could
be accelerated by incorporating DDIM sampling (Song et al., 2021a) or model distillation (Salimans & Ho,
2022).

Potential Negative Impacts Just as other generative models, video generation models pose the danger
of being misused for generating deepfakes, running the risk of being used for spreading misinformation.
Note, however, that a probabilistic video prediction model could also be used for anomaly detection (scoring
anomalies by likelihood) and hence may help to detect such forgery.
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A About CRPS

CRPS measures the agreement of a cumulative distribution function (CDF) F with an observation x,
CRPS(F, x) =

∫
R(F (z) − I{x ≤ z})2 dz, where I is the indicator function. In the context of our evalua-

tion task, F is the CDF of a single pixel within a single future frame assigned by the generative model.
CRPS measures how well this distribution matches the empirical CDF of the data, approximated by a single
observed sample. The involved integral can be well approximated by a finite sum since we are dealing with
standard 8-bit frames. We approximate F by an empirical CDF F̂ (z) = 1

S

∑S
s=1 I{Xs ≤ z}; we stress that

this does not require a likelihood model but only a set of S stochastically generated samples Xs ∼ F from
the model, enabling comparisons across methods.

B Architecture

Our architecture extends the previously proposed DDPM Ho et al. (2020) architecture to a temporally
conditioned version. Figures 5 and 6 show the design of the proposed denoising and transform modules.
Before describing these figures, we list important definitions and parameter choices below (see also Table 3
for more details). Codes are available at: https://anonymous.4open.science/r/RVDC1FC

• Channel Dim refers to the channel dimension of all the components in the first downsampling layer
of the U-Net Ronneberger et al. (2015) style structure used in our approach.

• Denoising/Transform Multipliers are the channel dimension multipliers for subsequent downsam-
pling layers (including the first layer) in the denoising/transform modules. The upsampling layer
multipliers follow the reverse sequence.

• Each ResBlock He et al. (2016) leverages a standard implementation of the ResNet block with 3 × 3
kernel, LeakyReLU activation and Group Normalization.

• All ConvGRU Ballas et al. (2016) use a 3 × 3 kernel to deal with the temporal information.

• Each LinearAttention module involves 4 attention heads, each involving 16 dimensions.

• To condition our architecture on the denoising step n, we use positional encodings to encode n and
add this encoding to the ResBlocks (as in Figure 5).

• The Upsample / Downsample components in Figures 5 & 6 involve Deconvolutional / Convolutional
networks that spatially scale the feature map with scaling factors 2 and 1/2, respectively.

Figure 5a shows the overall U-Net style architecture that has been adopted for denoising module. It predicts
the noise information from the noisy residual (flowing through the blue arrows) at an arbitrary nth step
(note that we perform a total of N = 1600 steps in our setup), conditioned on all the past context frames
(flowing through the green arrows). The figure shows a low-resolution setting, where the number of down-
sampling and upsampling layers has been set to Ldenoise = 4. Skip concatenations (shown as red arrows) are
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performed between the Linear Attention of downsampling layer and first ResBlock of the corresponding
upsampling layer as detailed in Figure 5b. Context conditioning is provided by a ConvGRU block within the
downsampling layers that generates a context which is concatenated along the residual processing stream
in the second ResBlock module. Additionally, each ResBlock module in either layers receives a positional
encoding indicating the denoising step.

Figure 6a shows the U-Net style architecture that has been adopted for the transform module with the number
of downsampling and upsampling layers Ltransform = 4 in the low-resolution setting. Skip concatenations
(shown as red arrows) are performed between the ConvGRU of downsampling layer and first ResBlock of the
corresponding upsampling layer as detailed in Figure 6b.

Video Resolutions Channel Dim Denoising Multipliers Transform Multipliers
64×64 48 1,2,4,8 (Ldenoise = 4) 1,2,2,4 (Ltransform = 4)
128×128 64 1,1,2,2,4,4 (Ldenoise = 6) 1,2,3,4 (Ltransform = 4)

Table 3: Configuration Table, see Section B for definitions.

(a) Overview figure of the autoregressive denoising module using a U-net inspired architecture with skip-connections.
We focus on the example of Ldenoise = 4 downsampling and upsampling layers. Each of these layers, DD and DU,
are explained in Figure b below. All DD and DU layers are furthermore conditioned on a positional encoding (PE)
of the denoising step n.

(b) Downsampling/Upsampling layer design for the autoregressive denoising module. Each arrow corresponds to the
arrows with the same color in Figure (a). As in Figure (a), each residual block is conditioned on a positional encoding
(PE) of the denoising step n.

Figure 5: Autoregressive denoising module.
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(a) Overview figure of the autoregressive transform module, predicting the mean next frame µt. We use a U-net
inspired architecture with an example size of Ltransform = 4 upsampling and downsampling steps. Each arrow
corresponds to the arrows with the same color in Figure (b). TD and TU layers are elaborated in Figure (b).

(b) Downsample/upsample layer design for autoregressive transform module. Each arrow corresponds to the arrows
with the same color in Figure (a).

Figure 6: Autoregressive transform module for predicting the next frame µt.

C Deriving the Optimization Objective

The following derivation closely follows Ho et al. Ho et al. (2020) to derive the variational lower bound
objective for our sequential generative model.

As discussed in the main paper, let x0:T denote observed frames, and y1:T
0:N the variables associated with the

diffusion process. Among them, only y1:T
1:N are the latent variables, while y1:T

0 are the the observed scaled
residuals, given by yt

0 = xt−µϕ(x<t)
σ for t = 1, ..., T . The variational bound is as follows:

L = Ex∼D

T∑
t=1

Eyt
1..N

∼q(·|yt
0)[− log pθ(yt

0..N |x<t)
q(yt

1..N |yt
0, x<t) ]

= ED

T∑
t=1

Eq[− log p(yt
N )

q(yt
N |x≤t) −

N∑
n>1

log
pθ(yt

n−1|yt
n, x<t)

q(yt
n−1|yt

n, x≤t)

− log pθ(yt
0|yt

1, x<t)].

(10)

The first term in Eq. 10, − log p(yt
N )

q(yt
N

|x≤t) , tries to match the q(yt
N |x≤t) to the prior p(yt

N ) = N (0, I). The
prior has a fixed variance and is centered around zero, while q(yt

N |x≤t) = N (
√

ᾱnyt
0, (1 − ᾱn)I). Because

the variance of q is also fixed, the only effect of the the first term is to pull
√

ᾱnyt
0 towards zero. However,

in practice, ᾱn =
∏N

i=0(1 − βi) ≈ 0, and hence the effect of this term is very small. For simplicity, therefore,
we drop it.
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To understand the third term in Eq. 10, we simplify

− log pθ(yt
0|yt

1, x<t)

= 1
2σγ1

||xt − µ(x<t) − σMθ(yt
1, x<t, 1)||2 + const.,

(11)

Eq. 11 suggests that the third term matches the diffusion model’s output to the frame residual, which is
also a special case of Lmid we elaborate below.

Deriving a parameterization for the second term of Eq. 10, Lmid := −
∑N

n>1 log pθ(yt
n−1|yt

n,x<t)
q(yt

n−1|yt
n,x≤t) , we recognize

that it is a KL divergence between two Gaussians with fixed variances:

q(yt
n−1|yt

n, x≤t) = q(yt
n−1|yt

n, yt
0) = N (yt

n−1; M(yt
n, yt

0), γnI), (12)
pθ(yt

n−1|yt
n, x<t) = N (yt

n−1; Mθ(yt
n, x<t, n), γnI). (13)

We define M(yt
n, y0

n) =
√

ᾱn−1βn

1−ᾱn
yt

0 +
√

1−βn(1−ᾱn−1)
1−ᾱn

yt
n. The KL divergence can therefore be simplified as

the L2 distance between the means of these two Gaussians:

Lmid
n = 1

2γn
||M(yt

n, y0
n) − Mθ(yt

n, x<t, n)||2 (14)

As yt
n always has a closed form when yt

0 is given: yt
n =

√
ᾱnyt

0 +
√

1 − ᾱnϵ (See Section 3.1), we parameterize
Eq 14 to the following form:

Lmid
n = 1

2γn
|| 1√

1 − βn

(yt
n − βn√

1 − ᾱn
ϵ) − Mθ(yt

n, x<t, n)||2. (15)

It becomes apparent that Mθ is trying to predict 1√
1−βn

(yt
n − βn√

1−ᾱn
ϵ). Equivalently, we can therefore

predict ϵ. To this end, we replace the parameterization Mθ by the following parameterization involving fθ:

Lmid
n

= 1
2γn

|| 1√
1 − βn

(yt
n − βn√

1 − ᾱn
ϵ)

− 1√
1 − βn

(yt
n − βn√

1 − ᾱn
fθ(yt

n, x<t, n))||2
(16)

The resulting stochastic objective can be simplified by dropping all untrainable parameters, as suggested in
Ho et al. (2020). As a result, one obtains the simplified objective

Lmid
n ≡ ||ϵ − fθ(yt

n(ϕ), n, x<t)||2, (17)

which is the denoising score matching objective revealed in Eq. 9 of our paper.

D Additional Generated Samples

In this section, we present some qualitative results from our study for some additional datasets apart from
CityScape. More specifically, we present some examples from our Simulation data, BAIR Robot Pushing data
and KTH Actions data. In the following figures, the top row consists of ground truth frames, both contextual
and predictive, while the subsequent rows are the generated frames from our method and some other VAE
and GAN baselines. It is quite evident that our our method and IVRNN are the strongest contenders.
Perceptually, the FVD metric indicates that we outperform on every dataset, whereas statistically, the
CRPS metric shows our top performance on high-resolution datasets and a competitive performance against
IVRNN on the other two datasets.
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Figure 7: Prediction Quality for Simulation data. Top row indicates the ground truth, wherein we feed 4
frames as context (from t = 0 to t = 3) and predict the next 16 frames (from t = 4 to t = 19). This is a
high resolution dataset (128 × 128) which we generated using a Lattice Boltzmann Solver. It simulates the
von Kármán vortex street using Navier-Stokes equations. A fluid (with pre-specified viscosity) flows through
a 2D plane interacting with a circular obstacle placed at the center left. This leads to the formation of a
repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for
the unsteady separation of flow of a fluid around blunt bodies. Colors indicate the vorticity of the solution
to the simulation.
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Figure 8: Prediction Quality for BAIR Robot Pushing. As seen before, the top row indicates the ground
truth, wherein we feed 4 frames as context (from t = 0 to t = 3) and predict the next 16 frames (from
t = 4 to t = 19). This is a low resolution dataset (64 × 64) that captures the motion of a robotic hand as it
manipulates multiple objects. Temporal consistency and occlusion handling are some of the big challenges
for this dataset.
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Figure 9: Prediction Quality for KTH Actions. As seen before, the top row indicates the ground truth,
wherein we feed 4 frames as context (from t = 0 to t = 3), but unlike other datasets, we only predict the
next 12 frames (from t = 4 to t = 15).
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