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ABSTRACT

Transformer-based methods have made significant strides in time series forecast-
ing tasks in recent years. However, we observe underfitting in numerous samples,
e.g., pattern shifts or excessive deviation in extreme value regions, when testing
the transform-based model that converges on the training set. Through the pro-
posed spectral analysis of adjacent embedding sequences, we identify a frequency
collapse issue in the embedding features generated by the top layer of the trans-
former backbone. To address this, we propose the Post-Embedding ReMapping
(PErM) strategy that improves the frequency-domain representation of embed-
dings using fixed non-linear functions. Both two kinds of PErM functions that we
insert into the model can effectively resolve the frequency collapse issue and lead
to significant improvements in prediction performance. Experimental results show
that our method outperforms state-of-the-art algorithms across multiple datasets.
We will release our code after the review phase.

1 INTRODUCTION

Time series forecasting is a critical task across various real-world fields, including but not limited
to finance, healthcare, weather, and supply chain management. Accurate time series forecasting
allows organizations to make informed decisions, optimize processes, and anticipate future trends,
making it a valuable tool for strategic planning and resource allocation. In recent years, with the
rapid advancement of deep learning, an increasing number of learning-based time series forecasting
methods have emerged (Zeng et al, |2023; Wang et al.} |2024a} Xu et al.| [2024b). In particular, fol-
lowing the remarkable success of transformer (Vaswani et al., 2017) in the field of natural language
processing (Brown et all [2020), a series of efforts have been made to adapt transformers more
effectively for time series forecasting tasks (Wu et al., |2021; [Nie et al.| [2023; [Liu et al., [ 2024b).

However, when testing a converged transformer model adapted for —— Ground Truth
time series tasks, we still observe significant deviations between the Pt W
predicted values and the patterns of the original time series, even in \/\/\/\/ n\ /L,/ N
segments with clear periodic characteristics, and this deviation is par- Vo

ticularly noticeable in the fitting of extreme value regions as shown in RS
Fig.|l} Given the rapid signal variations in these regions, we hypothe-

size that these underfitting phenomena are related to the loss of certain - Fjgyre 1: Example of un-
high-frequency signals in the embeddings generated by the model. derfitting.

Unfortunately, it is unreasonable to directly apply time-frequency

analysis methods, such as spectral analysis, to embeddings of one

time series sample. The model’s forward process disrupts the internal temporal structure of the
samples, thus the temporal information within each embedding is disordered. This means that per-
forming spectral analysis directly on the embeddings is meaningless. In time series tasks, we observe
that the sliding window sampling method allows the sample sequence to directly reflect the internal
temporal structure of each sample. Thanks to this finding, we propose a spectral analysis method
based on adjacent embedding sequences, and we further prove that the absence of high-frequency
signals in the embedding sequence directly leads to the loss of high-frequency signals in the predic-
tion target, which will result in underfitting.
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Figure 2: PErM helps to alleviate underfitting by enhancing frequencies in Embedding Sequence,
thus improving the model’s prediction performance.

Through our analysis, we confirm that training solely based on transformers can lead to a lack of
high-frequency signals in the embeddings, which we refer to as frequency collapse. To address this
issue, we propose the Post-Embedding reMapping (PErM) strategy. We introduce a pre-defined non-
linear remapping layer between the top layer of the transformer backbone and the model’s prediction
head as shown in Fig.[2] This layer employs a non-linear mapping function to project high-frequency
features from the original signals into a new frequency domain, while also re-integrating information
within the embeddings. As the high-frequency features can be mapped to some lower freqencies in
the new domain, this helps the model to capture high-frequency features more easily. Experiments
show that using various PErM functions effectively alleviates the frequency collapse phenomenon
and improves the final prediction performance.

In summary, we make the following contributions:
* We propose a framework for embedding-level spectral analysis using adjacent embedding

sequences, and validate that the frequency collapse in the embedding sequence can lead to
underfitting.

* We propose the Post-Embedding reMapping strategy to alleviate the issue of frequency
collapse that arises during the training of the transformer on time series forecasting tasks,
thereby improving the model’s prediction accuracy.

» Compared with the state-of-the-art time series forecasters, our PErMformer achieves com-
petitive performance across multiple time series forecasting datasets.

2 PRELIMINARIES AND RELATED WORKS

2.1 TIME SERIES FORECASTING TASKS

Given historical observations x1,xs,--- ,x; with ¢ time steps, the forecasting task is to predict
the values for the next h time steps. In practice, we use a sliding window of length n to gen-
erate historical observation samples for forecasters. These samples are also called lookback win-

. . . T .
dows. Consider a time series: X = [z1,%2,%3, - ,%;, -+, 27| , for each lookback window
T .. .
Xi = [Timn+1, Timnt2, -, 25 sampled from X, the prediction target is the data values for the
. . T
upcoming h time steps V; = [Ti41, Tit2, " » Tith)

2.2 RELATED WORKS

Transformer-based Forecasters. Numerous transformer-based time series forecasting models have
emerged in recent years. PatchTST (Nie et al., [2023) introduced a standard paradigm for applying
transformer models to time series forecasting, while some other methods like Crossformer (Zhang &
Yanl|2023)) and iTransformer (Liu et al.,[2024Db) tried to modify the architectures of the vanilla model
to improve performance. Some transformer-based time series foundation models that emphasize
zero-shot capabilities have also been proposed during the past year (Das et al., 2023} Liu et al.,
2024c; |Goswami et al.| [2024).

Fourier Feature Mapping. Rahimi & Recht| (2007) mapped the input data to a low-dimensional
feature space using the Fourier transform to accelerate the training of kernel machines. Tancik et al.
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(2020) applied this method in the image domain to enhance image resolution and demonstrated
through experiments that this mapping function transforms the Neural Tangent Kernel into a station-
ary kernel in terms of effectiveness.

3 SPECTRAL ANALYSIS FROM THE PERSPECTIVE OF ADJACENT
EMBEDDING SEQUENCE

Previous analyses of the representational capabilities of time series models have often focused on the
per-sample level, which involves examining and visualizing the structure of the embedding feature
generated from a single sample. However, consider the mapping function fy : X — £ given by the
neural networks parameterized by 6, the mapped embedding £ do not necessarily preserve the order
of features within the sample X'. Due to the disruption of the positional relationships of the raw time
series values, the embedding can hardly retain the understandable temporal structures. Thus it’s
challenging to assess whether the mapping function fy can effectively represent the characteristics
of the original time series, such as periodicity and trends.

Fortunately, we notice a notable characteristic of time series tasks is the strong correlation between
adjacent samples, which is different from other tasks. We concatenate consecutive samples to gen-
erate the adjacent sample sequence Xs.4:

£ Ti41 te Titj
Tit1 Ti4+2 o T
)(seq,;d = [XiaXi+1,"' ;Xi—&-j] = . . (1)
Litn Litld+n - Titjtn

It can be observed that this sample sequence inherits the characteristics of the original time
series along the temporal dimension, as each row of the sequence (highlighted in red) is one
subset of the raw time series (along the direction highlighted in blue). According to this obser-
vation, we consider analyzing the adjacent embedding sequence Eseq, ; = [EisEit1, -+, ity
generated from the adjacent sample sequence Xy, ; by fo. Given that the temporal struc-
ture of the sample sequence is equivalent to that of the original time series segment, and that
the mapping from the sample sequence to the embedding sequence preserves the relative posi-
tional relationships over time, we can investigate the temporal variations of each feature within
the embedding sequence. Specifically, for the k-th feature, we can perform spectral analy-
sis on Ejeqi’j to obtain its energy distribution across different frequencies, thereby determin-
ing whether the mapping fy on this dimension can capture periodic correlations, and if so,
whether it captures high-frequency or low-frequency components. This analysis framework,
as shown in Fig. helps to provide insights into the model’s capacity to effectively repre-
sent the time-frequency information inherent in the original sequence in an interpretable manner.

From the perspective of adjacent embedding se-
quence, the k-th feature in £ can be represented
by the stochastic process £¥(t), and &; is the
collection of the samples from all stochastic

Spectrum Analysis processes. We conduct a preliminary explo-
Per-sample ' i ration of the spectral relationship between &;
Embeeding &; Adjacent Embedding 5 the corresponding prediction target ;.

Sequence Eseq”.

To simplify the problem, suppose that all &(t)

. ) ) are stationary stochastic processes and uncorre-
Figure 3: Per-sample Embedding Analysis v.s. |ated with each other, and &; is mapped to ); via
Adjacent Embedding Sequence Analysis. The 5 known deterministic matrix W (the predic-
temporal structure in per-sample embedding is  tjon head). We prove that if the stochastic pro-
disrupted, while the adjacent embedding sequence  cegses where & is sampled lack high-frequency
reserves the temporal structure. information, the theoretical upper limit of the
high-frequency information of ); will decrease.
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Given the stochastic processes )*(t) mapped
from £¥(t) by W, consider the power spectral density Sy (w) of Y¥(¢) at frequency w, we have:

2

Syr(w) = lim 2

1 T ,
Phm ﬁIE ;wk’l /_TS (t) exp(—jwt)dt

Since each stochastic processes in £(t) are uncorrelated with each other, we have:

n 1 T T
Sy (w) = Zwil {TEIEOO o /T/T Rei(t — s) exp(—jw(t — s))dtds} 3)
=1 -TJ-

where Rg:(-) denotes the autocorrelation function of the stationary stochastic process £'(t). Let
T =t — s, and we further get:
n 400 n
Syr(w) = wiz/ Rei(7) exp(—jwr)dr = > wi 1 Ser (w) 4
=1 - =1
where Sgi(w) represents the power spectral density of the stochastic process signal £!(t) at fre-
quency w. The detailed derivation process is listed in Appendix [A] This proves that the spectral
density of V¥ at frequency w is a linear combination of the spectral densities of each £' at frequency
w. Since the sample sequence exhibits the same temporal structure in both = and y dimensions, we
can consider )); as a sequence sampled from J* (¢). Thus we can conclude that if the stochastic pro-
cess corresponding to the embedding sequence s, ; does not contain high-frequency information,

then the ); obtained by linearly transforming the embeddings will also not contain high-frequency
information.

4 UNDERFITTING AND FREQUENCY COLLAPSE

We observe that when training a time series model di-
rectly on the Transformer backbone, the model appears

to exhibit underfitting when handling samples with rich Lo
detailed features. As shown in Fig. 4] the trend of the o
curve changed greatly from timestamp 80 to timestamp .
120, where the model performs poorly. To further in- =
vestigate, we extract the embeddings given by the top
transformer block before the model’s prediction head and
conduct spectral analysis on the adjacent embedding se- 0 w0 @ s 10
quence around this sample. Via Discrete Fourier Trans-
form (DFT), each zero-centered feature dimension in the
embedding sequence is mapped to the frequency domain.
We then sort the features in descending order based on
their maximum amplitude in the frequency domain, and
finally obtain the feature spectrogram of this sequence ([5a). We also visualize the spectrogram
obtained from the union sequence of the corresponding prediction targets through DFT ([5b).

Figure 4: Example of underfitting when
employing a converged model.

Comparing two spectrograms, we can observe that the original sequence exhibits rich high-
frequency details. Even at frequencies above 50, several frequencies also show significantly higher
amplitudes than others, while in the spectrogram of the embedding sequence, there is an absence
of notable amplitudes at the corresponding frequencies. [Rahaman et al.|(2019b)) found the spectral
bias phenomenon that neural networks favor the low-frequency information during the training pro-
cess. However, in the context of time series forecasting, a converged model appears to excessively
overlook the modeling of high-frequency features. As a result, the embedding sequence contains
little high-frequency information which is crucial for accurately fitting autoregressive values. Ac-
cording to Sec. [3] this eventually leads to the loss of high-frequency components in the prediction
series, thereby causing several underfitting samples. We refer to this phenomenon as frequency
collapse.
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Figure 5: Two spectrograms corresponding to the example in Fig.

Empirical Study. We experiment to empirically demonstrate how frequency collapse in the embed-
ding sequence impacts the final prediction results. Within each test iteration, we apply a low-pass
filter (20% cutoff frequency) to the embedding sequence generated by PErMformer and then gen-
erate the final predictions based on the filtered embeddings. As shown in Fig. [6] we visualize the
prediction results before and after cutting off frequency. By comparison, we observe that when the
embeddings lack high-frequency information, the resulting predictions exhibit significant underfit-
ting. The predicted sequence shows a noticeable pattern shift from the original sequence in several
areas (around time point 175), and the model’s ability to fit extreme value is markedly reduced
(around time points 100 and 125).

Predict Window _ Predict Window
—— Ground Truth ,’( ‘\‘ —— Ground Truth

—

Cutoff the high-frequency signals
of the embedding sequence

100 125 150 175 100 125 150 175

Figure 6: One sample on ECL dataset. The absence of high-frequency information in the embedding
sequences leads to a loss of detailed features in the predicted values.

5 METHODS

In this section, we introduce the base model of our work and the post-embedding remapping strategy
which helps to solve the frequency collapse problem. The architecture of our work is presented in

Fig.

5.1 GENERAL TIME SERIES TRANSFORMER MODEL

In the processing of time series features, we adopt several well-known and empirically validated
strategies specifically designed for time series Transformers. Meanwhile, the encoder in our model
employs a pure Transformer backbone architecture. We will introduce these processing strategies
and the backbone architecture in detail:

Channel Independence (CI). The Channel Independence strategy proposed by |[Nie et al.| (2023)
splits the multi-dimensional time series data into multiple one-dimensional sequences, which are
then fed into the model for training separately. This approach decouples the model structure from
the number of time series dimensions, enabling the model to simultaneously utilize time series
data from datasets with varying dimensionalities for training, thereby providing a consistent data
standardization for building time series foundation models.
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Figure 7: The architecture of PErMformer. @ The post-embedding reMapping (PErM) layer is in-
troduced to alleviate the frequency collapse issue in the embedding sequence. @ The data processing
follows the current mainstream foundation model’s data processing framework to validate the effec-
tiveness of the PErM strategy when facing diverse data distributions. ® The network structure of
the Transformer backbone.

Reversible Instance Normalization (IN & RevIN). We employ the Reversible Instance Normaliza-
tion (RevIN) strategy (|Kim et al.|(2022)) in our base model. Specifically, for each one-dimensional
time series sample, we normalize the sample before feeding it into the network and then denormalize
the model output sequences (prediction targets). This helps to suppress non-stationary information
in the intermediate layers, thereby mitigating the impact of data bias on the model’s performance.

Patching. We segment each time series sample into multiple patches, with each patch corresponding
to a token, and input these token sequences into the model. In contrast to treating each data point as
a token, this approach not only effectively enhances the model’s performance but also significantly
reduces the inference time due to the reduction in the token count by a factor of the patch length.

Transformer Backbone. As the field of general pre-trained transformers continues to evolve, the
network architecture of transformer blocks has also been undergoing continuous refinement. Sev-
eral language models, including LLaMA (Touvron et al., [2023)), Mistral (Jiang et al. 2023)), and
Gemma (Team et al [2024), have introduced improvements over traditional structures. We believe
that the rationale behind these architectural enhancements is applicable to general tasks. Conse-
quently, we choose the latest Gemma transformer block as our backbone. This block employs the
pre-Norm strategy and enhances the computational efficiency of attention through a matrix merging
mechanism.

Since time series data inherently exhibits autocorrelation, employing positional embedding may
disrupt this autocorrelation. Therefore, we abandon the Positional Embedding layer and remove the
Rotary Position Embedding (RoPE) module from the selected transformer block.

5.2 POST-EMBEDDING REMAPPING

The key point to address the above frequency collapse issues is guiding the model to enrich the
embeddings with high-frequency representations that are correlated with the original time series. To
this end, we propose the Post-Embedding reMapping (PErM) strategy. Specifically, we introduce a
non-trainable nonlinear mapping function §(&) between the transformer encoder and the prediction
head. This function can alleviate frequency collapse in embeddings by mapping the challenging
learning objectives that contain high-frequency information into a combination of easier-to-learn
low-frequency learning objectives during the training process.

We explore two kinds of mapping functions under the PErM strategy:
Random Fourier Feature Mapping (RFF). In this case (Fig. [8a), we use

5(E) = [cos(RE), sin(RE)]
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as the mapping layer, where R is a square matrix sampled from a Gaussian Distribution. As the
feature dimension has become twice as large as before, we introduce a trainable matrix W to project
§(&) back to the dimension of £. The random matrix R maps the embeddings into other feature
spaces, introducing diversity and stochasticity into the representations. The sine and cosine functions
make the mapping non-linear. Since [Tancik et al.[(2020) has demonstrated that using the random
Fourier feature is an effective way to augment raw image features, we attempt to explore whether
this mapping can guide the model to more effectively learn high-frequency representations of time
series in the embedding feature space generated at the top layer.

Layers of Pretrained Transformers (LPT). Recent works have shown that leveraging the layers
of pre-trained transformers, especially the layers of large language models, can effectively boost
the performance of non-language tasks, such as image classification and logical reasoning tasks
(|Lu et al.| (2022)); [Dinh et al| (2022); [Pang et al.| (2024)). This might indicate that the parameter
connections within large language models possess a certain degree of generalizable computational
capability. Inspired by this, we view the layer of the large language model’s network as highly
abstract non-linear mapping functions, i.e.,

5(€) = FPTL(E)

where F'PTL denotes Frozen Pretrained Transformer Layer (Fig. [8b). We align the dimension of
the embeddings with the dimension of the pre-trained model’s hidden space through a trainable Pre-
FPTL adapter layer. After passing through the mapping function, we map the embeddings back to
their original dimension using a trainable Post-FPTL adapter layer.

t t
Prediction Head (‘, Prediction Head Q‘,
+

7Y
1

! i Post-Adapter Wyos¢ f‘) i
Dim Adapter W QA) ; 5 i
5(E i Nt ¢ i
Lo 3 [ 5(E") = FPTL(E) ] >
[6(8)=[cos(R8),sin(R8)] ] e | o T
T < i Pre-Adapter Wy, f‘) i
I } T £ i
Transformer m
Transformer
Backaone Backbone A
(a) Random Fourier Feature as map- (b) Pretrained Transformer layer as
ping function. mapping function.

Figure 8: The network structures of the model when adopting the two PErM functions. Parameters
in boxes labeled with flame are trainable during the training process, while those in boxes labeled
with snowflake are frozen (non-trainable).

6 THE EFFECTIVENESS OF PERM STRATEGY.

In this section, we will validate the effectiveness of the PErM strategy through experiments, as well
as evaluate the performance of different PErM strategies and settings.

6.1 SETUPS

Datasets. We adopt seven well-known and publicly available datasets to benchmark long-term
forecasting models, including ECL, ETTh1, ETTh2, ETTml, ETTm2, Traffic, and Weather. All
datasets are divided into training, validation, and test sets with a 7:1:2 ratio. For further information
about the datasets, please refer to Appendix

Model lists. We design three models based on the PErMformer architecture with 12 transformer
blocks in Fig. [/} These models differ only in terms of the PErM strategy employed.
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* PErM-None. The model does not employ any PErM strategy. The embedding given by the Trans-
former block is directly fed into the prediction head.

* PErM-RFF. The model employs random Fourier feature mapping as the PErM function.

* PErM-LPT. The model employs the layer of the pre-trained transformer as the PErM function. By
default, we use the top layer of Gemma-2B as the mapping function.

Task. The prediction task is to predict the next 96 sequence values based on a given lookback
window of length 512. Each model is trained on the Universal dataset D composed of the afore-
mentioned seven datasets in an autoregression manner. Mean Square Error (MSE) is used as the
evaluation metric.

6.2 RESULTS AND ANALYSIS

The prediction results of the three variants are listed in Table [l Compared to models that do not
use the PErM strategy, the two models employing different PErM strategies show significant im-
provements in prediction accuracy across almost all datasets. Specifically, using RFF as the PErM
strategy results in an average reduction of 0.0208 in MSE, while using Gemma-2B top layer as the
PErM strategy leads to an average reduction of 0.0217 in MSE. Additionally, we observe that for
datasets with more pronounced periodic feature variations (ETThl & ETTh2), the use of the PErM
strategy leads to more substantial improvements in performance.

Table 1: Forecasting results of the three models on seven datasets in MSE. The best result is high-
lighted in bold. Imp. denotes the performance improvement comparing with the method without the
PErM strategy (PErM-None).

| ECL | ETThl | ETTh2 | ETTml | ETTm2 | Traffic | Weather
PErM-None | 0.136 | 0360 | 0340 | 0300 | 0.198 | 0377 | 0.171

PErM-RFF | 0.130 | 0320 | 0305 | 0279 | 0.188 | 0361 | 0.153
Imp. 44%1 | 11.1% 1 | 102% 1 | 7.0% 1 | 5.1%1 | 42% 1 | 10.5% 1

PErM-LPT | 0.131 0.317 0.299 0.275 0.191 0.361 0.156
37% 1 | 11.9% 1 | 121% 1 | 83% 1 | 3.5% 1 | 42% 1 | 8.8% T

Imp.

Additionally, we analyze the spectrograms of the adjacent embedding sequences generated by dif-
ferent models in the dataset. Fig. 9] shows the prediction results of the three models on the same
lookback window, along with the corresponding spectrograms of the embedding sequences for that
period. We can observe that compared to the PErM-None method, the two PErM strategies we
designed effectively mitigate the phenomenon of frequency collapse. The spectrograms of the adja-
cent embedding sequences for both strategies exhibit distinct and diverse peaks at high frequencies.
According to the prediction results, the PErM-None method shows significant drift compared to the
original sequence, while the PErM-RFF and PErM-LPT methods more accurately fit the character-
istics of the original curve. More cases can be found in Appendix [H]

We also need to emphasize that the presence of high-frequency information is more important than
the specific distribution characteristics of the high-frequency information. There seems to be no
direct correlation between the specific distribution of high-frequency features and the final perfor-
mance. Although both the PErM-RFF and PErM-LPT methods perform well in prediction, their
embedding sequences exhibit different characteristics in the high-frequency range. This is because
the mapping relationship between the high-frequency features of the embedding sequence and the
prediction target depends on the trainable parameters in the prediction head matrix W.

6.3 EXPLORATION OF SETTINGS FOR PERM

We explore the impact of various settings on the effectiveness of the PErM strategy, including
whether to freeze the parameters in the mapping function or not, and whether post-embedding
remapping or pre-embedding remapping proves to be more effective.
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(a) PErM-None (b) PErtM-RFF (c) PEftM-LPT

Figure 9: The prediction results and the corresponding spectrograms of the embedding sequences of
the three models on the same lookback window on dataset ECL.

Trainable or Non-trainable? We investigate the impact Table 2: Ablation study on settings of
of freezing the parameters of the PErM layer or not on the PErM strategy.
prediction results through experiments. According to the

experimental results (Table EI), on both PErM strategies, Model ‘ Avg. MSE
using non-trainable parameters can achieve better perfor- )
mance than tuning the parameters (PErM-XX-tune). We PErM-RFF ‘ 0.248
infer that the training process might cause the trainable PEfM-RFF-tune |  0.253
mapping function to converge to simpler solutions. Addi-

tionally, we find that directly fine-tuning the pre-trained PreEtM-RFF | 0.260
transformer layer may lead to non-convergence of the re- PErM-LPT ‘ 0.247

sults during the experiments.

. . . PErM-LPT-tune |  0.266
Post-Embedding reMapping or Pre-Embedding

reMapping? We further investigate the relationship PreErM-LPT | 0.252
between the position of the remapping function in

the model and the prediction performance. Different

from post-embedding remapping which adds the mapping layer after the model’s top layer,
pre-embedding remapping adds the mapping layer before the model’s bottom layer, directly
transforming the raw time series features. Experiments show that the PostErM strategy is superior
to the PreErM (PreErM-XX) strategy for time series prediction (Table [2). We speculate that the
high-frequency information produced by PreErM may be lost during the forward process, resulting
in less rich representations compared to those generated by PostErM.

As an extension of the PErM-FPT strategy, we also explore the impact of using different layers
from various large language models as mapping functions. For more details, please refer to the

Appendix [G|

7 COMPARISON WITH THE SOTA METHODS

By default, our proposed method PErMformer denotes the PErM-LPT model mentioned above.

Baselines. We compare our method with several state-of-the-art methods that are designed for long-
term time series forecasting tasks. These baselines include a series of Transformer-based models,
like Informer (Zhou et al., [2021]), Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),
Pyraformer (Liu et al.,|2021), Non-stationary Transformer (Liu et al., 2022)), PatchTST (Nie et al.,
2023)), MICN (Wang et al.,|2023), Crossformer (Zhang & Yan, |[2023), UniTime |Liu et al.| (2024a),
iTransformer (Liu et al.l [2024b), and Time-LLM Jin et al.| (2024). Some other competitive models
are also selected as our baseline. These methods include TimesNet|Wu et al.|(2023)), DLinear (Zeng
et al., 2023), TSMixer (Ekambaram et al., 2023)), FITS (Xu et al., 2024b), and TimeMixer (Wang
et al.,[2024a). More implementation details are listed in Appendix
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Table 3: Performance comparison with nine competitive long-term time series forecasting methods.
The best results are highlighted in red, and the second-best results are highlighted in blue.

Methods PErMformer FITS iTransformer PatchTST UniTime TSMixer TimeMixer DLinear MICN TimesNet
€hods | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.131 0228 | 0.144 0242 | 0.148 0239 | 0.136 0273 | 0.183 0.274 | 0.204 0.308 | 0.156 0.247 | 0.14 0.237 | 0.165 0.276 | 0.168 0.272
192 | 0.149 0.244 | 0.164 0.267 | 0.167 0.258 | 0.153 028 | 0.189 028 | 0.218 0.329 | 0.17 0.261 | 0.154 025 | 0.176 0.288 | 0.187 0.289
336 | 0.166 0263 | 0.222 0339 | 0.178 0271 | 0.204 0.296 | 0.203 0.294 | 0.239  0.35 | 0.187 0.278 | 0.169 0.268 | 0.186 0.297 | 0.203 0.304
720 | 0.218 0312 | 0.3 0403 | 0.209 0.298 | 0.246 0.328 | 0.242 0.325 | 0.272 0.373 | 0.228 0.312 | 0204 03 | 0.208 0.317 | 0.254 0.343

96 | 0317 0371 | 0.334 0376 | 0.337 0.383 | 0.365 0.409 | 0.343 0392 | 0.414 046 | 0331 0.376 | 0.352 0.402 | 0.337 0.396 | 0.347 0.395
192 | 0.356  0.394 | 0.379 0.408 | 0.383 0.412 | 0.409 0.441 | 0.385 0.419 | 0.516 0.531 | 0.374 0.404 | 0.391 0.431 | 0.401 0.447 | 0.401 043
336 | 0.372 0407 | 0.397 0.414 | 0432 0439 | 046 0473 | 042 044 | 0.618 0597 | 0.427 0.431 | 0.398 0.435 | 0.407 0452 | 0.431 0.445
720 | 0.373 0425 | 0.388 0.433 | 0.443 0465 | 0.626 0.559 | 0.415 0.454 | 0.706 0.665 | 0.415 0.438 | 0.461 0.498 | 0.524 0.535 | 0.438 0.464

96 | 0299 035 03 0347 | 031 0354 | 033 0379 | 0297 0.345 | 1.125 0.823 | 0.305 0.351 | 0.299 0.358 | 0.362 0.406 | 0.343 0.371
192 | 0.381 0.396 | 0.374 0.394 | 0.39 0402 | 0.387 0421 | 0.377 0395 | 2.831 1.461 | 0.382 0397 | 0.394 0421 | 0.516 0.492 | 0.404 0.41
336 | 0.416 0.427 | 0401 042 | 0.434 0.437 | 0.451 0.459 | 0.419 0.429 | 2.973 1.5 | 0434 0436 | 0.507 0.493 | 0.603 0.538 | 0.462 0.455
720 | 0403 0435 | 0416 0.437 | 0433 0.446 | 0.548 0.521 | 0.429 0.446 | 2.379 1.293 | 0488 0.476 | 0.911 0.681 | 0.895 0.675 | 0.471 0.473

96 | 0275 0.345 | 0.266 0325 | 0.29 0349 | 0.276 0.332 | 0.326 0.369 | 0.369 0.423 | 0.278 0.339 | 0.261 0.329 | 027 0.346 | 033  0.37
192 1 0323 0375 | 03 0347 | 0.325 0368 | 0.316 0.364 | 0.366 0.39 | 0.393 0.446 | 0.318 0361 | 0.293  0.35 | 0.306 0.373 | 0.372 0.393
336 | 0.336  0.386 | 0.333 0368 | 0.36 0.392 | 0.344 0381 | 0.396 0.411 | 0.455 0.491 | 0.337 0.381 | 0.323 0.368 | 0.352 0.408 | 0.372 0.404
720 | 0432 044 | 0422 0432 | 0425 0431 | 0403 0422 | 0452 0443 | 0.595 0.583 | 0.399 042 | 0.378 0.406 | 0.392 0433 | 046 0453

96 | 0.191 027 | 0.181 0.262 | 0.191 0.272 | 0.188 0.272 | 0.179 0.266 | 0.257 0.361 | 0.183 0.261 | 0.173 0.262 | 0.192 0.285 | 0.19  0.266
192 | 0.25 0313 | 0.244 0301 | 0.264 0318 | 0.254 0317 | 0.246 0.309 | 0.565 0.59 | 0.251 0.305 | 0.247 0.314 | 0.306 0.369 | 0.266 0.313
336 | 0.289 0338 | 0.303 0.343 | 0.328 0.358 | 0.295 0.341 | 0.312 0.35 | 0963 0.751 | 0.311 0348 | 03 0355 | 037 0408 | 0332 0.351
720 | 0.389 0396 | 0.421 0.413 | 0428 0411 | 041 0416 | 0.413 0409 | 2463 1.302 | 0.409 0.402 | 0.512 0.483 | 0.521 0.493 | 0435 0411

96 | 0.361 0256 | 0.411 0281 | 0.392 0.268 | 0.368 0.257 | 0.477 0.309 | 0.531 0.358 | 0.476 0.297 | 0.413 0.287 | 0.522 0.313 | 0.589 0.315
192 | 0.377 0262 | 0423 0.286 | 0.413 0277 | 0.385 0.265 | 0.479 0.31 | 0.563 0.385 | 0.508 0.301 | 0.424 029 | 0.537 0.318 | 0.617 0.326
336 | 0.392 0272 | 0.434 0.291 | 0.425 0.283 | 0.396 0.272 | 0494 0316 | 0.58 0.393 | 0.516 0.308 | 0.438 0.299 | 0.55 0.323 | 0.635 0.338
720 | 0.453 0316 | 0.463 0.308 | 0.458 0.3 | 0439 03 | 0528 0333 | 0.619 0418 | 0.547 0323 | 0.466 0.316 | 0.576 0.334 | 0.659 0.349

96 | 0.156 021 | 0.146 0.198 | 0.178 0.219 | 0.158 0214 | 0.172 0215 | 0.18 0.252 | 0.162 0.208 | 0.174 0.233 | 0.193 025 | 0.169 0.219
192 | 0206 0257 | 0.19 024 | 0226 0.259 | 0.213 0.266 | 0.219 0.255 | 0.218 0.287 | 0.208 0.251 | 0.218 0.278 | 0.24 0.301 | 0.225 0.265
336 | 0262 0296 | 0.242 0279 | 0.282 0.3 | 0.248 0284 | 0.274 0295 | 0.261 0.321 | 0.264 0.293 | 0.263 0.314 | 0.282 0.331 | 0.282 0.304
720 | 0327 0.344 | 0322 0.338 | 0.358 035 | 032 0.338 | 0.352 0.345 | 0.318 0.363 | 0.345 0.346 | 0.332 0374 | 0.35 0.387 | 0.359 0.354
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Evaluation Metrics and Tasks Settings. Following the common practice in most recent time se-
ries forecasting works, we employ Mean Square Error (MSE) and Mean Absolute Error (MAE) as
the evaluation metrics. For each dataset, we compare our method with baselines using four pre-
diction horizons H € {96,192,336,720}. The length of the lookback window L is set to 512 for
PErMformer, while that for the baseline is set according to their settings in the paper. Following the
practice of UniTime, we combine all datasets together to train a unified model and test separately
on each dataset. The dataset setup is widely used for foundation models, and it imposes higher
demands on the model’s fitting and generalization capabilities. This means our method uses only
one set of hyperparameters for all datasets, while most of the baselines specifically choose a set of
hyperparameters for each dataset.

Platform. All experiments are conducted on the server equipped with 12 Intel(R) Xeon(R) Gold
5317 CPUs @ 3.00GHz and 4 NVIDIA GA102 GeForce RTX 3090 GPUs. The operating system is
Ubuntu 22.04 LTS. Each experiment is conducted with one GPU.

Results. Due to the space limitations, we select a few more competitive methods as baselines
in Table 3| and use MSE and MAE as the evaluation metric. The full results of all baselines are
provided in the Appendix [J} Across multiple datasets, the simple transformer backbone equipped
with the PErM strategy outperforms existing state-of-the-art (SOTA) models. The comparisons with
UniTime and PatchTST are particularly noteworthy. As the methods that use the universal dataset
setup, PErMformer outperforms UniTime by an average of 10% across various settings. Structurally,
PatchTST is quite similar to PErM-None. When comparing PErMformer with PatchTST, we can
also observe that the PErM strategy effectively enhances the model’s prediction accuracy.

8 CONCLUSION

Owing to the spectral analysis from the perspective of adjacent embedding sequences, we observe
that the embeddings generated by models trained solely with a transformer backbone exhibit a fre-
quency collapse phenomenon, and we preliminarily demonstrate that this may lead to poor fitting
for certain samples. To address this, we design the Post-Embedding reMapping strategy, introduc-
ing a remapping layer between the top layer of the transformer’s backbone and the prediction head.
This layer re-integrates the spectral representation of the embeddings and make the model easier to
learn the high-frequency information. In future work, we aim to design more flexible and refined
remapping functions to better model the frequency features, and further verify the effectiveness of
this strategy on more time series foundational models trained with larger-scale datasets.
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A DETAILED PROOF OF EQUATION 1-3

Assumption. Suppose that all £(¢) are stationary stochastic processes and uncorrelated with each
other, and &; is mapped to ); via a known deterministic matrix W.

Derivation. Given the stochastic processes J*(¢) mapped from £¥(¢) by W, consider the power
spectral density Sy« (w) of V*(t) at frequency w, according to the definition of the power spectral
density we have:

T—+o0

T
Syr(w) = lim {1]E/ y’“(t)exp(—jwt)dﬂ?} 5)
or ' | o

As each V¥ (t) = Y"1 w1 EL(t), we have:

2

Syr(w) = lim (6)

1
—F
T—4oco | 2T

n T
Zwk:l/ EL(t) exp(—jwt)dt
I=1 -T
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Since each stochastic process in £(t) is uncorrelated with each other, we expand the above equation
and obtain:

n T T o
Syr(w) = Tl_i)r_{_lDO {21T ;wﬁlﬂﬂ (/_T /_T EL()EL(s) exp(—jw(t — s))dtds) } (7)

Using the autocorrelation function Rx (t — s) = E(X (¢) X (s)), we have:

n 1 (T /T
Sy (w) = Zwil {TETOO o /T/T Rei(t — s) exp(—jw(t — s))dtds} (8)
1=1 -TJ-

where Rg:(-) denotes the autocorrelation function of the stationary stochastic process £'(t). Let
T =t — s, and we further get:

n 2T
Sye(w) = 3w, {nglm | a-hra) exp(—jw)dr} ©)

=1 -
n too

= Zwﬁ)l/ Rei (1) exp(—jwT)dT (10)
=1 -

=Y w} e (w) (11)
=1

where Sgi(w) represents the power spectral density of the stochastic process signal £!(t) at fre-
quency w.

B SUPPLEMENTARY INFORMATION ON SPECTRAL ANALYSIS

B.1 LIMITATIONS OF EXISTING SPECTRAL ANALYSIS ON TIME SERIES TASKS

Several recent works have focused on applying spectral analysis to motivate or improve their meth-
ods in time series topic (Fu et al.,|2023;[Zhou et al.| 2022} Xu et al.,|2024b). However, these methods
perform spectral analysis merely on the raw time series to provide more information for the model.
Rather than conducting spectral analysis at the data level (input or output vector), we are
more interested in performing spectral analysis at the embedding level to explore whether the
model can effectively capture the diverse spectral information in the time series, as shown in
Fig.[I0] By jointly analyzing the spectrum at the embedding level and the spectrum at the data level,
we can preliminarily explore whether the model is capable of effectively capturing sufficiently rich
frequency domain details. This can help us better understand the prediction results of the black-box
models. For example, the loss of high-frequency information in the embeddings could result in the
final predictions failing to accurately construct some detailed patterns of the time series.

Input Vector [ VAN /NS x/m'w\\o Previous Works:
[%4, o X, - Xm] Data-centric Analysis

‘ Mapping Function f
Embedding [£1, - & |
Vector
‘ Mapping Function g
o O _~9 Ours:
Do ww Vi o Yal Embedding-centric Analysis

Output Vector

Figure 10: The difference between our approach and existing spectral analysis applied to time series
tasks.
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B.2 CHALLENGES IN EMBEDDING-LEVEL SPECTRAL ANALYSIS

The biggest challenge in implementing embedding-level spectral analysis lies in the fact that, unlike
data-level spectral feature which can be easily captured in one sample, the embedding feature in one
sample has little useful spectral information. After performing operations such as linear transforma-
tions, nonlinear activations, or even self-attention on the original time series sample [z1, - , Zy,],
the generated embedding vectors [eq, - - - , ¢;] are unlikely to retain the periodic information of the
original sequence. This can be easily proved, as for any two-layer neural network, we can con-
struct an embedding that is different but functionally identical by swapping the positions of the
intermediate layer’s nodes and their connection matrices. As illustrated in Fig.[IT} the transformed
embeddings no longer exhibit meaningful spectral information. In other words, per-sample em-
bedding spectral analysis lacks physical significance (i.e., disruption of temporal structure). Thus,
thanks to the unique property in time series forecasting where the input vector and the input vector
sequence share the temporal structure, we can perform the spectral analysis from the perspective of
adjacent embedding sequence proposed in Sec. 3]

Input Vector Embedding Vector Output Vector

o

value
value

0.0

value

0 100 200 300 400 500 0 50 100 150 200 250 0 20 40 60 80
index index index

Figure 11: Per-sample Embedding cannot preserve the temporal structure of the raw time series.

C SUPPLEMENTARY ANALYSIS ON FREQUENCY COLLAPSE

C.1 THEORETICAL AND EMPIRICAL SUPPORT FOR FREQUENCY COLLAPSE

In recent years, several works are dedicated to explore the behavior of deep neural networks (DNN)
in a theoretical or empirical manner, especially under the framework of frequency analysis (Xu et al.,
20244} Molina et all,[2024; [Luo et al 2019} Rahaman et al., 2019a)). They prove the existence of

spectral bias at data-level: a DNN tends to learn a target function from low to high frequencies dur-
ing training, which is also called Frequency Principle (F-principle). Moreover,
theoretically proved that for the final training process of a DNN with parameter 6 and L2 loss func-
tion, consider dividing the MSE loss function L(6) into two parts, the high-frequency part L™ (6)
and low-frequency part L~ (), the proportion of gradients corresponding to high-frequency com-

ponents, %, has a theoretical upper bound, and the proportion of gradients corresponding

to low-frequency components, %, has a theoretical lower bound. This means compared to

low-frequency signals, high-frequency signals are more difficult to learn, which is also confirmed
by some empirical studies (Xu et al.||2024a)). This can shed light on the embedding-level frequency
collapse phenomenon even if the model is more complex and the perspective is not limited to data
level.

C.2 QUANTITATIVE METRIC: HIGH-FREQUENCY INFORMATION ABUNDANCE

To more accurately measure the richness of high-frequency information in the embeddings generated
by the model, we propose a quantitative metric based on adjacent embedding sequence frequency
analysis: High-Frequency Information Abundance (HIA). Given certain model and specific test set,
we test the model in a non-shuffle manner and extract the embedding &; for each sample X, and
concatenating all embedding to generate the adjacent embedding sequence &£,.,. Then we perform

spectral analysis for each sliding window Escq, ,,, With length [ of Es.,. Specifically, assuming the
embedding has K features, for the k-th feature £ feqi .,,» We obtain its spectrum and the amplitude
| X*(w)| corresponding to each frequency w via discrete Fourier transform (DFT).

The high-frequency spectrum F'*[Eq, .., ] is defined as the set of normalized | X (w)| where w > C'
for all K features, with C' representing the cutoff frequency (set to 20% in practice). The High-

15



Under review as a conference paper at ICLR 2025

Frequency Information Abundance of &g, ,,, is defined as the ratio of the 2-Norm of its high-
frequency spectrum and oo-Norm of its high-frequency spectrum:

i . ||F+[£534i,i+l]“2

K ”FJF[ESGQVL',HL]HOO,

and the overall High-Frequency Information Abundance is the average of all adjacent embedding
sequences:

n—I
1 ”F 3€q'i,i+l]||2
HIA(gseq) = I ZHIA(ESGQLHJ) = n — l K Z HF+ ’

=1 Se‘h‘.,i-H]HOO

HIA(SSEQi,i+l) =

where n denotes the length of £, and || - ||, denotes the p-Norm operatlon.

D SUPPLEMENTARY ANALYSIS ON PERM STRATEGY

D.1 THE MECHANISM OF PERM FUNCTION

According to the theoretical support in [C.I] that high-frequency signals are harder to fit, PErM
strategy helps the model to learn the high-fequency information from a low-frequency perspective.
To investigate how the PErM function influences the spectral distribution of embeddings, we con-
structe a stochastic process using sinusoidal functions with multiple frequencies w, random phases
¢, and random amplitudes a: X (t) = Z§:1 a; sin(w;t + ¢;), and apply a simplified PErM func-
tion cos(0.1X (¢)) (a special case of RFF strategy). The spectrums of the stochastic process before
and after the operation are shown in Fig.[I2] According to the case, such a simplified remapping
function can introduce more high frequency components and potentially result in harmonic com-
ponents. Conversely, this implies that high-frequency signals in the final embedding can be rep-
resented by some lower-frequency signals before the PErM layer. According to F-principle, these
lower-frequencies are easier to learn. In this way, the model can eventually model the signals more
easily and precisely. RFF is a manually constructed mapping based on trigonometric functions and
random factors. Since RFF is a more complex mapping, it allows the model to learn more robust
mappings between frequencies from a greater number of channels. LPT function can be seen as a
black-box, high-order non-linear mapping function that obtained from the "World Model” and have
been empirically validated to have certain effects in some domains, thus we make an attempt to
investigate if the mapping can alleviate frequency collapse.

Frequency Spectrum Before Cosine Operation Frequency Spectrum After Cosine Operation
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02 0.001
0.0 0.000

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

Figure 12: Spectrums of the stochastic process before and after the cosine operation.

D.2 MORE EMPIRICAL EVIDENCE FOR THE EFFECTIVENESS OF PERM STRATEGY

We further validate the generality of the PErM strategy. Recent studies have shown that MLP-based
models can achieve comparable or even better results than carefully designed Transformer-based
models in time series forecasting tasks. In addition to verifying the PErM strategy on Transformer-
based models, we explore its effectiveness for MLP-based time series foundation models. We con-
ducte experiments for the MLP-based model under the same data settings as PErMformer, and em-
ploy the RFF mapping function. Since the representation capacity of MLP-based model is limited
and it can converge more easily to optimal values, the results in Table ] show that the PErM strat-
egy also brings significant performance improvements to MLP-based models on those datasets with
higher sample rate (ETTm series and Weather) which might include more high-frequency features.

Based on the quantitative metric proposed in Sec. [C.2] we measure the changes in high-frequency
information in the embeddings of MLP-based and Transformer-based models with and without the
PEM strategy. From Fig.[T3] we can conclude that PErM strategy can effectively enhance the high-
frequency representation in the embedding, which theoretically raise the upper limit of the model’s
ability to capture high-frequency information in the raw time series.
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Table 4: Forecasting results of the three models on seven datasets in MSE with MLP backbone. The
best result is highlighted in bold. Imp. denotes the performance improvement comparing with the
method without the PErM strategy, and - denotes the improvement is not significant.

| ECL | ETThl | ETTh2 | ETTml | ETTm2 | Traffic | Weather
MLP | 0.136 | 0322 | 0296 | 0339 | 0203 | 0377 | 0.176

PErtM-MLP | 0.135 | 0.319 0.293 0.300 0.189 0.375 0.162
11.8% 1 | 6.9% 1 -

Tmp. - - - 8.0% 1

107 ¢ E
= = 102} 1
= Z
& 1072 ¢ E 2

10-3 l . s I

w/o PErM with PErM w/o PErM with PErM
(a) MLP-based backbone. (b) Transformer-based backbone.

Figure 13: HIA of MLP-based and Transformer-based models with and without the PErM strategy.

E DETAILS OF DATASETS

The number of time steps, number of channels, sample rate, and the description of each dataset are
listed in Table@ All datasets are divided into training, validation, and test sets with a 7:1:2 ratio.

Table 5: The detailed information of datasets.

Datasets | Time steps | Channels | Sample rate | Description
ECL (2021) 26304 321 lLhour | Electricity consumption data of 321 clients

ETThl (2021) | 17420 | | Lhour | 7 factors of electricity transformer
ETTh2 (2021) | 17420 | | Llhour | 7 factors of electricity transformer
ETTml (2021) | 69680 | | 15min | 7 factors of electricity transformer
ETTm2 (2021) | 69680 | | 15min | 7 factors of electricity transformer
Traffic (2021) \ 17544 \ 862 \ 1 hour \ Road occupancy rates measured by 862 sensors
Weather (2021) | 52696 | 21 | 10min | 21 meteorological factors

F IMPLEMENTATION DETAILS

F.1 DETAILS OF PERMFORMER AND THE SPECTROGRAM

All three variants PErM-FPT, PErM-RFF, and PErM-None use the same parameter set. Each model
contains 12 transformer blocks. We use the ADAM (Kingma, |2014) optimizer and the learning rate
is set to 2 x 10~4. We use the L2 loss for model optimization. The dropout rate is set to 0.1. The
input series is split into non-overlapped patches whose length is 16, so there are 32 patches for each
sample (the lookback window is 512). For the transformer block, the n_head is set to 8, and the
dimension of the heads are set to 64. The dimension of the hidden state (d_model) is set to 256, thus
the dimension of the embedding sent into the prediction head is patches x d_model = 8192. This
also represents the length of the Feature Index axis in the spectrogram.
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F.2 DETAILS OF THE BASELINES

We reproduced all the results of baselines. Specifically, the code of Time-LLM comes
from https://github.com/KimMeen/Time—-LILM. The codes of DLinear, FEDformer
and Informer come from https://github.com/cure-lab/LTSF-Linear.  Others
come from the TSlib repository (Wang et al| (2024b), https://github.com/thuml/
Time-Series-Library). The configuration of the lookback window follows the setting in
the original paper.

G PERFORMANCE UNDER DIFFERENT LPT SETTINGS

For the PErM-LPT method, we experiment with using different layers from various pre-trained large
language models as the remapping layer. Through our experiments, we find that using the middle and
top layers of large language models tends to yield better results. We hypothesize that this may be due
to the deeper layers of large language models having more abstract semantic extraction capabilities.
Although it is difficult to effectively interpret what the mapping relationships of a specific layer in a
large language model represent, we find that the mapping relationships represented by smaller LLM
may lack a certain degree of generalization (e.g., GPT-2).

PErM-None
Gemma-2b
Gemma-7b
GPT2
Llama3-8b
Llama2-7b

RXER S

. .
bottom middle top
Layer Position

Figure 14: The performance of using different LLM layers as the PErM function.

H MORE COMPARISON OF THE THREE MODELS

We validate the enhancement of high-frequency information by the PErM strategy across multiple
datasets. We visualize several prediction samples and present the spectrograms of their adjacent
embedding sequences as follows.

sty
ey

g5 ¢
M, o
%,
e

(a) PErM-None (b) PErtM-RFF (c) PErtM-LPT

Figure 15: The prediction results and the corresponding spectrograms of the embedding sequences
of the three models on the same lookback window on dataset Traffic.
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Figure 16: The prediction results and the corresponding spectrograms of the embedding sequences
of the three models on the same lookback window on dataset ETThI.

I CASES OF PREDICTION COMPARED WITH SOTA METHODS

We visualize the prediction performance of our method compared to several state-of-the-art methods

across multiple datasets (Fig.[T7] Fig.[I8] Fig.[I9] and Fig. 20).

e

200

(a) PErMformer (b) PatchTST
. A/\ \ A 3 /J\ /
- \ / 5 V\
\M \ \ \ \f \
(c) TimeMixer (d) MICN

Figure 17: Visualization of the prediction on the ECL dataset.

J  FULL RESULTS

The full results that contain all the baselines are listed in Table [f]. Due to computational resource
constraints, we reproduce the performance of the TimeLLM only on the datasets reported in its

original paper (ETT series).
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Ground Truth Ground Truth
2 Predict Window N Predict Window
0 : 0
(a) PErMformer (b) PatchTST
Ground Truth Ground Truth
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0 g 0
(c) TimeMixer (d) MICN
Figure 18: Visualization of the prediction on the Traffic dataset.
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Figure 19: Visualization of the prediction on the ETTh1 dataset.
0.10 = Ground Truth 0.10 = Ground Truth
0.06.
Time Time
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Figure 20: Visualization of the prediction on the Weather dataset.
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Table 6: The full results of all baselines. The best results are highlighted in red, and the second-best results are highlighted in blue. ’-’ denotes that the experimental

result cannot be obtained within the limited time constraint (2 days per GPU).

Method PErMformer FITS iTransformer PatchTST UniTime TSMixer TimeMixer DLinear MICN Crossformer TimesNet TimeLLM Nonstationary FEDformer Pyraformer Autoformer Informer
iethods
MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.131 0.228 | 0.144 0.242 | 0.148 0.239 | 0.136  0.273 | 0.183 0.274 | 0.204 0.308 | 0.156 0.247 | 0.14 0.237 | 0.165 0.276 | 0.151 0.253 | 0.168 0.272 - - 0.169 0.269 | 0.187 0.302 | 0.278 0.374 | 0.21 0.324 | 0.323 0.409
a 192 | 0.149 0.244 | 0.164 0.267 | 0.167 0.258 | 0.153 0.28 | 0.189 0.28 | 0.218 0.329 | 0.17 0.261 | 0.154 025 | 0.176 0.283 | 0.159 0.259 | 0.187 0.289 - - 0.183 0.283 | 0.195 0.31 | 0294 0.389 | 0.225 0.334 | 0.352 0.434
336 | 0166 0263 | 0222 0339 | 0.178 0271 | 0204 0296 | 0203 0.294 | 0239 035 | 0.187 0278 | 0.169 0.268 | 0.186 0.297 | 0.185 0.283 | 0.203 0.304 - - 0.204 0.307 | 0.212 0327 | 0292 0.383 | 0.247 0352 | 0.348 0.432
720 | 0.218 0.312 0.3 0.403 | 0.209 0.298 | 0.246 0328 | 0.242 0.325 | 0.272 0373 | 0.228 0.312 | 0.204 0.3 0.208 0.317 | 0.231 0318 | 0.254 0.343 - - 0219 0318 | 025 0.358 | 0.297 0.386 | 0.277 0377 | 0.405 0.463
96 | 0317 0.371 | 0.334 0.376 | 0.337 0.383 | 0.365 0.409 | 0.343 0.392 | 0.414 046 | 0.331 0.376 | 0.352 0.402 | 0.337 0.396 | 0.382 0.441 | 0.347 0.395 | 0.348 0.395 | 0429 0.46 | 0.376 0.415 | 0.601 0.598 | 0.457 0.47 | 0.746  0.669
m 192 | 0356 0.394 | 0.379 0.408 | 0.383 0.412 | 0409 0.441 | 0385 0.419 | 0.516 0.531 | 0.374 0.404 | 0.391 0431 | 0401 0.447 | 0462 0.493 | 0.401 043 | 0.365 0.408 | 0.607 0.558 | 0.423 0.446 | 0.687 0.641 | 0.464 0.468 | 0.951 0.778
H 336 | 0.372 0407 | 0397 0414 | 0432 0439 | 046 0473 | 042 044 | 0.618 0.597 | 0.427 0431 | 0.398 0.435 | 0.407 0452 | 0.546 0.549 | 0.431 0.445 | 0.414 0.449 | 0.665 0.599 | 0.459 0.466 | 0.741 0.679 | 0.494 0482 | 1.073 0.815
720 | 0.373 0425 | 0.388 0.433 | 0443 0.465 | 0.626 0.559 | 0.415 0.454 | 0.706 0.665 | 0.415 0.438 | 0461 0.498 | 0.524 0.535 | 0.948 0.783 | 0.438 0.464 | 0.389 0.444 | 0.746 0.656 | 0.406 0.457 | 0.975 0.799 | 0462 0.49 | 1.113 0.832
96 | 0299 0.35 0.3 0.347 | 031 0354 | 033 0379 | 0297 0.345 | 1.125 0.823 | 0.305 0.351 | 0.299 0.358 | 0.362 0.406 | 0.716 0.585 | 0.343 0.371 | 0.299 0.353 | 0424 0425 | 034 0384 | 1.67 097 | 0391 0416 | 2.845 1.336
m 192 | 0381 0.396 | 0.374 0394 | 0.39 0402 | 0.387 0421 | 0377 0.395 | 2.831 1.461 | 0.382 0.397 | 0.394 0421 | 0.516 0.492 | 1.652 0.934 | 0404 041 039 0406 | 0.547 0491 | 0431 044 | 5794 1921 | 0488 0472 | 5324 1.886
H 336 | 0.416 0427 | 0401 042 | 0434 0437 | 0451 0.459 | 0.419 0429 | 2973 1.5 0.434  0.436 | 0.507 0.493 | 0.603 0.538 | 3.483 1.475 | 0462 0455 | 0.381 0.413 | 0.651 0.544 | 0.501 0.494 | 5.117 1.856 | 0.488 0482 | 4444 1.722
720 | 0403 0435 | 0416 0.437 | 0433 0.446 | 0.548 0.521 | 0.429 0.446 | 2.379 1293 | 0.488 0476 | 0.911 0.681 | 0.895 0.675 | 2.524 1.301 | 0.471 0473 | 0.446 0.461 | 0731 0.584 | 0.477 0.484 | 3.341 1552 | 052 0.51 438 1.773
96 | 0275 0.345 | 0.266 0.325 | 0.29 0.349 | 0.276 0.332 | 0.326 0.369 | 0.369 0.423 | 0.278 0.339 | 0.261 0329 | 027 0.346 | 0.358 0413 | 033 037 028 0344 | 0354 0.383 | 0.364 0413 | 0.444 0465 | 0.509 0475 | 0.443 0.474
E 192 | 0323 0375 0.3 0.347 | 0.325 0368 | 0.316 0.364 | 0.366 0.39 | 0.393 0446 | 0.318 0.361 | 0.293  0.35 | 0306 0.373 | 0.371 0438 | 0.372 0.393 | 0.311 0363 | 0448 0.438 | 0.406 0.435 | 0.503 0.519 | 0.539 0.497 | 0.554 0.552
m 336 | 0.336 0.386 | 0.333 0.368 | 0.36 0392 | 0.344 0.381 | 0.396 0411 | 0455 0.491 | 0.337 0.381 | 0.323 0368 | 0.352 0.408 | 0.48 0527 | 0.372 0.404 | 0.337 0.379 | 0454 0.451 | 0.444 0.458 | 0.616 0.599 | 0.548 0.501 | 0.83  0.699
720 | 0432 044 | 0422 0432 | 0425 0431 | 0403 0422 | 0452 0443 | 0595 0.583 | 0.399 042 | 0.378 0.406 | 0.392 0433 | 0.642 0.624 | 046 0453 | 0.386 0.409 | 0.554 0.511 | 0.531 0.499 | 0.803 0.688 | 0.515 0.498 | 1.021 0.781
96 | 0.191 027 | 0.181 0.262 | 0.191 0.272 | 0.188 0.272 | 0.179 0.266 | 0.257 0.361 | 0.183 0.261 | 0.173 0.262 | 0.192 0.285 | 0.358 0.4 0.19 0266 | 0.191 0276 | 0.304 034 | 0.189 0.282 | 0.345 0.437 | 0.257 0.323 | 0.345 0.432
m 192 | 025 0313 | 0.244 0.301 | 0264 0318 | 0.254 0.317 | 0.246 0.309 | 0.565 0.59 | 0.251 0.305 | 0.247 0.314 | 0.306 0.369 | 0.531 0.521 | 0.266 0.313 | 0.242 0.31 | 0.656 0.495 | 0.255 0.324 | 1.247 0.854 | 0.284 0.339 | 0.758 0.669
H 336 | 0.289 0338 | 0.303 0.343 | 0.328 0.358 | 0.295 0.341 | 0.312 035 | 0.963 0.751 | 0.311 0.348 03 0355 | 037 0408 | 0983 0.677 | 0332 0.351 | 0.292 0342 | 045 0415 0.327 0365 | 0.846 0.696 | 0.343 0375 | 1.309 0.851
720 | 0389 0.396 | 0.421 0413 | 0428 0411 | 041 0416 | 0413 0409 | 2463 1302 | 0.409 0.402 | 0.512 0483 | 0.521 0493 | 4365 1.438 | 0435 0411 | 0418 0421 | 0.562 0475 | 0439 0.428 | 3.509 1339 | 0.44 0426 | 4824 1.624
96 | 0.361 0.256 | 0411 0281 | 0.392 0.268 | 0.368 0.257 | 0.477 0.309 | 0.531 0.358 | 0.476 0.297 | 0413 0.287 | 0.522 0.313 | 0.533 0.274 | 0.589 0.315 - - 0.625 0.349 | 0.573 0366 | 0.693 0.399 | 0.67 0401 | 0.749 0.418
mm 192 | 0.377 0.262 | 0423 0.286 | 0.413 0.277 | 0.385 0.265 | 0.479 031 | 0.563 0.385 | 0.508 0.301 | 0.424 029 | 0.537 0.318 | 0.58 0.296 | 0.617 0.326 - - 0.642 0.354 | 0.608 0.378 | 0.683 0.389 | 0.646 0413 | 0.77 0.434
s
£ 336 | 0392 0272 | 0434 0291 | 0425 0283 | 0396 0272 | 0494 0316 | 058 0393 | 0.516 0308 | 0438 0.299 | 0.55 0323 | 0.571 0.293 | 0.635 0.338 - - 0.645 0355 | 0.622 0.381 | 0.691 0391 | 0.61 0382 | 0.86 0.485
720 | 0.453 0316 | 0.463 0.308 | 0.458 0.3 0439 03 0.528 0.333 | 0.619 0.418 | 0.547 0.323 | 0466 0.316 | 0.576 0.334 | 0.607 0.301 | 0.659 0.349 - - 0.662 036 | 0.631 0382 | 0.73 0411 | 0.661 0416 | 1.053 0.592
96 | 0.156 021 | 0.146 0.198 | 0.178 0.219 | 0.158 0214 | 0.172 0.215 | 0.18 0252 | 0.162 0.208 | 0.174 0.233 | 0.193 0.25 | 0.174 0.239 | 0.169 0.219 - - 0.18 023 | 0217 0.296 | 0.199 0281 | 0.275 0.341 | 0.352 0.423
£ 1920206 0257 | 0.19 024 | 0226 0259 | 0213 0.266 | 0219 0255 | 0218 0287 | 0.208 0251 | 0.218 0278 | 0.24 0301 | 0.232 0301 | 0.225 0.265 - - 0237 028 | 0.289 0.348 | 0.221 0.307 | 0.309 0366 | 0.559 0.53
=
% 336 | 0.262 0296 | 0.242 0279 | 0282 03 0248 0.284 | 0.274 0295 | 0.261 0.321 | 0.264 0293 | 0.263 0.314 | 0.282 0.331 | 0.277 0.34 | 0.282 0.304 - - 031 0329 | 0357 0.398 | 029 0364 | 0.401 0.424 | 0.805 0.648
720 | 0.327 0344 | 0322 0.338 | 0.358  0.35 032 0338 | 0.352 0.345 | 0.318 0.363 | 0.345 0.346 | 0.332 0374 | 035 0.387 | 0.372 0.412 | 0.359 0.354 - - 0418 0.394 | 0407 0.422 | 0399 0414 | 0426 0429 | 1.142 0.782
15t 4 9 0 2 1 0 1 1 1 0 0 1 6 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0
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