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Abstract

We present a surrogate model in the form of a neural net-
work that can approximately replicate the Monte-Carlo
simulations conventionally performed to simulate scanning
electron microscopy imaging of porous materials. These
materials are of high practical relevance but scanning elec-
tron microscopic images of their microstructures feature dif-
ficult to interpret artifacts, specifically in areas where the
electron beam enters pores in the sample surface and inter-
acts inside the pores. Because of these artifacts, synthetic
back-scattered electron and secondary electron images are
of high interest both for verifying image interpretation and
as training data in a machine learning context. However,
the Monte-Carlo simulations of the physical interaction of
the electron beam with the solid material are computation-
ally very demanding. Our surrogate model accepts three-
dimensional microstructure representations of porous ma-
terials in the form of lists of primitives. The system converts
these lists to a specific data representation suitable for a
neural network. It then uses a convolutional architecture to
generate two-dimensional back-scattered electron and sec-
ondary electron images in a single forward pass, realizing
4-5 orders of magnitude performance improvement over the
first order simulations. Remarkably, the model performs
well on arbitrary microstructures like systems of cubes, even

though it was trained on structures consisting of spheres
and cylinders only.

1. Introduction
Scanning electron microscopy (SEM) is a tremendously im-
portant imaging technology in numerous fields including
life sciences, material sciences, and semiconductors. The
specimen is scanned by a focused electron beam, and back-
scattered electrons (BSE) or secondary electrons (SE) are
detected by the respective detectors. The method can cover
a large range of resolutions and fields of view, from optical
resolution (> 0.2 µm) all the way down to atomic resolu-
tion (< 0.1 nm). SEM techniques can be extended to three-
dimensional (3D) imaging using several approaches [13].
In focused ion beam scanning electron microscopy (FIB-
SEM), a specimen is imaged by sequentially removing thin
layers of material using a focused ion beam. Each resulting
surface is then scanned using a focused electron beam such
that 3D information is acquired layer-by-layer [2, 7, 12, 17].

Creating SEM images synthetically has been of interest
for a long time for various goals, most notably as a veri-
fication tool in instrument development. The conventional
approach is a physical simulation of the paths of individual
electrons and their interaction with the microstructure. To
this end, the emission of electrons, their trajectories through



magnetic fields, their interaction with the sample, and fi-
nally the effect on the detector are simulated using a Monte-
Carlo algorithm. This approach has the advantage that it
simulates imaging from first order physics and therefore can
accurately capture various physical phenomena. Also, the
stochastic nature of most processes at the quantum level is
naturally represented by the randomness inherent to Monte-
Carlo algorithms. Several software tools are available, in-
cluding CASINO [6], Win X-Ray [10], SRIM/TRIM [25],
and MCSEM [11].

As SEM images are increasingly processed using ma-
chine learning approaches, the demand for large quantities
of synthetic SEM images as training data arises. How-
ever, the conventional Monte Carlo simulations require sim-
ulating not only the primary electrons emitted by the gun,
but also the entire cascade of secondary electrons that are
created by the interaction of the electron with the sample.
The simulation is therefore computationally very expensive.
This computational demand can in principle be met by dis-
tributing the workload to large clusters, but the involved
cost and energy consumption are a concern.

Prill [19] combined physically correct interaction of the
electrons with the sample exploiting the MONSEL library
[16] with a variety of acceleration techniques including pre-
calculation of electron paths and simplification of paths in
depths where no SE can be emitted to reduce the compu-
tation time to an extent enabling generation of FIB-SEM
stacks instead of just individual SEM images. The tool
can handle geometries consisting of the geometric union of
spheres, cylinders and cubes. Synthetic FIB-SEM stacks
generated by Prill’s method have been used successfully to
compare and optimize segmentation algorithms [20, 22],
train a machine learning model [8], and to consistently
quantify image quality [21]. Calculation of a stack of re-
alistic size nevertheless still takes several hours on a cluster.

In computer graphics, neural rendering refers to the idea
of using artificial neural networks to replace the rendering
pipeline partially or entirely. The idea had recently pro-
found impact on the field of optical image synthesis. Hard-
ware accelerated ray tracing [23], in combination with re-
current denoising autoencoders [3], has enabled interactive
global illumination computations on consumer hardware. A
neural graphics pipeline for controllable image generation
from geometric models has been a research goal for a while
[4]. While methods that rely on geometric scene descrip-
tions have to use hybrid approaches [12], another branch
of research focuses on image-based scene representations.
In view synthesis, specifically the use of Neural Radiance
Fields (NeRF) [4] and consecutive work [14, 15, 24] have
received widespread attention. Neural rendering has been a
prominent part of computer graphics since its invention. A
relatively recent overview of the field can be found in [14].

Here, we introduce a surrogate model for the Monte-

Carlo simulation of SEM imaging. The model is several or-
ders of magnitude faster than conventional simulations and
reaches interactive performance on a single high-end GPU.
As a main technical contribution, we suggest using a com-
bination of extended height-fields and normal maps as data
representation for the surrogate model.

2. Materials and Methods
2.1. Synthetic Microstructure Creation

Microstructures are simulated as stationary Boolean mod-
els which are commonly used and flexible stochastic geom-
etry models [5]. The model can be decomposed into a point
process for particle center points and a distribution of ran-
dom shapes and sizes for the particles. Stationary Boolean
models use a stationary Poisson point process to generate a
sequence of particle locations in space. Its intensity λ > 0
reflects the mean number of points per unit volume. For
each location, a random particle is drawn from a particle
distribution independently of the position and the other par-
ticles. Particle distributions can range from fixed shape and
size over fixed shape and random size up to random shape
and size.

For the synthetic training data, we chose the particles to
be either spheres with random radius or cylinders with ran-
dom radius and height. For all characteristics, we used uni-
form distributions on suitable intervals. Furthermore, the
orientation of cylinders was sampled either uniformly on
the unit sphere or from a von Mises-Fisher distribution [9]
with the z axis as mean direction and concentration param-
eter κ = 20. The number of particles was chosen such that
the porosity Φ is 0.3, 0.5, or 0.7.

Miles’ formulae [18] yield a one-to-one correspondence
between porosity Φ and intensity λ via

λ = − log(Φ)/V ,

where V denotes the mean particle volume. The use of
porosity over intensity serves two purposes. First, many
applications have prior knowledge of the porosity but not
the intensity. Secondly, the porosity is more tangible when
comparing different models and structures than the inten-
sity.

The individual parameters for generating the spheres and
cylinders are listed in Table 1. For each combination of
porosity and radius interval, we sampled three sphere re-
alizations. For cylinders, two realizations with von Mises-
Fisher distributed orientation and one with uniform orienta-
tion were generated for each combination of porosity, radius
interval, and height interval. This resulted in 18 microstruc-
tures consisting of spheres and 54 microstructures consist-
ing of cylinders. Each such volume is discretized into 1,130
slices of size 850 × 850 pixels, see Figure 1 for volume
renderings of some examples.



Figure 1. Renderings of geometries of spheres and cylinders. Both
examples have expected porosity 70 %. Smaller porosity is ob-
tained by using larger particles or by increasing the particle inten-
sity.

Shape Parameter Values

Sphere Porosity 0.3, 0.5, or 0.7
Radius [10,15] or [30,50]

Cylinder Porosity 0.3, 0.5, or 0.7
Radius [5,10], [10,20] or [30,50]
Height [100,150] or [300,500]
Orientation Uniform or

von Mises-Fisher (κ = 20)

Table 1. Parameter values and ranges for generating synthetic
training data.

2.2. Monte-Carlo Simulation of SEM Imaging

FIB-SEM stacks were simulated by Prill’s algorithm on a
cluster with 108 nodes (Dell PowerEdge C6420) with dual
Intel Xeon Gold 6240R, 384 GB RAM. Each simulation of
a slice was started as one job using the Slurm job scheduler
with a memory limit of 10 GB per job. The solid matter is
supposed to be carbon. Slices of the simulated images are
shown in Figure 2.

2.3. Data Representation

The most obvious representation for this type of data would
be encoding the microstructures as volume data, i.e. stor-
ing density information on a three-dimensional regular grid.
However, we found that this representation works very
poorly as detailed in the discussion section. We therefore
suggest a different representation of the microstructures as
follows.

The geometry was encoded as two-dimensional (2D) im-
ages where each pixel consists of two components. The
first component was an extended heightfield (EHF) with
four values, the second component was a normalmap with
three values, resulting in a total of seven values per pixel. A
heightfield (also called heightmap or displacement map) is
a data structure widely used in computer graphics to encode

Figure 2. SEM images simulated using Prill’s FIB-SEM Monte-
Carlo simulation for realizations of Boolean models. a) Uniformly
oriented cylinders with porosity 70 % imaged in BSE contrast.
Parts of the structure which are not located in the current slice are
visible through the pores, which complicates the segmentation. b)
Spheres imaged in BSE contrast. c) Microstructure with smaller
spheres imaged in SE contrast. d) The same microstructure as in
b), imaged in SE contrast.

2D surfaces embedded in a 3D space, for example digital
elevation data. Hereby, one assumes a flat and rectangu-
lar basis, which is subdivided by a regular grid. Deviations
from the basis shape are modeled by storing the distance
in normal direction (“elevation”) of each grid point. If the
coordinate system is selected such that the x and y compo-
nents span the basis, the z component is exactly this eleva-
tion. This means, the surface information is described by
storing the z component of each point in a two-dimensional
array, while the x and y components and the connectivity
are implicitly given by the position in the array (Figure 3).
An advantage of the representation is memory-efficiency:
only one scalar value is stored per surface point. More im-
portantly, the representation allows to represent 3D surfaces
as 2D images, facilitating the use of a pre-trained convolu-
tional neural network. A disadvantage of a heightfield rep-
resentation is that it has a fixed resolution in the xy plane
and can only describe surfaces that are approximately par-
allel to this plane. Surfaces approximately orthogonal to
the xy plane are poorly sampled and overhangs cannot be
modelled at all (Figure 3(b)).

To mitigate this limitation, one can use extended height-
fields (EHF). The representation is a generalization of



Figure 3. a) The surface is modeled by storing elevation at fixed
distances. b) Overhangs cannot be modelled this way, as any hor-
izontal position stores only one elevation value. c) The heightfield
representation of a porous material captures the surface of the top-
most pore, but cannot capture interior pores. d) In an extended
heightfield, upper and lower surfaces of pores are stored, up to the
n-th layer. This way, a limited number of inner pores can be repre-
sented. e) Our algorithm computes the heightfields directly from
constructive solid geometry (union) of convex primitives. The en-
try and exit point for the primitive form an interval in z-direction.
When the intervals of two primitives overlap, they can be merged
to a single interval.

heightfields which is best understood by considering a line
through a grid position xy, perpendicular to the basis shape.
In a conventional heightfield, the array contains exactly one
value which stores the z position of the first foreground
(solid) voxel (entry 1) of the volume. In an EHF, addi-
tional values store the z position of the next background
(pore) voxel below (exit 1), the next foreground voxel after
this (entry 2) and so on up to a fixed number. We used
a 4-extended heightfield, storing two entry and two exit
points for each xy coordinate. This representation allowed
us to represent a reasonable degree of porosity close to the
surface of the sample while still achieving a compact data
representation and discarding details of irrelevant, deeper
pores. The principle is depicted in Figure 3(d). An example
for the representation is shown in Figure 4.

2.4. Efficient Extraction of Extended Heightfields

The shape of the synthetic microstructure is defined by an
implicit constructive solid geometry (CSG), i.e. the mi-
crostructure is the geometric union of multiple basic shapes.
The conventional way to render EHFs from such geometry
is to first tessellate the higher order surfaces such as cylin-

ders and spheres, then resolve the CSG in the mesh repre-
sentation, and finally use ray tracing with a spatial subdivi-
sion structure to extract the EHF. However, the approach is
inefficient and unreliable for large numbers of primitives, as
tessellating the curved surfaces leads to a drastic increase in
the number of primitives, and resolving CSG on meshes is
both slow and unreliable in all freely or commercially avail-
able rendering or modeling software we are aware of.

We therefore used a custom algorithm that resolves CSG
and extracts the EHF in a single step. We exploit that the
projection direction of the EHF is always the negative z
direction, and the basic shapes (prior to resolving CSG)
are convex. We first sort the primitives according to the
lower z coordinate of their axis aligned bounding box. The
computation of the EHF is then performed independently
for each pixel, which allows to resolve the CSG as a one-
dimensional problem. For each pixel, we loop over the
primitives, compute the interval consisting of entry and exit
point, and maintain a sorted list of all such intersections.
When a new interval is inserted in the list, all entries be-
tween entry and exit can be discarded, which inherently re-
solves the CSG (see Figure 3e). The fact that the primitives
are sorted by their lowest z coordinate allows for early ter-
mination once the required n entries of the EHF are deter-
mined. The core algorithm was implemented in CUDA, par-
allelizing over all pixels of the EHF. The approach achieved
satisfactory performance as detailed in the result section.

The source code for the conversion mechanism is made
available at github. The implementation uses C++ as host
language for the CUDA code and provides a Python lan-
guage binding for convenient integration. If our surrogate
model is used with general geometry (not consisting of an
implicit CSG of a large number of primitives), we suggest
extracting the EHF conventionally using ray tracing.

2.5. Training Data Preparation

We sliced each volume iteratively with a distance of 10 vox-
els, then Monte-Carlo simulated BSE and SE images using
Prill’s tool and created the data representations (EHF and
normalmap) described above. This process was repeated
until 25% of the volume was used, such that 27 datapoints
consisting of 7 images each (4-EHF, normalmap, BSE, SE)
were created from each volume. The lower 75% of the vol-
ume served as guard region only, to prevent electron paths
leaving the generated porous structure at the bottom.

We also conducted experiments with different data rep-
resentations of the microstructures. For comparison, we
trained networks that contained standard heightfields only,
standard heightfields plus normalmaps, EHF only, and the
3D volume data directly.

Conventionally, images are normalized to match statis-
tics of the dataset used for pretraining (most often Ima-
geNet) during encoding. However, the statistics for the ex-



Figure 4. The representation of the volume data is changed to a 4-EHF (entry 1, exit 1, entry 2, exit 2) and a normal map, represented as
red, green, and blue channels of an image. The top row of the figure shows a Boolean sphere model, the bottom row shows a Boolean
cylinder model. The deeper layers of the EHF (exit 1, entry 2, exit 2) appear visually unusually, featuring ’holes’ that can be mistaken as
rendering artifacts, but really result from overlapping of several pores in the simulated microstructure.

tended heightfields and normal maps were so different from
conventional rgb images, that we found that normalization
has a negative impact.

2.6. Network Model

As a network model, we used conventional ResNet models
with 34, 50, 101, and 152 blocks. The output was always a
two-channel image, where one channel contained the BSE
contrast image and the other channel contained the SE con-
trast image. The input was a 2D image with one to seven
channels, depending on the data representation.

We used weights pretrained on the ImageNet dataset. As
the pretrained models feature only three input channels (red,
green, blue) but we required up to seven channels depend-
ing on the data representation, the missing entries on the
features of the first layer were filled with zeroes. As a con-
sequence, the order of the input channels was relevant. We
tried putting the normal map in the first channels (such that
the pretrained features were used in the normal map) and
putting the normal map in the last channels (such that the
pretrained features were used in the EHF). Other than the
adaption of the input and output channels, no additional
modifications were performed in the network architecture.

We also investigated using a 3D ResNet architecture di-
rectly on the volume data. As PyTorch does not provide a
predefined 3D version of ResNet and no pretrained weights
are available for this case, we implemented a custom 3D
ResNet with random initialization. Our network used 7
residual blocks with one or two convolutions each, kernel

size of 3× 3× 3, 3× 3× 5 or 3× 3× 7 and 8, 16 or 32 ker-
nels per convolution layer. When it became clear that this
approach does not lead to satisfactory results, we canceled
the systematic investigation. A prediction generated using
the 3D ResNet, is provided as supplementary S3.

2.7. Hyperparameters and Loss Function

We used flattened L1 and L2 loss as standard loss functions.
We used an Adam optimizer with an initial learning rate
of 0.001, which was experimentally determined to be suf-
ficiently small. We trained for 50 epochs, which showed
satisfactory convergence, then determined the optimal hy-
perparameters and data representation.

Visualizations of the losses of all experiments are pro-
vided as supplementary S1.

2.8. Image Quality and Noise

BSE and SE images exhibit a natural level of shot noise,
which is a consequence of electron statistics. This noise
is automatically synthesized by Monte-Carlo simulations,
if the number of simulated electrons corresponds to the real
number of electrons and detector quantum efficiency is con-
sidered correctly. In contrast, neural networks do not create
noisy images per se, and the output of the neural network
is the expected value of the detector signal without any shot
noise. To determine the amount of noise to add, we mea-
sured the mean and standard deviation of pixel values in
homogeneous areas of the image, which gives more reliable
results than other estimates for the signal-to-noise ratio [1].



We measured an SNR of 8.33, which is in line with our ex-
pectations from physics.

2.9. Analysis Method

For the purpose of analysis only, we scaled the dataset to
a data range of (0, 100), such that all measurements can
be understood as percentage of the data range. As a mea-
sure of image quality of the predictions, we computed the
mean pixel error (neural network prediction minus simu-
lation ground truth), also called L1-norm. The residual is
partially caused by systematic errors in our model, and par-
tially a result of noise in the ground truth. The impact of
noise can be measured by calculating the mean pixel error
on homogeneous parts of the model. The noise influence
was 0.89 % of the data range for BSE images and 2.07 %
of the data range for SE images. We therefore provide two
values, total error (measured from the data) and systematic
error, where the influence of the noise was subtracted. We
additionally provide structural similarity index (SSIM) and
peak signal to noise ratio (PSRN).

3. Results
The presented surrogate model can create BSE images of
general geometry with a mean pixel error of 0.98% of the
data range. The SE images had a mean pixel error of 3.09%.
In order to test the generalization capability of the model,
we used training data consisting of spheres and cylinders,
and test data consisting of cubes. For simulation of the
test data, Prill’s simulator was extended to also handle cube
structures. Generalization results are shown in Figure 5.

So our model introduces a clearly measurable systematic
error in the same order of magnitude compared to the error
introduced by the shot noise.

3.1. Computational Cost

In terms of computational demands, the neural network part
of our model requires 173 ms on average for a single image
prediction on an Nvidia V100. Additionally, the conver-
sion of the data to the 4-EHF plus normal map representa-
tion required 26 ms on average per slice on the same hard-
ware. This data preprocessing has linear performance in the
number of primitives, so the actual time required strongly
depends on the intensity with fine granular microstructures
(with many small primitives) leading to slower runtime and
coarse-granular structures (with fewer, larger primitives)
leading to faster runtimes. This timing excludes storage op-
erations (loading and parsing the list of primitives), which
is only required once per volume, or potentially storing the
results to disc.

For comparison, the original Monto-Carlo simulation re-
quires approx. 100− 200 min, see Table 2, so we achieve a
speedup of 4-5 orders of magnitude. However, the original
simulation code is not fully optimized and currently uses

Porosity

Geometric Primitive 0.3 0.5 0.7

Sphere 128.4 123.3 120.4
Cylinder 211.1 168.5 144.4

Cube 224.4 229.5 220.5

Table 2. Mean runtimes in minutes for generating synthetic data
using Prill’s method based on various base geometries. Averaged
over several samples in each case. One sample has 1 130 slices of
size 850× 850 pixel, which are simulated in parallel on a cluster.
1 000 electrons per pixel are simulated.

a single thread of an Intel Xeon Gold 6240R CPU, so our
results do not allow for any quantitative performance com-
parison of the algorithms.

3.2. Influence of the Data Representation

We tested several data representations including 4-EHF plus
normalmap, normalmap plus 4-EHF, standard heightfields
plus normalmaps, standard heightfields only, and EHF only.
All representations were tested by training a ResNet152 us-
ing an L1-loss for 50 epochs. It was found that normalmap
plus 4-EHF give the best results (Table 3) and this data rep-
resentation was used for all following experiments.

3.3. Influence of the Network Architecture

We tested conventional ResNet architectures with 34, 50,
101, and 152 residual blocks. For all network architec-
tures, we used the standard weights deployed with PyTorch,
which are pretrained on the ImageNet dataset. Results are
displayed in Table 4. We generally found that less deep net-
works result in better model performance and best results
are obtained by the ResNet34 architecture. Strikingly, the
3D volume representation did not result in satisfactory pre-
dictions, independent of the details of the used architecture.
Once this became obvious, we canceled the full exploration
of the parameter space and focused on the 2.5D data repre-
sentations.

3.4. Influence of the Hyperparameters

We trained the models for a total of 50 epochs, storing the
weights after epoch 1, 20 and 50. We unfroze all layers for
training during all epochs. Results after 50 epochs are dis-
played in Table 3. For the smaller models (ResNet34 and
ResNet50), we found that 50 epochs are sufficient and im-
provements after this are below statistical threshold. For the
deeper models, results were somewhat inconclusive in this
regard, and performance might potentially improve by fur-
ther training. Training curves for all experiments are pro-
vided as supplementary material S2. We did not observe
any overfitting behavior independent of the training dura-
tion.



Figure 5. Results of the surrogate model. The generalization was tested by training the model on data consisting of spheres and cylinders,
then using cubes as test data. The top row (a-d) shows the image with the lowest average error or the test set (a BSE image). a) Reference
image (rendered with Prill’s method). b) Prediction of our surrogate model. c) Prediction of our surrogate model with added synthetic
noise to match the visual impression of the reference image. d) Residual image in false colors. The bottom row (e-h) shows the image with
the highest average error of the test set (an SE image). e) Reference image (rendered with Prill’s method). f) Prediction of our surrogate
model. g) Prediction of our surrogate model with added synthetic noise. h) Residual image in false colors.

mean pixel error
(total)

mean pixel error
(systematic)

SSIM PSNR

data representation (BSE / SE) (BSE / SE) (BSE / SE) (BSE / SE)

normal map plus 4-EHF 0.98 / 3.09 0.09 / 1.02 0.89 / 0.62 37.59 / 27.24
4-EHF plus normal map 1.02 / 3.13 0.13 / 1.06 0.89 / 0.61 37.13 / 27.12
standard heightfield plus normal map 1.05 / 3.02 1.16 / 0.95 0.88 / 0.62 36.57 / 27.20
standard heightfield only 1.15 / 3.17 0.26 / 1.10 0.86 / 0.58 35.82 / 26.97
4-EHF 1.17 / 3.11 0.28 / 1.04 0.86 / 0.59 35.66 / 27.03
normal map only 1.60 / 3.35 0.71 / 1.28 0.81 / 0.56 32.97 / 26.61

Table 3. Influence of the data representation on the model performance. Pixel errors are given as percentage of the data range. The
systematic error is the total error minus the influence of the noise in the ground truth data (0.89 % for BSE images and 2.07 % for SE
images). Best results were obtained from the representation normal map plus 4-EHF. All results were measured using ResNet152, L1-loss
and training for 50 epochs.

4. Discussion

We are presenting a surrogate model that can replace Prill’s
accelerated Monte-Carlo simulation for SE and BSE imag-
ing. The main advantage of the model is performance: the
model creates an image of 512 × 512 pixels in 173 ms on
a V100 GPU, which is 4-5 orders of magnitude faster than
Prill’s Monte-Carlo simulations single threaded on a CPU.

Rather than creating a surrogate model, one could also
try to further optimize the Monte-Carlo simulation itself.
As the simulation of SEM imaging has not received the
same amount of research interest as optical 3D rendering,
one can speculate that there is also a comparatively large
potential for algorithmic improvements and more efficient
implementations. However, bringing SEM simulations to



mean pixel error
(total)

mean pixel error
(systematic)

SSIM PSNR

data representation loss function (BSE / SE) (BSE / SE) (BSE / SE) (BSE / SE)

ResNet34 L-1 1.01 / 2.97 0.12 / 0.90 0.89 / 0.63 37.12 / 27.57
ResNet50 L-1 1.03 / 3.19 0.14 / 1.12 0.88 / 0.61 36.87 / 26.88
ResNet101 L-1 1.04 / 3.19 0.15 / 1.12 0.88 / 0.61 36.79 / 26.90
ResNet152 L-1 1.02 / 3.13 0.13 / 1.06 0.89 / 0.61 37.13 / 27.12
ResNet152 L-2 1.05 / 3.39 0.16 / 1.32 0.89 / 0.60 37.04 / 26.51

Table 4. Influence of the network architecture and loss function on the model performance. Pixel errors are given as percentage of the data
range. The systematic error is the total error minus the influence of the noise in the ground truth data (0.89 % for BSE images and 2.07 %
for SE images). Best results were obtained with the smallest network: ResNet34. L-2 loss was tested in the ResNet152 architecture, and
resulted in slightly worse results compared to L-1. All results were measured with the 4-EHF plus normal map layout, and training for 50
epochs.

the same level of fidelity as rendering systems for optical
image synthesis (which are backed by a billion dollar indus-
try in entertainment) is currently economically not feasible.

Technically, our main finding is that, counter intuitively,
simulating electron-matter interaction directly on the 3D
volume data maps poorly to convolutional neural networks
with 3D kernels. We hypothesize that this is the case be-
cause different parts of the volume do not have identical in-
fluence on the image. Rather, the surface of the sample,
which corresponds to the first filled voxel in view direc-
tion, dominates appearance. The concept that the surface
voxel needs to be treated differently from all other voxels
is poorly reflected by the properties of convolutional filters,
which, in the 3D case, exhibit translational invariance in the
z direction. As a solution, we propose changing data repre-
sentation to a heightfield representation. This data structure
captures the concept of a surface much better and allows
using 2D convolutional networks. The heightfield repre-
sentation can further be improved by providing 4-extended
heightfields to model the topmost pores, and by providing
partial derivatives of the surface in the form of normalmaps.
As is often the case with training neural networks, a good
data representation is the main factor for success, and good
results can be achieved with a larger number of network ar-
chitectures and hyperparameter settings.

Out model generates noise free images. Depending on
the situation, this can either be beneficial, or noise can eas-
ily be added. If a realistic level of noise was required on
the synthetic output images, we added the noise in a post-
processing step by algorithm.

5. Conclusions

We present a surrogate model that can approximately
replace conventional first order simulations using Prill’s
method for the simulation of scanning electron imaging of
porous materials. The model creates backscatter electron

(BSE) and secondary electron (SE) contrast and consists of
two stages. The first stage is an algorithm, implemented to
CUDA, to convert microstructure descriptions as geometric
union of convex primitives to a data representation consist-
ing of extended heightfields and normal maps. The second
stage is a feed-forward convolutional network that converts
this data representation to SE and BSE contrast images.

On the algorithmic level, our main contribution is the ob-
servation that convolutional neural networks perform very
poorly if trained directly on a three-dimensional volume
representation of the microstructures. Instead, a 2.5 dimen-
sional representation of extended heightfields and normal
maps should be used.

Our model is 4-5 orders of magnitude faster compared
to first order Monte-Carlo simulations. As it is an approxi-
mate method, it introduces some systematic error. The aver-
age per pixel error (prediction-ground truth) is 0.98% of the
data range for BSE images and 3.09% of the data range for
SE images. For realistic imaging settings, this is in a simi-
lar range compared to the shot noise expected from electron
statistics. These properties suggest that, for electron imag-
ing, the model can eventually play the role that real-time
rendering plays for optical imaging.

As there is no possibility to create real-time simulations
of scanning electron imaging today, the space of applica-
tions is currently unexplored. Our work was primarily mo-
tivated by the need of large quantities of training data of
scanning electron images in a machine learning context. In
these situations, the cost and energy consumption of using
large CPU clusters to run Monte-Carlo simulations is pro-
hibitive. Our model solves this problem. However, we spec-
ulate that the availability of the equivalent of a real-time ren-
dering system for electron optics will likely facilitate com-
pletely new applications over time, and the applicability of
the technology might be much broader.
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tian Kübel, and Sabine Schlabach. Image quality evaluation
for FIB-SEM images. Journal of Microscopy, 293(2):98–
117, 2024. 2

[22] M. Salzer, T. Prill, A. Spettl, D. Jeulin, K. Schladitz, and
V. Schmidt. Quantitative comparison of segmentation algo-
rithms for FIB-SEM images of porous media. Journal of
Microscopy, 257(1):23–30, 2015. 2

[23] V. V. Sanzharov, V. A. Frolov, and V. A. Galaktionov. Survey
of Nvidia RTX Technology. Programming and Computer
Software, 46(4):297–304, 2020. 2

[24] Philippe Weier, Tobias Zirr, Anton Kaplanyan, Ling-Qi Yan,
and Philipp Slusallek. Neural Prefiltering for Correlation-
Aware Levels of Detail. ACM Transactions on Graphics, 42
(4):1–16, 2023. 2

[25] James F. Ziegler, M.D. Ziegler, and J.P. Biersack. SRIM –
The stopping and range of ions in matter. Nuclear Instru-
ments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 268(11-12):1818–
1823, 2010. 2


	. Introduction
	. Materials and Methods
	. Synthetic Microstructure Creation
	. Monte-Carlo Simulation of SEM Imaging
	. Data Representation
	. Efficient Extraction of Extended Heightfields
	. Training Data Preparation
	. Network Model
	. Hyperparameters and Loss Function
	. Image Quality and Noise
	. Analysis Method

	. Results
	. Computational Cost
	. Influence of the Data Representation
	. Influence of the Network Architecture
	. Influence of the Hyperparameters

	. Discussion
	. Conclusions
	. Acknowledgement

