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Abstract
Causal estimands can vary significantly depend-
ing on the relationship between outcomes in treat-
ment and control groups, potentially leading to
wide partial identification (PI) intervals that im-
pede decision making. Incorporating covariates
can substantially tighten these bounds, but re-
quires determining the range of PI over probabil-
ity models consistent with the joint distributions
of observed covariates and outcomes in treatment
and control groups. This problem is known to
be equivalent to a conditional optimal transport
(COT) optimization task, which is more challeng-
ing than standard optimal transport (OT) due to
the additional conditioning constraints. In this
work, we study a tight relaxation of COT that
effectively reduces it to standard OT, leveraging
its well-established computational and theoretical
foundations. Our relaxation incorporates covari-
ate information and ensures narrower PI inter-
vals for any value of the penalty parameter, while
becoming asymptotically exact as a penalty in-
creases to infinity. This approach preserves the
benefits of covariate adjustment in PI and results
in a data-driven estimator for the PI set that is
easy to implement using existing OT packages.
We analyze the convergence rate of our estimator
and demonstrate the effectiveness of our approach
through extensive simulations, highlighting its
practical use and superior performance compared
to existing methods.

1. Introduction
In the potential outcome model (Rubin, 1974) with a bi-
nary treatment, each unit is associated with two potential
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outcomes: one under the control condition and one under
the treatment condition. However, for each unit, only the
potential outcome corresponding to the received treatment
is observed, and the other potential outcome is missing. As
a result, the joint distribution of the potential outcomes is
never observable, while the marginal distributions of the
two potential outcomes can often be identified1. This poses
a fundamental challenge: causal estimands that depend on
the joint distribution are only partially identifiable, meaning
that their exact values cannot be determined.

Previous works (Chernozhukov et al., 2017; Torous et al.,
2024; Gao et al., 2025) have used OT, a rapidly growing
field with various applications in machine learning (Agueh
& Carlier, 2011; Choi et al., 2018; Hui et al., 2018), to
obtain the PI set – the range of plausible values that the
causal estimand may take. This thread of research is built
upon the key observation: for causal estimands defined as
the expectation of a function of potential outcomes, the
PI set is an interval whose boundaries are effectively the
optimal objective values of two OT problems. Explicitly, in
these two OT problems, the function in the causal estimand
(or its negative counterpart) serves as the cost function, and
the marginal distributions of the two potential outcomes
serve as the source and target distributions, respectively.

In many applications, each unit is associated with a set of co-
variates. Leveraging the covariate information typically can
reduce the uncertainty in the outcome’s joint distribution
thus the width of the PI interval. From an OT perspec-
tive, this reduction in uncertainty involves optimizing an
expected cost function over all couplings (i.e. joint dis-
tributions) that respect the conditional marginal outcome
distributions – a framework termed as Conditional Optimal
Transport (COT). A comparison of optimal transport cou-
pling for OT and COT is illustrated in Figure 1. Compared
to standard OT, which disregards covariates, COT enforces
stricter coupling constraints, leading to tighter PI bounds.
This refinement is particularly beneficial when covariates
have a substantial influence on the distribution of potential
outcomes.

1The marginal distributions of the two potential outcomes can
be identified in randomized experiments or in observational studies
where the experiment is unconfounded—the potential outcomes
are independent of the treatment assignment conditional on the
observed covariates.
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Figure 1. Comparison of optimal transport coupling for OT and
COT when the covariate Z impacts the distribution of the potential
outcomes Y (0), Y (1).

However, COT is considerably more challenging than the
already complex OT for the following reasons.

(i). The conditional marginal distributions given the covari-
ates, which come in the constraint of the COT problem,
are unknown and often challenging to estimate from a fi-
nite sample. This difficulty is especially pronounced with
continuous covariates, where each covariate value typically
corresponds to only one observation.

(ii). Unlike OT, a straightforward plug-in estimator for COT
using a finite sample may not converge to a meaningful
limit as the sample size goes to infinity (see Example 9 in
(Chemseddine et al., 2024)). In this case, imposing well-
specified modeling assumptions can enable the construction
of a consistent estimator for the COT from finite samples,
which, however, entails a significant risk of model misspeci-
fication.

(iii). Even if the true conditional distribution is available,
solving COT involves addressing the computationally in-
tensive OT problem for each possible covariate value. For
continuous covariates, enumerating all possible values is
infeasible. Approximation through fine covariate discretiza-
tion is required, which is computationally demanding and
introduces additional approximation errors.

In this work, we study a model-lean covariate-adjusted opti-
mal transport method to obtain PI sets, which avoids solving
COT problems. The key idea is to introduce “mirror” co-
variates and reformulate the problem as a standard (uncondi-
tional) OT, using the original cost function plus an additional
penalty term that accounts for the gap between the mirror
covariates. Our framework is rooted in the method by (Car-
lier et al., 2010) for seeking a block triangular map using
OT, and is further extended by (Hosseini et al., 2025; Bap-
tista et al., 2024b; Chemseddine et al., 2024) for different
tasks. At the population level, the optimal objective value
of our framework is shown to improve upon the standard
OT optimal value that ignores covariates and increases to
the COT optimal value as the penalty parameter approaches

infinity. This implies that the PI interval of our framework
with a finite penalty parameter is always valid and narrower
than (or equal to) the interval obtained without using the
covariates. Provided with a finite sample, we construct
a plug-in estimator for the optimal objective value of our
framework and establish its convergence rate. Computation-
ally, the proposed approach is compatible with off-the-shelf
OT solvers (Flamary et al., 2021). Empirically, we show
that our method significantly improves the PI set from OT
without covariates and demonstrate our method’s efficiency
(i.e., narrower PI intervals) and robustness (to the model
misspecification of the conditional marginal distributions)
compared to alternative COT-based methods.

Contributions.

(i) We propose a model-lean covariate-aware OT method
for solving PI sets in causal inference with an efficient
computation algorithm (Algorithm 1) and a rigorous
statistical guarantee (Theorem 4.3).

(ii) We establish an interpolation between OT and COT
(Proposition 3.6), where COT is more challenging and
less explored, enabling the study of both the statisti-
cal and computational properties of COT using well-
developed tools from OT.

Organization. Section 2 provides preliminaries on stan-
dard OT and COT with their connection to PI. Section 3
introduces our proposed method with population level anal-
ysis. Section 4 presents a data-driven estimator and the
finite-sample analysis. Section 5 presents the experiments
on synthetic and real data. Section 6 collects some final
remarks and future research directions. Discussion on re-
lated work is deferred to the Appendix A; Notations are
collected in the Appendix B; All the proofs are collected in
the Appendix C.

2. Preliminaries
2.1. Unconditional Optimal Transport

Consider a unit associated with two potential outcomes
Y (0) and Y (1). The causal estimand of interest is V ∗ :=
Eπ∗ [h(Y (0), Y (1))] for some function h : Y × Y → R,
where π∗ denotes the joint distribution of (Y (0), Y (1)),
Y ⊆ RdY . Let W denote the treatment indicator. If the
unit receives the treatment W = 1, the observed outcome
is Y = Y (1); otherwise, Y = Y (0). A fundamental limita-
tion in causal inference is that Y (0) and Y (1) are never
observed simultaneously for the same unit, making the
joint distribution π∗ of (Y (0), Y (1)) unidentifiable. Conse-
quently, V ∗ is typically not identifiable, and we instead aim
to obtain a partial identification set for V ∗.

The set of joint distributions consistent with the observable
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marginal distributions is

Πu =
{
π ∈ P(Y2) : πY (0) = PY (0), πY (1) = PY (1)

}
,

where πY (0) denotes the marginal distributions of Y (0) un-
der π, and similarly for πY (1); PY (0), PY (1) are the marginal
distribution of Y (0), Y (1). Thus, the partial identification
set of V ∗ takes the form {Eπ[h(Y (0), Y (1))] : π ∈ Πu},
which is convex and thus an interval. The lower boundary2

of the partial identification interval is the optimal objective
value of the following optimization problem

(Vu) : min
π∈Πu

Eπ[h(Y (0), Y (1))]. (1)

This formulation establishes a natural connection between
the causal partial identification and the OT problem (Villani
et al., 2009), where we want to couple the measures of PY (0)

and PY (1) with the minimal cost measured by the function
h. More motivating examples can be found in (Ji et al.,
2023; Gao et al., 2025), which propose to obtain the partial
identification sets by solving the related (multi-marginal)
OT problems.

2.2. Conditional Optimal Transport

Suppose each unit is also associated with a set of covari-
ates, denoted by Z ∈ Z ⊆ RdZ , such as height or age.
The covariate information can be leveraged to shorten the
partial identification interval. In a nutshell, the conditional
marginal distribution of Y (0) | Z = z is identifiable under
the unconfoundedness assumption, which imposes a con-
dition on the joint distribution π more stringent than only
preserving the unconditional distribution PY (0); similarly
for Y (1). Consequently, the class of consistent joint distri-
butions shrinks, leading to a shorter partial identification
interval. Mathematically, we define the set of joint distribu-
tions consistent with the observable conditional distributions
of Y (0) | Z, Y (1) | Z, and Z as:

Πc =
{
π ∈ P(Y2 ×Z) : πY (0),Z = PY (0),Z ,

πY (1),Z = PY (1),Z

}
,

where PY (0),Z denotes the marginal distribution of
(Y (0), Z); similarly for (Y (1), Z). The partial identifi-
cation interval {Eπ[h(Y (0), Y (1))] : π ∈ Πc} is convex
and thus again an interval, and the lower boundary of this
interval is the optimal objective value of the COT problem:

(Vc) : min
π∈Πc

Eπ[h(Y (0), Y (1))]. (2)

The subscript “c” in Vc stands for “conditional”, and the
subscript “u” in Vu from Equation (1) stands for “uncondi-
tional”. In Figure 1, we illustrate that when the conditional

2The upper boundary can be obtained using −h(Y (0), Y (1)).

distribution Y (·) | Z = z varies with the value of z, the op-
timal joint distribution of the the unconditional OT problem
and that of the COT differ significantly, and the partial iden-
tification interval under COT is notably shorter as a result.
Despite these benefits, the estimation and computation of
COT are challenging, as discussed in Section 1.

3. Mirror Relaxation of COT
In this section, we introduce our relaxation of COT using
mirror covariates, namely, Vip(η) as an alternative PI lower
bound. We additionally present the interpolation of Vip(η)
between the PI lower bounds Vu and Vc. The subscript “ip”
in Vip(η) stands for “interpolation”.

3.1. Assumptions

Assumption 3.1 (Completely randomized design). For each
unit i ∈ I, (Yi(0), Yi(1), Zi) i.i.d. follows PY (0),Y (1),Z .
Suppose m units are assigned to the treatment group (W =
1), and n units are assigned to the control group (W = 0).

Assumption 3.2 (Compact support and density). Assume
that Y,Z are convex and compact, and PY (0),Z , PY (1),Z

both admit densities with respect to the Lebesgue measure
on RdY +dZ .

Assumption 3.3 (Smooth cost). Assume that the cost func-
tion h ∈ C1(R2dY ), and ∇yh(y, ·) is injective for ∀y ∈ Y .

Assumption 3.2 is introduced to facilitate theoretical anal-
ysis while covering a wide range of practical scenarios.
Assumption 3.3 ensures the uniqueness of the optimal trans-
port maps, which serves as the foundation for defining our
estimand, and is satisfied by, e.g., quadratic costs.

3.2. Definition of Vip(η)

Definition 3.4 (Mirror relaxation Vip(η)). For η ∈ [0,∞),
let π⋆

ip(η) =

argmin
π∈Πip

Eπ

[
h(Y (0), Y (1)) + η ∥Z(0)− Z(1)∥22

]
,

where the set Πip of joint distributions consistent with
marginals of outcomes and associated mirror covariates
is defined as

Πip =
{
π ∈ P(Y2 ×Z2) : πY (0),Z(0) = PY (0),Z ,

πY (1),Z(1) = PY (1),Z

}
.

Then the interpolating OT lower bound Vip(η) is defined as

Vip(η) = Eπ⋆
ip(η)

[h(Y (0), Y (1))].

The following proposition shows that Vip(η) is well-defined.
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Definition Optimal coupling under constraints

Vu = ⟨π⋆
u , h⟩ π⋆

u = argmin
π∈Πu

Eπ[h(Y (0), Y (1))]

Vc = ⟨π⋆
c , h⟩ π⋆

c ∈ argmin
π∈Πc

Eπ[h(Y (0), Y (1))]

Vip(η) = π⋆
ip(η) = argmin

π∈Πip

Eπ [h(Y (0), Y (1))

⟨π⋆
ip(η), h⟩ +η ∥Z(0)− Z(1)∥22

]
Table 1. Definitions of partial identification OT lower bounds.

Proposition 3.5 (Existence and uniqueness of π⋆). Under
Assp. 3.2, 3.3, π⋆

ip(η) exists and is uniquely determined.

We remark that π⋆
u , π

⋆
c exist as well, and π⋆

u is also uniquely
determined. In Table 1, we summarize the three PI lower
bounds for comparison, where we denote ⟨π, h⟩ := Eπ[h].

3.3. Interpolation Between PI Lower Bounds

The following result shows that Vip(η) interpolates the lower
bounds Vu and Vc as η ranges from 0 to ∞.

Proposition 3.6 (Interpolation between lower bounds). Un-
der Assp. 3.2, 3.3, for η ≥ 0, we have

(i). (Monotonicity) Vu ≤ Vip(η) ≤ Vc, and Vip(η) is non-
decreasing and continuous with respect to η.

(ii). (Interpolation) Vip(0) = Vu, limη→∞ Vip(η) = Vc.

Remark 3.7 (Implications in PI). For partial identification in
causal inference, the interpolation of Vip(η) between Vu and
Vc demonstrates that Vip(η) strictly improves upon the lower
bound Vu, which disregards the covariate information. As
η increases, the improvement becomes more pronounced,
with Vip(η) converging to Vc—the sharpest lower bound
achievable leveraging the covariates.

When the compactness assumption (Assp. 3.2) is not sat-
isfied, the interpolation can still hold as shown in the next
example, where the lower bounds possess closed-form ex-
pressions.

Example 3.8 (Gaussian linear model). Consider the data
generating mechanism Y (0) = β0Z+σ0ε0, Y (1) = β1Z+
σ1ε1, where Z, ε0, ε1 are i.i.d. N (0, 1). Let h(y0, y1) =
(y0 + y1)

2. Applying the formula of 2-Wasserstein distance
between Gaussian random variables (see e.g. (Dowson &
Landau, 1982)), we get the following results (the proof can

be found in the Appendix C.11):

Vu =

(√
β2
0 + σ2

0 −
√
β2
1 + σ2

1

)2

,

Vc = (β0 + β1)
2
+ (σ0 − σ1)

2,

Vip(η) = (β2
0 + β2

1 + σ2
0 + σ2

1)

− 2
(β2

0 + σ2
0)(β

2
1 + σ2

1)− ηβ0β1 + ησ0σ1

((β2
0 + σ2

0)(β
2
1 + σ2

1)− 2ηβ0β1 + 2ησ0σ1 + η2)
1
2

.

A straightforward analysis shows that the properties in
Proposition 3.6 hold in this case. Further, in this case
we have Vc − Vip(η) =

2(β0σ1+β1σ0)
2

η +O( 1
η2 ) as η → ∞,

as illustrated in Fig. 2.
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Figure 2. Comparison of Vip(η), Vc and Vu for h(y0, y1) = (y0 +
y1)

2. The model is Y (0) = 0.8Z + ε0, Y (1) = 1.6Z + ε1,
Z, ε0, ε1 are i.i.d. ∼ N (0, 1).

4. Finite-Sample Analysis
In this section, we introduce our empirical estimator of
Vip(η) based on a finite sample and discuss the statistical
convergence rate of this estimator.

4.1. Data-Driven plug-in Estimator

Given a finite sample ((Yi, Zi,Wi), i ∈ I) where there are
n units with Wi = 0 and m units with Wi = 1, we denote
the empirical marginal distributions as

Pn,Y (0),Z =
1

n

∑
i∈I

δYi,Zi
1(Wi = 0), (3a)

Pm,Y (1),Z =
1

m

∑
i∈I

δYi,Zi
1(Wi = 1). (3b)

Our empirical estimator Vip,n,m(η) is then based on the
plug-in of Pn,Y (0),Z (resp. Pm,Y (1),Z) to replace PY (0),Z

(resp. PY (1),Z) in the definition of Vip(η). We demonstrate
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Algorithm 1 Derivation of Empirical Estimator Vip,n,m(η)

Input: sample ((Yi, Zi,Wi), i ∈ I), cost function h,
parameter η
Construct Pn,Y (0),Z , Pm,Y (1),Z by (3a), (3b).
Compute the cost matrix H ∈ Rn×m, with

H(j, k) = h(y
(j)
0 , y

(k)
1 ) + η

∥∥∥z(j)0 − z
(k)
1

∥∥∥2
2
,

between the n points (denoted as (y(j)0 , z
(j)
0 ), j ∈ [n]) in

the support of Pn,Y (0),Z and the m points (denoted as
(y

(k)
1 , z

(k)
1 ), k ∈ [m]) in the support of Pm,Y (1),Z .

Solve the optimal transport problem: for 1 = (1, ..., 1),

min
1⊤π= 1

m1⊤,π1= 1
n1

∑
j,k

π(j, k)H(j, k), (4)

and denote the optimal solution as π⋆
ip,n,m(η).

Compute

Vip,n,m(η) =
∑
j,k

π⋆
ip,n,m(η)(j, k) h(y

(j)
0 , y

(k)
1 ).

Output: Vip,n,m(η)

the estimator in Algorithm 1. Note that (4) may not have a
unique optimal solution, while our analysis in this section is
valid for any optimal solution π⋆

ip,n,m. The next proposition
states that the plug-in estimator is consistent.

Proposition 4.1 (Consistency of the plug-in estimator). Un-
der Assp. 3.1-3.3, Vip,n,m(η) is a consistent estimator of
Vip(η) as n,m→ ∞.

4.2. Convergence rate

Now, we present the result on the convergence rate of
our plug-in estimator for Vip(η). Our analysis relies on
quadratic cost functions so that the optimal transport map
enjoys a convex characterization (Knott & Smith, 1984;
Brenier, 1991).

Proposition 4.2 (Brenier’s theorem). Under Assp. 3.2,
for the cost function ∥y − y′∥22 + ∥z − z′∥22, there exists
a PY (0),Z-a.s. unique OT map T between PY (0),Z and
PY (1),Z such that T = ∇φ for a convex function φ.

Here, φ is the so-called Brenier’s potential between PY (0),Z

and PY (1),Z . Also, the Brenier’s theorem can be extended
to general quadratic functions. Then, inspired by the proof
strategy in (Manole et al., 2024) that uses the smoothness
and strong convexity of φ, we demonstrate the convergence
rate of Vip,n,m(η) in the case of general quadratic functions.

Theorem 4.3 (Finite-sample complexity). Suppose that
h(y1, y2) = y⊤Ay, where y = (y1, y2) and A =

[[A11, A12]; [A
⊤
12, A22]], A12 ∈ RdY ×dY is non-singular.

Under Assp. 3.1, 3.2 (excluding the compactness assump-
tion), further assume that the Brenier potential between
PA⊤

12Y (0),ηZ and PY (1),Z , denoted as φ̃, satisfies φ̃ ∈
C2(Y,Z) and 1

λId ⪯ ∇2φ̃(x) ⪯ λId for λ > 0. Then,
we have

E [|Vip,n,m(η)− Vip(η)|] ≤ Cλη · γN,d,

where γN,d =


N− 1

4 d ≤ 3

N− 1
4

√
log(N) d = 4

N− 1
d d ≥ 5

.

Here, N = min(n,m), d = dY + dZ , and C is a constant
depending on d, ∥A12∥op , ∥A11∥op , ∥A22∥op as well as the
fourth moments of Y (0), Y (1), Z.
Remark 4.4 (Examples of quadratic costs). Many causal
quantities are the expectation of quadratic functions of po-
tential outcomes, whose associated Vip(η) falls into the um-
brella of Theorem 4.3. Examples include the Neymanian
confidence interval (Splawa-Neyman, 1923), testing a null
effect using E[(Yi(1)− Yi(0))

2] = 0, the correlation index
of potential outcomes (Fan et al., 2023), and the covariance
of treatment effects of different potential outcomes. We
include the details of the examples in Appendix E.

The compactness assumption in Assp. 3.2, together with
certein smoothness assumptions on the supports and densi-
ties of the marginal distributions (introduced in (Caffarelli,
1992a;b; 1996)), can be used to guarantee the existence of a
positive curvature λ (Corollary 3.2 of (Gigli, 2011)).
Lemma 4.5 (Caffarelli’s regularity theory for curvature).
Assume that the supports of both PA⊤

12Y (0),ηZ and PY (1),Z

are C2 and uniformly convex, and Assp. 3.2 holds. Fur-
ther, assume that the densities of both are C0,β for some
β ∈ (0, 1) and bounded away from zero and infinity. Then
the associated Brenier potential φ̃ ∈ C2,β and 1

λId ⪯
∇2φ̃(x) ⪯ λId, for some λ > 0.

Here, the definitions of C2, uniformly convex sets and Ck,β

functions and will be explained in Appendix B.

Unfortunately, we currently lack a general method to bound
the curvature λ with respect to η. Ideally, as η → ∞,
λ would grow at most linearly with respect to η (see Ap-
pendix C.7 for a discussion), as we will prove for jointly
Gaussian r.v.’s.
Lemma 4.6 (Curvature of OT maps for Gaussian marginals).
Suppose that (Y (0), Z), (Y (1), Z) are both Gaussian vec-
tors. For η > 0, there is a constant C̄, c̄ that only depends
on the covariance matrices of (Y (0), Z) and (Y (1), Z),
such that c̄(η ∧ 1)Id ⪯ ∇2φ̃(x) ⪯ C̄(η ∨ 1)Id.

In certain scenarios, potential outcomes can be dependent.
One example is sequential data collection, where earlier
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units influence which units are selected in later stages. An-
other example is where units are connected through a net-
work, and their potential outcomes are dependent based
on the network structure. In view of these situations, we
extend Theorem 4.3 to a special case of stationary but non-
i.i.d. samples.

Theorem 4.7 (Finite-sample complexity, non-i.i.d.). Un-
der the same assumptions as Theorem 4.3, suppose that
the units satisfy the α-mixing condition for some func-
tion α : N → R+, satisfying

∑
k α(k) < ∞ and

corr(f(Yi, Zi), g(Yj , Zj)) ≤ α(|i − j|) for ∀i, j and all
bounded functions f, g. Then, we have

E [|Vip,n,m(η)− Vip(η)|] ≤ Cλη · γN,d,

whereC is a constant depending on α, d, ∥A12∥op, ∥A11∥op,
∥A22∥op as well as the fourth moments of Y (0), Y (1), Z.

5. Experiments
The code can be found in the link: https://github.
com/siruilin1998/causalOT.git.

5.1. Computation

In Algorithm 1, (4) can be solved by a standard linear pro-
gramming (LP) solver. Alternatively, a popular approxi-
mation algorithm for solving this problem is to apply the
Sinkhorn algorithm (Cuturi, 2013), which induces a small
gap from the desired optimal transport solution. However,
the LP method is sufficiently efficient to solve the above
problem for typical datasets in causal inference (with data
size |I| = m + n ≤ 104). Thus, in this work, we directly
compute Vip,n,m(η) without using the Sinkhorn approxima-
tion.

5.2. Synthetic Data

Our synthetic data generating mechanism is based on the
following generic location (k = 1) and scale (k = 2) model:
Y (0) = Gk(f0(Z), ε0), Y (1) = Gk(f1(Z), ε1), where
Y (0), Y (1), ε0, ε1 ∈ RdY , Z ∈ RdZ , f0, f1 : RdZ → RdY ,
and G1(u, v) = u + v,G2(u, v) = u ⊙ v = (ujvj , j ∈
[dY ]). Specifically, Z, ε0, ε1 are independent with each
other.

When the noise variables ε0, ε1 follow Gaussian distribu-
tions and the cost function h is quadratic, Vc is computable
in closed form. Thus, the true value of Vc will serve as an
oracle benchmark for evaluating the experimental results.

Lemma 5.1 (Vc of models with Gaussian noise). As-
sume that h(y, ȳ) = ∥y + ȳ∥22, the noise variables ε0 ∼
N(0,Σ0), ε1 ∼ N(0,Σ1) and Z, ε0, ε1 are independent
with each other. Then,

(i) For the location model (k = 1),

Vc = EZ

[
∥f0(Z) + f1(Z)∥22

]
+ S(Σ0,Σ1).

(ii) For the scale model (k = 2), Vc =

EZ [S(D(f0(Z))Σ0D(f0(Z)),D(f1(Z))Σ1D(f1(Z)))] ,

where S(Σ0,Σ1) = Tr
(
Σ0 +Σ1 − 2(Σ

1
2
0 Σ1Σ

1
2
0 )

1
2

)
, and

D(v) is the matrix with the vector v placed at the diagonal.

Now, we provide the experiment results for synthetic data,
comparing our proposal with (i) an existing method for
estimating Vc in our causal setting, that is, (Ji et al., 2023)
using their python package DualBounds 3, and (ii) the
unconditional OT method (Gao et al., 2025) estimating Vu.
In Figure 3 and Appendix D, we plot the results for the
following three models:

(a) Linear location model, f0(z) = 0.6z, f1(z) = 1.6z.

(b) Quadratic location model, f0(z) = 0.2z2, f1(z) =
0.6z2.

(c) Scale model, f0(z) = 0.5z−0.35, f1(z) = 1.1z+0.35.

From Figure 3, we can see that the Vip,n,m(η) curve de-
creases quickly for small η and then stabilizes as η increases,
implying that incorporating covariate information signifi-
cantly improves over the estimator for Vu (denoted with
label “OT”). For the linear location model (Figure 3(a)(d)),
the DualBounds with “ridge”-based nuisance estimator
actually utilizes apriori outcome model knowledge; in con-
trast, our non-parametric method, not leveraging this knowl-
edge, can effectively achieve comparable L1 error with rea-
sonably large η. For the quadratic location model (Fig-
ure 3(b)(e)) and the scale model (Figure 3(c)(f)), com-
pared to DualBounds with “ridge”-based nuisance es-
timator that relies on an invalid model assumption, our
method demonstrates its robustness with significantly higher
accuracy; compared to DualBounds with “knn”-based
nuisance estimator that is also non-parametric, our non-
parametric method provides closer and more stable ap-
proximation to Vc. Particularly, for the scale model (Fig-
ure 3(c)(f)), DualBounds with “knn”-based nuisance esti-
mator may even yield negative-valued estimator for Vc > 0
(see Figure 4 (c)(f) in Appendix D), indicating a significant
bias.

5.3. Real Data

We utilized data from the Student Achievement and Reten-
tion (STAR) Demonstration Project (Angrist et al., 2009), an

3https://dualbounds.readthedocs.io/en/
latest/index.html
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(a) Linear location model
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(b) Quadratic location model
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(c) Scale model
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(d) Linear location model
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(e) Quadratic location model
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(f) Scale model

Figure 3. L1 error for estimation of Vc (i.e. E [|estimator − Vc|], E is computed by averaging over 800 repetitions) for a linear location
model, a quadratic location model, and a scale model. The first row: m = n = 500, the second row: m = n = 1500. Each column
is corresponding to a model. “Vip(η)” stands for the Vip,n,m(η) estimator, “LL ridge” stands for the method DualBounds (Ji et al.,
2023) with outcome model chosen as “ridge”, “LL knn” stands for the method DualBounds with outcome model chosen as “knn”,
“OT” stands for the unconditional OT method (Gao et al., 2025).

Table 2. Neymanian confidence upper bound.
LLridge LLknn η = 0 η = 10 η = 20 η = 30 η = 40 η = 50

upper bound (×10−3) 3.334 3.596 2.762 2.683 2.657 2.645 2.638 2.628
relative sample size 1.207 1.302 1.0 0.971 0.962 0.957 0.955 0.951

initiative aimed at understanding the effects of scholarship
incentive programs on academic performance. The treat-
ment (i.e. access to a scholarship incentive) was randomly
assigned, and approximately 30% of the students received
the treatment. Academic performance in the STAR data is
measured using the GPA for the first academic year. In addi-
tion to the treatment assignment and the outcome variable,
the dataset also includes the baseline GPA (GPA collected
before the treatment assignment), which is considerably
influential on the outcome variable.

We explore two applications of the PI set with distinct pur-
poses. The first application improves the variance estima-
tor used by the Neymanian confidence interval (Splawa-
Neyman, 1923), thus boosting statistical power and reducing
the required sample size. The second application estimates
the PI set for the correlation of two potential outcomes. If
the treatment effect is constant, the correlation will be equal
to one. Therefore, an upper bound that is strictly less than
one indicates heterogeneity in the treatment effect.

5.3.1. NEYMANIAN CONFIDENCE INTERVAL

We revisit the classic Neymanian confidence interval
(Splawa-Neyman, 1923). Consider the finite-sample av-
erage treatment effect estimand τ := Ȳ (1)− Ȳ (0), where
Ȳ (k) =

∑N
i=1 Yi(k)/N represents the finite-sample mean

of potential outcomes at treatment level k. For completely
randomized experiment withm treated units, n control units,
the Neymanian confidence interval for the difference in
means estimator is

V :=
S2
1

m
+
S2
0

n
− S2

τ

N
,

S2
k :=

∑N
i=1(Yi(k)− Ȳ (k))2

N − 1
, k ∈ {0, 1},

S2
τ :=

∑N
i=1

(
Yi(1)− Yi(0)− (Ȳ (1)− Ȳ (0))

)2
N − 1

.

(5)

Here, S2
k represents the sample variance of outcomes for

the treatment or the control group, which can be estimated
using the empirical variance of units with Wi = k. How-
ever, S2

τ remains unidentifiable because Yi(1), Yi(0) are not

7



Covariate-Aware Transport for Causal Bounds

Table 3. PI sets for correlation.
LLridge LLknn η = 0 η = 10 η = 20 η = 30 η = 40 η = 50

upper bound 1.005 1.187 0.997 0.932 0.911 0.900 0.895 0.887
lower bound -0.707 -1.036 -0.997 -0.646 -0.623 -0.607 -0.597 -0.592

PI interval length 1.712 2.223 1.994 1.578 1.534 1.507 1.492 1.479

simultaneously observable for the same individual.

The conventional variance estimator for V replaces S2
0 , S2

1

with its empirical estimate and substitutes S2
τ with a trivial

lower bound of zero. This approach leads to an upward-bias
variance estimator and, consequently, to overly conservative
confidence intervals. In (Aronow et al., 2014), the sharp
lower bound for S2

τ without using covariates is provided,
which corresponds to our Vu = Vip(0). Our Vip(η), η > 0
incorporates the covariate information and can offer a sharp
lower bound for S2

τ , leading to an even narrower confidence
interval and a more powerful test. In practice, narrower
confidence intervals are highly desirable as they often imply
that smaller sample sizes are sufficient to achieve statistical
significance. For example, in clinical trials, this can reduce
the number of patients needed, thereby lowering costs and
expediting discoveries.

In Table 2, we present our estimated Neymanian variance
estimator in comparison with alternative methods discussed
in Section 5.2. All variance estimators are normalized by
Vu, allowing the resulting ratio to be interpreted as the ratio
of the sample size required to achieve a specific level of
statistical significance. A smaller ratio indicates that fewer
units are needed. Our procedure, with η = 50, reduces
the required sample size by approximately 5% compared
to Vu ignoring covariates. In contrast, the DualBounds
methods result in relative sample size ratios exceeding one,
suggesting their efficiency is less favorable than both Vu and
our proposal.

5.3.2. PI SET OF CORRELATION INDEX

We consider the correlation between two potential outcomes
defined as:

ρ :=
E[Yi(1)Yi(0)]− E[Yi(1)]E[Yi(0)]√

Var(Yi(0))Var(Yi(1))
.

Since it depends on the joint distribution of the two potential
outcomes, the quantity is only partially identified.

In Table 3, we present our estimated PI sets for the correla-
tion index in comparison with alternative methods discussed
in Section 5.2. First, notice that the upper bound of ρ being
strictly smaller than 1 indicates treatment effect heterogene-
ity. The upper bounds of ρ for Vu and DualBounds are
close to 1, while our method achieves an upper bound of
0.887 (η = 50) sufficiently smaller than 1. Second, the
PI interval from our method is significantly narrower than

those of Vu and DualBounds (our PI set is only 74% of
that achieved by Vu), indicating a better understanding of
the correlation between potential outcomes.

6. Conclusion And Discussion
In this work, we propose a model-lean covariate-aware OT
method for solving PI sets in causal inference by introducing
the mirror covariates. In traditional causal inference, covari-
ates are typically considered unaffected by the treatment and
are not assigned counterfactual values. Our mirror covari-
ates can be effectively interpreted as the counterfactual coun-
terparts of observed covariates. To ensure the invariance
of pre-treatment covariates, we introduce a penalty on the
deviation between the observed and mirror covariates. Our
approach unifies covariates and potential outcomes within
a common framework and also allows for incorporating
post-treatment covariates.

We point out several promising directions for future re-
search.

Variable selection for tighter PIs. As additional covariates
are included, the population-level PI interval narrows. How-
ever, the finite-sample estimator of the PI deteriorates in
accuracy, particularly in terms of bias. To address this, it is
beneficial to only adjust for a selected subset of covariates
that substantially influences the distribution of potential out-
comes. Ideally, the population PI adjusted for this subset
should be close to that adjusted for all covariates, and by
limiting the analysis to this subset, the estimation error of
the PI is significantly reduced compared to using the full set
of covariates.

Potential approaches to achieve this include (1) a forward
stage-wise approach, where unselected covariates with the
greatest impact are added sequentially; (2) a single-step
selection method minimizing the PI width with an appropri-
ate penalty for the number of covariates used, conceptually
analogous to LASSO.

Model-assisted PI. When knowledge of the model regarding
the relationship between the potential outcome and covari-
ates is available, this information could further refine the
PI compared to our model-lean approach. In particular, it
is a promising direction to develop model-assisted estima-
tors that are both robust and efficient. Here the robustness
means that the model-assisted PI should remain valid, at
least asymptotically, even when the underlying model as-
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sumptions are incorrect; the efficiency means that when
the model assumptions are correct, the model-assisted PI
should be narrower. A potential approach is using the one-
step correction estimator from the semi-parametric literature
(Van der Vaart, 2000).

Relaxation using Causal Optimal Transport. Causal OT
(or adapted OT) extends the standard OT framework by
incorporating additional temporal causality constraints (Ya-
mada & Watanabe, 1971; Xu et al., 2020). In our context,
this temporal constraint corresponds to the property that
Y (0) | Z(0), Z(1) has the same distribution as Y (0) | Z(0),
or in other words, Y (0) is independent of Z(1) given Z(0).
This assumption is reasonable because Y (0) and Z(1) exist
in different “worlds”, and any dependence between them
should arise through Z(0). In Appendix F, we outline a
relaxation that takes advantage of Causal OT (Vcausal(η))
to effectively address these constraints. We also present a
result analogous to Proposition 3.6. In particular, Vcausal(η)
is guaranteed to improve upon Vip(η), and admits an ap-
proximation error to Vc of order 1/η. However, despite
this desirable property of Causal OT, the computation of its
consistent estimator is much more challenging compared
to our current proposal due to additional causal constraints
(Eckstein & Pammer, 2024).
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A. Related Works
A.1. Partial-Identification

In the literature of causal inference, identifiability is typically the first issue addressed when a new causal estimand is
proposed. Under the potential outcome model, causal estimands depending on cross-world potential outcomes are generally
not identifiable due to the inherent missingness. In this case, the range of parameter values that are compatible with the data
is of interest. A multitude of works have been dedicated to finding causal estimands that can be identified, where a set of
assumptions is usually necessary. For instance, the identifiability of the average treatment effect requires the assumption of
no unobserved confounders, and using instrumental variables to identify the local treatment effect requires the exogeneity
(Imbens & Rubin, 2015). However, verifying these assumptions can be challenging or even impossible based solely on the
data, and the violation of the assumptions will render the parameter unidentified.

In the literature of econometrics, the partial identification problem has been a topic of heated discussion for decades (see
(Kline & Tamer, 2023) for a comprehensive review and references therein). The works generally begin with a model
depending on the parameter of interest and possibly other nuisance parameters or functions. The partially identified sets are
specified to be the values that comply with a set of moment inequalities, parameters that maximize a target function, or
intervals with specifically defined endpoints. In causal inference, there is a tendency to avoid heavy model assumptions
imposed on the potential outcomes to ensure the robustness and generalizability of causal conclusions. Methods therein
often involve leveraging non-parametric or semi-parametric methods that make few structural assumptions about the
data-generating process (Bickel et al., 1993; Van der Vaart, 2000; Laan & Robins, 2003).

We detail three particularly relevant threads of works among the studies on partial identification problems. Copula
models (Nelsen, 2006) are used to describe the dependency between multiple random variables with known marginal
distributions, which also aligns with the potential outcome model with marginals accessible and the coupling unknown. The
Fréchet–Hoeffding copula bounds can be used to characterize the joint distribution of the potential outcomes (Heckman
et al., 1997; Manski, 1997; Fan & Park, 2010). However, when dealing with more than two margins, one side of the
Fréchet–Hoeffding theorem’s bound is only point-wise sharp; moreover, copula models are generally constrained to
unidimensional random variables; in addition, the bounds on the joint distribution do not necessarily translate to those
of causal estimands, such as the variance of the difference of two potential outcomes. The second thread of related
works explicitly employs the optimal transport to address the partial identification problem in econometrics and causal
inference. (Galichon, 2018) considers a model that includes observed variables and latent variables, and the parameter
of interest regulates the distribution of the latent variables and the relationship between the observed and unobserved
variables, which differ from our problem formulation. (Balakrishnan et al., 2023) introduce the quadratic and differential
effects for continuous treatments (infinite levels of treatment) that can be considered as examples of the lower limits of our
formulation with a quadratic objective function. (Ji et al., 2023) tackle the PI problem using the COT framework. Their
approach involves first estimating the conditional marginal distribution and then solving for the optimal dual function at
each observed covariate value. While this method consistently provides valid PIs, accurately estimating the conditional
marginal distribution (nuisance function) is challenging, and inaccuracies in the nuisance function estimation may result in
conservative PI sets. Additionally, the method is computationally demanding.

A.2. Optimal Transport

Optimal transport (OT) provides an effective way to compare two probability distributions (namely, source and target)
by leveraging the geometry of the sample space. The OT cost between two distributions is the minimal expected cost
of transporting mass from one distribution to the other, where a ground cost function dictates the cost of moving a mass
from one point to another. OT is a powerful tool in machine learning and statistics, and it is used in model fitting (Kolouri
et al., 2017; Peyré & Cuturi, 2019), distributionally robust optimization (Mohajerin Esfahani & Kuhn, 2018; Blanchet et al.,
2022; Gao, 2023), fair machine learning (Taskesen et al., 2021; Si et al., 2021), generative modeling (Arjovsky et al., 2017;
Gulrajani et al., 2017; Liu et al., 2018), goodness-of-fit tests and two-sample tests (Ramdas et al., 2017; Sommerfeld &
Munk, 2018; Bernton et al., 2019; Tameling et al., 2019), among others. In particular, in the causal inference literature,
optimal transport has been widely recognized as an effective tool for counterfactual modeling (Black et al., 2020; Charpentier
et al., 2023; De Lara et al., 2024; Torous et al., 2024).

When matching two probability distributions, conditional optimal transport (COT) arises naturally in the presence of
covariates, as it transports measure between the corresponding conditional distributions for each covariate value. COT
provides a triangular map between the source and target, which is useful for conditional sampling (Wang et al., 2023;

12
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Hosseini et al., 2025; Baptista et al., 2024a). Further, COT has been applied in training conditional generative models,
including domain adaptation (Rakotomamonjy et al., 2022), and flow-based generative modeling (Kerrigan et al., 2024).
To address the computational challenges of COT, several methodological approaches have been developed: GAN-based
optimization (e.g. (Baptista et al., 2024a)), Kullback–Leibler (KL) divergence-based relaxation (Tabak et al., 2021;
Manupriya et al., 2024), entropic relaxation (Baptista et al., 2024b), OT relaxation (Chemseddine et al., 2024). While several
simulation-based computational methods have been proposed, the statistical guarantees for estimating the COT value remain
largely unexplored.

B. Notation Table
For any domain Ω ⊆ Rd, we denote P(Ω) as the space of probability measures on Ω; we alse denote Pac(Ω) to be the
set of measures absolutely continuous with respect to the Lebesgue measure. For measure P and map T , we denote
the push-forward measure of P using T as T#P , where T#P (A) = P (T−1(A)) for any measurable set A; If the map
T is linear, i.e. T (x) = B⊤x for a matrix B, then we use B⊤

#P to denote the associated push-forward measure. For a
function φ, φ∗ denotes its convex conjugate, i.e. φ∗(y) = supx{x⊤y − φ(x)}. For a matrix A, we denote λmax(A) to
be its largest eigenvalue and λmin(A) to be its smallest eigenvalue; we denote ∥A∥op to be the operator norm defined as
∥A∥op = supx ̸=0 ∥Ax∥2 / ∥x∥2.

• A closed set S is said to be C2 if its boundary ∂S is a twice continuously differentiable manifold.

• A convex set S ⊂ Rn is said to be uniformly convex if for every ε > 0, there is a δ > 0 such that for any two points
x, y ∈ S : ∥x− y∥2 ≥ δ, the point z = 1

2 (x+ y) satisfies the condition:

inf
w∈∂S

∥z − w∥2 ≥ ε.

• The space Ck,β(Ω), where k ∈ N and β ∈ (0, 1), is defined as:

Ck,β(Ω) =

{
u ∈ Ck(Ω)

∣∣∣∣∣ supx∈Ω
|Dαu(x)| <∞ for all |α| ≤ k, sup

|α|=k

sup
x,y∈Ω,x ̸=y

|Dαu(x)−Dαu(y)|
|x− y|β

<∞

}
,

where Dαu denotes the partial derivative of u of multi-index order α, and |α| ≤ k indicates that α is a multi-index of
order up to k.

• The Wasserstein distances between P,Q ∈ P(X ) are defined as

Wp(P,Q) = inf
π∈P(X 2):πX=P,πX̄=Q

(
Eπ

[∥∥X − X̄
∥∥p
2

]) 1
p p ∈ N.

• The optimal transport distance between P,Q ∈ P(X ) with cost function f : X 2 → R is defined as

Wf (P,Q) = inf
π∈P(X 2):πX=P,πX̄=Q

Eπ

[
f(X, X̄)

]
.

C. Proof of Main Results
In this section, we provide our proof and the theoretical results we will refer to in our proof.

C.1. Brenier’s Theorem

In this section, we collect the results of Brenier’s theorem ((Brenier, 1991)) for optimal transport using quadratic costs.

Theorem C.1 (Brenier’s theorem). Let µ and ν be two probability measures on Ω ⊆ Rd, where µ ∈ Pac(Ω). Then, there
exists a convex function φ : Rn → R such that the optimal transport map T : Rn → Rn pushing µ to ν is given by
T (x) = ∇φ(x), where ∇φ is uniquely defined µ-almost everywhere. Moreover, T is the unique optimal transport map
solving the the Monge problem for transporting µ onto ν:

inf
T :T#µ=ν

∫
Rn

∥x− T (x)∥2dµ(x).

13
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If we further assume that ν ∈ Pac(Ω), then ∇φ∗ is the gradient of a convex function, uniquely determined ν-almost
everywhere, satisfying ∇φ∗

#ν = µ, and providing a solution to the Monge problem for transporting ν onto µ. Moreover, for
Lebesgue-almost every x, y ∈ Ω, the following holds:

∇φ∗ ◦ ∇φ(x) = x, ∇φ ◦ ∇φ∗(y) = y.

C.2. Founier and Guillin’s Result

Suppose that the sample (Xi, i ∈ [N ]) i.i.d. follows µ and denote µ = 1
N

∑N
i=1 δXi

. Theorem 1 in (Fournier & Guillin,
2015) characterizes a nearly sharp convergence rate for empirical Wasserstein distances.

Theorem C.2 (Empirical Wasserstein convergence rate, Theorem 1 (Fournier & Guillin, 2015)). Let µ ∈ P(Rd) and let
p > 0. Assume that Mq(µ) :=

∫
∥x∥q dµ <∞ for some q > p. There exists a constant C depending only on p, d, q such

that, for all N ≥ 1,

E[Wp
p(µN , µ)] ≤ CMp/q

q (µ)×


N−1/2 +N−(q−p)/q if p > d/2 and q ̸= 2p,

N−1/2 log(1 +N) +N−(q−p)/q if p = d/2 and q ̸= 2p,

N−p/d +N−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p).

Theorem C.3 (Empirical Wasserstein convergence rate, non-i.i.d., Theorem 14 (Fournier & Guillin, 2015)). Assume that the
sample is α-mixing, i.e. there is a function α : N → R+, satisfying

∑
k α(k) < ∞ and corr(f(Xi), g(Xj)) ≤ α(|i− j|)

for ∀i, j and all bounded functions f, g, then the results in Theorem C.2 still holds, with the constant C may additionally
depend on α.

C.3. Proof of Proposition 3.5

Proof of Proposition 3.5. By Theorem 4.1 (and its proof) in (Villani et al., 2009), Πip is tight and closed in the weak
topology. Further, since h(y, y′) + η ∥z − z′∥22 is bounded and continuous on the compact domain of Y2 × Z2,
the set of minimizers Π⋆

ip(η) is non-empty. Similar reasoning can be applied to argminπ∈Πu
Eπ[h(Y (0), Y (1))] and

argminπ∈Πc
Eπ[h(Y (0), Y (1))]. Therefore, π⋆

u , π
⋆
c , π

⋆
ip(η) exist.

We then proceed to show that the uniqueneness of π⋆
u , π

⋆
ip(η). We only prove the uniqueness of π⋆

ip(η) and similar reasoning
can be applied to π⋆

u .

We apply Theorem 10.28 in (Villani et al., 2009), and denote the three conditions in Theorem 10.28 as cond(i), (ii), (iii). By
Assumption 3.3, h(y, ỹ) + η ∥z − z̃∥22 is differentiable (thus superdifferentiable) everywhere, thus cond(i) is satisfied. By
Assumption 3.3, the gradient

∇ỹ,z̃

(
h(y, ỹ) + η ∥z − z̃∥22

)
= (∇yh(y, ỹ), 2η(z̃ − z))

is injective with respect to ỹ, z̃ for ∀y, z ∈ Y,Z , thus cond(ii) is satisfied. Finally, by Assumption 3.2,3.3, h is locally
Lipschitz, PY (0),Z , PY (1),Z are compactly supported, and PY (0),Z is absolutely continuous with respect to the Lebesgue
measure on RdY +dZ , thus by Remark 10.33 in (Villani et al., 2009), cond(iii) is satistified.

As a result of Theorem 10.28, π⋆
ip(η) is uniquely defined.

C.4. Proof of Proposition 3.6

Proof of Proposition 3.6. We prove the three properties as follows.

(i). Since Vu can be written as

min
π∈Π′

u

Eπ[h(Y (0), Y (1))],

where Π′
u =

{
π ∈ P(Y × Z × Y × Z) : πY (0) = PY (0), πY (1) = PY (1)

}
,

14
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it follows that Πip ⊆ Π′
u. Therefore, we get Vu ≤ Vip(η).

Since Vc can be equivalently written as

min
π∈Π′

c

Eπ

[
h(Y (0), Y (1)) + η ∥Z(0)− Z(1)∥22

]
, (6)

where Π′
c =

{
π ∈ P(Y × Z × Y × Z) : πY (0),Z(0) = PY (0),Z , πY (1),Z(1) = PY (1),Z ,

Z(0) = Z(1) π-almost surely} ,

it follows that Π′
c ⊆ Πip. Hence, we have

Vip(η) ≤ min
π∈Πip

Eπ

[
h(Y (0), Y (1)) + η ∥Z(0)− Z(1)∥22

]
≤ Vc.

To prove that Vip(η) is non-decreasing with respect to η, we note that, for η1 ≤ η2,

Eπ⋆
ip(η1)

[
h(Y (0), Y (1)) + η1 ∥Z(0)− Z(1)∥22

]
(7)

≤Eπ⋆
ip(η2)

[
h(Y (0), Y (1)) + η1 ∥Z(0)− Z(1)∥22

]
(8)

≤Eπ⋆
ip(η2)

[
h(Y (0), Y (1)) + η2 ∥Z(0)− Z(1)∥22

]
(9)

≤Eπ⋆
ip(η1)

[
h(Y (0), Y (1)) + η2 ∥Z(0)− Z(1)∥22

]
, (10)

where the first and last inequalities are due to the optimality of π⋆
ip(η1), π

⋆
ip(η2), and the second inequality is due to

η1 ≤ η2.

Therefore, we have (9) − (8) ≤ (10) − (7), that is,

(η2 − η1)Eπ⋆
ip(η2)

[
∥Z(0)− Z(1)∥22

]
≤ (η2 − η1)Eπ⋆

ip(η1)

[
∥Z(0)− Z(1)∥22

]
,

and thus, Eπ⋆
ip(η2)

[
∥Z(0)− Z(1)∥22

]
≤ Eπ⋆

ip(η1)

[
∥Z(0)− Z(1)∥22

]
.

Then, combining this with (7) ≤ (8), we get

Eπ⋆
ip(η1) [h(Y (0), Y (1))] ≤ Eπ⋆

ip(η2) [h(Y (0), Y (1))] ,

i.e., Vip(η1) ≤ Vip(η2).

Next, we will prove the continuity by showing that Vip(η) is left and right-continuous with respect to η.

For left-continuity, consider any η0 ∈ (0,∞). By Theorem 4.1 (and its proof) in (Villani et al., 2009), Πip is tight and
closed in the weak topology. Then, consider a sequence (ηk, k ≥ 1) such that ηk → η0−. Applying the Prokhorov’s
theorem (Theorem 5.1, (Billingsley, 2013)), we deduce that there is a subsequence of (π⋆

ip(ηk), k ≥ 1) that weakly
converges to a measure π⋆

∞ ∈ P((Y ×Z)2). Without loss of generality, we assume the subsequence is (π⋆
ip(ηk), k ≥ 1)

itself.

Again, since Y,Z are compact, then c, ∥·∥22 are bounded functions confined on the corresponding domains. Therefore,
we have

lim
k→∞

Eπ⋆
ip(ηk)

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
= Eπ⋆

∞

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
.

On the other hand, we have
lim
k→∞

(ηk − η0)× Eπ⋆
ip(ηk)

[
∥Z(0)− Z(1)∥22

]
= 0.

Combine the above two limits together, we get

lim
k→∞

Eπ⋆(ηk)

[
h(Y (0), Y (1)) + ηk ∥Z(0)− Z(1)∥22

]
= Eπ⋆

∞

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
.
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Since we have

Eπ⋆
ip(ηk)

[
h(Y (0), Y (1)) + ηk ∥Z(0)− Z(1)∥22

]
≤Eπ⋆

ip(η0)

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
≤Eπ⋆

∞

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
,

thus, we get

Eπ⋆
ip(η0)

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
= Eπ⋆

∞

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
,

implying π⋆
∞ = π⋆

ip(η0) due to the uniqueness of the minimizer (Proposition 3.5). Hence, we get limk→∞ Vip(ηk) =
Vip(η0).

As a result, for any sequence (ηl, l ≥ 1) such that liml→∞ ηl = η0, we can find a subsequence of (ηl, l ≥ 1), denoted
as (ηlk , k ≥ 1), such that limk→∞ Vip(ηlk) = Vip(η0), implying that limη→η0

Vip(η) = Vip(η0).

For the right-continuity, similarly, we can similarly take a sequence (ηk, k ≥ 1) such that ηk → η0+, such that π⋆
ip(ηk)

converges to π⋆
∞ ∈ P((Y × Z)2) in the weak topology.

For any π′ ∈ P((Y × Z)2), by definition of π⋆
ip(ηk), we have

Eπ⋆
ip(ηk)

[
h(Y (0), Y (1)) + ηk ∥Z(0)− Z(1)∥22

]
≤ Eπ′

[
h(Y (0), Y (1)) + ηk ∥Z(0)− Z(1)∥22

]
.

Send k → ∞, similarly as above, we have

lim
k→∞

Eπ⋆
ip(ηk)

[
h(Y (0), Y (1)) + ηk ∥Z(0)− Z(1)∥22

]
= Eπ⋆

∞

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
,

thus
Eπ⋆

∞

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
≤ Eπ′

[
h(Y (0), Y (1)) + η0 ∥Z(0)− Z(1)∥22

]
,

which implies that π⋆
∞ = π⋆

ip(η0), due to the uniqueness of the minimizer (Proposition 3.5).

As a result, we get limk→∞ Vip(ηk) = Vip(η0). Then, using similar reasoning as in the proof for limη→η0− Vip(η) =
Vip(η0), we conclude that limη→η0+

Vip(η) = Vip(η0) .

(ii). For η = 0, since Vu ≤ Vip(0), it remains to show that Vip(0) ≤ Vu.

By the gluing lemma in Chapter 1 of (Villani et al., 2009), we can “glue” the three distributions π⋆
u , PY (0),Z , PY (1),Z ,

constructing a coupling π ∈ P(Y × Z)2, such that

πY (0),Y (1) = π⋆
u , πY (0),Z(0) = PY (0),Z , πY (1),Z(1) = PY (1),Z .

Thus, π ∈ Πip, which results in Vip(0) ≤ Eπ[h(Y (0), Y (1)] = Eπ⋆
u
[h(Y (0), Y (1)] = Vu.

For η → ∞, by (i), we have

Eπ⋆
ip(η)

[
h(Y (0), Y (1)) + η ∥Z(0)− Z(1)∥22

]
≤ Vc <∞ ∀η ≥ 0.

Therefore, we get
lim
η→∞

Eπ⋆
ip(η)

[
∥Z(0)− Z(1))∥22

]
= 0.

Since (Y × Z)2 is compact, then take a sequence (ηk, k ≥ 1) such that limk→∞ ηk = ∞, and apply the Prokhorov’s
theorem, we get: there is a subsequence of (π⋆

ip(ηk), k ≥ 1) that weakly converges to a measure π⋆
∞ ∈ P(Y × Z)2).

Without loss of generality, we assume the subsequence is (π⋆
ip(ηk), k ≥ 1) itself.

Since ∥Z(0)− Z(1)∥22 is a bounded function on Z2, then we get Eπ⋆
∞
[∥Z(0)− Z(1))∥22] = 0, i.e., Z(0) = Z(1)

π⋆
∞-almost surely. Therefore, π⋆

∞ ∈ Π′
c, where Π′

c is defined in (6), and thus Vc ≤ Eπ⋆
∞
[h(Y (0), Y (1))].

16



Covariate-Aware Transport for Causal Bounds

As a result, we get

Eπ⋆
ip(ηk)[h(Y (0), Y (1))] ≤ Eπ⋆

ip(ηk)

[
h(Y (0), Y (1)) + ηk ∥Z(0)− Z(1)∥22

]
≤ Vc ≤ Eπ⋆

∞
[h(Y (0), Y (1))].

Since limk→∞ Eπ⋆
ip(ηk)[h(Y (0), Y (1))] = Eπ⋆

∞
[h(Y (0), Y (1))], then as k approaches infinity, the above inequalities

become equations, implying that

lim
k→∞

Vip(ηk) = Vc.

As a result, for any sequence (ηl, l ≥ 1) such that liml→∞ ηl = ∞, we can find a subsequence of (ηl, l ≥ 1), denoted
as (ηlk , k ≥ 1), such that limk→∞ Vip(ηlk) = Vc, implying that limη→∞ Vip(η) = Vc.

C.5. Proof of Proposition 4.1

Proof of Proposition 4.1. Under Assumption 3.1, as n,m → ∞, we have Pn,Y (0),Z
d→ PY (0),Z in the weak topology

almost surely, and also Pm,Y (1),Z
d→ PY (1),Z a.s. Then, by Assumption 3.3 that h is continuous, and Theorem 5.20 in

(Villani et al., 2009), we get: up to extraction of a subsequence, π⋆
ip,n,m(η) almost surely weakly converges to an optimal

coupling of the OT problem

min
π∈Πip

Eπ

[
h(Y (0), Y (1)) + η ∥Z(0)− Z(1)∥22

]
.

By Proposition 3.5 that the optimal coupling π⋆
ip(η) of the above problem is unique, we get the subsequence of π⋆

ip,n,m(η)
d→

π⋆
ip(η) a.s., and thus π⋆

ip,n,m(η)
d→ π⋆

ip(η) a.s. (for every subsequence, we can extract the converging subsubsequence to
converge weakly to π⋆

ip(η)). As a result, Vip,n,m(η) converges to Vip(η) almost surely.

C.6. Proof of Theorem 4.3

In this section, we provide the proof of Theorem 4.3, which extends Proposition 14 in (Manole et al., 2024) to general
quadratic functions. To proceed, we first establish the following result as a foundation. Note that in the following discussion,
we use X (and x) to denote source random variable and X̄ (and x̄) to denote the target random variable, such that
X, X̄ ∈ X ⊆ Rd where X is convex.

Proposition C.4 (Stability bound of quadratic optimal transport). Let (Xi, 1 ≤ i ≤ n) be i.i.d. samples following distribution
P and (X̄j , 1 ≤ j ≤ m) be i.i.d. samples following distribution Q. Let Pn = 1

n

∑n
i=1 δXi

, Qm = 1
m

∑m
j=1 δX̄j

, and
suppose that π̂ = (π̂ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m) is a coupling of Pn, Qm. Additionally, suppose that T is a coupling map
such that T#P = Q.

Let the cost function defined by hB(x, x̄) = x⊤Bx, where x = (x, x̄)⊤, and

B =

[
B11 −B12

−B⊤
12 B22

]
, B11, B22, B12 ∈ Rd×d.

Then, we have

E

 n∑
i=1

m∑
j=1

π̂ijhB(Xi, X̄j)

− EP [hB(X,T (X))] = −E

 n∑
i=1

m∑
j=1

π̂ij
[
2X⊤

i B12(X̄j − T (Xi))
] .
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Proof of Proposition C.4. We first expand the term hB(Xi, X̄j) as follows:

hB(Xi, X̄j)

=X⊤
i B11Xi − 2X⊤

i B12X̄j + X̄⊤
j B22X̄j

=X⊤
i B11Xi︸ ︷︷ ︸

(1)

− 2X⊤
i B12T (Xi)︸ ︷︷ ︸

(2)

−2X⊤
i B12(X̄j − T (Xi))

+ T (Xi)
⊤B22T (Xi)︸ ︷︷ ︸
(3)

+(X̄j + T (Xi))
⊤B22(X̄j − T (Xi))

=hB(Xi, T (Xi))︸ ︷︷ ︸
(1)+(2)+(3)

+(X̄j − T (Xi))
⊤B22(X̄j − T (Xi)) + 2(−X⊤

i B12 + T (Xi)
⊤B22)(X̄j − T (Xi)).

Note that
∑m

j=1 π̂ij =
1
n∀i since π̂ is a coupling between Pn, Qm, thus

E

 n∑
i=1

m∑
j=1

π̂ijhB(Xi, T (Xi))

− EP [hB(X,T (X))] = 0.

Therefore, we get

E

 n∑
i=1

m∑
j=1

π̂ijhB(Xi, X̄j)

− EP [hB(X,T (X))]

=E

 n∑
i=1

m∑
j=1

π̂ij
[
(X̄j − T (Xi))

⊤B22(X̄j − T (Xi)) + 2(−X⊤
i B12 + T (Xi)

⊤B22)(X̄j − T (Xi))
] (11)

Also, note that

2T (Xi)
⊤B22(X̄j − T (Xi)) = −(X̄j − T (Xi))

⊤B22(X̄j − T (Xi)) + X̄jB22X̄j − T (Xi)
⊤B22T (Xi).

Thus, continuing from Equation (11), we get

E

 n∑
i=1

m∑
j=1

π̂ijhB(Xi, X̄j)

− EP [hB(X,T (X))]

=E

 n∑
i=1

m∑
j=1

π̂ij
(
−2X⊤

i B12(X̄j − T (Xi)) + X̄jB22X̄j − T (Xi)
⊤B22T (Xi)

) . (12)

Again, since
∑m

j=1 π̂ij =
1
n∀i and T#P = Q, we have

E

 n∑
i=1

m∑
j=1

π̂ij
[
X̄jB22X̄j − T (Xi)

⊤B22T (Xi)
]

=E

 1

m

m∑
j=1

X̄jB22X̄j −
1

n

n∑
i=1

T (Xi)
⊤B22T (Xi)


=EQ

[
X̄B22X̄

]
− EP

[
T (X)⊤B22T (X)

]
=0.
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Then, from Equation (12), we get

E

 n∑
i=1

m∑
j=1

π̂ijhB(Xi, X̄j)

− EP [hB(X,T (X))] = −E

 n∑
i=1

m∑
j=1

π̂ij
[
2X⊤

i B12(X̄j − T (Xi))
] . (13)

When the the cost function is defined by hB(x, x̄) = x⊤Bx, where x = (x, x̄)⊤, and

B =

[
B11 −B12

−B⊤
12 B22

]
, B11, B22, B12 ∈ Rd×d,

the optimal transport problem is actually equivalent to the problem that uses the cost function −2x⊤B12x̄ since the remaining
parts in hB are determined by the marginals. Then, if we consider a linear transformation x → B⊤

12x ≜ x̃, then the cost
function becomes −2x̃⊤x̄, which possesses a Brenier map as the optimal solution (see Section C.1). To utilize the convexity
of the corresponding Brenier potential, we present the following result.

Proposition C.5 (Coordinate-shift optimal transport). In the same setting as Proposition C.4, additionally,

(i). Assume that P,Q have densities on X .

(ii). For the Monge’s problem
min

T̃ :(T̃B⊤
12)#P=Q

EB⊤
12#

P [hB̃(X, T̃ (X))],

where the cost function is defined by hB̃(x, x̄) = x⊤B̃x, with x = (x, x̄)⊤, and

B̃ =

[
B−1

12 B11B
−⊤
12 −Id

−Id B22

]
.

(Here, T̃B⊤
12 is a map defined by x → T̃ (B⊤

12x), and B⊤
12 is a linear map defined by x → B⊤

12x), assume that the
Brenier map of T̃ ⋆, and the corresponding Brenier potential φ̃, satisfies that φ̃ ∈ C2(X ). Further, there exists a
constant λ > 0, such that

1

λ
Id ⪯ ∇2φ̃(x) ⪯ λId ∀x : B−T

12 x ∈ supp(P ).

(iii). Assume that B12 is non-singular.

Then, we have

(a). There is a P -a.s. unique solution T ⋆ = argminT :T#P=Q EP [hB(X,T (X))]. Further, T ⋆(x) = T̃ ⋆(B⊤
12x) for P -a.s.

x ∈ supp(P ).

(b). Let (π̂ij , i ∈ [n], j ∈ [m]) be the solution of

WhB
(Pn, Qm) := min

π̂∈Πn,m

n∑
i=1

m∑
j=1

π̂ijhB(Xi, X̄j)

where Πn,m = {π̂ ∈ P(X × X ) : π̂X = Pn, π̂X̄ = Qm} .

Then, we have

E

 n∑
i=1

m∑
j=1

π̂ij
∥∥X̄j − T ⋆(Xi)

∥∥2
2

 ≤ λ× E [WhB
(Pn, Qm)−WhB

(P,Q)] .
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Proof of Proposition C.5. (a). Note that hB̃(B
⊤
12x, x̄) = hB(x, x̄). Then, we have

min
T̃ :(T̃B⊤

12)#P=Q
EB⊤

12#
P [hB̃(X, T̃ (X))]

= min
T̃ :(T̃B⊤

12)#P=Q
EP [hB̃(B

⊤
12X, T̃ (B

⊤
12X))] (change of measure: B⊤

12#P → P )

= min
T̃ :(T̃B⊤

12)#P=Q
EP [hB(X, T̃ (B

⊤
12X))] (due to: hB̃(B

⊤
12x, x̄) = hB(x, x̄))

= min
T :T#P=Q

EP [hB(X,T (X))] (since B12 is invertible).

The above deduction implies that there is a one-to-one correspondence between T̃ : (T̃B⊤
12)#P = Q and T : T#P = Q,

such that the corresponding maps share the same value of the objective functions equipped with hB̃ and hB , respectively.
Therefore, we get T ⋆(x) = T̃ ⋆(B⊤

12x) is the P -a.s. unique solution of argminT :T#P=Q EP [hB(X,T (X))] since T̃ ⋆

is the unique Brenier map of the corresponding Monge’s problem.

(b). By (a), we can write

X⊤
i B12(X̄j − T (Xi))

=X⊤
i B12(X̄j − T̃ (B⊤

12Xi))

=∇φ̃∗
(
T̃ (B⊤

12Xi)
)⊤ (

X̄j − T̃ (B⊤
12Xi)

)
, (14)

where φ̃∗ is the convex conjugate of φ̃ and ∇φ̃∗
(
T̃ (x)

)
= x ∀x : B−T

12 x ∈ supp(P ) (Theorem C.1).

By (c) and Theorem 4.2.2 in (Hiriart-Urruty & Lemaréchal, 2004), we have

1

λ
Id ⪯ ∇2φ̃∗(x) ⪯ λId ∀x ∈ supp(Q).

Then apply the second order Taylor expansion, we get

1

2λ

∥∥∥X̄j − T̃ (B⊤
12Xi)

∥∥∥2
2
≤ φ̃∗(X̄j)− φ̃∗(T̃ (B⊤

12Xi))−∇φ̃∗(T̃ (B⊤
12Xi))

⊤(X̄j − T̃ (B⊤
12Xi)).

Thus, by (14), we get

1

2λ

∥∥X̄j − T (Xi)
∥∥2
2
≤ φ̃∗(X̄j)− φ̃∗(T (Xi))−X⊤

i B12(X̄j − T (Xi)).

Note that by T#P = Q, we have

E[φ̃∗(X̄j)− φ̃∗(T (Xi))] = EQ[φ̃
∗(X̄)]− EP [φ̃

∗(T (X))] = 0.

Therefore, by Proposition C.4, we have

1

λ
E

 n∑
i=1

m∑
j=1

π̂ij
∥∥X̄j − T (Xi)

∥∥2
2


≤− E

 n∑
i=1

m∑
j=1

π̂ij
[
2X⊤

i B12(X̄j − T (Xi))
]

=E

 n∑
i=1

m∑
j=1

π̂ijhB(Xi, X̄j)

− EP [hB(X,T (X))]

=E[WhB
(Pn, Qm)−WhB

(P,Q)].
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The following result is a direct corollary of Proposition 13 in (Manole et al., 2024).
Proposition C.6 (BoundingW2 distances by curvature). In the same setting as Proposition C.5, for any random measure
P̂ , Q̂ such that

E
[∫

fdP̂

]
=

∫
fdP, E

[∫
fdQ̂

]
=

∫
fdQ ∀ f.

we have

0 ≤E
[
WhB

(P̂ , Q̂)−WhB
(P,Q)

]
≤λ× E

[
W2(B

⊤
12#P̂ , B

⊤
12#P ) +W2(Q̂,Q)

]2
.

Proof of Proposition C.6. Let h′(x, x̄) = −2x⊤x̄, we have

E
[
WhB

(P̂ , Q̂)−WhB
(P,Q)

]
=E

[
WhB̃

(B⊤
12#P̂ , Q̂)−WhB̃

(B⊤
12#P,Q)

]
=E

[
min
π∈Π̂′

⟨π, hB̃⟩ − min
π∈Π′

⟨π, hB̃⟩
]

=E
[
min
π∈Π̂′

⟨π, h′⟩ − min
π∈Π′

⟨π, h′⟩
]

=E
[
W2

2(B
⊤
12#P̂ , Q̂)−W2

2(B
⊤
12#P,Q)

]
,

where

Π̂′ =
{
π ∈ P(X 2) : πX = B⊤

12#P̂ , πX̄ = Q̂
}
.

and

Π′ =
{
π ∈ P(X 2) : πX = B⊤

12#P̂ , πX̄ = Q
}
.

Proposition 13 (Manole et al., 2024) results in:

0 ≤W2
2(B

⊤
12#P̂ , Q̂)−W2

2(B
⊤
12#P,Q)−

∫
ϕ0d(B

⊤
12#P̂ −B⊤

12#P )−
∫
ψ0d(Q̂−Q)

≤λ×
(
W2(B

⊤
12#P̂ , B

⊤
12#P ) +W2(Q̂,Q)

)2
.

Taking expectation over the terms of this inequality finishes the proof.

Now we are ready to prove our main result Theorem 4.3 stated again as follows.

Proof of Theorem 4.3. Equivalently, we can write

Pn,Y (0),Z =
1

n

n∑
i=1

δYi,Zi
, Pm,Y (1),Z =

1

m

m∑
j=1

δȲj ,Z̄j
,

where ((Yi, Zi), i ∈ [n]) are i.i.d. samples following PY (0),Z and ((Ȳj , Z̄j), j ∈ [m]) are i.i.d. samples following PY (1),Z .

As previously discussed, we write the source variable X = (Y (0), Z(0)) and the target variable X̄ = (Y (1), Z(1)). Then
we introduce the cost function is hB(x, x̄) = x⊤Bx, where x = (x, x̄)⊤, and

B =


A11 −A12

ηI −ηI
−A⊤

12 A22

−ηI ηI

 .
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Recall that

Vip,n,m(η) = Eπ⋆
ip,n,m(η)[h(Y (0), Y (1))], (15)

where

π⋆
ip,n,m(η) ∈ argmin

π∈Πip,n,m

Eπ [hB((Y (0), Z(0)), (Y (1), Z(1)))] ,

Πip,n,m =
{
π ∈ P(Y × Z × Y × Z) : πY (0),Z(0) = Pn,Y (0),Z , πY (1),Z(1) = Pm,Y (1),Z

}
.

and

Vip(η) = Eπ⋆
ip(η)

[h(Y (0), Y (1))], (16)

where

π⋆
ip(η) = argmin

π∈Πip

Eπ [hB((Y (0), Z(0)), (Y (1), Z(1)))] ,

Πip =
{
π ∈ P(Y × Z × Y × Z) : πY (0),Z(0) = PY (0),Z , πY (1),Z(1) = PY (1),Z

}
.

By Proposition 3.5, there is an OT map T coupling PY (0),Z , PY (1),Z , such that π⋆
ip(η) = (Id, T )#PY (0),Z . Therefore, we

have, π⋆
ip(η)-almost surely,

(Y (1), Z(1)) = T (Y (0), Z(0)). (17)

Note that h(y, ȳ) = x⊤Bax =: hBa(x, x̄), where x = (x, x̄)⊤ = ((y, z), (ȳ, z̄))⊤, and

Ba =


A11 −A12

0 0
−A⊤

12 A22

0 0

 .
Then, let Xi ≜ (Yi, Zi), X̄j ≜ (Ȳj , Z̄j), X ≜ (Y (0), Z(0)), X̄ ≜ (Y (1), Z(1)), we have

|Vip,n,m(η)− Vip(η)|

=

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

π̂ijhBa(Xi, X̄j)− E[hBa(X,T (X))]

∣∣∣∣∣∣ (due to (17))

≤ 2

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

π̂ijY
⊤
i A12Ȳj − E[Y (0)A12T (Y (0), Z(0))]

∣∣∣∣∣∣︸ ︷︷ ︸
(Term A)

+

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i A11Yi − E[Y (0)⊤A11Y (0)]

∣∣∣∣∣ (due to
∑
j

π̂ij =
1

n
)

+

∣∣∣∣∣∣ 1m
m∑
j=1

Ȳ ⊤
j A22Ȳj − E[Y (1)⊤A22Y (1)]

∣∣∣∣∣∣ (due to
∑
i

π̂ij =
1

m
)

For (Term A), we further expand it to be

(Term A) ≤

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

π̂ijY
⊤
i A12(Ȳj − T (Yi, Zi))

∣∣∣∣∣∣︸ ︷︷ ︸
(Term B)

+

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i A12T (Yi, Zi)− E[Y (0)A12T (Y (0), Z(0))]

∣∣∣∣∣ (due to
∑
j

π̂ij =
1

n
).
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For (Term B), we have

E[(Term B)] ≤E

 n∑
i=1

m∑
j=1

π̂ij
∣∣Y ⊤

i A12(Ȳj − T (Yi, Zi))
∣∣

≤∥A12∥op E

 n∑
i=1

m∑
j=1

π̂ij ∥Yi∥22

 1
2

E

 n∑
i=1

m∑
j=1

π̂ij
∥∥Ȳj − T (Yi, Zi)

∥∥2
2

 1
2

(Cauchy-Schwarz ineq.)

≤∥A12∥op E
[
∥Y (0)∥22

] 1
2 E

 n∑
i=1

m∑
j=1

π̂ij
∥∥X̄j − T (Xi)

∥∥2
2

 1
2

︸ ︷︷ ︸
(Term C)

(due to
∑
j

π̂ij =
1

n
).

For the expectations of the terms above except for (Term A), (Term B) and (Term C), we apply Markov’s inequality.

For (Term C), by Proposition C.5, we have

E

 n∑
i=1

m∑
j=1

π̂ij
∥∥X̄j − T (Xi)

∥∥2
2

 ≤ λ× E
[
WhB

(Pn,Y (0),Z , Pm,Y (1),Z)−WhB
(PY (0),Z , PY (1),Z)

]
. (18)

Therefore, we get

E [|Vip,n,m(η)− Vip(η)|]

≤ 2λ
1
2

∥∥A⊤
12

∥∥
op EPY (0)

[
∥Y (0)∥22

] 1
2 √

∆n,m

+
Var(Y (0)⊤A11Y (0))

1
2

√
n

+
Var(Y (1)⊤A22Y (1))

1
2

√
m

+
2Var(Y (0)⊤A12T (Y (0), Z(0)))

1
2

√
n︸ ︷︷ ︸

(Term D)

(19)

where
∆n,m ≜ E

[
WhB

(Pn,Y (0),Z , Pm,Y (1),Z)−WhB
(PY (0),Z , PY (1),Z)

]
.

(Term D) can be further bounded by

(Term D) ≤
√
2√
N

(
∥A11∥op E[∥Y (0)∥42]

1
2 + ∥A22∥op E[∥Y (1)∥42]

1
2 + 2 ∥A12∥op E[∥Y (0)∥42]

1
4E[∥Y (1)∥42]

1
4

)
, (20)

where N = min(n,m).

As for ∆n,m, applying Proposition C.6, we have

∆n,m ≤λ× E
[(
W2(Pn,A⊤

12Y (0),ηZ , PA⊤
12Y (0),ηZ) +W2(Pm,Y (1),Z , PY (1),Z)

)2]
≤2λ× E

[
W2

2(Pn,A⊤
12Y (0),ηZ , PA⊤

12Y (0),ηZ) +W
2
2(Pm,Y (1),Z , PY (1),Z)

]
(21)

Finally, apply Theorem C.2 to directly bound the terms E
[
W2

2(Pn,A⊤
12Y (0),ηZ , PA⊤

12Y (0),ηZ)
]

(and similarly for

W2
2(Pm,Y (1),Z , PY (1),Z)), we get

E
[
W2

2(Pn,A⊤
12Y (0),ηZ , PA⊤

12Y (0),ηZ)
]
≤C ∥A12∥2op

(
E
[
∥Y (0)∥22

]
+ E

[
∥Z∥22

])
η2γ2n,dY +dZ

, (22)

where C is a constant only depending on dY + dZ , γn,dY +dZ
is defined in the statement of Theorem 4.3.

Combine Eq. (20) (21) (22), and bring back to Eq. (19), we get the desired result.
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C.7. Curvature Condition in Theorem 4.3

In this section, We provide an informal discussion on the general relationship between the curvature λ and η. Without loss
of generality, we suppose A12 = −I .

As η → ∞, Vip(η) converges to Vc as stated in Proposition 3.6, so does the corresponding OT maps. That is, the OT map
between PY (1),Z and PY (0),Z converges to the conditional optimal transport map for the COT problem Vc. Consequently,
the Brenier map Tη : Y × Z → Y ×Z between PY (1),Z and PY (0),ηZ satifies that[

I
η−1I

]
Tη(y, z) =

[
f(y, z) + o(1)
z + o(1)

]
, as η → ∞.

where f(y, z) ≜ fz(y) is the Brenier map (Theorem C.1) of the conditional optimal transport problem

min
π∈Π(z)

Eπ

[
(Y (0)− Y (1))2

]
,

where Π(z) :=
{
π ∈ P(Y2) : πY (0) = PY (0)|Z=z, πY (1) = PY (1)|Z=z

}
.

As a result, we may get the Hessian matrix of the associated Brenier map to be

∇Tη =

[
∂yf(y, z) + o(1) ∂zf(y, z) + o(1)
∂zf(y, z) + o(1) η(1 + o(1))

]
.

=

[
I √

ηI

] [
∂yf(y, z) + o(1) 1√

η (∂zf(y, z) + o(1))
1√
η (∂zf(y, z) + o(1)) 1 + o(1)

]
︸ ︷︷ ︸

Θη

[
I √

ηI

]
.

Then, we have λmax(∇Tη) ≤ λmax(Θη)(η ∨ 1), where Θη converges to a matrix independent of η. As for λmin, similar
argument can be applied with reversed inequalities, thus λmin(∇Tη) ≥ λmin(Θη)(η ∧ 1). In Section C.8, we provide a
rigorous proof following the above discussion in the case that (Y (0), Z) and (Y (1), Z) are Gaussian vectors.

C.8. Proof of Lemma 4.6

Proof of Lemma 4.6. Denote the covariance matrix of (Y (0), Z) to be [[Σ0,Σ0,2]; [Σ
⊤
0,2,Σ2]], and that of (Y (1), Z) to be

[[Σ1,Σ1,2]; [Σ
⊤
1,2,Σ2]]. Suppose the two covariance matrices are non-singular. We shall analyze the curvature of the Brenier

potential between PY (1),Z and PA⊤
12Y (0),ηZ . Without loss of generality, we let A12 = I .

By Eq. (25), the Hessian matrix of the Brenier potential is:

∇2φ̃ ≡ Σ̃
− 1

2
1 (Σ̃

1
2
1 Σ̃0Σ̃

1
2
1 )

1
2 Σ̃

− 1
2

1 ,

where

Σ̃0 =

[
Σ0 ηΣ0,2

ηΣ⊤
0,2 η2Σ2

]
, Σ̃1 =

[
Σ1 Σ1,2

Σ⊤
1,2 Σ2

]
First, we have

x⊤∇2φ̃x

∥x∥22
=

(Σ̃
− 1

2
1 x)⊤(Σ̃

1
2
1 Σ̃0Σ̃

1
2
1 )

1
2 (Σ̃

− 1
2

1 x)∥∥∥Σ̃− 1
2

1 x
∥∥∥2
2

∥∥∥Σ̃− 1
2

1 x
∥∥∥2
2

∥x∥22
,

thus λmax(∇2φ̃) ≤ λmax(Σ̃
1
2
1 Σ̃0Σ̃

1
2
1 )

1
2λmax(Σ̃

−1
1 ).

Apply the similar reasoning, we have λmax(Σ̃
1
2
1 Σ̃0Σ̃

1
2
1 ) ≤ λmax(Σ̃0)λmax(Σ̃1).

Note that

Σ̃0 =

[
I

ηI

]
︸ ︷︷ ︸

Λη

[
Σ0 Σ0,2

Σ⊤
0,2 Σ2

]
︸ ︷︷ ︸

Σ̃′
0

[
I

ηI

]
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Then, λmax(Σ̃0) ≤ λmax(Σ̃
′
0)λmax(Λ

2
η) = λmax(Σ̃

′
0)× (η ∨ 1)2. Therefore, λmax(∇2φ̃) ≤ C̄(η ∨ 1) for a constant C̄.

For λmin, the same argument as above can be applied, except that the inequalities are reversed. As a result, we get
λmin(∇2φ̃) ≥ c̄(η ∧ 1).

C.9. Proof of Theorem 4.7

Proof of Theorem 4.7. Follow the same reasoning as in the proof of Theorem 4.3, we can derive the following inequality
similar to (19).

E [|Vip,n,m(η)− Vip(η)|]

≤ 2λ
1
2

∥∥A⊤
12

∥∥
op EPY (0)

[
∥Y (0)∥22

] 1
2 √

∆n,m

+ E

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i A11Yi − E[Y (0)⊤A11Y (0)]

∣∣∣∣∣
+ E

∣∣∣∣∣∣ 1m
m∑
j=1

Ȳ ⊤
j A22Ȳj − E[Y (1)⊤A22Y (1)]

∣∣∣∣∣∣
+ E

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i A12T (Yi, Zi)− E[Y (0)A12T (Y (0), Z(0))]

∣∣∣∣∣
Similarly, by Proposition C.6 and Theorem C.3, we have

√
∆n,m ≤ Cλ

1
2 ηγN,d for a constant C that depends on α, d,

∥A12∥op, as well as the second moments of Y (0), Y (1), Z.

For the remaining terms, we have

E

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i A11Yi − E[Y (0)⊤A11Y (0)]

∣∣∣∣∣ ≤
√√√√E

(
1

n

n∑
i=1

Y ⊤
i A11Yi − E[Y (0)⊤A11Y (0)]

)2

(Jensen’s inequality)

=
1

n

√∑
i,j

Cov(Y ⊤
i A11Yi, Y ⊤

j A11Yj)

≤Var(Y (0)⊤A11Y (0))
1
2

n

√√√√n−1∑
k=0

(n− k)α(k) (Definition of α-mixing)

≤Var(Y (0)⊤A11Y (0))
1
2

√
n

√√√√n−1∑
k=0

α(k)

≤Var(Y (0)⊤A11Y (0))
1
2

√
n

√√√√ ∞∑
k=0

α(k) (due to
∞∑
k=0

α(k) <∞).

The other terms can be bounded similarly, which finishes the proof.

C.10. Proof of Lemma 5.1

Proof of Lemma 5.1. We have

Vc = min
π∈Πc

Eπ[(Y (0) + Y (1))2]

= min
π∈Πc

EPZ

[
Eπ[(Y (0) + Y (1))2|Z]

]
= EPZ

[
min

π′∈Π(z)
Eπ′ [(Y (0) + Y (1))2]

]
,
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where Π(z) = {π ∈ P(Y2) : πY (0) = PY (0)|Z=z, πY (1) = PY (1)|Z=z}.

Recall that
min

π:πX0
=N (µ0,Σ0),

πX1
=N (µ1,Σ1)

Eπ

[
∥X0 −X1∥22

]
= ∥µ0 − µ1∥22 + Tr

(
Σ0 +Σ1 − 2(Σ

1
2
0 Σ1Σ

1
2
0 )

1
2

)
. (23)

Therefore, when k = 1, Y (0)|Z = z ∼ N (f0(z),Σ0),−Y (1)|Z = z ∼ N (−f1(z),Σ1), then we get

min
π′∈Π(z)

Eπ′ [(Y (0) + Y (1))2] = ∥f0(z) + f1(z)∥22 + S(Σ0,Σ1),

where S(Σ0,Σ1) = Tr
(
Σ0 +Σ1 − 2(Σ

1
2
0 Σ1Σ

1
2
0 )

1
2

)
.

When k = 2, Y (0)|Z = z ∼ N (0,D(f0(z))Σ0D(f0(z))),−Y (1)|Z = z ∼ N (0,D(f1(z))Σ1D(f1(z))), then we get

min
π′∈Π(z)

Eπ′ [(Y (0) + Y (1))2] = S(D(f0(z))Σ0D(f0(z)),D(f1(z))Σ1D(f1(z))).

where D(v) is the matrix with the vector v placed at the diagonal. The desired results are proved.

C.11. Computation Details in Example 3.8

Recall that
min

π:πX0
=N (µ0,Σ0),

πX1
=N (µ1,Σ1)

Eπ

[
∥X0 −X1∥22

]
= ∥µ0 − µ1∥22 + Tr

(
Σ0 +Σ1 − 2(Σ

1
2
0 Σ1Σ

1
2
0 )

1
2

)
. (24)

The optimal coupling π⋆ is defined by the distribution of (X0, A(X0 − µ0) + µ1), where

A = Σ
− 1

2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2Σ

− 1
2

0 . (25)

In Example 3.8, we have h(y0, y1) = (y0 + y1)
2. Then, we have

(1). For Vu, since we have Y (0) ∼ N (0, β2
0 + σ2

0),−Y (1) ∼ N (0, β2
1 + σ2

1), a direct application of (24) leads to the result.

(2). For Vc, we can directly apply Lemma 5.1.

(3). For Vip, we have X(0) ≜ (Y (0), Z(0))⊤ ∼ N (0,Σ0), X(1) ≜ (−Y (1), Z(1))⊤ ∼ N (0,Σ1), where

Σ0 =

(
β2
0 + σ2

0
√
ηβ0√

ηβ0 η

)
, Σ1 =

(
β2
1 + σ2

1 −√
ηβ1

−√
ηβ1 η

)
.

Consequently, the optimal coupling of (Y (0),−Y (1)), i.e. π⋆
ip(η), is the distribution of (Y (0), e⊤AX(0)), where

e = (1, 0)⊤, A is defined in (25).

Then, we have

Vip(η) = E[Y (0)2] + E[Y (1)2]− 2Eπ⋆
ip(η)

[Y (0)(−Y (1))]

= (β2
0 + σ2

0) + (β2
1 + σ2

1)− 2Eπ⋆
ip(η)

[Y (0)(−Y (1))].

Specifically, we compute

Eπ⋆
ip(η)

[Y (0)(−Y (1))] = Eπ⋆
ip(η)

[e⊤X(0)X(0)⊤A⊤e]

= Eπ⋆
ip(η)

[Tr(e⊤X(0)X(0)⊤A⊤e)]

= Eπ⋆
ip(η)

[Tr(X(0)X(0)⊤A⊤ee⊤)]

= Tr(Eπ⋆
ip(η)

[X(0)X(0)⊤A⊤ee⊤])

= Tr(Σ
1
2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2Σ

− 1
2

0 ee⊤).
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A quick algebra shows that for 2-by-2 matrix B,

B
1
2 =

1√
Tr(B) + 2

√
det(B)

(B +
√

det(B)I2),

where I2 is the 2-by-2 identity matrix.

Then, plug in B = Σ
1
2
0 Σ1Σ

1
2
0 with

Tr(Σ
1
2
0 Σ1Σ

1
2
0 ) = Tr(Σ0Σ1) = (β2

0 + σ2
0)(β

2
1 + σ2

1)− 2ηβ0β1 + η2,

det(Σ
1
2
0 Σ1Σ

1
2
0 ) = det(Σ0) det(Σ1) = η2σ2

0σ
2
1 ,

we get

Eπ⋆
ip(η)

[Y (0)(−Y (1))] =
Tr(Σ0Σ1ee

⊤ +
√
det(B)ee⊤)√

Tr(B) + 2
√
det(B)

=
(β2

0 + σ2
0)(β

2
1 + σ2

1)− ηβ0β1 + ησ0σ1

((β2
0 + σ2

0)(β
2
1 + σ2

1)− 2ηβ0β1 + η2 + 2ησ0σ1)
1
2

.

We obtain the desired result.

Remark C.7 (Multi-dimensional covariates). The above computation can be directly extended to the case when Z is
multi-dimensional. Specifically, without simple closed-form, the quantity

Tr(Σ
1
2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2Σ

− 1
2

0 ee⊤)

can be computed by using the eigenvalue decomposition to compute the square root of matrices, for e = (IdY
, 0dY ×dZ

)⊤

and Σ0,Σ1 defined as:

Σ0 =

(
β0β

⊤
0 + S0

√
ηβ0√

ηβ⊤
0 ηI

)
, Σ1 =

(
β1β

⊤
1 + S1 −√

ηβ1
−√

ηβ⊤
1 ηI

)
,

where S0, S1 are the covariance matrix of multi-dimensional ε0, ε1.

D. Plots for Synthetic Experiments in Section 5.2
In Figure 4, we provide the plots of estimator values for bias comparison between our method and the method in (Ji et al.,
2023).

E. Examples of Quadratic Causal Estimands
We provide examples of causal quantities involving quadratic functions.

• Neymanian confidence interval. As discussed in Section 5.3.1, the classic Neymanian confidence interval (Splawa-
Neyman, 1923) depends on the variance of the potential outcome difference, that is, Var(Yi(1)− Yi(0)). The variance
can be rewritten as the partially-identifiable term E[(Yi(1)− Yi(0))

2] with a quadratic function minus the identifiable
term E[(Yi(1)− Yi(0))]

2.

• Testing null effect. The null hypothesis of no treatment effect: Yi(0) = Yi(1) for any unit i is equivalently to
E[(Yi(1)−Yi(0))2] = 0. The term E[(Yi(1)−Yi(0))2] is partially identifiable involving a quadratic objective function,
and the null hypothesis of no effect can be rejected if the PI set for this quantity is significantly above zero.

• Correlation index of potential outcomes (Fan et al., 2023). As discussed in Section 5.3.2, the correlation between
potential outcomes quantifies the linear dependence between Yi(0) and Yi(1): a large positive correlation indicates
that the potential outcomes are positively associated, suggesting that the treatment effect is relatively homogeneous
across individuals. This correlation is only partially identifiable, primarily because the covariance between the potential
outcomes, Cov(Yi(0), Yi(1)) = E[Yi(0)Yi(1)]− E[Yi(1)]E[Yi(0)], which involves a quadratic objective function, is
only partially identifiable.
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(a) Linear location model
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(b) Quadratic location model
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(c) Scale model
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(d) Linear location model
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(e) Quadratic location model
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(f) Scale model

Figure 4. Values of estimators for Vc (averaged over 800 repetitions) for a well-specified model and two mis-specified models. The
first row: m = n = 500, the second row: m = n = 1500. The models presented here correspond one-to-one with those in Figure 3.
Specifically, “true Vc” stands for the true value of Vc.

• Covariance of treatment effects of different potential outcomes. For 2-dimensional potential outcomes, the covariance
between treatment effects of different dimensions of the outcomes Cov(τ1i , τ

2
i ) with τ ji = Y

(j)
i (1) − Y

(j)
i (0) j =

1, 2, Yi = (Y
(1)
i , Y

(2)
i ), involves a quadratic function of the potential outcome vectors and is only partially identifiable.

By investigating the lower and upper bounds of the covariance, we can detect positively or negatively associated
treatment effects. There are many relevant applications in economics, e.g. the effects of a promotion scheme on the sale
of complementary goods shall be positively correlated.

F. Causal OT Relaxation
In this section, we propose a Causal OT relaxation (Definition F.1) of the target COT. We show that the population optimal
objective value of the Causal OT relaxation improves over Vip (closer to Vc compared to Vip), and we provide an explicit
upper bound of the error |Vc − Vcausal| in Proposition F.3. For limitations of this Causal OT relaxation of Vc, please refer to
Section 6.

Definition F.1 (Causal OT lower bound Vcausal(η)). For η ∈ [0,∞), let

π⋆
causal(η) = argmin

π∈Πcausal

Eπ

[
h(Y (0), Y (1)) + η ∥Z(0)− Z(1)∥22

]
,

where the set of joint coupling π consistent with joint distributions of outcome and associated mirror covariate in treatment
and control groups, as well as obeying additional causal constraints, is defined as

Πcausal =
{
π ∈ P(Y2 ×Z2) : πY (0),Z(0) = PY (0),Z , πY (1),Z(1) = PY (1),Z ,

πY (1)|Z(0),Z(1) = πY (1)|Z(1), πY (0)|Z(0),Z(1) = πY (0)|Z(0)

}
.

Then the Causal OT lower bound Vcausal(η) is defined as

Vcausal(η) = Eπ⋆
causal(η)

[h(Y (0), Y (1))].

Further, in this section, we impose the following assumption to justify Definition F.1 and our analysis.
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Assumption F.2 (Uniqueness of π⋆
causal(η), π

⋆
c ). Assume that π⋆

causal(η) is uniquely defined, and the π⋆
c in Table 1 is also

uniquely defined.

Compared to Πip, Πcausal imposes an additional constraint on the coupling to satisfy the causal condition that Y (0) |
Z(0), Z(1) has the same distribution as Y (0) | Z(0). In other words, Y (0) is independent of Z(1) given Z(0). This
assumption is reasonable since Y (0) and Z(1) belong to different “worlds”, and any dependence between them should
operate exclusively through Z(0).

The following result shows that Vcausal(η) interpolates the lower bounds Vip and Vc as η ranges from 0 to ∞, particularly
dominating Vip(η) for any η ≥ 0.

Proposition F.3 (Interpolation between lower bounds). Under Assp. 3.2, 3.3, F.2, for any η ≥ 0, we have

(i). (Monotonicity) Vip(η) ≤ Vcausal(η) ≤ Vc, and Vcausal(η) is non-decreasing and continuous with respect to η.

(ii). (Interpolation) limη→∞ Vcausal(η) = Vc.

(iii). (Convergence rate) Further assume that there exists LZ > 0, such that

W1

(
PY (0)|Z=z0 , PY (0)|Z=z1

)
≤ LZ ∥z0 − z1∥2 ∀z0, z1 ∈ Z, (Condition A)

or

W1

(
PY (1)|Z=z0 , PY (1)|Z=z1

)
≤ LZ ∥z0 − z1∥2 ∀z0, z1 ∈ Z, (Condition B)

then we have

0 ≤ Vc − Vcausal(η) ≤
(LhLZ)

2

η
,

where Lh = supy,y0,y1∈Y
|h(y,y0)−h(y,y1)|

∥y0−y1∥2
.

Proof of Proposition F.3. (i). Since Πcausal ⊆ Πip, then Vip(η) ≤ Vcausal(η). Similar to Proposition 3.6, Πc ⊆ Πcausal since
any coupling such that Z(0) = Z(1) a.s. satisfies the causal constraints in Πcausal(η), thus Vcausal(η) ≤ Vc.

(ii). This follows from limη→∞ Vip(η) = Vc (Proposition 3.6) and Vip(η) ≤ Vcausal(η) ≤ Vc from (i).

(iii). We will prove under (Condition B), and the proof under (Condition A) is similar by swapping Y (0) and Y (1).

By the optimality of π⋆
causal(η) and Πc ⊆ Πcausal, we have Vcausal(η) + ηEπ⋆

causal(η)

[
∥Z(0)− Z(1)∥22

]
≤ Vc, which gives

Eπ⋆
causal(η)

[
∥Z(0)− Z(1)∥22

]
≤ η−1(Vc − Vcausal(η)). (26)

Lemma F.4 says

Vc − Vcausal(η) ≤ LhLZ

√
Eπ⋆

causal(η)
[∥Z(1)− Z(0)∥22].

Combining Eq. (26) and Lemma F.4, we arrive at

Vc − Vcausal(η) ≤ LhLZ

√
η−1(Vc − Vcausal(η)),

which further yields the desired result Vc − Vcausal(η) ≤ (LhLZ)
2/η.

Lemma F.4 (Upper bound of Vc − Vcausal). Under the assumptions of Proposition F.3 and the additional assumption in (iii),

Vc − Vcausal(η) ≤ LhLZ

√
Eπ⋆

causal(η)
[∥Z(1)− Z(0)∥22].
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Proof of Lemma F.4. For notation simplicity, in this proof, we use dπ⋆
causal(z1 | z0) to denote dπ⋆

causal,Z(1)|Z(0)=z0
(η)(z1),

and dπ⋆
causal(z0, z1) to denote dπ⋆

causal,Z(0),Z(1)(η)(z0, z1). Then

Vc − Vcausal(η)

= Eπ⋆
c

[
Eπ⋆

c
[h(Y (0), Y (1)) | Z(0)]

]
− Eπ⋆

causal(η)

[
Eπ⋆

causal(η)

[
Eπ⋆

causal(η)
[h(Y (0), Y (1)) | Z(0), Z(1)] | Z(0)

]]
=

∫
Eπ⋆

c
[h(Y (0), Y (1)) | Z(0) = z0]−

(∫
Eπ⋆

causal(η)
[h(Y (0), Y (1)) | Z(0) = z0, Z(1) = z1]dπ

⋆
causal(z1 | z0)

)
dPZ(0)(z0)

≤
∫ ∫ ∣∣∣Eπ⋆

c
[h(Y (0), Y (1)) | Z(0) = z0]− Eπ⋆

causal(η)
[h(Y (0), Y (1)) | Z(0) = z0, Z(1) = z1]

∣∣∣dπ⋆
causal(z1 | z0) dPZ(0)(z0)

=

∫ ∣∣∣Eπ⋆
c
[h(Y (0), Y (1)) | Z(0) = z0]− Eπ⋆

causal(η)
[h(Y (0), Y (1)) | Z(0) = z0, Z(1) = z1]

∣∣∣dπ⋆
causal(z0, z1).

(27)

Let Π(z0, z1) :=
{
π ∈ P(Y2) : πY (0) = PY (0)|Z=z0 , πY (1) = PY (1)|Z=z1

}
, then

Eπ⋆
c
[h(Y (0), Y (1)) | Z(0) = z0] = Eπ⋆

c
[h(Y (0), Y (1)) | Z(1) = Z(0) = z0] = min

π∈Π(z0,z0)
Eπ [h(Y (0), Y (1))] .

Since π⋆
causal satisfies the causal constraint, that is, under π⋆

causal, Y (1) | Z(1), Z(0) d
= Y (1) | Z(1) and Y (0) | Z(1), Z(0) d

=
Y (0) | Z(0), we have

Eπ⋆
causal(η)

[h(Y (0), Y (1)) | Z(0) = z0, Z(1) = z1] = min
π∈Π(z0,z1)

Eπ [h(Y (0), Y (1))] .

By Assumption 3.3, h is locally Lipschitz, and thus on the compact domain Y , there is a constant Lh > 0, such that

h(y, y0)− h(y, y1) ≤ Lh ∥y0 − y1∥2 ∀y, y0, y1 ∈ Y. (28)

Now we prove the result using the similar technique to proving the triangle inequality of Wasserstein distances. Let
π1 ∈ P(Y2) be the optimal coupling of the OT problem:

min
π∈Π(z0,z1)

Eπ [h(Y (0), Y (1))] ,

and let π2 ∈ P(Y2) be the optimal coupling of

W1

(
PY (1)|Z=z1 , PY (1)|Z=z0

)
.

By the gluing lemma in Chapter 1 of (Villani et al., 2009), there is a coupling π3 ∈ P(Y3), where we denote Y3 =
{(y(1), y(2), y(3)), y(k) ∈ Y}, such that

π3(y
(1), y(2)) = π1,

π3(y
(2), y(3)) = π2.

Therefore, we have

min
π∈Π(z0,z0)

Eπ [h(Y (0), Y (1))] ≤Eπ3

[
h(y(1), y(3))

]
≤Eπ3

[
h(y(1), y(2)) + Lh

∥∥∥y(2) − y(3)
∥∥∥
2

]
= min

π∈Π(z0,z1)
Eπ [h(Y (0), Y (1))] + LhW1

(
PY (1)|Z=z1 , PY (1)|Z=z0

)
≤ min

π∈Π(z0,z1)
Eπ [h(Y (0), Y (1))] + LhLZ ∥z0 − z1∥2 ,
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where the first inequality is due to π3(y(1), y(3)) ∈ Π(z0, z0); the second inequality is due to (28); the equation is due to the
construction of π3 by gluing π1, π2; the last inequality is due to (Condition B). Let L := LhLZ , we get

min
π∈Π(z0,z0)

Eπ [h(Y (0), Y (1))]− min
π∈Π(z0,z1)

Eπ [h(Y (0), Y (1))] ≤ L ∥z0 − z1∥2 .

Similarly for the other direction, we can get

min
π∈Π(z0,z0)

Eπ [h(Y (0), Y (1))]− min
π∈Π(z0,z1)

Eπ [h(Y (0), Y (1))] ≥ −L ∥z0 − z1∥2 .

Plug the upper and lower bounds back to Eq. (27),

Vc − Vcausal(η) ≤
∫
L∥z0 − z1∥2dπ⋆

causal(z0, z1)

= LEπ⋆
causal(η)

[∥Z(1)− Z(0)∥2] ≤ L
√
Eπ⋆

causal(η)
[∥Z(1)− Z(0)∥22],

where we use the Cauchy-Schwarz inequality in the second inequality.
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