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ABSTRACT

Accurate differential diagnosis of dementia subtypes is crucial due to their dis-
tinct clinical trajectories and treatment responses. However, rare subtypes such
as Lewy Body Dementia (LBD) suffer from data scarcity, and domain shifts
across institutions further hinder model generalization. To address these chal-
lenges, we propose BrainM3, a Multi-task learning framework based on a Multi-
level Mixture-of-Experts (MoE) architecture for cross-domain and cross-disease
Brain modeling. Our model jointly learns Alzheimer’s disease (AD), mild cogni-
tive impairment (MCI), and LBD diagnosis by disentangling disease-shared and
specific brain connectivity features. At the domain level, a domain-aware Soft-
MoE combined with adversarial training captures domain-invariant foundation
brain representations, effectively mitigating scanner and cohort variability. At
the task level, task-shared and task-specific Soft-MoEs enable mutual knowledge
transfer and facilitate fine-grained pathological feature modeling. Experiments
on multi-institutional datasets demonstrate that BrainM3 consistently outperforms
baselines under data heterogeneity. Moreover, our model offers interpretable in-
sights into disease-relevant brain networks, offering potential clinical utility. Our
work highlights the promise of an accurate and interpretable model for robust
dementia diagnosis in real-world, cross-institution settings. Our code will be pub-
lished based on acceptance.

1 INTRODUCTION

Dementia poses a significant threat to human health and presents substantial clinical and socioeco-
nomic challenges (Arvanitakis et al., 2019). Among the various subtypes, Alzheimer’s disease (AD)
is the most common, followed by Lewy body dementia (LBD) ranks second in prevalence (Outeiro
et al., 2019; Erkkinen et al., 2018; Hugo & Ganguli, 2014; Orad & Shiner, 2022). Because each
subtype follows a distinct clinical trajectory and responds differently to available therapies, accu-
rate differential diagnosis is essential for guiding effective, personalized treatment strategies and for
slowing disease progression (Xue et al., 2024).

In recent years, deep learning models have emerged as a powerful tool for automating the detection
of various neurological disorders, with a variety of modeling strategies proposed for AD diagnosis.
For instance, graph-based models (Song et al., 2019; Ma et al., 2020; Zhang et al., 2023; Zhou et al.,
2024) capture inter-regional brain connections; transformer-based models (Chen et al., 2024; Zhang
et al., 2024; 2025a) effectively model long-range dependencies; and more recently, state-space mod-
els (Cao et al., 2024; Chen et al., 2025; Ren et al., 2025) have been introduced as a computationally
efficient alternative for learning global spatiotemporal representations. While AD has been exten-
sively studied and benefits from large-scale public datasets, LBD remains underexplored due to data
scarcity, which also limits the applicability of complex deep learning models. Despite recent ef-
forts (Falaschetti et al., 2024; Wang et al., 2025; Zhang et al., 2025b) developing models for LBD
diagnosis, a common limitation is that they are trained on data-scarce tasks, which may hinder gen-
eralization and robustness.
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Figure 1: Illustration of our innovations. (A) Traditional single-task learning methods fail to
capture task-shared knowledge. (B) Our first innovation: jointly learning multi-task in an unifed
MTL framework and introducing task-specific MoE modules, learning both task-shared and task-
specific features to enhance the diagnostic performance on both tasks. (C) Our second innovation:
incorporating a cross-domain MoE, facilitating the learning of domain-invariant representations and
mitigating domain shift caused by heterogeneous data sources.

Given that AD and LBD share common pathological features yet also exhibit disease-specific
traits (Yousaf et al., 2019), a natural intuition is that shared brain representations can be lever-
aged across tasks, enabling mutual knowledge transfer between data-rich and data-scarce settings.
Multi-task learning (MTL) (See Fig. 1(B)) offers a promising solution, as it enables simultaneous
learning of multiple related tasks to model cross-task relationships and take advantage of task-shared
representations. (Zhang & Yang, 2021; Liu et al., 2024; Zhou et al., 2011), which can effectively
improve model generalization and reduce data scarcity in data-scarce tasks. However, another ma-
jor challenge arises from data heterogeneity. Brain imaging data collected from different sites of-
ten differ due to scanners, protocols, and patient populations, leading to significant domain shifts.
Training a unified MTL model on such heterogeneous data potentially biases learning and causes
negative knowledge transfer (Aoki et al., 2022). In real-world clinical diagnostic protocols, this
heterogeneous-featured MTL setting is more realistic but remains underexplored.

To address both the challenges of cross-task knowledge transfer and cross-domain heterogeneity, we
propose BrainM3, a MTL framework based on a Multi-level Mixture-of-Experts (MoE) architec-
ture (See Fig. 1(C)). At the domain level, a domain-aware MoE module and a domain adversarial
training strategy are introduced to learn domain-invariant brain foundational representations. At
the task level, we incorporate task-shared and task-specific MoEs to disentangle disease-related
representations from domain-dependent foundational representations, enabling synergistic learn-
ing across data-rich and data-scarce diagnosis tasks. This hierarchical design allows the model
to adaptively capture disease-related pathological patterns in a collaborative learning way while
maintaining robustness across varied cohorts and imaging protocols. We validate our proposed
model by comparing it with several established baselines on disease prediction tasks from diverse
institutions. Experimental results demonstrate that our BrainM3 consistently outperforms baseline
methods, highlighting the effectiveness. To the best of our knowledge, this is the first work to ex-
plore the heterogeneous-feature multi-task learning problem in brain disorder research. The main
contributions of this work are summarized as follows:

Domain-aware Adaptation: We introduce a domain-level MoE and a domain adversarial training
strategy into a unified MTL framework to eliminate domain shifts caused by heterogeneous data,
learning domain-invariant yet informative brain foundational representations.

Multi-task MoE Framework: We propose a unified MTL framework that incorporates both task-
shared and task-specific MoE modules to jointly learn from data-rich and data-scarce diagnosis
tasks. A residual fusion strategy integrates shared and specific features, capturing both general and
disease-specific patterns.

Performance and Interpretability: We conduct extensive experiments on data-rich and data-scarce
datasets, demonstrating the model’s superior performance and generalizability, particularly under
data scarcity and domain variability conditions. We also offer analysis of explainable insights into
the model’s decision-making process and the disease-related pathologies.
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2 PRELIMINARIES

2.1 PROBLEM DEFINITION

We begin by defining heterogeneous-feature multi-task learning (MTL) problem (Zhang & Ye-
ung, 2011). Given a set of m related but distinct tasks {Ti}mi=1, the goal is to jointly learn all tasks
to improve performance on each individual task by leveraging shared knowledge. Unlike traditional
homogeneous MTL where all tasks share the same input space, in heterogeneous-feature MTL, each
task operates on a distinct feature space Xk, i.e.,

yk = Tk(Bk), Bk ∈ Xk, Xi ̸= Xj for i ̸= j (1)

This setting mimics real-world scenarios where input distributions vary across tasks, yet each task
still benefits from joint representation learning.

2.2 SOFT MIXTURE-OF-EXPERT(MOE)

MoE enables domain adaptation of heterogeneous data (Guo et al., 2018; Zhong et al., 2022; Jain
et al., 2023; Wu et al., 2025b; Mi et al., 2025) and flexibly captures task-specific patterns (Wang
et al., 2022; Fan et al., 2022; Chen et al., 2023; Zhu et al., 2024; Ding et al., 2025; Wu et al., 2025a)
in a data-dependent routing. Soft MoE (Puigcerver et al., 2023) replaces the top-K hard selection
mechanism in the sparse MoE (Mustafa et al., 2022) with a softmax-based token-to-expert assign-
ment, allowing each input token to contribute to all experts in a weighted manner. Formally, given
an input feature x ∈ RB×N×D, where B is the batch size, N is the number of brain sub-networks,
and D is the embedding dimension, a gating network computes logits G(x) ∈ RB×N×K over K
experts. The softmax function then yields gating weights w = softmax(G(x)) ∈ RB×N×K . Each
expert Ek processes the input x independently to generate an output, and the final MoE product is
a weighted combination of expert outputs: MoE(x) =

∑K
k=1 wk(x) · Ek(x), where wk(x) denotes

the weighting assigned to the expert k.

Our approach employs a shared Soft-MoE to learn domain-invariant foundational brain features,
while task-shared and task-specific Soft-MoEs are introduced to capture both common and unique
pathological patterns for each task, enabling multi-task knowledge sharing across diverse diseases
and heterogeneous clinical populations.

2.3 BRAIN SUB-NETWORK REPRESENTATION

Brain structural connectivity (SC) patterns reflect disease-related alterations and offer informative
representation of whole-brain network organization (Farooq et al., 2019; Škoch et al., 2022; Yeh
et al., 2021; Zhang et al., 2021). To encode SC in a clinically meaningful and interpretable way, we
introduce a brain-inspired token representation. Specifically, for a given subject, we applied standard
imaging preprocessing (Zhang et al., 2022), including eddy current correction, fiber tracking, and
registration of T1-weighted images to DTI space. Cortical segmentation was performed to parcellate
the brain into 148 regions of interest (ROIs) based on the Destrieux Atlas (Destrieux et al., 2010).
Pairwise connectivity strength between ROIs was computed based on the number of reconstructed
white matter fibers, resulting in a symmetric matrix X ∈ R148×148, where each entry Xij denotes
the connectivity strength between ROI i and j. Here, we define each column of the SC matrix as
a brain sub-network, capturing the connectivity fingerprint of a single ROI. This design preserves
anatomical topology and enables region-wise expert selection within the Soft-MoE module.

3 METHOD

As illustrated in Fig. 2, our goal is to jointly model multi-task diagnosis from diverse institutions
by leveraging shared and specific brain SC patterns. To this end, we propose BrainM3, a frame-
work built on a shared backbone that consists of three key components: (1) a domain-shared Soft-
MoE module to learn domain-invariant foundation brain representations (See Fig. 2 (B-I)), (2) task-
specific and task-shared Soft-MoE modules to capture both common and unique pathologies for
each diagnosis task (See Fig. 2 (B-II)), and (3) a domain adversarial component to further enforce
cross-domain generalization.

3
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Figure 2: Overview of our proposed framework, which performs joint optimization across tasks
under a unified shared backbone, including (A) brain networks processing and encoding, and (B)
heterogeneous-feature MTL learning via hierarchical Soft-MoE.

3.1 DOMAIN-SHARED FEATURE LEARNING VIA SOFT-MOE

To extract domain-invariant and task-free foundation features from brain SC, we introduce a domain-
shared soft-MoE module, which serves as the core of the shared backbone and is jointly optimized
across tasks. Specifically, as shown in Fig. 2(A), let X ∈ RR×R denote the SC matrix of a subject,
where R is the number of brain regions. Each column vector xj ∈ RR reflects the connectivity
profile of brain region j, capturing its relationship with all other regions. Each sub-network xj is
first projected through a token-wise MLP encoder to yield an embedded representation:

hj = MLPenc(xj) j = 1, . . . , R (2)

This produces an encoded sequence H = [h1, h2, . . . , hR] ∈ RR×D, where D is the embedding
dimension. To further obtain compact global brain network representations, we apply attention
pooling over the sub-network sequence. Specifically, a learnable query vector q ∈ R1×D attends to
all tokens using multi-head attention:

zglobal = MultiHeadAttn(q,H,H) (3)

where the query attends to the sequence H to produce a weighted global summary zglobal ∈ RD.
This attention-based mechanism allows the model to focus on the most informative brain regions.

Subsequently, the encoded brain sub-networks are passed through a shared Soft-MoE layer con-
sisting of K experts {Ek(·)}Kk=1, each implemented as an independent MLP. A gating network
computes a soft assignment weight αj,k ∈ [0, 1] for each pair of brain sub-network and expert:

αj,k =
exp(gk(hj))∑K

k′=1 exp(gk′(hj))
(4)

The output of the Soft-MoE is a weighted sum of expert outputs:

ĥj =

K∑
k=1

αj,k · Ek(hj) j = 1, . . . , R (5)

This results in a refined token representation Ĥ = [ĥ1, . . . , ĥR] ∈ RR×D that captures domain-
robust brain structural features.

3.2 TASK-SHARED AND TASK-SPECIFIC FEATURE LEARNING

To capture both shared and specific disease patterns, we introduce a dual-branch feature special-
ization design comprising task-shared and task-specific Soft-MoEs, which operate sequentially on
domain-shared brain representations.

4
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Let Ĥ = [ĥ1, . . . , ĥR] ∈ RR×D be the output of the domain-shared MoE, where each ĥj ∈ RD is
the embedding of brain sub-network j. We first feed this sequence into a task-shared MoE module,
which is shared across tasks and designed to extract generalizable pathological representations:

sj =

Ks∑
k=1

α
(s)
j,k · E(s)

k (ĥj) j = 1, . . . , R (6)

where α
(s)
j,k are the gating weights for the shared experts, and E

(s)
k (·) denotes the k-th task-shared

expert.

The output sj ∈ RD is further processed by task-specific MoEs for each task t. Each task-specific
MoE has its own set of experts and gating functions:

z
(t)
j =

Kt∑
k=1

α
(t)
j,k · E(t)

k (sj) j = 1, . . . , R (7)

where α
(t)
j,k are the task-specific gating weights and E

(t)
k (·) is the k-th expert for task t.

To effectively integrate shared and task-specific information, we apply a residual fusion mechanism
by summing the outputs of the task-shared and task-specific MoEs:

z̃
(t)
j = sj + z

(t)
j j = 1, . . . , R (8)

The fused sequence Z̃(t) = [z̃
(t)
1 , . . . , z̃

(t)
R ] ∈ RR×D is then aggregated into a global representation

via attention pooling:
z
(t)
global = MultiHeadAttn(q, Z̃(t), Z̃(t)) (9)

followed by a task-specific classification head:

ŷ(t) = Classifier(t)(z
(t)
global) (10)

where ŷ(t) ∈ RCt is the prediction for task t with Ct classes.

3.3 DOMAIN ADVERSARIAL LEARNING

Despite the use of a shared feature extractor, subtle domain-specific variations may persist. To fur-
ther promote domain-invariant representation learning, we introduce a domain adversarial training
strategy based on a gradient reversal mechanism. Specifically, Let Hshared ∈ RB×R×D denote the
output token sequence from the domain-shared Soft-MoE, where B is the batch size, R is the num-
ber of brain regions, and D is the embedding dimension. To obtain global representations, we apply
attention pooling over the sequence:

zshared = MultiHeadAttn(q,Hshared, Hshared) (11)

A domain classifier fdom(·) is trained to predict the domain label d ∈ {0, 1}. During training, we
apply a gradient reversal layer (GRL) (Ganin et al., 2016) before the domain classifier:

d̂ = fdom(GRL(zshared)) (12)

where GRL multiplies the incoming gradients by a negative scalar λ, encouraging the feature ex-
tractor to produce domain-invariant embeddings. The domain classification loss is computed as:

Ldomain =
1

B

B∑
i=1

CE(d̂i, di) (13)

where CE(·, ·) is the cross-entropy loss between the predicted label d̂i and the ground truth di of
domain i.

This adversarial training paradigm formulates a minimax game, where in the domain classifier
fdom(·) is optimized to distinguish between data domains, while the feature encoder is simulta-
neously trained to produce domain-invariant representations that confuse the classifier.

5
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3.4 TRAINING OBJECTIVES

The proposed framework is trained end-to-end by jointly optimizing classification and domain ad-
versarial losses. Let Ldr and Lds denote the cross-entropy classification losses for the data-rich and
data-scarce tasks, respectively. Ldomain is the domain adversarial loss defined in section 3.3. The
overall training objective is:

Ltotal = Ldr + Lds + λ · Ldomain (14)

where λ is a hyperparameter for domain regularization.

During training, mini-batches from both data sources are alternately fed into the model. The shared
encoder and domain-shared Soft-MoE are optimized jointly across tasks, while the task-specific
MoEs and classifiers are trained independently per task. The domain classifier is trained adversari-
ally via a gradient reversal layer to encourage the extraction of domain-invariant features. As shown
in Fig. 2(B), this joint optimization strategy enables the model to leverage shared knowledge across
tasks while maintaining task-specific discriminability and robustness to domain shift.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets In this study, we evaluated our proposed BrainM3 model on two datasets: a public dataset
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008), which offers a
relatively large sample size, and an in-house dataset from an anonymized institution, characterized
by limited data availability. The ADNI dataset is used for distinguishing normal controls (NC) from
individuals with mild cognitive impairment (MCI), a prodromal stage of AD. After quality control,
418 subjects were included (301 NC and 117 MCI). The in-house dataset contains 147 subjects (23
NC, 77 LBD, and 47 AD). Data preprocessing followed the procedures described in section 2.3
Brain Sub-network Representation. We used 80% of the data for training and 20% for testing on
each dataset. Additional preprocessing details and ADNI subject demographics are provided in the
supplementary material.

Implementation Details In our method, we set the embedding dimension of each brain sub-network
to 64. The MoE modules consist of 8 domain-shared experts, 4 task-shared experts, and 4 task-
specific experts for each diagnosis task. The balancing hyperparameter λ for the Ldomain is set to
1. The BrainM3 is trained with a batch size of 16 for 128 epochs using the Adam optimizer with
a learning rate of 1 × 10−4. All experiments are conducted on a workstation equipped with an
NVIDIA RTX 6000 GPU.

4.2 COMPARISON WITH BASELINES

We evaluate the proposed BrainM3 on multi-type dementia identification tasks using both the ADNI
dataset and a private dataset. The performance is compared against several baseline methods, includ-
ing two traditional machine learning models: Support Vector Machine (SVM) and XGBoost, two
CNN/GNN-based approaches: BrainNetCNN (Kawahara et al., 2017) and FBNETGEN (Kan et al.,
2022a), and two Transformer-based methods: VanillaTF (Kan et al., 2022b) and BrainNetTF (Kan
et al., 2022b). All baseline models are trained on single diagnosis task separately, with hyperpa-
rameters adopted from their original papers. In the row “BrainM3 (Single-task)” of Table 1, we
ablate both the domain-shared and task-shared modules and train each single task independently to
enables a fair comparison.

From a single-task perspective, CNN/GNN-based approaches consistently outperform traditional
machine learning models by capturing complex brain topological patterns, and transformer-based
methods further improve performance on both tasks by learning long-range global dependencies.
Our model outperforms all baselines on the private dataset across all evaluation metrics, demon-
strating its advantage in data-scarce scenarios. Compared to baseline methods, BrainM3 integrates
both local sub-network modeling and flexible expert routing, enabling data-adaptive representation
learning that is more robust to limited learning samples. In contrast, baseline deep learning models
may suffer from overfitting due to their high complexity.
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Table 1: Performance comparison of different baselines on the ANDI and Private datasets. The best
results within single-task learning are highlighted in underline, the overall best results across all
methods are highlighted with bold.

Methods ANDI (data-rich) Private (data-rare)
ACC AUROC SEN SPE ACC AUROC SEN SPE

SVM 60.00 75.01 50.19 57.50 63.33 75.15 53.89 55.56
XGBoost 63.33 75.32 63.89 63.53 70.00 75.47 55.97 75.59

BrainNetCNN 64.29 73.13 63.33 76.67 73.33 78.52 58.52 81.00
FBNETGNN 70.24 62.30 63.75 75.00 74.78 81.84 60.14 82.54

VanillaTF 71.43 73.78 66.77 73.33 76.33 82.50 62.50 83.92
BrainNetTF 73.62 75.07 67.17 77.00 75.97 81.97 60.88 84.13

BrainM3 (Single-task) 70.16 79.81 67.50 73.33 76.67 84.54 66.04 82.46
BrainM3 (Multi-task) 84.38 85.69 69.34 88.68 80.00 88.13 72.12 87.30

Notably, when both tasks are trained jointly, performance improves significantly across the board,
particularly on the ADNI dataset, where accuracy increases by 14.19%. Moreover, both tasks
achieve approximately 5% improvements in AUROC, as illustrated in the row “BrainM3 (Multi-
task)” of Table 1. These highlight the effectiveness of cross-task representation learning. Through
mutual learning between data-rich and data-scarce neurological-related tasks, our BrainM3 improves
performance by positive knowledge transfer and offers a promising direction for maximizing data
use in real-world data-rare medical settings.

To further understand the model’s behavior, we analyze the confusion matrix for the CN vs AD vs
LBD diagnosis task. As shown in Fig. 4. the model correctly identifies most LBD and AD samples,
but struggles with CN. This is potentially due to limited CN cases, which may lead to insufficient
pattern learning. In contrast, it performs well on both AD and LBD diagnosis, which have relatively
more samples. Notably, our BrainM3 achieves clear separation between AD and LBD, a clinically
challenging task due to their overlapping symptoms. This demonstrates that our BrainM3 is capable
of learning fine-grained disease-specific features, even in challenging, data-rare scenarios.

4.3 INTERPRETABILITY

Beyond predictive accuracy, an ideal diagnostic model should also offer interpretability by uncover-
ing disease-relevant brain patterns and decision-making process, which is essential for clinical trust.
As shown in Fig. 3, we visualize the top-5 discriminative brain sub-networks for each diagnosis
task based on expert activation scores from the task-specific MoE module, highlighting task-specific
brain SC patterns that contribute most significantly to the model’s predictions (See Fig. 3(A-B)). In
addition, we identify the top-5 task-shared brain sub-networks by analyzing expert activation scores
in the task-shared MoE, providing evidence of common pathological substrates across different de-
mentia types (See Fig. 3(C)).

(A) Top-5 discriminative brain 
subnetworks on ANDI Dataset

L G_front_inf-Orbital
R G_rectus
L G_front_inf-Triangul
R S_cingul-Marginalis
R G_and_S_cingul-Mid-Ant

CN vs MCI
R G_insular_short
L G_pariet_inf-Angular
L G_Ins_lg_and_S_cent_ins
R S_circular_insula_inf
R S_precentral-inf-part

(B) Top-5 discriminative brain subnetworks on Private Dataset

CN vs ADI
L G_front_sup
L G_pariet_inf-Angular
R G_and_S_paracentral
R G_temporal_inf
R S_precentral-inf-part

CN vs LBDII AD vs LBD
L G_front_sup
R G_front_sup
R G_temporal_inf
L G_front_inf-Opercular
R G_precuneus

III
L G_front_sup
R G_front_sup
R S_cingul-Marginalis
R G_insular_short
L G_pariet_inf-Angular

Shared

(C) Top-5 Task Shared 
brain subnetworks

Figure 3: Top-5 discriminative brain sub-networks identified for each task, and the Top-5 most
activated task-shared sub-networks. Shared sub-networks across diseases are highlighted in bold
with different colors, while across task-specific and task-shared sets are additionally underlined.
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Explainable Result on ADNI Dataset Figure 3 (A) illustrates the top-5 discriminative brain SC
sub-networks distinguishing between CN and MCI, which are high aligned with previous studies.
For instance, both the L G front inf-Orbital and the R G rectus have been reported to show signifi-
cantly reduced gray matter volume in individuals with MCI compared to CN (Han et al., 2012; Xie
et al., 2015). The L G fron inf-Triangul, has been widely implicated in neurodegenerative diseases,
especially those impacting language-related functions (Whitwell et al., 2015; Reyes et al., 2018;
Mandelli et al., 2016). The R G and S cingul-Mid-Ant belongs to the anterior cingulate cortex, a
region frequently affected by structural, functional, and metabolic alterations in neurodegenerative
conditions (Jones et al., 2006; Yuan et al., 2022). Additionally, the R S cingul-Marginalis is located
near a key hub of the default mode network (DMN), where AD-related pathological changes such as
amyloid-β deposition and cortical atrophy often occur (Leech & Sharp, 2014). Notably, this region
is also identified as a task-shared sub-network (see Fig. 3 (C)).

Explainable Result on Private Dataset Figure 3 (B) highlights the top-5 discriminative SC brain
sub-networks that differentiate CN, AD, and LBD. As expected, our model effectively captures
disease-related brain alterations. Frist, the R G insular short, located in the anterior insula, is a
critical hub linking sensory perception, emotional processing and autonomic regulation (Uddin et al.,
2017). This region is known to undergo significant structural atrophy in AD (Fathy et al., 2020) and
is successfully identified in our method (see Fig. 3 (B-I)), and is also recognized as a task-shared
sub-network (see Fig. 3 (C)). Moreover, the L G pariet inf-Angular, functions as a multimodal
convergence zone and is a key hub within the brain’s DMN(Wagner & Rusconi, 2023; Wang et al.,
2019). In both AD and LBD, this region shows pronounced glucose metabolism reduce (Lim et al.,
2009). Our model successfully identifies this sub-network as discriminative between both CN vs.
AD and CN vs. LBD (see Fig. 3 (B-I, B-II)), and it is also recognized as a task-shared sub-network
(see Fig. 3 (C)).

Furthermore, the L G front sup serves as a critical hub in multiple brain networks including
DMN (Li et al., 2013). Both AD and LBD exhibit cortical atrophy and reduced glucose metabolism
in this region, with LBD showing greater posterior involvement and a distinct metabolic pat-
tern (Yousaf et al., 2019; Mistur et al., 2009). Similarly, the R G temporal inf, a region essential
for high-level visual recognition and multimodal integration (Onitsuka et al., 2004), shows struc-
tural and functional abnormalities in LBD, while its relatively preserved metabolism compared to
AD highlights its diagnostic relevance (Mak et al., 2014; Shivamurthy et al., 2015; Barber et al.,
2000). Our model identifies these sub-network as discriminative in both CN vs LBD and AD vs
LBD comparisons (see Fig. 3 (B-II, B-III)), and the L G front sup is identified as a task-shared sub-
network (see Fig. 3 (C)). More importantly, the R G front sup is identified as both a discriminative
sub-network between AD and LBD (see Fig. 3, (B-III)) and a task-shared sub-network (see Fig. 3
(C)). Prior studies have reported significant frontal lobe atrophy, reduced glucose metabolism, and
disrupted functional connectivity in this region among individuals with AD, whereas these alter-
ations are generally milder in LBD (Yousaf et al., 2019; Valdés Hernández et al., 2018; Tang et al.,
2021; Roquet et al., 2016). Such distinctions are clinically important for differentiating between AD
and LBD. Our method effectively captures these sub-network, highlighting the clinical interpretabil-
ity of our model in capturing disease-specific brain alterations.

4.4 ABLATION STUDIES

Number of Experts We categorize experts into three types: domain-shared, task-shared, and task-
specific. In this ablation study, we vary the number and composition of experts to examine (1) the
necessity of each expert type and (2) the effect of expert count in each MoE block on overall model
performance. Experiments are conducted based on the BrainM3 and the results are summarized in
Table 2. Overall, models incorporating domain-shared experts consistently outperform those with
the same total number of experts but without domain-shared ones, with 8 domain-shared experts
yielding the best performance. Moreover, setting the number of experts in any individual MoE
block to zero leads to a performance drop, underscoring the essential role of each MoE block in
identifying brain diseases.

Effect of Ldomain To investigate the impact of the domain adversarial loss Ldomain, we conduct a
sensitivity analysis by varying its balancing weight λ in the overall objective. Fig. 5 presents the
classification performance on both datasets under different λ values. As λ increases from 0 to 1,
performance on both datasets improves significantly, with the best result achieved at λ = 1. When
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λ exceeds 1, the performance on the ADNI dataset drops slightly, indicating that an overly strong
domain alignment may suppress task-discriminative features. Additionally, we ablate the GRL in
the domain classifier and the result shows that when it is removed, performance on both tasks drops.
These results validate the effectiveness of the proposed domain adversarial mechanism in mitigating
domain shift.

Table 2: Ablation Study on Expert Number and Structure. Here, m denotes the total number of
experts, md denotes the number of domain-shared experts, ms denotes the task-shared experts, and
mt denotes the task-specific experts. The best results under the same m are shown in underlined,
while the overall best results across all settings are bold.
m md ms mt ANDI (data-rich) Private (data-rare)

ACC AUROC SEN SPE ACC AUROC SEN SPE
2 2 0 0 77.37 80.22 67.44 82.35 70.09 85.87 63.54 83.15
2 0 2 0 75.00 67.43 57.14 82.15 70.00 82.87 61.02 80.16
2 0 0 2 75.10 68.57 68.12 82.33 70.00 83.97 65.60 82.25
4 4 0 0 78.12 79.33 56.10 88.51 73.33 82.02 64.72 84.38
4 0 4 0 75.10 67.51 54.29 82.19 70.94 86.98 64.19 82.19
4 0 0 4 77.34 69.22 63.44 84.23 72.67 89.32 63.54 83.46
4 2 2 0 78.91 85.12 69.31 85.24 71.79 87.26 60.70 82.52
4 0 2 2 76.56 80.44 69.75 87.87 70.94 86.98 69.19 84.19
8 8 0 0 82.03 85.61 67.26 83.33 73.50 86.29 63.76 83.88
8 0 8 0 75.00 66.86 54.29 83.15 66.77 81.97 54.35 78.03
8 0 0 8 76.07 69.19 68.01 85.48 70.00 81.97 58.06 80.16
8 4 4 0 81.25 85.21 63.54 83.20 74.36 87.52 61.05 83.53
8 4 0 4 82.81 83.78 65.71 83.77 75.21 87.91 65.84 84.82
8 4 2 2 82.03 86.57 69.19 83.19 76.67 87.05 71.39 85.97
16 8 0 8 83.59 85.58 67.06 86.81 74.36 88.84 62.34 83.87
16 0 8 8 79.69 80.41 66.13 85.65 71.70 87.06 67.69 82.78
16 8 8 0 82.87 83.43 67.14 86.77 73.33 81.16 64.72 83.59
16 8 4 4 84.38 85.69 69.34 88.68 80.00 88.13 72.12 87.30

Figure 4: Confusion matrix for three-
class diagnosis task.

Figure 5: The impact of the hyperparameter λ on
both tasks.

5 CONCLUSION

We propose BrainM3, a novel MTL framework with a Multi-level Mixture-of-Experts architecture,
designed to address both cross-domain heterogeneity and cross-task knowledge transfer in brain dis-
order diagnosis. The domain-shared MoE effectively mitigates domain shift, while task-specific and
task-shared MoEs benefits knowledge transfer between date-rich and date-rare neurological tasks.
Beyond superior performance, our model offers interpretable insights into disease-relevant brain
sub-networks, providing potential clinical relevance. To our best knowledge, our work represents
the first exploration of heterogeneous MTL in brain disorder research, establishing a foundation for
robust, cross-institutional dementia diagnosis.
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Lucina Q Uddin, Jason S Nomi, Benjamin Hébert-Seropian, Jimmy Ghaziri, and Olivier Boucher.
Structure and function of the human insula. Journal of clinical neurophysiology, 34(4):300–306,
2017.

Maria del C Valdés Hernández, Stuart Reid, Shadia Mikhael, Cyril Pernet, and Alzheimer’s Dis-
ease Neuroimaging Initiative. Do 2-year changes in superior frontal gyrus and global brain atro-
phy affect cognition? Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring,
10(1):706–716, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jennifer Wagner and Elena Rusconi. Causal involvement of the left angular gyrus in higher func-
tions as revealed by transcranial magnetic stimulation: a systematic review. Brain Structure and
Function, 228(1):169–196, 2023.

Di Wang, Nicolas Honnorat, Jon B Toledo, Karl Li, Sokratis Charisis, Tanweer Rashid, Anoop
Benet Nirmala, Sachintha Ransara Brandigampala, Mariam Mojtabai, Sudha Seshadri, et al. Deep
learning reveals pathology-confirmed neuroimaging signatures in alzheimer’s, vascular and lewy
body dementias. Brain, 148(6):1963–1977, 2025.

Junkai Wang, Jianghong Liu, Zhiqun Wang, Pei Sun, Kuncheng Li, and Peipeng Liang. Dysfunc-
tional interactions between the default mode network and the dorsal attention network in subtypes
of amnestic mild cognitive impairment. Aging (Albany NY), 11(20):9147, 2019.

Sinan Wang, Yumeng Li, Hongyan Li, Tanchao Zhu, Zhao Li, and Wenwu Ou. Multi-task learning
with calibrated mixture of insightful experts. In 2022 IEEE 38th international conference on data
engineering (ICDE), pp. 3307–3319. IEEE, 2022.

Jennifer L Whitwell, David T Jones, Joseph R Duffy, Edythe A Strand, Mary M Machulda, Scott A
Przybelski, Prashanthi Vemuri, Brian E Gregg, Jeffrey L Gunter, Matthew L Senjem, et al. Work-
ing memory and language network dysfunctions in logopenic aphasia: a task-free fmri comparison
with alzheimer’s dementia. Neurobiology of aging, 36(3):1245–1252, 2015.

Chenwei Wu, Zitao Shuai, Zhengxu Tang, Luning Wang, and Liyue Shen. Dynamic modeling of
patients, modalities and tasks via multi-modal multi-task mixture of experts. In The Thirteenth
International Conference on Learning Representations, 2025a.

Junxian Wu, Minheng Chen, Xinyi Ke, Tianwang Xun, Xiaoming Jiang, Hongyu Zhou, Lizhi Shao,
and Youyong Kong. Learning heterogeneous tissues with mixture of experts for gigapixel whole
slide images. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
5144–5153, 2025b.

Yunyan Xie, Zaixu Cui, Zhongmin Zhang, Yu Sun, Can Sheng, Kuncheng Li, Gaolang Gong,
Ying Han, and Jianping Jia. Identification of amnestic mild cognitive impairment using multi-
modal brain features: a combined structural mri and diffusion tensor imaging study. Journal of
Alzheimer’s Disease, 47(2):509–522, 2015.

Chonghua Xue, Sahana S Kowshik, Diala Lteif, Shreyas Puducheri, Varuna H Jasodanand, Olivia T
Zhou, Anika S Walia, Osman B Guney, J Diana Zhang, Serena Poésy, et al. Ai-based differential
diagnosis of dementia etiologies on multimodal data. Nature Medicine, 30(10):2977–2989, 2024.

Chun-Hung Yeh, Derek K Jones, Xiaoyun Liang, Maxime Descoteaux, and Alan Connelly. Mapping
structural connectivity using diffusion mri: challenges and opportunities. Journal of Magnetic
Resonance Imaging, 53(6):1666–1682, 2021.

Tayyabah Yousaf, George Dervenoulas, Polytimi-Eleni Valkimadi, and Marios Politis. Neuroimag-
ing in lewy body dementia. Journal of neurology, 266(1):1–26, 2019.

Qianqian Yuan, Xuhong Liang, Chen Xue, Wenzhang Qi, Shanshan Chen, Yu Song, Huimin Wu,
Xulian Zhang, Chaoyong Xiao, and Jiu Chen. Altered anterior cingulate cortex subregional con-
nectivity associated with cognitions for distinguishing the spectrum of pre-clinical alzheimer’s
disease. Frontiers in Aging Neuroscience, 14:1035746, 2022.

Jianjia Zhang, Xiaotong Wu, Xiang Tang, Luping Zhou, Lei Wang, Weiwen Wu, and Dinggang
Shen. Asynchronous functional brain network construction with spatiotemporal transformer for
mci classification. IEEE Transactions on Medical Imaging, 2024.

Jing Zhang, Yanjun Lyu, Xiaowei Yu, Lu Zhang, Chao Cao, Tong Chen, Minheng Chen, Yan
Zhuang, Tianming Liu, and Dajiang Zhu. Classiffication of mild cognitive impairment based
on dynamic functional connectivity using spatio-temporal transformer. In 2025 IEEE 22nd Inter-
national Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE, 2025a.

Jing Zhang, Xiaowei Yu, Tong Chen, Chao Cao, Mingheng Chen, Yan Zhuang, Yanjun Lyu,
Lu Zhang, Li Su, Tianming Liu, et al. Brainnet-moe: Brain-inspired mixture-of-experts learn-
ing for neurological disease identification. arXiv preprint arXiv:2503.07640, 2025b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lu Zhang, Li Wang, Jean Gao, Shannon L Risacher, Jingwen Yan, Gang Li, Tianming Liu, Dajiang
Zhu, Alzheimer’s Disease Neuroimaging Initiative, et al. Deep fusion of brain structure-function
in mild cognitive impairment. Medical image analysis, 72:102082, 2021.

Lu Zhang, Li Wang, Dajiang Zhu, Alzheimer’s Disease Neuroimaging Initiative, et al. Predicting
brain structural network using functional connectivity. Medical image analysis, 79:102463, 2022.

Lu Zhang, Saiyang Na, Tianming Liu, Dajiang Zhu, and Junzhou Huang. Multimodal deep fusion
in hyperbolic space for mild cognitive impairment study. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 674–684. Springer, 2023.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586–5609, 2021.

Yu Zhang and Dit-Yan Yeung. Multi-task learning in heterogeneous feature spaces. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 25, pp. 574–579, 2011.

Tao Zhong, Zhixiang Chi, Li Gu, Yang Wang, Yuanhao Yu, and Jin Tang. Meta-dmoe: Adapting
to domain shift by meta-distillation from mixture-of-experts. Advances in Neural Information
Processing Systems, 35:22243–22257, 2022.

Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. A multi-task learning formulation for predict-
ing disease progression. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 814–822, 2011.

Zhiheng Zhou, Qi Wang, Xiaoyu An, Siwei Chen, Yongan Sun, Guanghui Wang, and Guiying Yan.
A novel graph neural network method for alzheimer’s disease classification. Computers in Biology
and Medicine, 180:108869, 2024.

Xun Zhu, Ying Hu, Fanbin Mo, Miao Li, and Ji Wu. Uni-med: a unified medical generalist founda-
tion model for multi-task learning via connector-moe. Advances in Neural Information Processing
Systems, 37:81225–81256, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

Subject Demographics and Preprocessing details of ADNI

The imaging protocol for each subject included structural MRI (T1-weighted) and diffusion tensor
imaging (DTI). T1-weighted images were acquired with a field of view (FOV) of 240 mm × 256
mm × 208 mm, isotropic voxel size of 1.0 mm, and repetition time (TR) of 2.3 s. DTI data were
obtained using a b-value of 1000 s/mm², 54 gradient directions, FOV of 232 mm × 232 mm × 160
mm, isotropic voxel size of 2.0 mm, TR of 7.2 s, and echo time (TE) of 56 ms. Preprocessing steps
included skull stripping for both modalities, followed by registration of T1 images to DTI space
using FSL. T1 images underwent tissue segmentation via FreeSurfer, with regions of interest (ROIs)
defined according to the Destrieux Atlas. DTI preprocessing involved eddy current correction using
FSL, followed by fiber tracking reconstruction using MedINRIA.

Demographic details of the ADNI subjects are presented in Table 3, including sample size, sex
distribution, and age (mean ± standard deviation) for both NC and MCI.

Table 3: Demographic information of subjects from ADNI
Mean ± standard deviation

NC MCI
Sample size 301 117
Male/female 118/183 74/43
Male age (years) 71.37 ± 5.92 73.21 ± 6.86
Female age (years) 70.25 ± 5.91 70.17 ± 7.32

Brain Structural Connectivity Visualization Across Datasets

To qualitatively assess the structural differences across datasets, we visualize the brain structural
connectivity matrices of three randomly selected subjects from each diagnostic group in both the
ADNI and private datasets (See Figure 6).

In the ADNI dataset, both NC and MCI groups display structured and dense connectivity patterns,
with symmetric topologies and moderate connection strengths. In contrast, the connectivity matrices
from the private dataset (NC, AD, and LBD groups) are sparser. The distinct patterns highlight
substantial distributional shifts between the two datasets, reinforcing the presence of cross-domain
heterogeneity in brain structural connectivity. This observation motivates the integration of domain-
invariant representation learning in our framework to enhance model robustness and generalizability.

The use of large language models (LLMs)

LLMs were used solely to improve the clarity and fluency of the language in this manuscript. All
research ideas, methodology, experiments, analyses, and conclusions were conceived and carried
out by the authors.
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NC Group 

MCI Group

NC Group

AD Group

LBD Group

ADNI Dataset

Private Dataset

Figure 6: Brain structural connectivity matrices from ADNI and private datasets show distinct pat-
terns across groups, revealing a clear domain shift in connectivity distributions.
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