Under review as submission to TMLR

Merging Memory and Space: A State Space Neural Operator

Anonymous authors
Paper under double-blind review

Abstract

We propose the State Space Neural Operator (SS-NO), a compact architecture for learning
solution operators of time-dependent partial differential equations (PDEs). Our formulation
extends structured state space models (SSMs) to joint spatiotemporal modeling, introducing
two key mechanisms: adaptive damping, which stabilizes learning by localizing receptive
fields, and learnable frequency modulation, which enables data-driven spectral selection.
These components provide a unified framework for capturing long-range dependencies with
parameter efficiency. Theoretically, we establish connections between SSMs and neural
operators, proving a universality theorem for convolutional architectures with full field of view.
Empirically, SS-NO achieves strong performance across diverse PDE benchmarks—including
1D Burgers’ and Kuramoto—Sivashinsky equations, and 2D Navier—Stokes and compressible
Euler flows—while using significantly fewer parameters than competing approaches. Our
results demonstrate that state space modeling provides an effective foundation for efficient
and accurate neural operator learning.

1 Introduction

Many problems in scientific computing require approximating nonlinear operators that map input functions to
output functions, often governed by partial differential equations (PDEs). Neural operators (NOs) (Kovachki
et al., |2023) provide a mesh-independent framework for this task, operating directly on functions and
generalizing across discretizations.

The Fourier Neural Operator (FNO) (Li et al., |2021)) is a widely used NO, as its global convolution kernels
effectively capture long-range spatial correlations. However, this fully global design comes with substantial
computational and memory costs, scaling poorly in higher dimensions. Factorized variants (Tran et al. 2023;
Lehmann et al., 2023} 2024) address this by decomposing operator learning into lower-dimensional subspaces,
achieving linear scaling in dimension—a crucial advantage for high-dimensional spatial applications. Yet,
these approaches offer limited flexibility in adjusting receptive fields or frequency modes to different spatial
regions or temporal dynamics.

In a complementary line of work, state space models (SSMs) (Gu et al., [2022b)), such as the diagonalized
S4D architecture (Gu et all 2022a)), have achieved remarkable success in modeling long-range temporal
dependencies. Like factorized FNOs, SSMs scale linearly in time and memory, but they provide an additional
advantage: data-dependent parameterization of convolutional filters that can learn to emphasize different
frequency components and temporal scales. Despite these parallels, the connection between FNOs (primarily
spatial) and SSMs (primarily temporal) has remained underexplored.

This paper makes that connection explicit. We introduce the State Space Neural Operator (SS-NO), a
unified operator learning framework that applies SSMs directly over joint spatiotemporal domains. SS-NO
can be interpreted in two complementary ways: as extending SSMs from purely temporal modeling to
spatiotemporal operator learning, or as generalizing FINOs into more expressive architectures with adaptive
receptive fields, frequency content, and temporal causality.

Theoretically, we prove that any continuous operator can be approximated arbitrarily well by convolutional
NOs with full receptive fields, a condition satisfied by both FNO and SS-NO. Importantly, the spatial-only
variant of SS-NO subsumes factorized FNO as a special case while adding two key capabilities: learned

Under review as submission to TMLR

damping coeflicients for stability control and data-driven frequency modulation. Empirically, we validate
SS-NO on challenging 1D and 2D benchmarks, including chaotic Kuramoto—Sivashinsky dynamics, variants of
Kolmogorov flow, Richtmyer—Meshkov instability, and gravitational Rayleigh-Taylor turbulence. Across tasks,
SS-NO surpasses existing methods using fewer parameters. These results highlight SS-NO as a principled,
scalable, and practical architecture for data-driven modeling in engineering and the physical sciences.

2 Related Work

2.1 Neural Operators

Data-driven neural operators have emerged as a powerful framework for learning PDE solution operators
(Chen & Chenl [1995; Bhattacharya et al., [2021} |Lu et al., |2021}; [Kovachki et al., |2023). Theoretical work
established that several neural operators can universally approximate nonlinear operators (Chen & Chen,
1995; [Kovachki et al., [2021; |2024; |[Lanthaler et al., |2024), including DeepONet (Lu et al., 2021} Lanthaler,
et al., 2022)) and the Fourier Neural Operator (FNO), which implements global convolution via the Fourier
transform (Li et al.| [2021)). Extensions such as the Factorized Fourier Neural Operator (FFNO) (Tran et al.l
2023) enhance efficiency and expressivity in practice, but their theoretical expressivity remains unknown.
Alternative inductive biases have also been explored, including U-Net—based convolutional operators (Raonic
et al., 2023 |Gupta & Brandstetter, [2023; Rahman et al.| 2023; |Takamoto et al., [2022) and attention-based
operators like the Galerkin Transformer (GKT) (Cao, 2021) and the FactFormer (Li et al. |2023a)).

While some studies suggest that purely Markovian models can be performant for learning time-evolution PDEs
(Tran et al.| |2023; Lippe et al.,|2023), recent work has shown that incorporating past states improves accuracy,
particularly under low-resolution or noisy conditions. This has led to the integration of memory mechanisms
into neural operators. Buitrago et al.| (2025)) introduce the Memory Neural Operator (MemNO) framework,
which embeds temporal S4-based recurrence within general neural operator architectures, motivated by the
Mori—Zwanzig formalism (Mori, [1965} [Zwanzig), |1961). Our work extends this direction by examining scenarios
with missing contextual information and introducing a spatiotemporal factorization that distributes memory
across both time and space.

2.2 Structured State Space Models (SSMs)

Structured state space models (SSMs) have recently achieved strong results on long-range sequence tasks
in natural language processing and vision. The Structured State Space sequence model (S4) (Gu et al.l
2022bsa) uses a continuous-time linear SSM layer to capture very long-range dependencies efficiently, and the
Mamba model (Gu & Dao, [2024) extends this idea by making the SSM parameters input-dependent, further
improving performance on large-scale language modeling tasks. These SSM-based architectures have been
shown to match or exceed Transformer performance on a variety of benchmark tasks.

SSMs have also begun to be used in operator learning. For example, [Hu et al.| (2024)) incorporate Mamba-style
SSM layers to predict dynamical systems efficiently. In the context of neural PDE solvers, recent works like
Cheng et al.| (2024)) and Zheng et al.|(2024) embed Mamba SSM modules to capture spatial correlations
in solution fields. These methods primarily focus on spatial modeling, applying SSM layers across spatial
dimensions or treating time steps sequentially. By contrast, our work focuses on applying SSMs jointly in
both space and time, employing a unified spatiotemporal SSM architecture for neural operator learning.

3 Methodology

3.1 Problem Formulation

Let © C R? be a bounded spatial domain, and consider the solution u € C([0,7T]; L>(£;RY)) of a time-
dependent partial differential equation (PDE), where C' denotes the space of continuous functions and L?
denotes the space of square-integrable functions. We assume access to a dataset of N solution trajectories

u(t,z),_, generated from varying initial or parametric conditions.

Under review as submission to TMLR

In practice, we discretize the spatial domain 2 using an equispaced grid S of resolution f, and the temporal
domain [0, 7] using an equispaced grid 7 with N; 4+ 1 points. Let T}, < T denote the fixed input horizon.

Given the trajectory segment u(t, z)|;eo0,1,,) on S, our goal is to predict the future evolution u(t, z)|iein,,
on the same grid. Rather than forecasting a single step, we aim to learn the full system dynamics conditioned
on the initial segment. Formally, the NO model defines a parametric map ¥y : C(Ti; L*(;RY)) —
C(Tout; L2(S;RY)), where Ti, = [0, Tin] and Tous = [Tin, T], mapping the input segment to the predicted
solution.

3.2 Structured State Space Models (S4 and S4D)

We begin with the continuous-time linear state space model (SSM) defined as:

(1)

where v(t) € R is the hidden state, H is the number of states, u(t) € R is the input, and y(¢) € R is the
output. The matrices A € RF*H B e REX1 C € R™H and D € R define the system dynamics.

The Structured State Space (S4) model (Gu et al 2022b) introduces a parameterization where A is structured
to allow efficient computation of the convolution kernel x(t) corresponding to the system’s impulse response.
Specifically, S4 utilizes a diagonal plus low-rank (DPLR) structure, A = A + PQT, where A € CH*H is
diagonal, and P, Q € C*" with r <« H. This structure enables computation of x(t) via the Cauchy kernel
and allows for efficient implementation with the Fast Fourier Transform (FFT).

To further simplify the model, S4D (Gu et al., 2022a)) restricts A to be diagonal, i.e., A = diag(A1,...,An),
and initializes the eigenvalues {)\;} to approximate the behavior of the original S4 model. This diagonalization
reduces the computational complexity and memory footprint while retaining the ability to model long-range
dependencies.

In both S4 and S4D, after computing the convolution with the kernel x(¢), a pointwise nonlinearity o(-) (e.g.,
GELU) is applied, followed by a residual connection.

3.3 Markovian Spatial State Space Model

To model spatial dependencies in PDEs, we extend the S4D framework to spatial dimensions. A key
requirement for universality of factorized convolutional neural operators is a full field of view, as formalized
in Theorem [} A unidirectional SSM does not satisfy this condition because each spatial location only
aggregates information from one side, limiting expressivity. Empirically, we confirm in Appendix [C.] that
unidirectional scans underperform, motivating the use of bidirectional processing.

For a 1D spatial domain discretized into X points, we define two SSM models: M f,,q and My,,q, where the
fwd and py,q labels serve as identifiers rather than indicating scan direction. The processing is computed as

Yfwd = Mfwd(u)v Yvwd = ﬂlp (Mbwd(ﬂip(u)))) (2)

with the final output ¥ = yfwd + Yswa. For multi-dimensional grids, such as X x Y, bidirectional SSMs are
applied sequentially along each axis (first z, then y), ensuring every spatial location has a full field of view
and satisfying Theorem

Comparison with Existing Methods. Unlike Vision Mamba (Zhu et al., 2024)), which processes 2D
data in a zigzag manner using bidirectional SSMs, our approach applies SSMs separately along each spatial
dimension. While Factorized Fourier Neural Operators (F-FNO) (Tran et al. 2023) process each spatial
dimension in parallel and sum the results, our method applies SSMs sequentially, allowing more expressive
modeling of spatial interactions. Due to memory constraints, we do not employ Mamba-based SSMs directly
but explore alternative 2D and factorized spatial SSM configurations using S4D in Appendix [D}

Under review as submission to TMLR

Forward
SSM

Input —>» Reshape + ——>» Output

Shape = (B*T*Y, , X)

. Backward .
Flip oM c Flip

Figure 1: Detailed illustration of the spatial bidirectional SSM module. B: batch size, T: temporal length, X:
spatial dimensions, C': input channels, o: pointwise nonlinearity, and +: element-wise addition. The input is
processed through both a forward spatial SSM and a flipped backward spatial SSM. Each path includes a
residual connection and nonlinear activation, and their outputs are aggregated to form the final output.

Spatial Spatial Ly Temporal Spatial Spatial

Input —> Projection oM x SsMy oM oM x S5My

—>» Projection —» Output

Figure 2: Architecture combining Markovian 1D spatial SSM modules with a single temporal SSM following
the MemNO framework. The spatial SSMs are applied sequentially across spatial dimensions, while the
temporal SSM’s position within the stack is a tunable hyperparameter.

3.4 Full SS-NO Model with Temporal Memory

The SS-NO architecture combines Markovian spatial SSM layers (Section 3.3) with a single non-Markovian
temporal memory module following the MemNO framework to capture spatiotemporal dependencies in PDEs.
Spatial layers process local interactions sequentially across dimensions, while the temporal module aggregates
information across previous timesteps. During inference, the temporal module maintains and updates a
hidden state at each step, which is combined with spatial processing for next-step predictions.

The number of spatial layers and the placement of the temporal layer within the network stack are tunable
hyperparameters optimized for specific PDE characteristics. Figures|I|and [2|illustrate the architecture: spatial
SSM modules perform bidirectional processing with residual connections, while the full model integrates
these with the temporal module. Complete implementation details are provided in Appendix [G}

4 Theory

We view the proposed SS-NO architecture as an instance of a popular neural operator paradigm [Kovachki
et al| (2023), combining two types of layers: (a) pointwise composition with nonlinear activations, and (b)
application of nonlocal convolution operators, and with prototypical hidden layers of the form,

L: o) = o(Wo(z) +b+ [}, k(z —y)o(y) dy), (3)

(a) nonlinear (b) nonlocal

Under review as submission to TMLR

where v : D — R is a hidden state, o is a standard activation function (e.g., GELU), W € R¥*H ig a
weight matrix, b € R¥ is a bias vector and & : D — R¥*# is a learnable integral-kernel.

To give a unified discussion, we will say that ¥ is a convolutional NO, if it is of the form ¥(u) =
QoL 0+ -0L10R(u), with hidden layers £, as in equation[3} and choice of parametrized kernel r¢(z) = r(a;)
In addition, we have a lifting layer R(u)(x) := R(u(z),z) and projection layer Q(v(z)) = Q(v(z)) b
composition with shallow neural networks R, (). We next discuss three architectures exemplifying thls
approach, highlighting their commonality and giving a unified description. This results in a sharp criterion
for universality for any such convolutional NO architecture.

Fourier neural operator (FNO). The FNO parametrizes the convolution kernel by a truncated Fourier
series, K(2) = 34 <k ke with cut-off parameter K, and |k|o, = max;—_; 4 |k;j|. The Fourier coefficients
ki, € CH*H are complex-valued matrices. The parametrization of the integral kernel x(z) of FNO in d
dimensions entails a considerable memory footprint, requiring O(LH2K?) parameters. This can render FNO

prohibitive in high-dimensional applications.

Factorized FNO (F-FNO). To lessen the computational demands of FNO, so-called “factorized” architec-
tures have been introduced. Here, convolutions are taken along one dimension at a time. Mathematically,
this corresponds to choosing kernels of the form #(z) = rs(x;) [[14; 0(2x), where r,(z;) is a 1d FNO kernel
and 0(zy) the Dirac delta function. Thus, integration is effectively only performed with respect to ;. The
resulting F-FNO only requires O(LH2Kd) parameters Tran et al.| (2023).

Spatial SSM. We next consider the spatial convolution layers of the proposed SS-NO architecture. In this
case, solution of the ODE system equation [I]leads to an explicit formula for the corresponding kernel. For a
1d spatial domain, this results in a kernel x(z) = k4 (z) + x—(x), where £ (x) correspond to the backward
and forward scans, respectively, and k4 (x) is of the form

K
ki(x) =1g, (2) Ze”‘w‘eiw” CyBE, 71 = Real(\g), wi = Imag(\x), By, Cr € RY. 4)

k=1
Here 1g, (z) is the indicator function of Ry = {£z > 0}. The main difference with FNO lies in the
parametrization of the convolutional kernel k, which now has tunable frequency parameters wy € R, and

tunable damping parameters ry < 0. The parameter count of the resulting factorized spatial SSM architecture
in d-dimensions requires at most O(LH (H + K)d) parameters.

A comparison of the model parameter count entailed by the above choices is summarized below:

Model | FNO F-FNO spatial-SSM
Parameter (scaling) | LH’K? LH?Kd L(H?+ HK)d

4.1 A Sharp Criterion for Universality of Convolutional NOs.

As highlighted above, FNO, factorized FNO and SSMs all share a common structure, distinguished by the
chosen kernel parametrization. What can be said about the expressivity of such architectures? Our first goal
is to derive a sharp, general condition for the universality of such convolutional NO architectures.

A minimal requirement for the universality of neural network architectures is that the value of each output
pixel must be informed by the values of all input pixels, i.e., the model needs to have a “full field of view”.
For convolutional NO architectures, this leads to the following definition (cf. discussion in App. [B.2):

Definition. A convolutional NO architecture with layer kernels k1, ...,k has a full field of view, if the
iterated kernel K := Kp % Kp—1 * « -+ x K1 18 non-vanishing, i.e. kK(x —y) # 0 for all x,y € D.

The next result shows that this “minimal” condition is actually already sufficient for the universality of a
convolutional architecture, requiring no additional assumptions on the convolution operators:

Theorem 4.1. A (factorized) convolutional NO architecture is universal if it has a full field of view.

We refer to Appendix [B] for the precise statement and proof. To the best of our knowledge, the criterion
identified above is both the simplest and most widely applicable result for convolutional NO architectures;

Under review as submission to TMLR

it implies universality of (vanilla) FNO, factorized FNOs and combinations of (F-)FNO and SSMs, SS-NO
and even gives a sharp criterion for the universality of localized convolutional NOs (similar to the CNO
Raonic et al.|(2023)), for which x, has localized support. A theoretical basis for both factorized and localized
architectures had been missing from the literature. The above result closes this gap. Appendix [C-I] contrasts
empirical results with a unidirectional SSM that violates the criterion.

4.2 Adaptivity and Enhanced Model Expressivity of SS-NO

Based on the formulation in equation |4} the factorized spatial SSM structurally subsumes the FNO (in 1D)
and F-FNO architectures. We provide a rigorous proof of this capability in Appendix [Fundamentally, the
SSM parameterizes a continuous 1D convolutional kernel of the form

K
k(z) = che*”k‘w‘em”, pr >0, wp€R. (5)
k=1

This formulation generalizes the standard Fourier basis, allowing the model to learn adaptive frequencies
and damping rates beyond the fixed harmonics of the DFT. However, since the damping and frequency are
tunable parameters within SS-NO, this adds further adaptivity: (1) choice of pi > 0 allows effective kernel
localization; the model can optimize the support of its convolutional kernel, interpolating between the global
kernels of FNO (p ~ 0) and very localized CNN-like kernels (p, > 1). (2) additional adaptivity comes
from adaptive mode-filtering; the model can optimize the frequencies wy,...,wg, most relevant for nonlocal
processing. Thus, in theory, this added adaptivity implies enhanced model expressivity of SS-NO over F-FNO.

5 Experiment Setup

5.1 Setup and Dataset Description

We evaluate our models on a suite of one-dimensional (1D) and two-dimensional (2D) partial differential
equation (PDE) benchmarks commonly used in operator learning. These datasets span a variety of dynamical
regimes—from chaotic behavior to turbulent flows—and are designed to assess the models’ ability to capture
long-range temporal dependencies. For 1D problems, we use datasets based on the Burgers’ equation
(nonlinear convection—diffusion) and the Kuramoto-Sivashinsky equation (chaotic dynamics), following the
same data sources as Buitrago et al.| (2025) and generating low-resolution versions through uniform spatial
downsampling.

For 2D problems, we evaluate several widely used benchmarks, including the TorusLi, TorusVis, and
TorusVisForce datasets (Li et al. 2021} [Tran et al., [2023)), as well as compressible Euler benchmarks such
as the Richtmeyer—-Meshkov instability (CE-RM) and the Rayleigh—-Taylor instability with gravitational
forcing (GCE-RT) (Herde et al., 2024). The TorusVis and TorusVisForce datasets incorporate variable,
time-dependent forcing under randomly sampled viscosities in the range v € [1075,107%). Together, these
benchmarks test the models’ ability to capture turbulence, long-range interactions, shocks, chaotic dynamics,
and interface instabilities.

For evaluation, we compare SS-NO against a suite of popular baseline models including U-Net (Gupta &
Brandstetter} 2023), GKT (Cao) [2021)), Factformer (Li et al., 2023a), and FFNO (Tran et al., [2023} Buitrago
et al.} [2025]) for 1D benchmarks, and additionally FNO with a two-dimensional kernel (2D FNO) (Li et al.
2021)) for 2D problems. Following the MemNO framework (Buitrago et al., [2025), we augment all baselines
and SS-NO with a temporal S4 module using a memory window of K = 4 for fair comparison. The only
exception is GKT, for which we use a multi-input variant with K = 4 where the temporal dimension is mixed
with features, as we found the model struggled to converge with an additional temporal S4 module.

Data Preprocessing and Training Setup. We follow standard practices from prior work (Tran et al.
2023)), normalizing all data to the range [0, 1] and adding Gaussian noise with variance 10~2 during training
for stability. Models are trained to minimize the step-wise normalized relative /5 loss.

Under review as submission to TMLR

Unless otherwise specified, all models use four blocks with consistent hidden dimensions. Full details on
baseline models, data generation, preprocessing, and training are provided in Appendices [E] and [F]

5.2 Training Objective.

We train the model by minimizing the empirical risk over the dataset of trajectories. Given a loss function
0: L2 RY) x L2(Q;RY) — R, we solve:

1. 1
0 :argrrgnN;Nout

S (w0 t2), Wou (4O Dlver,)) (6)
t€Tout

where Wy ;(-) denotes the prediction at time ¢ € Ty As our loss ¢, we employ the relative L2-error, discussed
below. The formulation in equation [6] enables the model to learn the entire future evolution of the system
dynamics from a finite observed window, rather than stepwise or autoregressive forecasting.

5.3 Evaluation Metric.

Performance is reported using the relative £y error:
. " [u(t,) — a(t, z)|l
Relative o (u(t, x), 04(t, z)) = , (7)
[u(t,)|l2

where | - ||2 denotes the squared norm over all spatial locations and time steps in the output horizon.

All results reported in the main text represent the mean performance, measured by the best validation
loss, across five independent runs with different random seeds. To contextualize performance relative to
model complexity, we also report the number of parameters for each model, defined as the total count of
learnable parameters. We note that for all 1D experiments, the standard deviation is less than +5% of the
reported mean at resolutions 128 and 64, and less than £7% at resolution 32, while for all 2D experiments,
the standard deviation is below +0.3% in relative £o error. The exceptions to this are GKT and Factformer
(2D), which exhibit slightly higher variability.

6 Results

6.1 1D Burgers’ Equation

We evaluate model performance on the canonical 1D Burgers’ equation with » = 0.001 across temporal
resolutions of 128, 64, and 32. As shown in Figure 3] SS-NO achieves competitive accuracy at all resolutions
while demonstrating exceptional parameter efficiency.

Notably, SS-NO delivers superior performance across all tested regimes. Unlike Fourier-based models whose
complexity often scales with input resolution and the number of spectral modes, SS-NO maintains a consistent
architectural footprint independent of the input grid size. This structural advantage is particularly valuable
for applications requiring seamless deployment across multiple spatial or temporal scales.

The Burgers’ equation exhibits smooth dynamics dominated by diffusion and mild nonlinearity, and SS-NO’s
consistent performance across resolutions highlights its robustness in handling such well-behaved systems.
The model’s ability to maintain accuracy while drastically reducing parameter count represents a significant
advancement in efficient operator learning.

6.2 1D Kuramoto-Sivashinsky Equation

We next evaluate models on the 1D Kuramoto—Sivashinsky (KS) equation across three viscosities (v =
0.075,0.1,0.125). The KS equation presents a challenging benchmark characterized by increasingly chaotic
dynamics and multiscale spatiotemporal features as viscosity decreases.

Performance Analysis. As shown in Figure [3] SS-NO demonstrates consistent performance improvements,
achieving the best results among evaluated methods across all viscosity regimes. At the standard resolution

Under review as submission to TMLR

KS (v=0.075) KS (v=0.1)

Relative £, Error

32 64 128 256 512 32 64 128 256 512
KS (v=0.125) Burgers (v=0.001)
5 e -2
\\\ — @ ———mmmmmmmmmmmm === o-----""""
\\. _________ -———————— PR

Relative £, Error

32 64 128 256 512
Resolution (N) Resolution (N)

-®- U-Net GKT -#4-- FactFormer -9-- FFNO =—+— SS-NO (Ours)

Figure 3: Resolution Dependence Analysis. Relative ¢5 error of SS-NO and baseline models on
1D benchmarks across varying spatial resolutions (N € {32,...,512}). Left three panels: Kuramoto-
Sivashinsky (KS) equation with increasing viscosity coeflicients v € {0.075,0.1,0.125}. Right panel: Burgers’
equation (v = 0.001), limited to N = 128 due to dataset constraints. While U-Net performance stagnates
at higher resolutions (N > 128), operator learning methods generally improve. Notably, SS-NO (Ours)
achieves superior accuracy early at N = 128 and maintains the lowest error floor at N = 512, demonstrating
robust resolution efficiency.

of N =128, SS-NO outperforms the second-best model (FFNO) by 22% at v = 0.075, 42% at v = 0.1, and
58% at v = 0.125. These improvements are particularly pronounced in the low-viscosity regime (v = 0.075),
where chaotic behavior dominates and traditional methods often struggle to track long-term dependencies.

Resolution Dependence and Spectral Efficiency. To analyze the asymptotic behavior of the architectures,
we extended our evaluation to higher spatial resolutions of N = 256 and N = 512. In general, we observe
diminishing returns in performance improvement for most architectures beyond N = 128, suggesting that the
macroscopic dynamics of the system are largely resolved at this scale. However, a distinct trend emerges
when comparing spectral and state-space approaches:

1. Explicit Spectral Scaling (FFNO): The FFNO demonstrates a slight but continuous reduction in
error at higher resolutions. We attribute this to the explicit nature of the Fast Fourier Transform; as

Under review as submission to TMLR

the grid resolution increases, the Nyquist frequency rises, allowing the FFNO to capture high-frequency
details that were previously truncated.

2. Implicit Adaptive Learning (SS-NO): In contrast, SS-NO achieves its optimal performance
floor earlier, effectively converging at N = 128, and maintains this superior accuracy at N = 512
even with a fixed state dimension. This stability supports our hypothesis regarding the adaptive
frequency learning capabilities of State-Space Models. Unlike FFNO, which requires finer spatial
discretization to resolve high-frequency features via FFT, SS-NO’s recurrent mechanism appears
capable of extracting and encoding these critical dynamics efficiently within its latent state space.

This efficiency is further evidenced at coarse resolutions. At N = 32, SS-NO maintains a 21% improvement
over FFNO at v = 0.075 and 30% at v = 0.1. These results collectively demonstrate that SS-NO achieves
an optimal balance of accuracy and robustness—excelling in chaotic regimes while maintaining parameter
efficiency across varying resolutions.

6.3 Ablation Study

We conduct a comprehensive ablation study to understand the individual contributions of model capacity,
learnable frequencies, and explicit damping mechanisms. Four distinct configurations are evaluated: All,
where both frequencies and damping are learnable; Damping only, where frequencies remain fixed while
damping is learnable; Frequency only, where frequencies are learnable but damping is explicitly set to zero
(absent); and Fixed, where neither frequencies nor damping are learnable.

Experiments are conducted on three variants of the KS equation with viscosities v € {0.075,0.1,0.125}, all at
resolution 128. Performance is quantified using relative ¢, error. Results are presented in Table [I] to isolate
the effects of architectural components across different capacity regimes.

Table 1: Relative {5 error on KS benchmarks at varying state sizes and training settings.

State Size Setting # Parameters Relative /2 Error
KS

v =0.075 vr=20.1 v =0.125

All 203,713 0.0086 0.0026 0.0013

64 Damping only 187,329 0.0086 (40.0000) 0.0027 (+0.0001) 0.0013 (40.0000)
Frequency only 187,329 0.0110 (40.0024) 0.0030 (+0.0003) 0.0014 (40.0001)

Fixed 170,945 0.0116 (40.0030) 0.0033 (+0.0006) 0.0016 (40.0003)

All 154,561 0.0090 0.0027 0.0012

39 Damping only 146,369 0.0094 (4+0.0004) 0.0028 (+0.0001) 0.0014 (40.0002)
Frequency only 146,369 0.0137 (40.0047) 0.0038 (+0.0011) 0.0018 (40.0006)

Fixed 138,177 0.0158 (40.0068) 0.0042 (+0.0015) 0.0020 (40.0008)

All 129,985 0.0115 0.0038 0.0017

16 Damping only 125,889 0.0131 (4-0.0016) 0.0044 (+0.0006) 0.0019 (40.0002)
Frequency only 125,889 0.0198 (40.0083) 0.0069 (+0.0031) 0.0031 (40.0014)

Fixed 121,793 0.0227 (4+0.0112) 0.0068 (+0.0030) 0.0031 (40.0014)

6.3.1 Observations

Explicit damping enables remarkable parameter efficiency. The most striking finding is that proper
damping mechanisms allow models to maintain strong performance even under extreme capacity constraints.
The 16-state damping-only model achieves performance competitive with much larger models, demonstrating
that damping serves as a powerful regularization and stabilization mechanism that dramatically improves
parameter efficiency. This efficiency is particularly evident in challenging regimes (v = 0.075), where the
16-state damping-only model approaches the performance of fixed-configuration models with 2-4x more
states, despite its significantly reduced capacity.

Under review as submission to TMLR

Model capacity dramatically affects damping requirements. Higher-capacity models can implicitly
compensate for architectural limitations through additional spectral modes, while lower-capacity models rely
critically on explicit damping for stability. The performance degradation in 16-state models without damping
versus 64-state models confirms that damping becomes increasingly essential as model capacity decreases.
This progressive dependency relationship underscores damping’s role as a crucial stabilization mechanism in
capacity-constrained settings.

Damping significance escalates with problem difficulty. The performance gap between models with
and without damping grows substantially with increasing chaos (decreasing viscosity). For v = 0.075, proper
damping provides significant absolute improvement, while for v = 0.125, the benefit reduces substantially.
This differential effect confirms that chaotic dynamics benefit substantially from explicit damping mechanisms,
while smoother regimes can tolerate their absence.

Learnable frequencies provide consistent spectral adaptation benefits. Across all configurations,
the frequency-only setting consistently outperforms the fixed configuration, demonstrating the value of
data-driven spectral basis adaptation. This benefit is particularly pronounced in constrained settings and
complex regimes like KS v = 0.075, where learnable frequencies allow models to dynamically allocate their
limited spectral resources to the most relevant temporal modes. Rather than being constrained to a fixed
Fourier basis, models can adapt their frequency representations to focus on the specific oscillatory patterns
most critical for the target dynamics, leading to more efficient temporal representation learning. While
these gains are generally more modest than those provided by explicit damping—particularly in challenging
regimes—they confirm that learnable frequencies provide meaningful improvements in spectral efficiency.

Results are not driven by overparameterization. The consistent performance pattern across capacity
levels confirms that our findings are not artifacts of excessive model size. Even the smallest models (16
states) achieve competitive performance when equipped with appropriate inductive biases, demonstrating
that architectural design rather than parameter count drives performance improvements.

6.3.2 Damping Analysis: Connecting Ablation Results to Learned Behavior

The ablation results naturally raise the question: how do these performance differences manifest in the
actual learned damping behavior? To answer this, we conduct a detailed analysis of the learned damping
distributions across different configurations, aggregating results from five independently trained models with
different random seeds for each case to ensure statistical robustness.

State Size = 64, KS v=0.075

Damping Distribution Overview Cumulative Distribution Overview
(All Layer Groups) (All Layer Groups)
1.0 :
3.0
25 0.8 Full
4 :; H Damping only
2.0 g 0.6 —— Mean Full: 0:586
2z 2 —— Mean Damping only: 0.726
g F - 2 L Initialized: 0.5
°1s 204 —— memory_0
§ ---- memory_1
1.0 0.2 —:— memory_2
“r L/ e memory_3
0.5
0.0 : 00 :
'0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actual Damping Actual Damping

Figure 4: Damping coefficient distributions for full vs. damping-only models at v = 0.075 with 64 states.

Architectural constraints drive stronger damping. Quantitative analysis reveals that damping-only
models learn 24% stronger mean damping than full models (0.726 vs. 0.586, p = 5.2 x 107118)_ representing
a 163% larger relative increase from initialization (45.3% vs. 17.2% increase from 0.5), as shown in
Figure [d] This compensatory strengthening explains the ablation results: when frequency adaptation is

10

Under review as submission to TMLR

disabled, models intensify their damping mechanisms to maintain stability, directly corresponding to the
observed patterns in Table

State Size = 64 (Fixed)

Damping Distribution Overview Cumulative Distribution Overview
(All Layer Groups) (All Layer Groups)
3.5 1.0
3.0 0.8 v=0.125
25 z v=0.075
' 206 —— Mean v=0.125: 0.514
220 g —— Mean v=0.075: 0.586
é = [[Y A SR B RTLLL Initialized: 0.5
15 504 —— memory_0
: 5 ; -==- memory_1
1.0 : : —:— memory_2
0.2 41] e memory_3
0.5
0.0 : 00 :
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actual Damping Actual Damping

Figure 5: Damping coefficient distributions for v = 0.125 vs. v = 0.075 models with 64 states.

Problem difficulty modulates damping strength. Models trained on more chaotic dynamics (v = 0.075)
learn 14% stronger damping than those on smoother regimes (v = 0.125, 0.586 vs. 0.514, p = 5.8 x 10~ 71),
with a 537% larger relative increase from initialization (17.2% vs. 2.7% increase from 0.5), as visualized
in Figure 5} This dramatic differential learning directly mirrors the ablation findings where damping provides
exponentially greater benefits in challenging regimes.

Damping Distribution Overview KS v=0.075 Cumulative Distribution Overview
(All Layer Groups) (All Layer Groups)
1.0 :
3.5
3.0 0.8 N=64
z N=16
23 2 —— Mean N=64: 0.586
Qa 0.6
%2 0 £ —— Mean N=16: 0.652
é -2 Y | 5 I N A A S B ELEED Initialized: 0.5
15 204 —— memory_0
: § --=- memory_1
¥] — = 2
1.0 : 0.2 i memory_
------- memory_3
0.5
0.0 : 00 :
"0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actual Damping Actual Damping

Figure 6: Damping coefficient distributions at v = 0.075 for different state sizes.

Capacity constraints amplify damping requirements. Lower-capacity models (16 states) learn 11%
stronger damping than higher-capacity counterparts (64 states, 0.652 vs. 0.586, p = 2.2 x 10715), with a
77% larger relative increase from initialization (30.4% vs. 17.2% increase from 0.5), as demonstrated in
Figure [f] This intensified damping in capacity-constrained models explains their ability to maintain stability
despite reduced parameter counts, directly connecting to the efficiency results in our ablation study.

The consistent pattern across all three analyses—supported by overwhelming statistical significance (p < 10715
in all cases)—demonstrates that damping serves as a crucial stabilization mechanism that scales
intelligently with architectural and problem constraints. Models automatically learn to strengthen
damping in response to constraints, providing a mechanistic explanation for the performance patterns
observed in our ablation study. This adaptive damping behavior represents a key innovation that enables
both parameter efficiency and robustness across diverse dynamical regimes.

11

Under review as submission to TMLR

Table 2: Relative ¢ error on 2D Navier—Stokes datasets at 64 x 64 resolution.

Architecture # Parameters Relative /> Error

TorusLi TorusVis TorusVisForce CE-RM GCE-RT

U-Net 7,783,777 0.0611 0.0474 0.0558 0.0644 0.0300
Factformer (2D) 1,006,433 0.0628 0.0337 0.0395 0.0642 0.0315
GKT 8,418,049 0.0619 0.0404 0.0742 0.0691 0.0172
FNO2D 67,197,700 0.0452 0.0466 0.0444 0.0717 0.0155
FFNO 2,192,897 0.0409 0.0231 0.0326 0.0688 0.0196
SS-NO (ours) 369, 665 0.0345 0.0218 0.0263 0.0583 0.0138

6.4 2D Navier—Stokes Equations

Navier—Stokes with Fixed Viscosity. We evaluate our model on the TorusLi dataset, which contains
vorticity fields generated by solving the 2D incompressible Navier—Stokes equation on the unit torus with
a fixed forcing term and low viscosity v = 107°. This regime is particularly challenging due to reduced
diffusion, leading to highly nonlinear and chaotic dynamics.

Table [2| reports the relative £5 errors of various baselines. Among them, FNO2D achieves an error of 0.0452.
In contrast, SS-NO significantly outperforms this baseline, reducing the error to 0.0345—representing a 23.7%
improvement in predictive accuracy.

This performance gap is notable given the differences in scaling. FNO2D leverages a full 2D Fourier transform
to model frequency interactions jointly across both spatial dimensions, with cost scaling as O(NP), where D
is the number of dimensions and N is the resolution per dimension. In contrast, SS-NO applies separate
1D operators along each axis in a factorized manner, achieving more favorable O(N - D) complexity while
retaining or improving accuracy. These results demonstrate the advantage of temporal-state modeling even
in time-invariant contexts, highlighting the role of state-space modeling for capturing fluid dynamics in
low-viscosity regimes. Among several factorized connection variants we tested, our configuration delivered
the best performance (see Appendix @

2D Navier-Stokes: Problems with Varying Viscosities and Forces. We also evaluate our model
on the TorusVis and TorusVisForce datasets from the FFNO benchmark (Tran et al., [2023)), where both
viscosity and external forcing vary across trajectories. In TorusVis, viscosity is sampled uniformly between
1075 and 10~* and the forcing function is time-independent. TorusVisForce introduces a time-varying forcing
function with phase shift § = 0.2.

Table 2] summarizes the results. SS-NO achieves the lowest errors across both datasets, consistently outper-
forming all baselines. This demonstrates that SS-NO effectively captures spatiotemporal dynamics across
mixed-viscosity regimes, where larger viscosity values in the data are significantly easier to predict, while still
handling the challenging low-viscosity cases.

Compressible Euler Benchmarks (CE-RM and GCE-RT). We also evaluate SS-NO on compressible
Euler benchmarks: the Richtmeyer—-Meshkov instability (CE-RM) and the Rayleigh—Taylor instability with
gravitational forcing (GCE-RT). These problems involve complex interface dynamics and shocks, making
them particularly challenging for predictive modeling.

Table [2] shows that CE-RM has relatively high errors across all models, reflecting its intrinsic difficulty.
Interestingly, on GCE-RT, GKT and FNO2D perform better compared to other factorized baselines, suggesting
that explicitly modeling full 2D spatial interactions can be beneficial for this problem.

Despite being factorized, SS-NO achieves the lowest relative ¢5 errors on both CE-RM (0.0583) and GCE-RT
(0.0138), demonstrating that it can efficiently capture the dominant spatiotemporal dynamics even in problems
with shocks and complex interface interactions. These results highlight that SS-NO combines the efficiency

12

Under review as submission to TMLR

of factorized operations with strong modeling capacity, making it competitive with full 2D approaches in
capturing challenging fluid behavior.

7 Conclusion and Future Work

We have presented the State Space Neural Operator (SS-NO), a compact neural operator designed to efficiently
learn solution operators for time-dependent partial differential equations. Grounded in a theoretical universality
result for convolutional operator learning with full field of view, SS-NO generalizes and improves upon prior
factorizations such as FNO by integrating adaptive mechanisms—including damping for receptive field
localization and learnable frequency modulation for data-driven mode selection—while maintaining temporal
causality. Our spatial-only variant exactly recovers F-FNO, yet SS-NO dramatically reduces parameter count
by exploiting a linear O(N - D) scaling compared to the O(NP) complexity of high-dimensional convolutions.

Empirically, SS-NO achieves competitive performance across a suite of 1D and 2D benchmarks, including
the Burgers’, Kuramoto—Sivashinsky, Navier—Stokes, and Euler equations, demonstrating strong accuracy
with significantly fewer parameters. In addition, we proposed a dimensionally factorized variant of SS-NO,
which scales favorably in higher dimensions and achieves competitive results on challenging 2D fluid dynamics
datasets. These findings highlight that state space modeling is not only compatible with operator learning
but also offers unique advantages in long-term memory, adaptivity, and efficiency.

While our formulation provides clear benefits for structured spatiotemporal domains, one limitation is the
lack of a systematic connection between damping-based receptive field localization and irregular geometries.
Developing principled extensions of SS-NO to unstructured meshes and complex domains remains an important
direction for future work. Beyond this, we aim to apply SS-NO to higher-dimensional and multi-physics
systems, including astrophysical, cosmological, and space plasma dynamics, where efficient and generalizable
PDE operators are critical.

References

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction and
neural networks for parametric pdes. The SMAI journal of computational mathematics, 7:121-157, 2021.

Florent Bonnet, Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fidelity computational
fluid dynamics dataset for approximating reynolds-averaged navier—stokes solutions. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation for
neural pde solvers. In The International Conference on Machine Learning (ICML), 2022.

Ricardo Buitrago, Tanya Marwah, Albert Gu, and Andrej Risteski. On the benefits of memory for modeling
time-dependent pdes. In The International Conference on Learning Representations (ICLR), 2025.

Shuhao Cao. Choose a transformer: Fourier or galerkin. In Advances in neural information processing systems
(NeurIPS), 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEFEE transactions on neural
networks, 6(4):911-917, 1995.

Chun-Wun Cheng, Jiahao Huang, Yi Zhang, Guang Yang, Carola-Bibiane Schonlieb, and Angelica I Aviles-
Rivero. Mamba neural operator: Who wins? transformers vs. state-space models for pdes. arXiv preprint
arXiv:2410.02113, 2024. URL https://arxiv.org/abs/2410.02113.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In The Conference
on Language Modeling (COLM), 2024.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models. In Advances in Neural Information Processing Systems (NeurIPS), 2022a.

13

https://arxiv.org/abs/2410.02113

Under review as submission to TMLR

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state spaces.
In The International Conference on Learning Representations (ICLR), 2022b.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling.
Transactions on Machine Learning Research, 2023.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Képpeli, Roberto Molinaro, Emmanuel de Bézenac,
and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Zheyuan Hu, Nazanin Ahmadi Daryakenari, Qianli Shen, Kenji Kawaguchi, and George Em Karniadakis.
State-space models are accurate and efficient neural operators for dynamical systems. arXiv preprint
arXiv:2409.03231, 2024. URL https://arxiv.org/abs/2409.03231.

Sukjun Hwang, Aakash Lahoti, Ratish Puduppully, Tri Dao, and Albert Gu. Hydra: Bidirectional state space
models through generalized matrix mixers. Advances in Neural Information Processing Systems (NeurIPS),
2024.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds
for fourier neural operators. Journal of Machine Learning Research, 22(290):1-76, 2021. URL http:
//jmlr.org/papers/v22/21-0806.html.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. Operator learning: Algorithms and analysis.
In Handbook of Numerical Analysis. Elsevier, 2024. doi: 10.1016/bs.hna.2024.05.009. URL https://www!
sciencedirect.com/science/article/pii/S1570865924000097.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for DeepONets: A deep
learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 6(1):tnac001,
2022. URL https://academic.oup.com/imatrm/article-pdf/6/1/tnac@01/42785544/tnac001.pdf.

Samuel Lanthaler, Zongyi Li, and Andrew M. Stuart. Nonlocality and nonlinearity implies universality in
operator learning, 2024. URL https://arxiv.org/abs/2304.13221.

Fanny Lehmann, Filippo Gatti, Michagél Bertin, and Didier Clouteau. Seismic hazard analysis with a factorized
fourier neural operator (f-FNO) surrogate model enhanced by transfer learning. In NeurIPS 2023 Al for
Science Workshop, 2023. URL https://openreview.net/forum?id=xiNRyrBAjtl

Fanny Lehmann, Filippo Gatti, Michaél Bertin, and Didier Clouteau. 3d elastic wave propagation with
a factorized fourier neural operator (f-fno). Computer Methods in Applied Mechanics and Engineering,
420:116718, 2024. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2023.116718. URL https://www,
sciencedirect.com/science/article/pii/S0045782523008411.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling. In Advances
in Neural Information Processing Systems (NeurIPS), 2023a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equations. In The
International Conference on Learning Representations (ICLR), 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with
learned deformations for pdes on general geometries. Journal of Machine Learning Research, 24(388):1-26,
2023b.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-refiner:
Achieving accurate long rollouts with neural pde solvers. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

14

https://arxiv.org/abs/2409.03231
http://jmlr.org/papers/v22/21-0806.html
http://jmlr.org/papers/v22/21-0806.html
https://www.sciencedirect.com/science/article/pii/S1570865924000097
https://www.sciencedirect.com/science/article/pii/S1570865924000097
https://academic.oup.com/imatrm/article-pdf/6/1/tnac001/42785544/tnac001.pdf
https://arxiv.org/abs/2304.13221
https://openreview.net/forum?id=xiNRyrBAjt
https://www.sciencedirect.com/science/article/pii/S0045782523008411
https://www.sciencedirect.com/science/article/pii/S0045782523008411

Under review as submission to TMLR

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature machine
intelligence, 3(3):218-229, 2021.

Hazime Mori. Transport, collective motion, and brownian motion. Progress of theoretical physics, 33(3):
423-455, 1965.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In The
International Conference on Machine Learning (ICML), 2010.

Korbinian Péppel, Richard Freinschlag, Thomas Schmied, Wei Lin, and Sepp Hochreiter. plstm: parallelizable
linear source transition mark networks. In ICML 2025 Workshop on Long-Context Foundation Models,
2025.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators.
Transactions on Machine Learning Research, 2023.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alaifari,
Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust and accurate
learning of pdes. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pfliiger,
and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators.
In The International Conference on Learning Representations (ICLR), 2023.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence
modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast transformer
solver for pdes on general geometries. In The International Conference on Machine Learning (ICML),
2024.

Jianwei Zheng, Wei Li, Ni Xu, Junwei Zhu, and Xiaoqin Zhang. Alias-free mamba neural operator. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision mamba:
Efficient visual representation learning with bidirectional state space model. In The International Conference
on Machine Learning (ICML), 2024.

Robert Zwanzig. Memory effects in irreversible thermodynamics. Physical Review, 124(4):983, 1961.

A Appendix

B Universality of Convolutional NOs

We here provide a rigorous definition of convolutional NOs having a “full field of view”, and provide the
precise statement of our sharp universality condition.

B.1 Full Field of View

We describe the required full field of view property in greater detail, which we informally stated as a definition
before Theorem [£.1]in the main text.

The following assumptions were implicit in that definition: The convolutional NO architecture is of the form

U(u) =QoLpo---0Ly0oR(u),

15

Under review as submission to TMLR

where the lifting layer R(u)(z) := R(u(z), z) and projection layer Q(v(z)) = Q(v(zx)) are given by composition
with shallow neural networks R, @ of width H (both applied pointwise to the respective input functions).
The hidden layers £, are given by

uwxwza(wW@erﬁéwu—%ww@mﬁ,

with channel width H. We will assume that H can be chosen as large as required. For the integral kernel kg,
we assume that, for any choice of H and matrix A, € R¥*H acting on the channel dimension, there exists a
setting of the parameters 0}, such that r,(x;0;) € RET*H is a scalar multiple of A, i.e. the kernel k(- ;05) is
the form

ro(x;07) € REXH — g,(2) Ay, go: D — R some scalar function. (8)

To our knowledge, all proposed architectures, including FNO, factorized FNO, SSM, as well as (UNet-style)
convolutional NOs with localized kernels have this property.

The precise definition of the full field of view property is then the following:

Definition (rigorous). An architecture is said to have a full field of view, if for any channel width H and
Ay € REXH wyith product Ay, --- Ay # 0, we can find parameters such that equation@ holds, and the iterated
kernel

R(a) = (kp* - xry)(@) = (9o * -+ g1)(x) AL+ Ag, (9)
has full support, in the sense that the supporﬂ of the function (x,y) — k(x —y) is D x D.

Remark 1. In particular, k satisfies the full field of view property, if ¥ is nowhere-vanishing, i.e. for any
x,y € D, we have k(z — y) # 0.

B.2 Intuitive Explanation of the Full Field of View Property

Before stating our universality theorem, based on the “full field of view” property, we discuss its intuitive
meaning in this section.

A general (non-linear) operator G : u — G(u) takes an input function u(x) and maps it to another function
v(z) = G(u)(x). In general, such operators are non-local, meaning that the value of the output function v(zx)
at a point = depends on the values of the input function u(y), for y € D, across the entire domain D.

A simple example of an operator with non-local dependency is an operator with a general integral kernel:

GWW%:LM%WMMy

To determine the value of the output function at x for such G, it is clear that we generally require knowledge
of u(y) at all points y € D. While this illustrative example defines a linear operator G, more general forms of
non-locality are present in most operators of interest (such as solution operators of non-linear PDEs), which
generally are both non-local and non-linear.

Thus, it is intuitively clear that a universal operator-learning architecture must provide a mechanism that
enables information to flow from the input function u(y) at any point y € D to the output function v(zx) at
any x € D.

For the convolutional architectures discussed in this work, the only mechanism to communicate information
non-locally during the forward pass is via the convolutional integral kernels v(z) — [, ke(x — y)v(y) dy.
The iterated kernel equation [0 is a mathematical way to capture the flow of information across all layers:
Indeed, if K(x —y) # 0, this means that (at least some) information about the input function at y can flow to
the output function at € D. However, a priori, it is unclear whether this specific mechanism to transfer

IWe recall that the support of a general function f(z) is the closure of the set {z| f(z) # 0}.

16

Under review as submission to TMLR

information non-locally is sufficiently informative. Indeed, one might assume that the z-dependency of the
kernels x¢(x) = go(x) Ay, i.e. the functions g,(x) themselves, need to be very specifically tuned to ensure all
relevant information on the input side to correctly reach the output side.

The main theoretical insight of the present work is to show that no specific tuning of gy(z) is required for
universality. In fact, any functions gy,..., gr, will do, as long as they ensure a full field of view and as long
as we can tune the matrices Ay,..., A € R¥*H (and allow arbitrarily large hidden channel dimension H).
Given this discussion, we view the “full field of view” property as a “minimal” property to ensure the needed
flow of information through our architecture. In Theorem below, we will rigorously prove that this
“minimal” property is already sufficient.

B.3 A Sufficient Condition for Universality

We can now state and prove our universality result for general convolutional NOs.

Theorem B.1. Let G : C(D;R%) — C(D;R%) be a continuous operator, with either D C R compact
or D = T the periodic torus. Let K C C(D;R%) be a compact set of input functions. Let ¥(u) be a
convolutional NO architecture with a full field of view. Then for any e > 0, there exists a channel width H,
and a setting of the weights of ¥, such that

sup sup |G(u)(z) — U(u)(z)| <e.
uek zeD

B.3.1 Proof of sufficiency of “full field of view" property (Theorem [B.1]

Proof. For simplicity, we will assume that d; = d, = 1. The proof easily extends to the more general case.
The space of continuous operators G : K — C(D), u(x) — G(u)(x), is isometrically isomorphic to the space
C(K x D), by identifying G(u, z) := G(u)(x). By assumption, both X and D are compact sets.

Given the choice of convolutional NO architecture, we now fix k1, ..., s such that K is nowhere vanishing.
Let us now introduce the set A consisting of all operators that can be represented by a choice of channel
width H and a choice of tunable parameters:

A U=QoLpo---0Ly0R, ¥isa convolutional NO
T with kernels k1, ..., 7 and channel width H

Our goal is to show that A C C(K x D) is dense. We denote by A the closure of A in C(K x D) (set of
limit points). To prove that A C C(K x D) is dense, we will use the following result, which follows from the
Stone-Weierstrass theorem:

Lemma B.2. A subset A C C(K x D) is dense, if

e The constant function 1 € A,

o A separates points: For any (u1,21), (ua,22) € K x D, there exists U € A such that V(uq,xz1) #
\I/(UQ,LUQ).

e A is an approximate vector subalgebra:

— A is closed under addition and scalar multiplication (i.e. vector subspace),
— A s approxzimately closed under multiplication: For any ¥, Us, the product U, - Uy € A, where

(U - Uo)(u,x) = ¥y (u, z)Va(u, x),

is the pointwise multiplication.
Our goal is to show these properties for A to conclude that A C C(K x D) is dense.

A contains constants. It is very easy to show that the constant function 1 € A, by defining a convolutional
NO that disregards the input and has constant output = 1.

17

Under review as submission to TMLR

A is an approximate subalgebra. To show the other properties, we first note that A is closed under
scalar multiplication and under addition, i.e.

\Ill,\IIQ ceA = MU+ AUy GA, v)\l,AQ e R.

If H; and Hy are the channel widths of ¥; and W,, respectively, this conclusion follows by a simple
parallelization of ¥y and ¥,, and employing the last projection Q-layer to sum (and scale) the parallelized
results. Thus, A is a vector subspace of C(K x D).

To show that A is approximately closed under multiplication, i.e. W1, U5 € A implies that ¥ - Uy € A, we fix
arbitrary W1, ¥y € A. We will denote by \ilj the NO ¥, for j = 1,2, but where the last Q projection-layer
has been removed: R R

V=00V, Uy = Qs 0 W

Assuming wlog that the channel width H; = Hy = H (otherwise, we can pad the channel width by zeros),
we note that these incomplete NOs ¥, and ¥, define continuous mappings K x D — R¥. Since K x D is
compact, it follows that also the images \ilj (K x D) C R are compact (since compact sets are mapped to
compact sets under continuous maps). In particular, there exists B > 0, such that

A

Uy (u,z), Uy(u,z) € [-B, B, Yuek,zeD.
Consider now Q7 and Qs, i.e. the last layers of U1 and W, respectively. The following product mapping
[7BvB}H X [7B5B]H - Rv (Ulva) — Ql(vl) ! QQ(UQ)v

is continuous. By the universality of shallow neural networks, for any € > 0, there thus exists a shallow net
Q :R?¥ & R, such that
sup |Q(v1,v2) — Q1(v1) - Q2(v2)| < e
|'U1|oc7lv2‘ooSB
Define now a new NO as ¥(u, z) := Q[(u,x), ¥a(u, z)]), i.e. Q applied to the parallelization of ¥; and
WUy, Then

sup |\I/(u,],‘) - \Ill(u7x) ' \IIQ(U,Z‘N
KxD

= sup |Q([W:(u, z), Wa(u, 2)]) = Qi (W1 (u,2)) - Qa(¥2(u,)]
KxD

< sup [Q([v1,v2]) — Qi(v1) - Qa(v2)]

[v1]00,|v2|c0 <B

<e.

Since € > 0 was arbitrary, this shows that ¥ - ¥y is a limit point of ¥ € A, thus ¥; - ¥5 € A. We conclude
from the above that A is an approximate vector subalgebra.

A separates points. To conclude our proof, it only remains to show that A separates points. Let
(u1,21) # (ug,x2) be two distinct elements in K x D. There are two cases: Either x; # xs, or 1 = x5 and
uy 7é usg.

Case 1: x; # x3. We want to construct ¥ € A, such that U(u,z1) # ¥(ug,x2). This is easy, since we
can always use the lifting layer R to eliminate the dependency of ¥ on the u-variable. Once the weights
acting on the u-variable have been set to zero, we then have that U(u,z) = ¢(x) is an ordinary multilayer
perceptron. Since x1 # x3, we can easily choose ¥ such that e.g. ¥(x1) = 0 and ¥(x2) = 1. Thus

U(uy, 21) = P(x1) # Y(22) = ¥(uz, 72).

Case 2: 1 = x5 = 2* and wu; # ug. This is the more difficult case. In the following argument, we will
appeal to the universality of shallow neural networks, and their compositions, multiple times. We will forego
the tedious e-§ estimates, and instead sketch out the general idea; filling in the details is a straightforward,
exercise that would not provide any additional insight.

18

Under review as submission to TMLR

The underlying idea is that — roughly by linearization of the hidden layers of the underlying non-linear
convolutional architecture — we can construct ¥ which approximately takes the form,

() (z) = /D 3z —) Ru(uly).y) dy

- /D (90 % g % % g1)(& — y) R (u(y), v) dy

where R, is an arbitrary multilayer perceptron. Given this simplified form, and since g has full support by
assumption, it turns out that we can always construct suitable R; that ensures that the we can separate the
input functions u; and ws, ultimately ensuring that W(uy)(z*) # ¥(ug)(z*). We provide the details of the
construction below, starting with the “linearization trick”.

Linearization trick: We construct ¥ as follows: First, given matrices Ay and functions g as in the (rigorous)
definition of “full field of view”, we choose the weights of the hidden layers £,, such that

L)) = o (Az [aute = ey + be) |

This is possible by assumption on the convolutional NO architecture, cp. equation [8] By universality of
shallow neural networks, we can choose H sufficiently large, and choose matrices Cy, A, and biases a., B,
such that for all relevant input vectors & = (£1,0,...,0) (effectively one-dimensional), we have

Cio (Al + Bi) + o =&, (10)

i.e. the resulting shallow neural network is an approximation of the identity on one-dimensional £, to any
desired accuracy.

We now momentarily focus on the case L = 2. In this case, we choose A; = A,, by = b, then choose
Ay = A.C,, and bias by = a, [}, g(z — y) dy + Bs, so that

L0 L:(0)(2) = 0 <A2 [e - s v+ 52) ,

where

Az/[)gz(x—y)ﬁl(v)(y) dy + by ZA*/Dgg(x—y) {CiLi(v)(y) + au} dy + ba.

We now note that, by construction, we have for any hidden state function of the form v(y) = [v1(y),0,...,0]T:

Cula(®)(y) + an = Cac (Au(gr *0)(y) +) + au = /D a1y — 2)(z) dz,

where we have used equation [I0] and note that this approximation is to any desired accuracy. It follows that
also

trota)@) o (A [=) [-2 dzan+o.)
_p (A* [(o a)te - et dy+b*> ,

to any desired accuracy. This shows that for two hidden layers L1, L5 there exists a choice of the parameters,
such that for a hidden state v(z) = (v1(z),0,...,0), we can obtain an arbitrarily good approximation

Lo £1(0)(e) %0 (4. [(@)l —p)e)dy-+0.).

Tterating this argument, for general L > 2, we start from L7, o L1 o... L, and we first choose the weights
of L and L_; such that

Lo L))~ o (4. [onr) - oty +0.).

19

Under review as submission to TMLR

This can be done by the argument employed for the case L = 2. Next, we can apply the same argument
again to choose the weights of L, _o, such that

LroLp0oLr2(v)(xr)=(LroLr-1)oLr2v)(r)
~o <A* [(on 5 g1+) = oty + b*) |

and continue similarly, until

Lrovo L)) = (A [(g e wa)a = gl dr+b.).

to any desired accuracy. This argument is based on the assumption that v(z) = (v1(z),0,...,0).

We next add a projection layer Q to this composition, of the form Q(v)(x) = Q(Civ(x) + a.), where Q is a
shallow neural network, to obtain

QoLpo---oLyi(v)(z)~Q (/D g(z —y)v(y) dy) v g(@) = (gL *-xg1)(x).

Recall that the support of (z,y) — g is D x D, which, roughly speaking, might be thought of as g(z —y) # 0
for all 2,y € D. The non-vanishing support is by assumption (full field of view).

Pre-composing with a lifting layer R(u)(xz) = R(u(z),x), which we choose to have only a non-vanishing
first component on the output-side, i.e. R(u(x),z) = (R1(u(x),x),0,...,0), it follows that we can construct
U(u)(z) :=QoLro---0Ly0R,such that

W(w)(2) ~ Q ([st = nratut).n dy) 7

where the approximation error can be made arbitrarily small. Here, we are still free to choose @ and Rj.
Our goal is to choose them in such a way that for our given functions u; # wus and the given point

x* =z = 29 € D, we have U(uy)(z1) = ¥(u1)(x*) # U(uz)(z*) = ¥(ug2)(xz2). We will choose @ as an
approximation of the identity on the first component, so that

() () ~ /D 3 — y)Ra(uly). v) dy.

Separating (u1,21) from (ug,z2) when u; # ug, 1 = o = x*: By assumption, g(z* — y) # 0 has full
support for y € D. Since uy # usg, there exists yo € D such that u;(yg) # u2(yo). We may wlog assume
that u1(yo) < 71 < T2 < ua(yp) for some 71,72 € R. By continuity of u,us, there exists § > 0, such that
maxp; (y) U1(y) < 71 < T2 < ming;(y,) u2(yo). By the universality of the shallow network R;, we can choose
R, such that we approximately have

Ri(n,y) = ps(y — yo)hr, 7, (1),

where ps(- — yo) is a non-negative function supported inside Bs(yo), and hr, -, (-) is a non-negative function,
such that
17 (77 > T2)a

hn,m(ﬂ) = {07 (77 <)

Since y — g(a* — y) has full support, and since ps(y — yo) is an arbitrary function apart from the constraints
we imposed above, we can further refine our choice of ps, to ensure that

/}Jg(ﬂc* —y)ps(y —yo) dy # 0.

It then follows that
Rl (m(y), y) ~ pPs (y - yO)hn,Tz (ul (y)) = 07

20

Under review as submission to TMLR

and
Ri(u2(y),y) = ps(y — yo)hr, =, (u2(y)) = ps(y — vo)-

In particular, we conclude that — to any desired accuracy — we can construct ¥(u), such that

() (%) ~ /D 3" — y)Ru(ur(y),y) dy = 0

and

W () () = /D G —)R (us(y),) dy ~ /D 3" — y)ps(y — yo) dy £ 0.

In particular, given the above to approximate identities, upon making the approximation errors sufficiently
small, it follows that there exists ¥ € A such that (uy)(z1) = U(u1)(x*) # VU(ug)(z*) = ¥(uz)(z2). This
finally shows that A separates points inputs (u1,21) and (ug, x2), under the assumption that u; # uy and
x1 = x9 = ¥, and concludes our proof for Case 2.

Our proof of the universality of A C C(K x D) now concludes by application of the Stone-Weierstrass theorem
(cp. Lemma [B.2).
O

C Further Ablation Studies

C.1 Unidirectional Spatial SSM

0.200 Comparison of Unidirectional vs. Bidirectional Spatial SSM

—— Unidirectional Spatial SSM

0.175 Bidirectional Spatial SSM

0.150
0.125
0.100 | 1l

0.075

Relative L2 Full Loss

0.050
0.025

0.000
0 100 200 300 400 500

Epoch

Figure 7: Training curves comparing the unidirectional and bidirectional spatial SSMs on the TorusLi dataset.
The unidirectional variant plateaus early, failing to capture global spatial dependencies.

We conduct an ablation study to evaluate the importance of the bidirectional spatial module in our SS-NO
architecture on 1D Burgers’ Equation. To ensure a fair comparison that isolates the effect of directionality, we
construct a unidirectional model with the same parameter count as the full SS-NO. This is done by stacking
8 layers of forward-only spatial SSM blocks and inserting a single temporal SSM layer in the middle.

As shown in Figure[7] the unidirectional variant fails to capture the dynamics effectively. Its training curve
plateaus early, and the relative /5 error stagnates around 0.075. In contrast, the full bidirectional model
continues to improve and ultimately reaches a much lower error of approximately 0.007—more than ten

21

Under review as submission to TMLR

times better. These results highlight that unidirectional spatial SSMs are fundamentally limited in their
representational capacity for 2D PDEs and act as non-universal approximators in this setting — indeed, this
unidirectional spatial SSM s lacking a full field of view, violating the criterion for universality in Theorem
1] Bidirectional context is essential to capture the long-range spatial dependencies needed for accurate
forecasting.

C.2 Effect of Missing Contextual Information and the Role of Temporal Modeling

To better understand the role of temporal modeling in our architecture, we evaluate the full SS-NO against
an ablated variant that removes the temporal state-space module (S4), as well as two strong baselines (FFNO
and FNO2D). Figure [§ shows the relative ¢ error across three levels of contextual information: all context,
only forcing, and no context, on both the TorusVis and TorusVisForce datasets.

Three main observations emerge from these results. First, the temporal S4 component is necessary in the
most challenging No Context setting, where both viscosity and forcing inputs are missing. Without temporal
modeling, SS-NO suffers from very high errors (e.g., 0.1156 vs. 0.0411 on TorusVis), whereas the full model
remains comparatively robust by leveraging temporal dependencies to compensate for missing information.
These results extend the observations made by [Buitrago et al.| (2025]), who showed that temporal memory
helps mitigate the effects of resolution loss and noisy data. In our case, we show that memory-based modeling
also helps compensate for missing physical parameters—highlighting an additional benefit of incorporating
temporal memory into spatiotemporal PDE models.

Second, in the Only Force setting, the presence of forcing information appears to be sufficient for accurate
predictions in our architecture: both the full and ablated SS-NO achieve consistently low errors, while FFNO
exhibits a slight degradation. This suggests that temporal modeling is not strictly necessary when forcing is
available, as even the ablated variant performs competitively.

Finally, in the extreme case where all context is missing, FFNO surprisingly outperforms SS-NO (full), despite
performing worse in other settings. We hypothesize this could be the result of the difference between how
FFNO and FNO/SS-NO make residual connections, since it seems like the degree of performance loss is
similar between SS-NO (full) and FNO2D, but we do not do further investigation as it is out of the scope of
this work.

Performance Under Varying Context Availability

TorusVis TorusVisForce

0.12
5 0.10
= 55-NO (w/o temporal 54)
w
~ 0.08 SS-NO (full)
E‘J FFNO
2 0.06 FNO2D
=
0
& 0.04

0.02

0.00

All Context Only Force No Context All Context Only Force No Context

Figure 8: Relative £y error across three levels of contextual information: full context, only forcing, and no
context. Lower is better.

C.3 Effect of Varying the Memory Window Size

We investigate how the choice of memory window size K affects the performance of our SS-NO model on the
KS dataset with v = 0.075. This hyperparameter controls how many past spatial feature maps are accessible

22

Under review as submission to TMLR

to the model during temporal state updates. All results reported in this section are obtained from models
trained without teacher forcing to better reflect deployment conditions.

As shown in Figure [0} increasing K consistently improves performance up to around K = 8. Beyond this
point, the performance gains become increasingly marginal, and the validation loss begins to plateau. Notably,
setting K = 0, which corresponds to no temporal memory, results in significantly degraded performance.
These results highlight the critical importance of temporal memory in modeling complex spatiotemporal
dynamics, while also suggesting diminishing returns beyond a moderate window size.

Validation Loss over Epochs for Different Memory Window Sizes

0.200
Memory Window Size
0.175 — K=0
— K=4
— K=8

0.150 7
0 — K=12
§ — K=16
2 0.125 — K =20
3
w
™ 0.100
1]
2
‘w 0.075
©
4

0.050 | P

L v
0.025 AR R R e -
0.000
0 100 200 300 400 500

Epoch

Figure 9: Validation /s loss over training epochs for different memory window sizes K on the KS dataset
(v = 0.075). Increasing the window improves performance until around K = 8, after which gains diminish.

Validation Loss over Epochs for Different Memory Window Sizes (Teacher Forcing)

0.200
Memory Window Size
0.175 — K=0
— K=4
— K=8
0.150 ~
" — K=12
g —_— K =16
= 0.125 K =20
S
w
™ 0.100
o
2
w 0.075
o
4
0.050
0.025 R
0.000
0 100 200 300 400 500

Epoch

Figure 10: Validation ¢5 loss over training epochs on the KS dataset (v = 0.075) using teacher forcing for
various memory window sizes K. Compared to Figure @ training is less stable and results in higher loss.

23

Under review as submission to TMLR

C.4 Effect of Teacher Forcing on SS-NO Performance

Case Study: 1D KS with v = 0.075 at Low Resolution. While prior work such as FENO (Tran et al.,
2023) suggests that teacher forcing can improve model performance by stabilizing training, we observe a
different trend for our SS-NO architecture, particularly in low-resolution regimes. To investigate this, we
revisit the 1D Kuramoto—Sivashinsky (KS) dataset with v = 0.075, where reduced spatial resolution poses a
significant challenge.

We train SS-NO with teacher forcing across various memory window sizes (K = 0 to 20), and present the
results in Figure Compared to the non-teacher-forced variant (Figure E[), training with teacher forcing
leads to noticeably less stable optimization, slower convergence, and consistently higher final relative ¢5 errors.
Moreover, while performance still improves with longer memory, the gains plateau earlier, and the benefits
beyond K = 8 diminish more rapidly than in the non-teacher-forced case.

These findings suggest that in this setting, SS-NO benefits more from fully autoregressive training, likely due
to its strong inductive bias for modeling long-term temporal dependencies without relying on ground-truth
guidance.

General Trends Across 1D and 2D Benchmarks. To better understand the broader impact of teacher
forcing, we compare SS-NO models trained with and without teacher forcing across all 1D and 2D benchmarks

(Tables [3] and [)).

In 1D settings, results are mixed: at higher resolutions (e.g., 128), teacher forcing slightly improves performance
in some cases (e.g., KS with ¥ = 0.1 and v = 0.125), but at lower resolutions, non-teacher-forced models
generally perform better—especially in the challenging v = 0.075 KS setup. These results suggest that
autoregressive training may confer more robustness in low-resolution or harder regimes, where model
predictions diverge more easily from ground truth.

In contrast, across all 2D Navier—Stokes benchmarks, teacher forcing consistently yields better performance.
This suggests that for higher-dimensional systems with complex spatiotemporal interactions, teacher forcing
can help stabilize training and guide the model toward more accurate trajectories.

Overall, while the effect of teacher forcing appears to be dataset- and resolution-dependent, we find that
non-teacher-forced training can be highly effective in 1D regimes, particularly under low resolution. In
contrast, for complex 2D flows, teacher forcing remains a valuable tool for improving predictive accuracy.

Table 3: Relative ¢5 error on 1D benchmarks at varying resolutions.

Resolution Architecture Relative /5 Error
KS Burgers’
v=0.07 r=01 »r=0125 v =0.001
128 SS-NO (Teacher Forcing) 0.0086 0.0027 0.0013 0.0070
SS-NO (No Teacher Forcing) 0.0076 0.0034 0.0019 0.0070
64 SS-NO (Teacher Forcing) 0.0143 0.0048 0.0029 0.0121
SS-NO (No Teacher Forcing) 0.0135 0.0042 0.0023 0.0114
39 SS-NO (Teacher Forcing) 0.0472 0.0162 0.0088 0.0200

SS-NO (No Teacher Forcing) 0.0358 0.0135 0.0071 0.0171

D Comparison of Factorized Architectural Variants

In this section, we explore how different architectural factorization strategies affect performance on the
TorusLi dataset. Specifically, we examine two popular alternatives to our default SS-NO spatial block.

24

Under review as submission to TMLR

Table 4: Relative £5 error on 2D Navier—Stokes datasets. All models are evaluated at a spatial resolution of
64 x 64.

Architecture Relative /5 Error

TorusLi TorusVis TorusVisForce

SS-NO (Teacher Forcing) 0.0345 0.0218 0.0263

SS-NO (No Teacher Forcing) 0.0546 0.0385 0.0371
SS-NO-VM (Vision Mamba Style) # SS-NO-FF (FFNO-style)
x_flat = flatten_spatial (x) residual = x
First zigzag sweep # X-axis sweep
x_fwd = SSM_flat_forward(x_flat) x1 = reshape_for_x_sweep(x)
x_bwd = SSM_flat_backward(reverse(x_flat)) x1_fwd = SSM_x_forward(x1)
z1 = permute_channels(x_fwd + x_bwd) x1_bwd = reverse(SSM_x_backward(reverse(x1)))
x = linearT(z1) + x_flat x1_combined = reshape_back(x1_fwd + x1_bwd)
Second zigzag sweep # Y-axis sweep
x_fwd2 = SSM_flat_forward(x) y1 = reshape_for_y_sweep(x)
x_bwd2 = SSM_flat_backward(reverse(x)) yl_fwd = SSM_y_forward(y1)
z2 = permute_channels(x_fwd2 + x_bwd2) y1_bwd = reverse(SSM_y_backward(reverse(y1)))
x = linearT2(z2) + x y1_combined = reshape_back(yl_fwd + y1_bwd)
x_out = reshape_spatial (x) # Combine and project

. . z = x1_combined + yl_combined
Listing 1: SS-NO-VM (Vision Mamba style) z = backcast_ff(z)
output = z + residual

Listing 2: SS-NO-FF (FFNO-style connection)

Figure 11: Pseudocode for two spatial architectural variants of SS-NO: Vision Mamba-style (left) and
FFNO-style (right).

SS-NO-VM (Vision Mamba style). This variant adapts the Vision Mamba architecture by replacing
the Mamba core with our spatial SSM block. The key idea is to preserve Vision Mamba’s flattened zigzag
scanning structure in 2D, allowing bidirectional processing over a 1D sequence obtained from flattening
the spatial grid. After bidirectional processing over the first spatial axis, the result is passed through a
mixing linear projection before a second pass along the alternate axis, again using bidirectional spatial SSMs
and linear mixing. This model maintains Vision Mamba’s emphasis on alternating directional fusion while
leveraging the structure of our SSM.

SS-NO-FF (FFNO style). In this variant, we discard the original spatial block of SS-NO and instead
adopt the FFNO-style connection, where spatial context is aggregated through two 1D sweeps: one across
the z-axis and one across the y-axis. Each sweep involves a forward and backward spatial SSM applied
independently along that axis, and the outputs from both axes are summed together. This approach highlights
the role of directional decoupling in factorized Fourier models and contrasts with the fused zigzag sweep in

SS-NO-VM.
Pseudocode for both SS-NO-FF and SS-NO-VM variants is provided in Figure

FNO2D-R (Reduced Fourier Kernel). To verify that the gains of SS-NO are not trivially due to kernel
simplification, we construct a reduced FNO2D model, denoted as FNO2D-R. In this variant, we remove the
output channel mixing in the Fourier kernel by modifying the kernel from:

self.weights = nn.Parameter(self.scale x torch.rand(
in_channels, out_channels, modes1, modes2, dtype=torch.cfloat))

25

Under review as submission to TMLR

return torch.einsum("bixy,ioxy->boxy"”, input, weights)
to:

self.weights = nn.Parameter(self.scale x torch.rand(
in_channels, modes1, modes2, dtype=torch.cfloat))

return input * weights

This isolates the contribution of full channel-wise Fourier mixing and allows for a more controlled comparison
against SS-NO.

As shown in Table[5] our original SS-NO achieves the best performance among all tested variants, demonstrating
that both our architectural choices and structured state-space modeling contribute meaningfully to the observed
improvements.

Table 5: Relative £5 error on the TorusLi dataset for different factorized architectural variants. All models
are evaluated at a spatial resolution of 64 x 64.

Architecture # Parameters Relative /5 Error

ToruslLi
SS-NO-VM 402,945 0.0495
SS-NO-FF 503,297 0.0403
FNO2D-R 1,115,841 0.0718
SS-NO (ours) 369,665 0.0345

E Data Preprocessing and Training Details

E.1 Data Preprocessing and Training Setup

We normalize all input data to the range [0, 1] and add fixed-variance Gaussian noise during training. Through
empirical validation, we found o = 0.005 optimal for Burgers’ equation to stabilize training while preserving
signal integrity, while o = 0.001 works best for all other datasets. All models are trained for 500 epochs using
the AdamW optimizer with an initial learning rate of 1072, weight decay of 107%, and a cosine annealing
learning rate schedule. We employ teacher forcing during training unless otherwise noted.

To simulate low-resolution scenarios, we generate downsampled versions of the original datasets by uniformly
subsampling in space. All models are trained to minimize the normalized step-wise relative £5 loss, and
evaluation is reported using the full-sequence relative ¢ error.

E.2 Model Architecture Specifications

All models use four blocks with a consistent hidden dimension of 64 across both 1D and 2D problems.
Intermediate and output linear layers maintain a hidden size of 128. With the exception of FFNO and our
SS-NO on 1D problems, we adopt the hyperparameter settings reported by Buitrago et al.| (2025). Unlike
their setup which uses hidden dimension 128 for 1D and 64 for 2D problems, we found no statistical difference
in performance with a unified hidden dimension of 64, simplifying architecture design while maintaining
competitive results.

All models except GKT follow the MemNO framework and incorporate a temporal S4 module with window
size K = 4 positioned in the middle of the network stack. For GKT, we use a multi-input variant where the
temporal dimension is mixed with features.

We adopt a simple spatial positional encoding scheme shared across al] models. In 1D, for a grid with f
equispaced points over the interval [0, L], the positional encoding E € R/ is defined as E; = Ffor0<i < f.

26

Under review as submission to TMLR

In 2D, for a f x f grid over [0, L,] x [0, L], the encoding is F;; = (-, LL) The input lifting operator 7y, is
xz Y

a shared linear layer that maps the concatenation of input features and positional encoding to the hidden

space, applied pointwise across the spatial grid.

E.3 Baseline Model Architectures

Unless otherwise specified, all models use four blocks with a channel width of 64. Intermediate and output
linear layers have a hidden size of 128 (i.e., twice the channel width). With the exception of FFNO,
multi-input FNO, and our SS-NO on 1D problems, we adopt the “optimal” hyperparameter
settings (i.e., number of layers, hidden dimension, and expansion size of linear layers) reported
by Buitrago et al.| (2025]). The U-Net we use is even larger, containing more parameters than this standard
baseline. For memory-augmented architectures, the memory module is inserted after the first two blocks
and before the last two. For all non-Markovian models, we fix the memory window size to K = 4 across
experiments; the impact of varying K on SS-NO is explored in Appendix

We adopt a simple spatial positional encoding scheme shared across all models. In 1D, for a grid with f
equispaced points over the interval [0, L], the positional encoding E € R is defined as E; = % for 0 <i < f.
In 2D, for a f x f grid over [0, L] x [0, L], the encoding is Eij = (-, =
a shared linear layer that maps the concatenation of input features and positional encoding from R?**_ where
k is the number of features, to the hidden space R", applied pointwise across the spatial grid. Similarly,
a shared decoder 7oy maps from R” back to R. For all models containing an FNO or FFNO module, we
follow the setup in Buitrago et al.| (2025) and retain all available Fourier modes by setting kmpax = ng,
where f denotes the spatial resolution. A notable exception is the TorusLi dataset, where an 8-mode FNO
configuration outperformed higher mode counts (16, 24, and 32). We therefore present the results based on 8
modes for this specific case.

). The input lifting operator i, is

Factorized Fourier Neural Operator (FFNO). The Factorized Fourier Neural Operator (FFNO),
introduced by [Tran et al.| (2023)), extends the original Fourier Neural Operator (FNO) (Li et al.| [2021)) by
modifying how the spectral integral kernel is applied. We use the standard FFNO implementation from
https://github.com/alasdairtran/fourierflow/. Each FFNO layer operates on a spatial grid of size |S]
and a hidden dimension h, and is defined as a residual block:

¢(v) = v + Linearp_,p,s 0 o o Lineary/ 5, 0 K(v),

where o denotes the ReLU activation function (Nair & Hinton, [2010)), and A’ is an intermediate dimensionality
used within the nonlinear mapping. The integral operator K transforms v in the Fourier domain and is
computed by aggregating across spatial dimensions:

d
K(U) = Z IFFTa [Ra : FFTa (U)])

a=1

where FFT,, and IFFT,, are the (inverse) discrete Fourier transforms applied along the a-th spatial axis, and
R, € Ch**kmax are learned complex-valued projection matrices for each dimension.

Fourier Neural Operator (FNO). For 2D problems, we use a modified version of the original Fourier
Neural Operator (FNO) (Li et al.,|2021)) where the output of the integral kernel is passed through a nonlinearity
before the residual skip connection, following the implementation at |https://github.com/1ilux618/fourier_
neural_operator/blob/master/fourier_2d_time.py, which we found to perform better.

Galerkin Transformer (GKT). We use the Galerkin Transformer (GKT) implementation from https:
//github.com/scaomath/galerkin-transformer. We employ a multi-input variant where the model is made
non-Markovian by providing the last K = 4 steps as input and processing the temporal dimension as normal
channels concatenated with other features, rather than as an independent dimension. We use a hidden size of
32 with dropout rates of 0.05 in attention layers and 0.025 in feedforward layers.

27

https://github.com/alasdairtran/fourierflow/
https://github.com/lilux618/fourier_neural_operator/blob/master/fourier_2d_time.py
https://github.com/lilux618/fourier_neural_operator/blob/master/fourier_2d_time.py
https://github.com/scaomath/galerkin-transformer
https://github.com/scaomath/galerkin-transformer

Under review as submission to TMLR

Factformer 2D. As part of our evaluation, we include the original Factformer model from |Li et al.
(2023a)), which is designed for spatiotemporal modeling over 2D spatial domains. While Buitrago et al.
(2025) only evaluated the 1D variant, we adopt the same architectural configuration for the 2D case to
ensure fair comparison: four attention layers, a hidden dimension of 64, and 4 attention heads with a total
projection dimension of 512. Factformer 2D applies linear attention sequentially along each spatial axis.
Given a hidden tensor w € R%*Sv*H ' two separate MLPs (MLP, and MLP,) are applied to compute
keys and queries across S, and Sy, respectively. After averaging over the complementary axis, we obtain
G, Ky € RXH and Gy, ky € RS>H Values v € RS *Sy*H are computed through a shared linear projection,
and attention is applied first along = and then y. Our implementation follows the original GitHub repository
https://github.com/BaratilLab/FactFormer| with minimal changes limited to data format compatibility.

Factformer 1D. We also evaluate the 1D version of Factformer, as introduced in |Buitrago et al.| (2025)),
using the same configuration of four attention layers, hidden dimension 64, and 4 attention heads (total
projection dimension 512). Unlike the 2D case, the 1D variant processes inputs over a single spatial dimension.
As such, only one MLP (MLP,) is used to compute queries and keys, and no spatial averaging is applied. A
single linear attention operation is performed per layer along the 1D spatial axis. Values are projected from
the input using a linear layer. This model is implemented within the same codebase as the 2D version to
maintain consistency, with minor modifications to handle 1D inputs.

U-Net Neural Operator (U-Net). Our U-Net implementation follows the typical encoder-decoder
architecture with skip connections (Gupta & Brandstetter, 2023)). It consists of four downsampling con-
volutional blocks, a bottleneck convolutional block, and four upsampling blocks with residual connections
linking corresponding encoder and decoder layers. We use a first hidden dimension of 32, and apply chan-
nel multipliers of [1,2,4, 8] in the encoder path. No time embeddings are used. This setup is adapted
to process spatiotemporal data by flattening the spatial dimensions and independently applying the net-
work to each time step. Our implementation is based on the publicly available codebase from PDEBench
https://github.com/pdebench/PDEBench (Takamoto et al.,2022). For reference, the U-Net Neural Operator
variant used in prior work by [Buitrago et al.[(2025) employs a similar architecture but with channel multipliers
of [1,2,2,2].

F Data Generation

F.1 1D Burgers’ Equation
We consider the one-dimensional viscous Burgers’ equation, expressed as:
Ou+ u0yu = v dpeu, (t,x) €[0,T] x [0, L],

where v is the viscosity coeficient. For our experiments, we utilize the publicly available 1D Burgers’ dataset
from PDEBench (Takamoto et al., 2022)), with viscosity ¥ = 0.001. The original dataset contains 10,000
spatiotemporal samples, each defined on a spatial grid of 1,024 points and 201 time steps over the interval
[0,2.01] seconds. We restrict our usage to the first 140 time steps and uniformly downsample them to obtain
20 steps spanning up to 1.4 seconds. This truncation is motivated by the observation that, after this point,
the dissipative effect of the diffusion term 0,,u suppresses high-frequency dynamics, causing the solution
to evolve slowly (Buitrago et al.| [2025). For training, we use the first 2,048 samples from the dataset and
reserve the last 1,000 samples for testing.

F.2 1D Kuramoto—Sivashinsky Equation
The Kuramoto—Sivashinsky (KS) equation is given by:
O+ w0zt + Opptt + V Opgapu =0, (t,2) € [0,T] x [0, L],

with periodic boundary conditions. We follow the exact same setting as provided by [Buitrago et al.|(2025)), using
their public repository at https://github.com/r-buitrago/LPSDA, which builds upon the implementation of

28

https://github.com/BaratiLab/FactFormer
https://github.com/pdebench/PDEBench
https://github.com/r-buitrago/LPSDA

Under review as submission to TMLR

Brandstetter et al.| (2022). The spatial domain [0, 64] is discretized into 512 points, and the temporal domain
[0,2.5] is divided into 26 equispaced time steps with fixed At = 0.1.

Initial conditions are generated as random superpositions of sine waves:

20
2k,
= ;Ai sin (7;:5 + (;Si) ,

where for each trajectory, the amplitudes A; are sampled from a continuous uniform distribution on [—0.5,0.5],
the frequencies k; are drawn from a discrete uniform distribution over {1,2,...,8}, and the phases ¢; are
sampled uniformly from [0, 27].

We consider three different viscosities: v = 0.075, 0.1, and 0.125. For each viscosity, we generate 2,048
training samples and 256 validation samples.

F.3 2D Navier Stokes Equations

The TorusLi Dataset. We consider the two-dimensional incompressible Navier—Stokes equations on the
unit torus T? = [0, 1]? in vorticity form. The evolution of the scalar vorticity field w(z,y,t) is governed by:

Oww +u-Vw = vAw + f,

where u = (u, v) is the velocity field satisfying the incompressibility condition V-u = 0, v > 0 is the kinematic
viscosity, and f is a fixed external forcing function.

We directly reuse the dataset released by [Li et al.| (2021), referred to as TorusLi, which was originally
developed to benchmark the FNO. The simulations were generated using a pseudospectral Crank—Nicolson
second-order time-stepping scheme on a high-resolution 256 x 256 grid, and subsequently downsampled to
64 x 64. All trajectories use a constant viscosity of v = 107> (corresponding to a Reynolds number Re = 2000),
and share the same external forcing:

fz,y) =01 [sin(2r(z 4+ y)) + cos(2n(z + y))] .

Initial vorticity fields wg are sampled from a Gaussian random field:
wo ~ N (0, 2(~A + 491)—2-5) ,

with periodic boundary conditions. The numerical solver computes the velocity field by solving a Poisson
equation in Fourier space and evaluates nonlinear terms in physical space with dealiasing applied. The
nonlinear term is handled explicitly in the Crank—Nicolson scheme.

The dataset consists of solutions recorded every ¢ = 1 time unit, with a total of 20 time steps per trajectory,
corresponding to a final time horizon of T' = 20. This makes the task relatively long-range compared to other
PDE benchmarks. The spatial resolution is fixed at 64 x 64 for all experiments in this paper.

The TorusVis and TorusVisForce Datasets. We utilize two additional datasets, TorusVis and
TorusVisForce, introduced by |Tran et al. (2023), to evaluate model generalization under varying phys-
ical regimes. Both datasets are generated using the same Crank—Nicolson pseudospectral solver used in
TorusLi, maintaining consistency in numerical methodology.

These datasets extend the Navier—Stokes setting by incorporating variability in viscosity and external forcing.
Specifically, each trajectory uses a randomly sampled viscosity v between 10~° and 10~%. The external
forcing function is defined as:

1

1
Fltoz,y) =013 3 N o sin (2mp(ia + jy) + 6t) + Bpij cos (2mp(iz + jy) + 6t)] ,
p=11i=0 j=0

29

Under review as submission to TMLR

where ay;j, Bpij ~ U[0,1] are sampled independently for each trajectory. The parameter § controls the
temporal variation in the forcing: for TorusVis, § = 0, resulting in time-invariant forcing; for TorusVisForce,
0 = 0.2, producing a time-varying force.

As with TorusLi, the spatial resolution is fixed at 64 x 64, and trajectories consist of 20 time steps sampled
every t = 1 time unit, yielding a total time horizon of T = 20.

F.4 2D Richtmeyer—Meshkov (CE-RM) Problem

We consider the 2D Richtmeyer—Meshkov (CE-RM) benchmark for the compressible Euler equations
(v = 1.4) on the unit square [0,1]? with periodic boundary conditions. The initial state contains a high-
pressure circular region and a heavy fluid on one side of a perturbed interface (Herde et al.,|2024)). Specifically,
the initial pressure and density are given by

20, 2?2 +1y?2<0.1,

1, otherwise,

2, lz| < I(z,y,w),
polx,y) = = () (12)
1, otherwise,

po(z,y) = {

with initial velocities v, = vy, = 0. The interface I(x,y,w) is perturbed by a random Fourier series:
10
I(z,y,w) = 0.25 4+ eZaj(w) sin(27((z,y) - (1,0) + bj(w))), (13)
j=1

where a; and b; are independent uniform random amplitudes and phases (with) ;a5 = 1). We integrate the
Euler equations up to time T' = 2, saving 21 equally spaced snapshots in time.

The publicly released CE-RM dataset (Herde et al., [2024) contains 1260 trajectories on a 128 x 128 grid,
which we spatially downsample by a factor of two to 64 x 64. Each snapshot includes five fields (density p,
velocity v, vy, pressure p, and a passive tracer). In our setup, the passive tracer is assumed available as an
input at every time step, while the model predicts only the conserved variables [p, vg, vy, p]. We follow the
dataset split of [Herde et al.| (2024), using the first 1000 trajectories for training and the last 200 for validation.
We further apply temporal downsampling by a factor of 2: we take the solution at times indexed ¢t = 0, 2,4, 6
(the first four snapshots) as input and predict the next 7 steps at indices 8,10, ...,20. In other words, given
the fields at time steps tg, ta, t4, tg, the model predicts the fields at ts, ..., t20.

F.5 2D Gravitational Rayleigh—-Taylor (GCE-RT) Problem

The GCE-RT problem adds gravitational forcing to the compressible Euler equations on [0, 1]? with periodic
boundaries. We use the two-dimensional Rayleigh—Taylor setup from astrophysics: a v = 2 polytropic
equilibrium on a model neutron star is perturbed at a random interface (Herde et all 2024). In cylindrical
symmetry (r = v/ + y?), the unperturbed pressure and gravitational potential are

plr) = K(”n((”) (14)

(ar)

olr) = ~21, IO (15)

with Ko = po/p? and o = \/47G/(2Ky) (with G = 1). The initial density profile is

o) =7 (16)

where K(r) = Ky for r < rpr and K(r) = (1 — A/(1 + A))?Ky for 7 > rgr. The Rayleigh-Taylor interface
radius is given by

rrr(z,y) = 0.25 (1 + acos(atan2(y,) + b)), (17)

30

Under review as submission to TMLR

with random amplitude a € [—1,1] and phase b € [—m, 7]. We also perturb the central density pg, pressure
po, and Atwood number A via

po=1+0.2¢, (18)
po=1+02d, (19)
A =0.05(1+0.2¢), (20)

with ¢,d, e ~ U[—1,1]. Initial velocity is set to zero. We evolve this setup to T'= 5 and save 11 snapshots
(every At =0.5).

The GCE-RT dataset (Herde et all 2024) likewise contains 1260 trajectories on a 128 x 128 grid, which we
spatially downsample to 64 x 64. Each snapshot includes six fields (p, vs, vy, p, a tracer, and the gravitational
potential ¢). In our setup, the passive tracer and gravitational potential are assumed available as inputs at
every time step, while the model predicts only [p, vy, vy, p]. We follow the dataset split of Herde et al.| (2024),
using the first 1000 trajectories for training and the last 200 for validation. Since the raw data has 11 time
frames, we take indices 0-3 as input and predict indices 4-10 (i.e. given the first 4 snapshots we predict the
next 7).

G Pseudocode of 2D SS-NO

class SS-NO(nn.Module):
Notation:
B: batch size
: temporal length
X, Y: spatial dimensions
input channels
hidden dimension

O

def __init__(self,

lifting_layer: nn.Module,
projection_layer: nn.Module,
memory_pre_forward_x: nn.Module,
memory_pre_backward_x: nn.Module,
memory_pre_forward_y: nn.Module,
memory_pre_backward_y: nn.Module,
memory_t: nn.Module,
memory_post_forward_x: nn.Module,
memory_post_backward_x: nn.Module,
memory_post_forward_y: nn.Module,
memory_post_backward_y: nn.Module):

super () .__init__()

self.p = lifting_layer

self.q = projection_layer

self.memory_pre_forward_x = memory_pre_forward_x
self.memory_pre_backward_x = memory_pre_backward_x
self.memory_pre_forward_y = memory_pre_forward_y
self.memory_pre_backward_y = memory_pre_backward_y
self.memory_t = memory_t

self.memory_post_forward_x = memory_post_forward_x
self.memory_post_backward_x = memory_post_backward_x
self.memory_post_forward_y = memory_post_forward_y
self.memory_post_backward_y = memory_post_backward_y

def forward(self, x: Tensor) -> Tensor:
Args:
x: Input sequence of states (B, C, X, Y, T)
Returns:
Predicted next state (B, X, Y, 1)

31

Under review as submission to TMLR

if self.training:
x = x + torch.randn_like(x) * noise

X = rearrange(x, b c xy t -> (b t) xy c’)
self.p(x)
rearrange(x, (b t) x y h -> (b t) h x y’, t=T)

xX X
noun 1

--- Pre-memory spatial SSM ---

= rearrange(x, (b t) h xy -> (b t y) h x’, t=T)

fwd = self.memory_pre_forward_x(x)[0]

bwd = torch.flip(self.memory_pre_backward_x(torch.flip(x,
= x_fwd + x_bwd

= rearrange(x, (b t y) h x -> (b t) x h y’, t=T)

X X X X X #H
|

X = rearrange(x, (b t) x hy -> (b t x) hy’, t=T)

y_fwd = self.memory_pre_forward_y(x)[0]

y_bwd = torch.flip(self.memory_pre_backward_y(torch.flip(x,
x = y_fwd + y_bwd

x = rearrange(x, ‘(b t x) h'y -> (b t) h x y’, t=T)

--- Temporal SSM ---

x = rearrange(x, (b t) h xy ->b x y h t’, t=T)

X = rearrange(x, ’b x y h t -> (b x y) h t’)

x = self.memory_t(x)[0]

x = rearrange(x, (b x y) h t ->b x y h t’, x=X, y=Y)
X = rearrange(x, 'b x y ht -> (b t) h x y’, t=T)

--- Post-memory spatial SSM ---

x = rearrange(x, (b t) h xy -> (b t y) h x’, t=T)
x_fwd = self.memory_post_forward_x(x)[0]

x_bwd = torch.flip(self.memory_post_backward_x(torch.flip(x,
x = x_fwd + x_bwd

X = rearrange(x, (b t y) h x -> (b t) x hy’, t=T)

x = rearrange(x, ‘(b t) x hy -> (bt x) hy’, t=T)

y_fwd = self.memory_post_forward_y(x)[0]

y_bwd = torch.flip(self.memory_post_backward_y(torch.flip(x,
x = y_fwd + y_bwd

x = rearrange(x, (b t x) h'y -> (b t) h x y’, t=T)

x
1

= self.qg(x)
X = rearrange(x, ‘(b t) ¢ xy ->b xy tc’, t=T)

return x

dims=[-1]))[e],

dims=[-11))[e],

dims=[-11))[e],

dims=[-11))[e],

dims=[-11)

dims=[-11)

dims=[-11)

dims=[-11)

Listing 3: SS-NO pseudocode

H Computational Efficiency and Cost-Accuracy Analysis

To rigorously evaluate the practical deployment viability of the proposed method, we conducted a comprehen-
sive analysis of the trade-offs between predictive accuracy, theoretical complexity, and real-world inference

latency.

H.1 Benchmarking Methodology

All benchmarks were performed on a single NVIDIA A6000 GPU with a batch size of 1 to simulate real-time

inference conditions. We report two key metrics across spatial resolutions N € {32, 64, 128,256, 512}:

o Theoretical Complexity (GFLOPs): The total number of floating-point operations (in billions)
required for a single forward pass, calculated using the thop profiler with custom handlers for spectral

operations.

32

Under review as submission to TMLR

Complexity vs. Error Trade-off Real-World Latency vs. Error Trade-off

3.

1071 4

Relative /, Error (Log Scale)
Relative £, Error (Log Scale)

10724

P

102 10 100 10 1s 20 25 30 35
Computational Complexity (GFLOPs) Inference Latency (ms)

—@— SS-NO —@— FFNO —A— FactFormer U-Net —*— GKT

Figure 12: Cost-Accuracy Trade-off Analysis (1D KS, v = 0.075). We compare predictive error against
computational cost across resolutions N € {32,...,512}. Left: Theoretical Complexity (GFLOPs). SS-NO
(Red) dominates the Pareto frontier, achieving the lowest error with significantly fewer operations than
FactFormer and U-Net. Right: Empirical Inference Latency (ms). On an NVIDIA A6000 GPU, SS-NO
is the fastest model (< 0.85 ms) and maintains constant runtime scaling. Note the discrepancy for GKT
(Purple): despite low theoretical FLOPs, it suffers higher real-world latency due to attention overheads.

o Inference Latency (Time): The wall-clock time in milliseconds, averaged over 100 iterations
following a GPU warmup phase.

H.2 Results and Discussion

The results are summarized in Table [6] and visualized as Pareto frontiers in Figure [[2]

State-Space Neural Operator (SS-NO). Our model demonstrates the most favorable cost-accuracy
profile. It achieves the lowest inference latency across all resolutions, consistently clocking under 0.85 ms.
Notably, its runtime is effectively constant with respect to resolution in this regime, as the computation is
dominated by fixed kernel launch overheads and the highly parallelizable associative scan of the S4 backbone.

Galerkin Transformer (GKT). We acknowledge the theoretical strength of the Galerkin Transformer,
which exhibits the lowest GFLOP count of all models (0.03 GFLOPs at N=512). This efficiency stems from
its linear attention mechanism, which avoids the quadratic complexity of standard Transformers. However,
theoretical efficiency does not translate directly to wall-clock speed; GKT’s inference latency (/2.26 ms)
is nearly 3x higher than SS-NO due to the memory-bound nature of attention layers and the overhead of
frequent reshaping operations.

FFNO and U-Net. The FFNO remains a strong competitor, offering low theoretical complexity (0.12
GFLOPs at N=512) and respectable runtime (~1.39 ms). However, SS-NO outperforms it in both speed
(~1.7x faster) and accuracy. The U-Net and FactFormer architectures are significantly more expensive, with
the U-Net requiring an order of magnitude more FLOPs (1.41 GFLOPs) for comparable or worse accuracy,
highlighting the inefficiency of dense convolutional encoders for this class of problems.

In summary, while models like GKT and FFNO offer specific theoretical advantages, SS-NO achieves the
optimal practical balance, delivering the highest accuracy with the lowest real-world latency.

I Formal Proof of FNO Recovery by SS-NO

In this section, we rigorously prove that the State Space Neural Operator (SS-NO) kernel formulation
structurally subsumes the Fourier Neural Operator (FNO) kernel as a special case. Specifically, we show

33

Under review as submission to TMLR

Table 6: Computational Cost Summary. Inference latency (ms) and theoretical complexity (GFLOPs)
for all models across the full range of spatial resolutions (N = 32 to 512). SS-NO counsistently demonstrates
the lowest inference latency (= 0.81 ms) and competitive scaling. While GKT shows very low theoretical
FLOPs, its real-world latency is significantly higher due to attention overheads.

Model N=32 N=64 N=128 N=256 N=512
Time GFLOPs Time GFLOPs Time GFLOPs Time GFLOPs Time GFLOPs
(ms) (ms) (ms) (ms) (ms)

U-Net 1.29 0.088 1.24 0.176 1.22 0.352 1.25 0.704 1.24 1.407

GKT 2.30 0.002 2.26 0.004 2.26 0.007 2.25 0.015 2.26 0.030

FactFormer 3.36 0.165 3.39 0.330 3.38 0.659 3.43 1.319 3.37 2.638

FFNO 1.37 0.016 1.35 0.033 1.35 0.044 1.35 0.067 1.39 0.120

SS-NO (Ours) 0.80 0.013 0.81 0.026 0.82 0.052 0.81 0.104 0.81 0.209

that by fixing the SS-NO parameters to specific values (zero damping, harmonic frequencies), the effective
spatial convolution kernel of SS-NO becomes mathematically identical to the implicit spatial kernel of the
FNO defined via the Discrete Fourier Transform (DFT).

1.1 The FNO Kernel Formulation

The Fourier Neural Operator (FNO) operates by computing a convolution in the spectral domain. For a 1D

input function u(z) discretized on a grid of N points {z,, = %}27:_01, the FNO computes the output v as:

v=F"YR-F(u)

where R is a learnable weight matrix in the frequency domain. By the Convolution Theorem, this is equivalent
to a circular spatial convolution v = u * Kpno, Where the spatial kernel kgyois the IDFT of the spectral
weights R. Let Ry denote the spectral weight matrix for the k-th frequency mode. The spatial kernel krpno
evaluated at a grid point z,, is:

N—
krno[n] = Z Rkei%" (Equation A)
k=0

[

1.2 The SS-NO Kernel Formulation

The SS-NO applies a convolution with a continuous kernel derived from the state equation. As detailed in
Equation 4 of the main text, the effective spatial kernel is:

M
kssm(x) = E Con B/} e=Pmlelgiwme

m=1

Evaluating this on the discrete grid z,, = &

% (assuming forward direction):

M
Kssm[n] = Z (CmB;)e*”"‘%e“""% (Equation B)

m=1

1.3 Proof of Equivalence

We demonstrate that Equation B (SS-NO) can exactly recover Equation A (FNO) under the following
restrictions: * Zero Damping (p = 0): Set p,, = 0 for all states, eliminating the decay term (e = 1). *
Harmonic Frequencies (w = 27k): Set the continuous frequency parameter w,, = 27k. On the grid, the
exponent becomes ¢! ™ F = ei%”, recovering the DFT basis. * Spectral Weights (SVD Decomposition):
Unlike FNO, which uses a full-rank matrix Ry for channel mixing, a single SSM state provides a rank-1

34

Under review as submission to TMLR

mixing term C,,B,] . However, any matrix Rycan be decomposed into a sum of J rank-1 terms (e.g., via
Singular Value Decomposition): Ry = ijl C’k,jBkT,j. To recover FNO, we set the number of SSM states to
M = N x J. We assign J states to each frequency mode k, indexed by j. By initializing the parameters such
that Z}]:1 Ck,jB];!—,j = Ry, Equation B becomes:

N-1 J N-1
HSSM[TL] = E E Ck,jBkT,j 606Z N = E R}C(i2 N
k=0 \j=1 k=0

Conclusion. This is mathematically identical to Equation A. Thus, the SS-NO formulation strictly subsumes
the FNO kernel parametrization. SS-NO is a generalization because it allows for p > 0 (localized kernels),
w # 27k (adaptive frequencies), and low-rank approximations where fewer than J states are used per
frequency.

J Extensions to Irregular Geometries and Complex Unknown Systems

A primary motivation for Neural Operators is their ability to model systems where the governing PDEs
are either unknown, partially known, or computationally intractable to solve directly. In such
regimes, the operator must learn the underlying physics purely from observational data. In this section,
we demonstrate SS-NO'’s capability in these challenging scenarios by extending it to irregular domains via
coordinate transformation and slicing.

J.1 Symmetry, Equivariance, and Geometric Inductive Bias

We first explicitly acknowledge a limitation raised by reviewers: the factorized scanning mechanism employed
in our main text (processing dimensions sequentially, e.g., x — y) is not inherently equivariant to rotation
or reflection. Unlike the isotropic kernels of standard CNNs or the global spectral bases of FNOs, the SSM
scan introduces a directional inductive bias. For example, rotating a fluid field by 90° changes the order
in which the SSM encounters features, potentially altering the output. Similarly, for periodic boundary
conditions, the standard causal scan (t — ¢ 4 1) breaks translation symmetry unless specific circular padding
schemes are used.

To reconcile this, we explore combining SS-NO with existing coordinate transformation frameworks, specifically
utilizing the diffeomorphic mappings introduced in Geo-FNO (Li et al.2023b). By decoupling the scanning
grid from the physical domain, we can maintain the computational efficiency of the factorized scan while
respecting the geometric properties of the data.

J.2 Approach 1: Recovering Symmetry via Transformations (Shallow Water Equations)

To validate SS-NO on a system with complex topology and no explicit PDE supervision, we test on the
spherical Shallow Water Equations (SWE).

To address the symmetry breaking discussed above, we adopt the coordinate transformation approach from
Geo-FNO (Li et al., [2023b]). This method learns a diffeomorphism that maps the physical manifold (the
sphere) to a uniform computational latent grid. Crucially, because this mapping is diffeomorphic, it can
preserve spatial symmetries—such as rotation and reflection—in the physical space, even if the internal
computational scan remains sequential. The transformation layer effectively “unwraps” the domain into a
canonical representation where the directional bias of the SSM is mitigated.

Experimental results against the Spherical FNO (SFNO) suggest that SS-NO’s adaptive frequency learning is
uniquely suited for this transformed space. In a mapped domain, physical waves often manifest as warped,
non-harmonic oscillations that fixed Fourier bases struggle to represent sparsely. SS-NO automatically adapts
its continuous frequency parameters w,, to these distorted geometries, effectively learning a physics-compliant
basis from data.

35

Under review as submission to TMLR

To rigorously test whether this combination has learned the underlying operator, we utilized a strict evaluation
protocol: models were trained on a short horizon (10 steps) but evaluated on stability during long rollouts
up to t = 100. As shown in Table [}, SS-NO demonstrates superior stability, achieving ~ 2.2x lower error
than the baseline at ¢ = 100, confirming that the learned diffeomorphism successfully preserved the necessary
global dynamics.

J.3 Approach 2: Complex Aerodynamics via Slicing (AirfRANS)

We further evaluate SS-NO on the AirfRANS dataset (Bonnet et al., 2022), representing a “partially
known” or complex system where analytic solutions are unavailable. This task involves predicting velocity,
pressure, and skin friction fields over NACA airfoils. Here, the “true” PDE (Navier-Stokes) is computationally
prohibitive for design optimization, and the model must act as a surrogate learned entirely from RANS
simulation data.

For this irregular mesh problem, we adopt the slicing-based approach from Transolver (Wu et al.| [2024). We
integrated the SS-NO block into the Transolver architecture, replacing its core attention mechanism. As
shown in Table [8) SS-NO achieves competitive regression performance, significantly lowering Volume Error
(0.0017 vs 0.0037) and Surface Error (0.0046 vs 0.0142) compared to the baseline.

However, the model lags slightly in derived physical coefficients (Lift C). We hypothesize this is due to the
Linear Time-Invariant (LTI) nature of the standard S4 backbone, which applies uniform dynamics globally.
Complex aerodynamics require spatially varying dynamics (e.g., distinguishing laminar leading edges from
turbulent wakes). We anticipate that replacing the S4 backbone with input-dependent State Space Models
(e.g., Mamba (Gu & Daoj, 2024))), which can dynamically modulate parameters based on the local flow state,
would bridge this gap.

Table 7: Spherical Shallow Water Equations (SWE) Benchmark. Comparison of relative ¢ errors on
spherical SWE forecasting over long time horizons. Models were trained on a short horizon (10 steps) and
evaluated up to ¢t = 100. SS-NO demonstrates superior stability and generalization, achieving ~ 2.2x lower
error than the Spherical FNO (SFNO) at ¢t = 100, indicating it has effectively learned the global atmospheric
dynamics from data.

Evaluation Step SFNO (Baseline) SS-NO (Ours) Improvement

t=20 6.56 x 1072 2.63 x 102 2.5x%
t =50 5.99 x 1071 2.54 x 101 2.4x%
t =100 2.82 x 10° 1.28 x 10° 2.2%

Table 8: AirfRANS Benchmark (Data-Driven Aerodynamics). Comparison of SS-NO against
Transolver on the AirfRANS dataset. This task represents a “partially known” system where the model must
learn complex aerodynamic mappings purely from data. SS-NO excels at field reconstruction (Volume/Surface
error) but requires input-dependent gating (e.g., Mamba) to better capture global coefficients like Lift.

Model Error Vol. ([) Error Surf. () Lift Coef. C;, (J) Spearman pr, (1)
Transolver 0.0037 0.0142 0.1030 0.9978
SS-NO (Ours) 0.0017 0.0046 0.1098 0.9973

K Background: The MemNO Framework

In this work, we adopt the training and inference strategy proposed in the Memory Augmented Neural
Operator (MemNO) framework Buitrago et al.| (2025). As this framework serves as the temporal backbone
for our experiments, we provide a summary of its theoretical motivation and architectural design here.

36

Under review as submission to TMLR

K.1 Theoretical Motivation: Mori-Zwanzig and Coarse-Graining

The primary motivation for MemNO stems from the Mori-Zwanzig formalism in statistical mechanics. This
theory addresses the problem of modeling a dynamical system when the full state is not observable—specifically,
when the system is projected onto a lower-dimensional or coarser representation (e.g., discretizing a PDE
onto a coarse spatial grid).

Even if the underlying PDE (the microscopic dynamics) is Markovian—meaning the future depends only
on the current exact state—the coarse-grained dynamics are generally non-Markovian. The resolved
(observable) scales interact with the unresolved (sub-grid) scales, and the influence of these unresolved scales
manifests as a “memory” of the system’s history. Mathematically, the evolution of the coarse variables
depends on an integral over the past states (the memory kernel).

Standard autoregressive Neural Operators often ignore this, treating the coarse mapping as Markovian
(Gig41 = G(ur)). MemNO argues that to accurately model coarse-grained PDE trajectories, the architecture
must explicitly account for this memory term to compensate for the loss of information due to spatial
discretization.

K.2 Architectural Implementation: S4 Temporal Layers

MemNO employs S4 layers along the temporal dimension. The temporal S4 mechanism allows the model
to efficiently compress the entire history of the input function into a compact latent state. This enables
the model to effectively learn the non-Markovian memory kernel required to close the system dynamics,
essentially using temporal information to recover spatial details lost during coarse-graining.

K.3 Adoption in This Work

We adopted the MemNO framework for our temporal benchmarks for two key reasons:

1. Handling Coarse Resolutions: Many of our benchmarks (e.g., Navier-Stokes at 64 x 64) operate
in regimes where the spatial grid does not fully resolve the turbulence. The MemNO framework
allows all models to utilize temporal history to compensate for this aliasing, ensuring a physically
rigorous evaluation.

2. Standardized Temporal Backbone: By fixing the temporal architecture to use MemNO’s S4-
based time mixing for all baselines (SS-NO, FNO, FactFormer, etc.), we ensure a fair comparison.
This isolates the contribution of the spatial mixing architectures, confirming that the performance
gains reported for SS-NO arise from its superior spatial processing rather than an advantageous
temporal integrator.

L Limitations

Despite the significant reduction in model size and strong performance achieved by SS-NO, certain limitations
remain inherent to the current formulation.

First, the accumulation of gradients during autoregressive training poses a scalability bottleneck. While
SS-NO is parameter-efficient, increasing the state dimension D or the sequence length L linearly increases
the memory required for backpropagation through time. This restricts the feasibility of adopting extremely
large latent states without specialized techniques. However, unlike language modeling where infinite-horizon
dependencies are crucial, PDE dynamics are often effectively Markovian, suggesting that techniques such as
truncated backpropagation or gradient checkpointing could provide effective mitigation.

Second, the sequential scanning mechanism introduces a directional inductive bias that is not inherently
equivariant. Unlike isotropic convolutions or global spectral layers, the state-space scan processes data
sequentially (e.g., z — y), which breaks rotational and reflection symmetries. While we have shown in
Appendix [J] that this can be managed via symmetric embedding layers or coordinate transformations, the
core mixing block itself does not guarantee equivariance by construction.

37

Under review as submission to TMLR

M Possible Extensions and Future Work

We see several promising directions to extend the SS-NO framework, particularly in enhancing its expressivity
for complex dynamics and further generalizing its geometric capabilities.

Input-Dependent Backbones (Mamba and Hydra). A distinct advantage of the SS-NO framework
is its modularity; the core scanning backbone can be swapped for more advanced architectures. While the
current implementation utilizes efficient Linear Time-Invariant (LTT) systems, a natural extension is to
incorporate input-dependent backbones such as Mamba (Gu & Daoj, 2024) or Hydra (Hwang et al., 2024).
These models allow state transition matrices to be functions of the input field, enabling the operator to
dynamically modulate its effective receptive field and frequency response based on local flow features (e.g.,

shock waves or boundary layers). This would be particularly beneficial for multi-regime systems like the
AirfRANS benchmark discussed in Appendix [J]

Native Graph and Manifold Learning. While we successfully demonstrated extending SS-NO to
irregular domains via slicing and coordinate transformation, these methods essentially project data onto
regular latent structures. A more fundamental approach is to generalize the scanning operator to work
natively on graphs or meshes. Recent works like Graph Mamba (Wang et al., |2024) and pLSTM (Poppel
et al |2025) define propagation orders over graph topologies. Adopting these backbones would allow SS-NO
to process unstructured meshes without the need for interpolation or slicing, offering a principled way to
handle complex engineering geometries.

True Geometric Recurrence. A more theoretical direction is to redefine the recurrence relation itself
using geometric differential operators. This would entail replacing the ordinary time derivative in the SSM
with a covariant derivative,

V:Y(t)h = Ah + Bu,

incorporating notions of parallel transport to evolve the hidden state along geodesics. Such an extension
would enable genuinely Riemannian state evolution, preserving vector field symmetries on curved manifolds
by construction, though it introduces significant mathematical complexity.

Memory-Efficient Training Strategies. Finally, improving the memory efficiency of autoregressive
training remains a priority. Given that turbulent flows often exhibit chaotic but bounded attractors, exact
gradient retention over long horizons may yield diminishing returns. We plan to investigate truncated
backpropagation and implicit differentiation strategies specifically optimized for Neural Operators,
aiming to balance the fidelity of long-term gradients with the computational constraints of high-resolution
3D simulations.

38

	Introduction
	Related Work
	Neural Operators
	Structured State Space Models (SSMs)

	Methodology
	Problem Formulation
	Structured State Space Models (S4 and S4D)
	Markovian Spatial State Space Model
	Full SS-NO Model with Temporal Memory

	Theory
	A Sharp Criterion for Universality of Convolutional NOs.
	Adaptivity and Enhanced Model Expressivity of SS-NO

	Experiment Setup
	Setup and Dataset Description
	Training Objective.
	Evaluation Metric.

	Results
	1D Burgers' Equation
	1D Kuramoto–Sivashinsky Equation
	Ablation Study
	Observations
	Damping Analysis: Connecting Ablation Results to Learned Behavior

	2D Navier–Stokes Equations

	Conclusion and Future Work
	Appendix
	Universality of Convolutional NOs
	Full Field of View
	Intuitive Explanation of the Full Field of View Property
	A Sufficient Condition for Universality
	Proof of sufficiency of ``full field of view`` property (Theorem B.1)

	Further Ablation Studies
	Unidirectional Spatial SSM
	Effect of Missing Contextual Information and the Role of Temporal Modeling
	Effect of Varying the Memory Window Size
	Effect of Teacher Forcing on SS-NO Performance

	Comparison of Factorized Architectural Variants
	Data Preprocessing and Training Details
	Data Preprocessing and Training Setup
	Model Architecture Specifications
	Baseline Model Architectures

	Data Generation
	1D Burgers’ Equation
	1D Kuramoto–Sivashinsky Equation
	2D Navier Stokes Equations
	2D Richtmeyer–Meshkov (CE-RM) Problem
	2D Gravitational Rayleigh–Taylor (GCE-RT) Problem

	Pseudocode of 2D SS-NO
	Computational Efficiency and Cost-Accuracy Analysis
	Benchmarking Methodology
	Results and Discussion

	Formal Proof of FNO Recovery by SS-NO
	The FNO Kernel Formulation
	The SS-NO Kernel Formulation
	Proof of Equivalence

	Extensions to Irregular Geometries and Complex Unknown Systems
	Symmetry, Equivariance, and Geometric Inductive Bias
	Approach 1: Recovering Symmetry via Transformations (Shallow Water Equations)
	Approach 2: Complex Aerodynamics via Slicing (AirfRANS)

	Background: The MemNO Framework
	Theoretical Motivation: Mori-Zwanzig and Coarse-Graining
	Architectural Implementation: S4 Temporal Layers
	Adoption in This Work

	Limitations
	Possible Extensions and Future Work

