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ABSTRACT

In real-world applications, ensuring that model decisions are independent of the
training data distribution is crucial for safely deploying models. To address the
long-tailed problem, massive approaches focus either on improving individual
prediction quality or enhancing aggregate evaluation. Although these methods
improve overall performance, they often sacrifice performance in some classes,
undermining the goals of long-tailed learning. We conduct a mathematical anal-
ysis of the limitations of the Empirical Risk Minimization (ERM) framework in
long-tailed learning, examining both individual performance and aggregate eval-
uation. For individual evaluation, although the Negative log-likelihood (NLL)
metric is effective, it relies heavily on softmax leading to poor distinction and
ambiguity when the probabilities of correct and incorrect predictions are similar.
For aggregate evaluation, the naive estimator in ERM is not an unbiased estima-
tor, dominated by head classes. To overcome these challenges, we propose Re-
Debias, a comprehensive framework combining the Residual-Energy score and a
Debias estimator. The Residual-Energy score provides a more sensitive reflec-
tion of prediction quality than softmax-based scores, enhancing prediction pre-
cision and reducing ambiguity. The Debias estimator applies causal inference
techniques to ensure unbiased estimates during the averaging process, correcting
for class-wise biases inherent in the naive estimator. Through extensive valida-
tion on long-tailed benchmarks, including training from scratch on iNaturalist18,
ImageNet-LT, and CIFAR10/100-LT, as well as fine-tuning Vision Transformer
(ViT) on iNaturalist18, our method outperforms the state-of-the-art algorithms.
Our code and trained models will be made available following the publication of
this paper.

1 INTRODUCTION

In real-world scenarios, data often follow Zipf’s law, resulting in long-tailed class distributions (Reed
(2001)). This imbalance poses a challenge for deep neural networks trained with Empirical Risk
Minimization (ERM), as they tend to favor head classes with abundant samples while neglecting
tail classes with fewer samples (Zhang et al. (2023)). Such bias hinders model performance in real-
world applications with long-tail distributions, such as visual question answering (Dai et al. (2023);
Shi et al. (2024)), medical image diagnosis (Huang et al. (2024); Holste et al. (2024)), and unmanned
aerial vehicle detection (Yu et al. (2021); Pan et al. (2023)).

To tackle this challenge, recent studies have focused on two main goals: enhancing individual pre-
diction quality and ensuring aggregate evaluation remains unbiased by class distribution. For the
first goal, mainstream paradigms aim to enhance network representation to improve individual sam-
ple performance, particularly for tail samples, measured by metric ℓ. Common approaches include
re-weighting Cui et al. (2019); Wang et al. (2024b); Peng et al. (2024), ensemble learning methods
(Wang et al. (2021b); Li et al. (2022); Tao et al. (2023)), and decouple training (Kang et al. (2020);
Xu et al. (2023)). For the second goal, numerous aim to ensure that aggregate evaluation is not dom-
inated by head classes. Methods like modified sampling strategies (Chawla et al. (2002); Ren et al.
(2020); Kang et al. (2020); Wu et al. (2021))and information mixing/transfering (Chou et al. (2020);
Wang et al. (2024a); Gao et al. (2024); Rangwani et al. (2024)) balance the number or diversity of
training samples. In addition, logit adjustment techniques (Cao et al. (2019); Menon et al. (2021);
Hong et al. (2021a)) make the estimator less sensitive to class imbalance during training.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite overall performance gains, these approaches often at the expense of performance in cer-
tain classes, contradicting the purpose of long-tail learning. To better illustrate this trade-off, we
evaluated two representative methods: LGLA(Tao et al. (2023)), which enhances individual sam-
ple performance through structural improvements, and DODA(Wang et al. (2024a)), which reduces
class distribution effects on aggregate evaluation via data augmentation. We also explored a hybrid
approach that combines both LGLA and DODA. As shown in Fig 1, the red curve (SA) reveals
that although performance improves significantly across most classes, especially tail classes, some
classes, particularly head classes, still experience performance drops, which is also reflected by the
SR value. This indicates that neither method alone, nor their combination, fully balance aggregate
evaluation with individual performance.

Figure 1: Comparison of class-wise performance on ImageNet-LT. Blue bars represent the distribu-
tion of class sample ratios. Red curves represent SA (Sacrificial Accuracy), indicating the differ-
ence in accuracy between baseline and Cross-Entropy (CE) for each class, with larger SA indicating
greater improvement. SR (Sacrifice Ratio) quantifies the percentage of classes with performance
drops compared to CE, highlighting the trade-offs in accuracy.

In response to this phenomenon, we mathematically analyze the limitations of ERM framework
in long-tailed learning, focusing on both individual and aggregate evaluation tasks. For individual
evaluation, we observe that Negative log-likelihood (NLL) loss, which heavily relies on softmax,
struggles to distinguish correct from incorrect predictions when their predicted probabilities for the
target class are similar. This weakens its ability to assess prediction quality effectively. From the per-
spective of energy, we find that this ambiguity arises from the misalignment between softmax-based
scores and the input probability density, obscuring meaningful differences in model confidence. In
aggregate evaluation, measured by estimator R, we connect the long-tailed problem to causal infer-
ence by treating long-tailed datasets as instances of data Missing Not At Random (MNAR), where
only a subset of data is observable. Under the MNAR condition, the naive estimator in ERM, which
averages over observed samples, is severely biased and fails to accurately assess true performance
due to the underlying data distribution bias.

To address these limitations, we introduce Re-Debias, a comprehensive framework combining the
Residual-Energy score with Debias estimator. The Residual-Energy score unified predictions onto
a single scale, where lower values indicate larger errors, and higher values reflect more accurate pre-
dictions. Our mathematical analysis and empirical validation confirm that this energy-based score
is particularly well-suited for detection tasks, as it captures non-target class information typically
missed by softmax-based scores. The Debias estimator corrects the inherent class-wise bias in the
naive estimator of ERM by estimating and leveraging inverse propensity weights from causal infer-
ence. We theoretically prove that it is an unbiased estimator, capable of delivering more accurate
performance evaluations under long-tailed distributions. To ensure Fisher consistency, we further
incorporate the propensity into the logits. We validate our method through comprehensive experi-
ments, demonstrating robust performance across various datasets and target-label distributions, con-
firming its effectiveness and generalizability.

In summary, the main contributions of this paper are:

• Evaluation decomposition: We identify that state-of-the-art ERM-based methods often achieve
performance gains by sacrificing accuracy in certain classes. To address this, we decompose the
optimise process into two tasks: improving individual prediction precision and ensuring unbiased
aggregate evaluation.

• Residual-Energy score: To overcome limitations of softmax-based scores, we introduce the
Residual-Energy score, an energy-based metric that captures non-target class information more
accurately than softmax-based socres, improving the precision of individual predictions.
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• Debias estimator: To correct the naive estimator, we develop a novel framework linking the long-
tailed problem to causal inference, introducing the Debias estimator that ensures fair learning
under long-tailed distributions through inverse propensity weighting.

• Extensive Validation: We validated our method by training from scratch on on iNatural-
ist18(Van Horn et al. (2018)), ImageNet-LT(Liu et al. (2019)), and CIFAR10/100-LT(Krizhevsky
et al. (2009)), and fine-tuning Vision Transformer (ViT) (Alexey (2021)) on iNaturalist18. Our
approach consistently demonstrated strong performance across different target-label distributions,
confirming its effectiveness and generalization.

2 RELATED WORK

2.1 LONG-TAILED LEARNING

Long-tailed class distribution datasets are inevitable in real-world applications. Most existing long-
tail classification methods solve the long-tailed problem in class-wise, and can be divided into three
categories Zhang et al. (2023): class rebalancing (Menon et al. (2021); Wang et al. (2024b); Zang
et al. (2021); Lin et al. (2017); Du & Wu (2023)) attempts to balance the class distribution during
training; Information enhancement (Chou et al. (2020); Wang et al. (2024a; 2021a)) try to introduce
additional information to improve the performance of the tail class without sacrificing the perfor-
mance of the head class, for example Tang et al. (2022) utilizes the pre-trained model (Paszke et al.
(2019)) to generate image feature clusters as annotations of implicit attributes, and then uses data
sampling strategies to build different training environments for invariant feature learning; and mod-
ule improvement Zhou et al. (2023); Jin et al. (2023); Zhou et al. (2020); Tao et al. (2023)) tries
to come up with solutions from exploring methods to optimize network modules to the long-tailed
problem. However, all these approaches rely on softmax-based scores to measure prediction quality,
which is suboptimal. From energy perspective, the softmax-based score emphasizes reducing the
target class energy and increasing that of other classes but neglects sufficiently boosting non-target
class energies. This leads to similar loss values for correct and incorrect predictions, diminishing
the model’s ability to accurately distinguish between target and non-target classes.

2.2 ENERGY-BASED LEARNING

Energy-based models(EBMs) (LeCun et al. (2006); Ranzato et al. (2006; 2007)), rooted in Boltz-
mann machines (Ackley et al. (1985)), offer a flexible framework for both probabilistic and non-
probabilistic learning. In image recognition, EBMs aim to assign as low energy as possible to
images from the target class and high energies to images of other classes. Recent advancements like
BiDVL(Kan et al. (2022) )proposes a bi-level optimization to enhance energy-based hidden variable
models, while CLEL(Lee et al. (2023)) leverages contrastive representation learning to make EBM
training faster and more efficient. In GAN training, Zhao et al. (2017) leverages energy values to im-
prove the discriminator’s performance. Despite these successes, training EBMs remains challenging
due to the intractability of the normalization constant. To bypass the calculation of proper normal-
ization, Liu et al. (2020) shows that energy scores can better distinguish in- and out-of-distribution
samples compared to softmax-based methods. However, existing approaches mainly focus on the
energy of target or total classes, overlooking the non-target class energy. Taking a step further,
we introduce the residual-energy score, which measures the energy of non-target classes, reducing
the overconfidence of softmax scores and offering greater optimization flexibility without requiring
normalization. Our approach directly optimizes the energy gap between boundary samples, aligning
naturally with energy-based detectors. Additionally, previous EBMs have largely ignored the long-
tailed class imbalance problem. To address this, we propose an unbiased performance estimator that
mitigates the imbalance using causal inference principles.

3 RETHINKING ERM

3.1 PROBLEM SETUP

Let O = (xi, yi)
N
i=1 denote the long-tailed training dataset, where xi represents an input sample and

yi ∈ {1, . . . , C} is the corresponding class label. The total number of samples is N =
∑C

c=1 nc,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

with nc indicating the number of instances in class c. Following a common assumption (Zhang et al.
(2023)), πc =

nc

N represents the label frequency of class c. The classes are sorted in decreasing order
of cardinality, that is, if i1 < i2, then ni1 ≥ ni2 , and it holds that n1 ≫ nC . Then, the imbalance
ratio, which quantifies the degree of skewness in the dataset, is calculated by γ = n1

nC
. The goal of

Long-tailed learning is to develop well-performing deep models from datasets characterized by long-
tailed class distributions. Empirical Risk Minimization (ERM) is a widely used principle, aiming to
identify a hypothesis θ̂ that minimizes the empirical risk R(θ):

θ̂ = argmin
θ

R(θ) = argmin
θ

1

N

n∑
i=1

ℓ(ŷi, yi; θ), (1)

This raises two critical problems: is the typical individual metric ℓ sufficiently precise enough to
reflect the discrepancy between the prediction ŷ and the true label y? And, is the estimator R
unaffected by the class distribution?

3.2 TYPICAL INDIVIDUAL METRIC FROM AN ENERGY PERSPECTIVE

In a discriminative neural network f(x) : RD → RC , an input x ∈ RD is mapped to C -dimensional
logits. These logits are then transformed into categorical distribution using the softmax function:

p(y|x) = efy(x)∑C
j efj(x)

, (2)

where fj(x) represent the logit for the j class label.

According to Liu et al. (2020), the core concept of energy-based models (EBMs) is to construct a
energy function E(x) : RD → R that assigns a scalar value to each input sample x. Building on
recent advancements highlighted by Wu et al. (2023), a set of energy values could be turned into a
probability density p(x) via the Boltzmann distribution:

p(y|x) = e−E(x,y)∑C
j=1 e

−E(x,j)
=

e−E(x,y)

e−E(x)
. (3)

By connecting Eq.3 and Eq.2, the energy can be defined as E(x, y) = −fy(x), and the free energy
function E(x; f), which marginalizes over y, can be represented as the denominator of the softmax
activation as E(x; f) = − log

∑C
j efj(x).

The Negative log-likelihood (NLL) loss depends on softmax, a typical individual metric ℓ used in
ERM, is commonly defined as:

ℓnll = − log p(y|x) = − log
efy(x)∑C
j=1 e

fj(x)
. (4)

Using the energy-based formulation, this softmax-based score can be equivalently rewritten as:

ℓnll = − log
efy(x)∑C
j=1 e

fj(x)
= − log efy(x) + log

C∑
j=1

efj(x) = E(x, y)− E(x; f). (5)

This formulation highlights that the NLL loss ℓnll which heavily relies on softmax, quantifies the dif-
ference between the energy E(x, y) and the free energy E(x; f). Minimizing the NLL loss involves
decreasing E(x, y) while increasing E(x; f). To directly illustrate the limitations of softmax-based
scores, Fig. 2 compares two samples from the CIFAR10 dataset with an imbalance ratio of 50. Even
though sample 1 is correctly classified and sample 2 is misclassified, both samples yield nearly
identical softmax-based score. This similarity reflects the softmax-based score tendency to saturate
the output probabilities, obscuring meaningful differences in model confidence between correctly
and incorrectly classified samples. Therefore, relying solely on softmax introduces ambiguity in
assessing classification performance, potentially hindering model training and evaluation.
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Figure 2: Comparison of two CIFAR-10-im50 samples on Resnet32. For the two samples with a
target class of 0, by comparing the logits, it is clear that Sample 1 predicts correctly while Sample 2
predicts incorrectly. However, their softmax-based score (NLL loss) are nearly identical. In contrast,
the residual-energy score calculated from logits of non-target classes shows a clear difference, with
sample 1 at -4.39 and sample 2 at -8.48. This demonstrates that residual-energy scores provide
a more sensitive reflection of prediction errors, whereas softmax-based scores do not reflect this
effectively.

3.3 TYPICAL STAND ESTIMATOR

The naive estimator in ERM calculates empirical risk by averaging loss over the observed dataset.
In an ideal scenario the class distribution without bias, and all samples are fully observed (Schnabel
et al. (2016)), the standard empirical risk estimator can be expressed as:

R(Ŷ , Y ) =
1

C · n

C∑
c=1

n∑
i=1,yi=c

ℓ(ŷi, yi), (6)

where each class c ∈ C has n instances, implying a balanced dataset with an imbalance ratio γ = 1.

However, in real-world applications, training datasets are often incomplete. Let Oi,c = 1 denote
that the i-th sample of class c is observed. The conventional, naive estimator Rnaive(Ŷ , Y ) measure
the overall performance by averaging over the observed instances:

Rnaive(Ŷ , Y ) =

∑
{(i,c):Oi,c=1} ℓ(ŷi, yi)

|{(i, c) : Oi,c = 1}|
. (7)

A highlighted by Steck (2013), Rnaive(Ŷ , Y ) does not provide an unbiased estimate of the true
performance R(Ŷ , Y ) when the data is Missing Not At Random (MNAR):

EO[R̂naive(Ŷ , Y )] ̸= R(Ŷ , Y ). (8)

This formulation illustrates that under MNAR conditions, the naive estimator introduces bias, failing
to accurately reflect the true performance of the model across the entire dataset.

4 RESIDUAL ENERGY BASED DEBIAS ESTIMATOR: AN OPTIMISED
ESTIMATOR IN ERM

To ensure that aggregate evaluation is independent of class distribution while improving the pre-
cision of individual predictions, we first introduce Residual-energy score to tackle the limination
of softmax-based score (Section 4.1). Subsequently, we connect the long-tailed problem to causal
inference and propose Debias Estimator which is measure the predictions quality without bias from
class distribution (Section 4.2).

4.1 RESIDUAL-ENERGY-BASED INDIVIDUAL METRIC

In this section, we aim to evaluate the quality of individual samples more precisely. As discussed in
Section 3.2, the NLL loss, one of tipycal softmax-based scores, only consider the difference between

5
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E(x, y) and E(x; f), which can lead to ambiguity in model confidence. To overcome this limitation,
we propose the Residual Energy score:

E(x, y) = − log

C∑
j ̸=1

efj(x), (9)

this score accounts for the energy of all non-target classes. As demonstrated in Fig.2, the residual
energy scores offer clearer distinctions between samples, providing more meaningful information
than softmax-based scores. This makes the Residual-Energy score more sensitive to variations in
logit distributions, offering a finer-grained assessment of prediction certainty, especially in long-
tailed scenarios where softmax scores may obscure true uncertainty.

Given the non-linear relationship between E(x, y), E(x; f), and E(x, y), directly incorporating
the residual energy E(x, y) into the NLL loss is suboptimal. Therefore, inspired by Mixture of
Softmax (MoS) (Yang et al. (2018)), we apply K different softmax functions and mix them enhance
expressive power beyond traditional softmax by residual-energy score:

pre(y|x) =
K∑

k=1

wk ef
k
y (x)∑C

j=1 e
fk
j (x)

; s.t.
K∑

k=1

wk =
K∑

k=1

w(Ek(x, y)) = 1, (10)

where fk
j is the k-th component associated with class j, Ek(x, y) is the residual energy of k-th

softmax function, and w(·) is a normalisation function. Thus, the NLL loss relies on residual-energy
score, ℓre = − log pre(y|x), is able to fully consider the energy of the target class, the energy of the
other classes, and the entire energy.

4.2 DEBIASED PERFORMANCE ESTIMATOR

Instead of evaluating the precision of individual predictions, we also want to evaluate overall perfor-
mance more impartially. The key to handling the bias in naive estimator Rnaive lies in a thorough
understanding of the process that generates the observation instances in O, which is known as the
Assignment Mechanism in causal inference (Imbens & Rubin (2015)). In this paper, we assume that
the assignment mechanism is probabilistic. The marginal probability of observing a sample xi with
target class yi = c is denoted by Pi,c = P (O(xi, yi) = 1). Following Schnabel et al. (2016), ob-
servations are assumed to be independent given P , corresponding to a multivariate Bernoulli model
where each Oi,c is a biased coin flip with probability Pi,c. In long-tailed datasets, this assignment
is non-random, and Pi, c varies across classes. The Inverse Propensity Scoring (IPS) estimator
(Imbens & Rubin (2015)) refer to Pi,c as the propensity of observing (xi, yi), where yi = c. IPS
corrects dataset bias by inversely weighting the prediction error based on the propensity of observa-
tion, resulting in an unbiased performance estimate:

R̂IPS(Ŷ |P ) =
1

C · n
∑

(i,c)∈Oi,c=1

ℓ(ŷi, yi)

Pi,c
, (11)

where C · n is the total number of the ideal dataset. However, accurately estimating Pi,c is crucial,
the IPS often suffers from high variance in propensity, leading to oscillating training losses and poor
generalization. Moreover, the C · n is often unknown in the real world. Therefore, IPS is unsuitable
for directly handling the long-tail problem in deep learning.

To develop an unbiased estimator, inspired by IPS, a straightforward idea is to adjust the naive
estimator for long-tailed class distributions to align with IPS:

1

|O|
∑
O

ℓ(ŷi, yi)

P̃i,c

=
1

C · n
∑
O

ℓ(ŷi, yi)

Pi,c
, (12)

Thus, the required propensity P̃i,c can be reconstructed as:

P̃i,c = C · πc, (13)

where πc is the label frequency, calculated as nc

|O| . The detailed process is outlined in Appendix
A.1. As a result, we derive the Debias estimator, which inversely weights prediction quality using

6
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P̃i,c and averages over observed samples, yields an unbiased estimator. The proof is provided in
Appendix A.2. Since the most common individual metric ℓ in deep learning is the NLL loss, the
Debias estimator can be further expressed as:

Rdebias(Ŷ , Y ) =
1

|O|
∑
O

ℓ(ŷi, yi)

P̃i,c

=
1

|O|
∑
O

ℓ(ŷi, yi)

C · πc
=

1

|O|
∑
O

− log(p(yi|xi))

C · πc
. (14)

Recalling the goal of ERM is to minimize losses across all samples:

argmin− log(p(yi|xi))

C · πc
= argmax

log(p(yi|xi))

C · πc
∝ argmax

p(yi|xi)

C · πc
, (15)

and since p(yi|xi; θ) ∝ efyi (xi), we have,

argmax
p(yi|xi)

C · πc
∝ argmax

efyi (xi)

C · πc
= argmax(efyi (xi)−log(C·πc)). (16)

Following Menon et al. (2021), to ensure Fisher consistency and robust network performance, we
apply a class prior offset directly during logits learning, rather than post-hoc during inference. This
leads to the adjusted logits gy(x) = fy(x) + log(C · πy), incorporating both marginal probabilities
and the number of classes for unbiased performance evaluation:

R̃debias(Ŷ , Y ) =
1

|O|
∑
O

− log
egy(x)∑
j∈C e

gj(x)
=

1

|O|
∑
O

− log
efy(x)+log(C·πy)∑
j∈C e

fj(x)+log(C·πj)
. (17)

Finnally, we can combine residual-energy score with the Debias estimator to address the long-tailed
problem:

Rre−debias(Ŷ , Y ) =
1

|O|
∑
O

− log

K∑
k=1

wk eg
k
y (x)∑C

j=1 e
gk
j (x)

,

=
1

|O|
∑
O

− log

K∑
k=1

wk ef
k
y (x)+log(C·πy)∑C

j=1 e
fk
j (x)+log(C·πj)

;

s.t.

K∑
k=1

wk =

K∑
k=1

w(Ek(x, y)) = 1.

(18)

5 EXPERIMENTS

5.1 SETUP

Long-tailed datasets We conducted experiments on four long-tailed datasets: CIFAR-10-LT,
CIFAR-100-LT, ImageNet-LT, and iNaturalist18. CIFAR-10-LT and CIFAR-100-LT have imbal-
ance ratios of 50 and 100. ImageNet-LT is derived from the larger ImageNet dataset, and it consists
of 1,000 classes with images ranging from 1,280 to 5 per class, while iNaturalist 2018 showcases a
naturally long-tailed distribution with samples from over 8,000 species.

Training Details For a fair comparison, we follow the setup outlined in previous works(Menon
et al. (2021)). Unless specified, we use an SGD optimizer with momentum 0.9 and a weight decay
of 10−4. Cosine learning rate decay and standard data augmentation are also applied as in prior
works(Menon et al. (2021)).

In the traning from scratch experiments, for CIFAR-10/100-LT, we train ResNet-32 from scratch
for 200 epochs with a batch size of 128. The base learning rate is set to 0.4, with a 5-epochs linear
warm-up, followed by decay factors of 0.1 at the 160th and 180th epochs. For ImageNet-LT, we
train ResNext-50 from scratch, using a base learning rate of 0.05, and a batch size of 256, with a
weight decay of 5× 10−4, as in Tao et al. (2023). For iNaturalist 2018, we adopt ResNet-50 with a
base learning rate of 0.1, a batch size of 512, and a weight decay of 2× 10−4.
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In the fine-tuning experiments, we employ ViT-B/32(Dosovitskiy et al. (2020)) as the backbone,
performing end-to-end fine-tuning for 100 epochs with a base learning rate is 0.01 and a weight
decay of 2× 10−4.

Evaluation Metrics We present our evaluation results using top-1 accuracy, denoted as “All”. In
accordance with Kang et al. (2020), we further categorize the validation/test sets of ImageNet-LT
and iNaturalist18 into three subsets based on the number of training instances: Many (more than
100 instances), Medium (20 to 100 instances), and Few (less than 20 instances). This breakdown
allows for a more nuanced analysis of performance across varying sample sizes in the long-tailed
distribution.

5.2 RESULTS ON TRAINING FROM SCRATCH

We compare our method with various baselines that address long-tailed problems, categorize them
into three main approaches, as Zhang et al. (2023): Class Re-balancing, Module Imporvement, and
Information Augmentation. The detailed descriptions for baselines are in Appendix A.3

Table 1: Breakdown results of training from scratch on ImageNet-LT and iNaturalist18. The epo
is an abbreviation for epochs, and Med is short for Medium. “∗”: results reported in OTmix. “†”:
results reported in origin paper. RIDE and RIDE-based methods have 3 experts by default. The best
and second best performance for each dataset configuration are bolded and underlined, respectively.

Methods ImageNet-LT iNaturalist18
epo Many Med Few All epo Many Med Few All

ViT-B Backbone training from scratch
ViT† 800 56.9 30.4 10.3 37.5 800 64.3 53.9 52.1 54.2

DeiT† 800 70.4 40.9 12.8 48.4 800 72.9 62.8 55.8 61.0
LiVT† 900 73.6 56.4 41.0 60.9 900 78.9 76.5 74.8 76.1

DeiT-LT† 1400 66.6 58.3 40.0 59.1 1000 70.3 75.2 76.2 75.1
ResNext-50 Backbone training from scratch ResNet-50 Backbone training from scratch
CE ∗ 90 66.8 38.4 8.4 45.3 200 73.9 63.5 55.5 61.0

Focal loss∗ 90 66.9 39.2 9.2 45.8 200 - - - 61.1
Logits Adj.† 90 62.2 49 28.3 51.3 90 - - - 68.4

LADE† 180 65.1 48.9 33.4 53.0 200 - - - 70.0
BALMS∗ 90 50.3 39.5 25.3 41.8 200 70.0 70.2 69.9 70.0

DDC† 400 62.9 52.6 37.1 54.1 400 64.7 70.7 72.1 70.7
PaCo† 400 67.2 56.9 36.7 58.2 400 - - - 73.2
TDE† 90 62.7 48.8 31.6 51.8 200 - - - 63.9
BBN† 90 52.6 46.3 43.8 49.3 200 49.4 70.8 65.3 66.3

Decouple-cRT∗ 100 58.8 44.0 26.1 47.3 200 69.0 66.0 63.2 65.2
Decouple-LWS∗ 100 57.1 45.2 29.3 47.7 200 65 66.3 65.5 65.9

RIDE † 100 66.2 51.7 34.9 54.9 100 70.9 72.4 73.1 72.6
NCL† 200 - - - 60.5 400 72.7 75.6 74.5 74.9

LGLA† 180 - - - 61.1 400 70.1 76.2 77.6 76.2
Remixup∗ 100 60.4 46.9 30.7 48.6 200 - - - 62.3
CMO+CE∗ 100 67 42.3 20.5 49.1 200 76.9 69.3 66.6 68.9

CMO+RIDE∗ 100 66.4 53.9 35.6 56.2 200 68.7 72.6 73.1 72.8
OTmix+CE† 200 70.0 45.9 22.3 52.0 210 69.3 70.5 68.4 69.5

OTmix+RIDE† 200 59.4 56.5 44.1 57.3 210 71.3 72.8 73.8 73.0
DODA+CE † 100 67.4 47.5 13.9 48.1 100 74.9 66.0 58.4 63.6

DODA+RIDE † 100 66.9 54.1 37.4 56.9 100 71.2 73.2 73.4 73.7
ours 90 72.8 61.3 42.1 63.1 90 76.7 75.8 76.0 76.0
ours 180 74.6 60.3 42.7 63.4 200 78.8 78.3 78.2 78.3
ours 200 74.4 61.0 44.5 63.9 400 80.6 79.6 79.1 79.5

To demonstrate the scalability and effectiveness of our method, we evaluated it on two large-scale,
real-world long-tailed datasets: ImageNet-LT and iNaturalist18. For fair comparison, we report re-
sults at 90, 180, and 200 epochs for ImageNet-LT, and at 90, 200, and 400 epochs for iNaturalist18.
As shown in Table 1, our method achieves a top-1 accuracy of 63.9% at 200 epochs on ImageNet-LT,
with performance improving as training progresses. Notably, even after just 90 epochs, it surpasses

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

previous state-of-the-art results, demonstrating effectiveness early in training. This consistent im-
provement underscores the robustness and efficiency of our approach, which continues to outperform
existing methods with extended training. Since iNaturalist18 lacks a validation set, we report test
accuracy directly. Our method achieves an overall accuracy of 79.5%at 400 epochs, outperforming
the best transformer-based method, DeiT-LT (75.1%), and RIDE (72.6%). It also maintains strong
performance across Many (80.6%), Medium (79.6%), and Few (79.1%) categories, highlighting its
robustness in handling long-tailed distributions.

Table 2: Top 1 accuracy for CIFAR-10/100-LT. “∗”:
results reported in LGLA.“†”: results reported in ori-
gin paper. The best and second-best performances are
bolded and underlined, respectively.

Methods CIFAR-10-LT CIFAR-100-LT
100 50 100 50

CB Focal loss∗ 74.6 79.3 38.7 46.2
Logits Adj.∗ - 77.7 - 43.9

LADE∗ - - 45.4 50.5
BALMS† 84.9 88.9 50.8 54.1

DDC† 83.6 82.3 46.4 57.9
PaCo∗ - - 52.0 56.0
BBN∗ 79.8 82.2 39.4 47.0
RIDE∗ 81.6 84.0 48.6 49.1
TDE∗ 80.6 83.6 44.1 50.3
NCL∗ 85.5 87.3 54.2 58.2

LGLA† 87.5 89.8 57.2 61.6
Remixup† 75.4 79.8 39.5 45.0

CMO+ERM† 75.0 81.4 43.9 47.3
CMO+RIDE† 82.2 84.6 50.0 53.0
OTmix+ERM† 78.2 83.4 46.4 50.7
OTmix+RIDE† 82.7 85.2 50.7 53.8

ours 88.3 91.5 56.3 62.2

Table 2 shows that our method outper-
forms all baselines across various imbal-
ance ratios for both CIFAR-10-LT and
CIFAR-100-LT datasets. Specifically,
our method achieves the highest accu-
racy of 88.31% and 91.51% for CIFAR-
10-LT with imbalance ratios of 100 and
50, respectively. In the CIFAR-100-LT
dataset with an imbalance ratio of 100,
our method performs slightly worse than
LGLATao et al. (2023). This discrepancy
may be due to underfitting, as our model is
trained for only 200 epochs, while LGLA
was trained for 400 epochs.

5.3 RESULTS ON FINE-TUNING VIT

Efficient fine-tuning helps the model re-
tain the general knowledge learned from
a large, diverse dataset while refining its
parameters to perform well on the specific
task, improving accuracy and efficiency
compared to training from scratch. To as-
sess the effectiveness and scalability of our
approach, we conducted end-to-end fine-
tuning of the ViT model for 100 epochs on the iNaturalist18 dataset, as shown in Table 3. For
comparison, we established baseline methods, with LPT(Dong et al. (2023)) and LTGC(Zhao et al.
(2024)) representing prompt tuning, and VL-LTR(Tian et al. (2022)), RAC(Long et al. (2022)) and
CLIP-Finetune representing end-to-end fine-tuning. Our method achieved the highest overall ac-
curacy of 83.9%, outperforming all baselines. It demonstrated robust performance, with 84.2% on
Many, 84.0% on Medium, and 83.6% on Few.

5.4 EVALUATION AND ANALYSIS

Table 3: Breakdown results of fine-tuning on iNatural-
ist18. “†”: results reported in origin paper.

Method Many Medium Few All
CLIP Zero 6.1 3.3 2.9 3.4

CLIP Finetune 76.6 74.1 70.2 72.6
VL-LTR † - - - 76.8

RAC† 75.9 80.5 81.0 80.2
LPT† - - 79.3 76.1

LTGC† 77.5 83.9 82.6 82.5
ours 84.2 84.0 83.9 84.0

In this section, we conduct a detailed anal-
ysis of the mechanism of Re-Debias and
discuss the following three concerns.

How does each component affect perfor-
mance?

We conducted an ablation study on
ImageNet-LT using ResNeXt-50 as the
backbone, training all models for 90
epochs. The results are presented in Ta-
ble 4, where the numbers in parentheses
indicate the number of softmax operations

used. Applying the debias estimator significantly improves overall accuracy from 43.5% to 52.2%.
Introducing the original MoS with three softmax components into the baseline increases accuracy to
47.0%, and integrating MoS with residual-energy scoring further enhances it to 52.1%. Finally, com-
bining residual-energy-based MoS with the debias estimator yields an overall accuracy of 63.1%,
with the energy-based MoS also utilizing three softmax components. These results demonstrate
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that our method does not require a gating mechanism to adjust the contribution of each softmax
component, as is necessary in MoS, thereby avoiding potential overfitting and added complexity.

Table 4: Ablation results on ImageNet-LT. These models are all
trained on ResNext-50 by 90 epoches. The number in brackets
indicates the number of softmax.

MoS Energy Debias ImageNet-LT
Many Medium Few All
66.8 38.4 8.4 45.3

✓(3) 68.2 40.4 9.9 47.0
✓ 63 49.7 30.4 52.2

✓(3) ✓ 62.9 49.4 31.0 52.1
✓(3) ✓ 74.0 50.8 17.5 55.4
✓(2) ✓ ✓ 69.1 55.9 36.7 58.4
✓(3) ✓ ✓ 72.8 61.3 42.1 63.1
✓(4) ✓ ✓ 74.1 58.8 38.4 61.9

We further explored the effect
of varying the number of soft-
max components: using two
components achieves an accu-
racy of 58.4%, while three com-
ponents reach the highest ac-
curacy of 63.1%. However,
increasing to four components
slightly decreases accuracy to
61.9%. This suggests that op-
timal performance is achieved
with three softmax components.
Our final evaluation, incorpo-
rating both the debias estimator

and residual-energy scoring, highlights the importance of balancing model complexity to optimize
performance in long-tailed visual recognition tasks. Additional ablation studies are provided in
Appendix A.4.

Figure 3: Visualization of the sacrifice accuracy
of each class between CE and ReDebias.

Does ReDebias make fewer classes be ‘sac-
rificed’? we analyse and validate that pre-
vious approaches improve the average perfor-
mance by sacrificing certain classes (especially
the header class).The goal of Re-Debias is to
mitigate the imbalance in terms of data while
aiming for inter-class fairness. Ambiguity is
reduced by allowing residual-energy scores to
enhance the expressiveness of softmax-based
scores. AIn addition, the Debias estimator en-
sures that the class distribution no longer affects
the averaging operation. From the visualization
of the sacrifice accuracy of each class and sac-
rifice rate in Fig.3, it can be found that compared with Re-Debias, Re-Deibas reduces the sacrifice
rate by 17.2%, indicating that Re-Debias makes fewer classes be ‘sacrifaiced’.

Does ReDebias still suffer from class imbalance from training? The results in Table 5 reveal
significant performance differences among methods under varying imbalance ratios (IB) during in-
ference. In the forward label distribution scenario, while accuracies generally decrease as IB values
drop, our model maintains high accuracy rates of 65.7% and 65.3% at IB values of 25 and 10, respec-
tively, demonstrating robustness to different imbalance levels. Under both uniform and backward
target label distributions, our method consistently performs well, achieving the highest accuracy of
61.2% in the uniform setting and outperforming other methods in backward scenarios. In contrast,
although methods like LADE and LGLA excel under certain conditions, they do not surpass our
model overall. This indicates that our approach not only adapts effectively to forward label dis-
tributions but also maintains stable, high performance under uniform and backward distributions,
highlighting its general adaptability to various target label distribution offsets.

Table 5: Top-1 accuracy over all classes on test time shifted ImageNet-LT. All models are all trained
on ResNet-50. “∗”: results reported in LADE. IB denotes the imbalance ratio, epo represents the
epoch, and Unif stands for Uniform.

Dataset epo Forward Unif Backward
IB - 50 25 10 5 2 1 2 5 10 25 50

CE ∗ 180 66.3 63.9 60.4 57.1 52.3 48.2 44.2 38.9 35.0 30.5 27.9
TDE∗ 180 64.1 62.5 60.1 57.8 54.6 52.0 49.3 45.8 43.4 40.4 38.4

LADE∗ 180 67.4 64.8 61.3 58.6 55.2 53.0 51.2 49.8 49.2 49.3 50.0
LGLA 180 64.0 62.7 61.9 61.0 59.6 59.9 57.6 56.9 56.7 55.9 56.5
OTmix 200 65.7 64.4 63.9 62.1 61.5 60.4 59.3 58.6 58.0 56.8 57.2

ours 90 66.8 65.7 65.3 63.9 62.4 61.2 60.2 59.3 58.7 57.8 58.2
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