
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHAT DOES IT MEAN TO BE A TRANSFORMER?
INSIGHTS FROM A THEORETICAL HESSIAN ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Transformer architecture has inarguably revolutionized deep learning, over-
taking classical architectures like multi-layer perceptrons (MLPs) and convolu-
tional neural networks (CNNs). At its core, the attention block differs in form and
functionality from most other architectural components in deep learning–to the
extent that Transformers are often accompanied by adaptive optimizers, layer nor-
malization, learning rate warmup, and more, in comparison to MLPs/CNNs. The
root causes behind these outward manifestations, and the precise mechanisms that
govern them, remain poorly understood. In this work, we bridge this gap by pro-
viding a fundamental understanding of what distinguishes the Transformer from
the other architectures — grounded in a theoretical comparison of the (loss) Hes-
sian. Concretely, for a single self-attention layer, (a) we first entirely derive the
Transformer’s Hessian and express it in matrix derivatives; (b) we then charac-
terize it in terms of data, weight, and attention moment dependencies; and (c)
while doing so further highlight the important structural differences to the Hes-
sian of classical networks. Our results suggest that various common architectural
and optimization choices in Transformers can be traced back to their highly non-
linear dependencies on the data and weight matrices, which vary heterogeneously
across parameters. Ultimately, our findings provide a deeper understanding of the
Transformer’s unique optimization landscape and the challenges it poses.

1 INTRODUCTION AND RELATED WORK

The Transformer architecture (Vaswani et al., 2017) has shown remarkable success across natural
language processing (Devlin et al., 2018; Radford et al., 2018) and vision (Dosovitskiy et al., 2020)
tasks. In particular, its self-attention mechanism has become a mainstay of modern architectures,
enabling parallelization while effectively capturing long-range and modality-agnostic dependencies.
Yet, despite their impressive performance, a significant gap remains in our understanding of the
properties of Transformer-based models relative to traditional architectures such as multi-layer
perceptrons (MLPs, Rosenblatt, 1958) or convolutional neural networks (CNNs, LeCun et al., 1998).

Transformers’ unique architectural built. Notably, in comparison to the classical architectures,
Transformers are unique in several ways. Firstly, this can be seen in that the data (tokens) enters the
Transformer, like through the self-attention, multiple times. Secondly, the softmax non-linearity in-
side standard self-attention differs from the piece-wise linear activation functions, like ReLU (Glorot
et al., 2011), in MLPs/CNNs architectures. Thirdly, the query,key-based attention parameterization
bakes in a quadratic interaction within a single architectural block.

The side-factors making Transformers’ unique architecture work. These architectural dif-
ferences render practical approaches for training a Transformer distinct compared to classical
nets (Popel & Bojar, 2018; Bengio, 2012). E.g., Transformers are usually trained with adaptive op-
timizers like Adam(W) (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) and require architectural
extensions such as skip connections (He et al., 2016) and layer norm (Xiong et al., 2020), learning
rate warmu-up (Goyal et al., 2017), and using different weight initializations (Huang et al., 2020).

Aim. Given these outward and indirect manifestations of the Transformer’s presence, it is unclear
how these are explicitly triggered due to particular loss landscape geometry endowed by Transform-
ers. To address this, we theoretically investigate the Transformer’s loss landscape by analyzing, in
detail, the structure of the Hessian matrix as well as its data-dependency and behavior across layers.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

H(WV,WV) H(WQ,WQ)

0

2500

10−7 10−5 10−3

Absolute Entries

0

5000

F
re

qu
en

cy

(a) Histogram of (absolute) en-
tries corresponding to the value
and query diagonal blocks.

Transformer Block Self-Attention

−6

−5

−4

−3

−2

−1

L
og

ar
it

h
m

ic
A

b
so

lu
te

E
nt

ri
esE

m
b.

Se
lf

-A
tt.

M
L

P

W
Q

W
K

W
V

(b) On the left, the Hessian matrix for a compact Transformer,
and, on the right, the zoomed-in block w.r.t. query, key, and
value parameters.

Figure 1: Disparity in the Hessian blocks of a Transformer seen quantitatively and qualita-
tively. We used a single-block GPT-2 Transformer at initialization applied to the next token predic-
tion task (for details see Appendix F). We observe block heterogeneity in the magnitudes of Hessian
entries – those of the query block are significantly smaller than those of the value block.
Prior Hessian-related work. The Hessian matrix is fundamental object for optimization (Martens,
2010; Schaul et al., 2013; Cohen et al., 2021), generalization (Keskar et al., 2016; Jiang et al.,
2019), and more (LeCun et al., 1989; Singh & Alistarh, 2020). (a) Empirical work: For traditional
architectures, the Hessian has received a lot of attention through empirical studies studying its bulk-
outlier spectrum and eigenvalue density (Sagun et al., 2016; 2017; Ghorbani et al., 2019; Papyan,
2020; Yao et al., 2020) and in turn how it is affected by architectural components and how it changes
over training. (b) Theoretical studies in classical architectures: More recently, several theoretical
works have also analyzed, in detail, the Hessian structure and rank (Singh et al., 2021; 2023),
beyond Random-Matrix-Theory based approximations (Pennington & Bahri, 2017). However, this
latter line of work has been restricted to fully-connected and convolutional architectures.

Transformer-related Hessian studies. Park & Kim (2022) provide empirical evidence that the
multi-head self-attention mechanism in Transformers leads to a more non-convex but smoother
loss landscape than that of CNNs, as the Hessian has more negative eigenvalues but where
these eigenvalues are of smaller magnitude. Zhang et al. (2024a) studied the Hessian spectra of
Transformers to explain the need for adaptive optimizers for successful training. They empirically
showed that although the full, pan-network, Hessian spectra of Transformers are quite similar to
those of CNNs, the Hessian blocks in Transformers are much more heterogeneous – a possible
cause for the need for adaptive optimizers. Barring these few empirical studies, to the best of our
knowledge, a theoretical treatment of the Hessian in Transformers remains lacking.

Goals and Contributions. By theoretically analyzing the Hessian of Transformers, we aim to
identify and explicitly state the differences to classical architectures. We believe this provides the
foundation for a deeper understanding of the unique loss landscape features and challenges the
Transformer poses. Our detailed contributions are:

(i) We derive the Hessian of a single self-attention layer and exhibit the structure contained within
its well-known positive-definite and indefinite parts (Theorems 3.1 and 3.2).

(ii) We categorize its dependencies into data, weights, and attention moments, find that the Hessian
is highly non-linear and heterogeneous for different parameter groups within a self-attention block,
and show how various Transformer-related tricks can be understood through these characteristics.

(iii) We explicitly establish how individual components of self-attention, like the softmax and
query-key-parameterization, result in a more non-linear and heterogeneous structure within the
Hessian (see Figure 1), then contrast the Transformer’s Hessian with that of traditional architectures
and uncover pronounced differences.

2 SETUP AND BACKGROUND

Single self-attention layer. We consider a single self-attention layer with a slightly generalized
definition, which will later enable us to investigate the impact of specific components. The layer
maps token embeddings X ∈ RL×dV of a sequence of length L with embedding dimension dV
into a new sequence F(X) ∈ RL×dV by computing the values XWV using value weights WV ∈

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

F vecr(F)
∂F

∂Wi
:=

∂ vecr F

∂ vecr Wi
vecr

(
∂F

∂Wi

)
∂2F

∂Wi∂Wj
:=

∂ vecr
∂F

∂Wi

∂ vecr Wj

[
• •
• •

] •••
•


→→→
→


↓↓↓
↓


↓ →
↓ →
↓ →
↓ →

1 2 3 4

Figure 2: Construction of the second derivative matrix of a matrix-valued network F. Taking the
second derivative of F using row-wise vectorization and numerator layout is equivalent to computing
the second derivatives of each entry separately and stacking them into a column block matrix.

RdV ×dV and re-weighting them with the self-attention matrix (or map) A(X) ∈ RL×L, i.e.

F(X) = A(X)XWV where A(X) = a (T(X)) . (1)

Here, we decompose the attention map into two components, the query-key similarity transfor-
mation T(X) ∈ RL×L which may introduce additional trainable parameters, and the activation
function a : RL×L 7→ RL×L. The classical self-attention from Vaswani et al. (2017) uses
T(X) = XWQW

⊤
KX

⊤ /
√
dK , where a = softmax (row-wise) , with learnable query and key

weight matrices WQ,WK ∈ RdV ×dK . Further, our single self-attention layer from Equation (1)
feeds into a loss function ℓ : RL×dV × RL×dV 7→ R that measures the discrepancy between the
predicted sequence F(X) and the sequence labels Y. We will assume square loss (denoting ∥ · ∥F

the Frobenius norm of a matrix), ℓ(F(X),Y) = (LdV )
−1 ∥F(X)−Y∥2F .

Hessian, block structure, and Gauss-Newton decomposition. Our goal is to compute the full
Hessian of the above equation w.r.t. the learnable, matrix-shaped, parameters {Wi ∈ Rqi×pi}i of
the attention layer (for instance i ∈ {K,Q,V} for canonical self-attention). To break down this task,
first notice that this matrix consists of blocks ∂2(ℓ◦F)/∂Wi∂Wj . Further, the Hessian decomposes
into two components as a consequence of the chain rule applied to the functional split ℓ ◦ F (see
e.g. Kunstner et al., 2019; Martens, 2020; Dangel et al., 2020),

∂2 (ℓ ◦ F)
∂Wi∂Wj

(·) = ∂F

∂Wi
(·)⊤ ∂2ℓ

∂F2
(F(·)) ∂F

∂Wj
(·)︸ ︷︷ ︸

F−outer product Hessian
Ho (Wi,Wj)

+

(
∂ℓ

∂F
(F(·))⊗ Ipiqi

)
∂2F

∂Wi∂Wj
(·)︸ ︷︷ ︸

F−functional Hessian
Hf (Wi,Wj)

. (2)

Equation (2) is known as Gauss-Newton decomposition and such splits can be widely seen in the
literature (Sagun et al., 2017; Kunstner et al., 2019; Martens, 2020; Dangel et al., 2020; Singh
et al., 2021; Dauphin et al., 2024). We adopt the terminology provided in Singh et al. (2021;
2023) by referring to the term containing second-order derivatives of ℓ as outer-product Hessian
(often called generalized Gauss-Newton (Schraudolph, 2002) matrix), and to the term capturing
second-order derivatives of the network as functional Hessian. To emphasize the split at which
the decomposition through the chain rule was applied, we added the prefix F above. This will
later become useful to identify expressions in the Hessian as stemming from different splits (see
Section 3 and Appendix D). But until then and unless stated otherwise, we will consider the split
ℓ ◦ F and thus omit specifying this hereafter. For classical self-attention , this yields the Hessian
decomposition H = Ho +Hf with

H• =

H• (WQ,WQ) H• (WQ,WK) H• (WQ,WV)
H• (WK,WQ) H• (WK,WK) H• (WK,WV)
H• (WV,WQ) H• (WV,WK) H• (WV,WV)

 (3)

for • ∈ {o, f} and where H• (Wi,Wj) = (H• (Wj ,Wi))
⊤ due to symmetry.

Matrix calculus. So far, we slightly abused notation and did not define formally what it means to
take derivatives of a matrix-valued object w.r.t. a matrix-shaped argument. We will follow the recipe
of matrix calculus (Magnus & Neudecker, 2019) which reduces those derivatives to the vector case
by introducing a flattening convention (we will use row-stacking, indicated by the operation vecr).
Consider two vectors a ∈ RA and b(a) ∈ RB . The Jacobian ∂b/∂a ∈ RB×A collects the first-
order derivatives such that [∂b/∂a]i,j = ∂bi/∂aj . The Hessian ∂2b/∂a2 ∈ RBA×A is a column
block matrix that concatenates the Hessians for each entry of b w.r.t.a; equivalent to flattening

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the Jacobian, then differentiating it a second time. To generalize these definitions to matrix-valued
objects, we simply flatten all arguments before differentiation (see Figure 2 for a visualization).
Applied to the expressions in Equation (2), we have,

∂F

∂Wi
:=

∂ vecr F

∂ vecr Wi
∈ RLdV ×piqi and

∂2F

∂Wi∂Wj
:=

∂ vecr
∂F

∂Wi

∂ vecr Wj
∈ RLdV piqi×pjqj . (4)

For the square loss discussed above, the Jacobian ∂ℓ/∂F ∈ R1×LdV and Hessian
∂2ℓ/∂2F ∈ RLdV ×LdV w.r.t. the network’s prediction simplify to 2(Ldv)

−1 vecr (F(·)−Y)
⊤ and

2(Ldv)
−1ILdv

(i.e., a scaled identity matrix) respectively.

Hessian of MLPs and CNNs. Since one of our main interests is stating explicit differences
between the Transformer Hessian and that of traditional architectures, we briefly recap the Hessian
structure from Singh et al. (2021; 2023), for the case of linear MLPs, F(x) = WL · · ·W1x. As
an illustration, we will only consider the outer-product Hessian and look at its the diagonal block
corresponding to the i-th layer parameter matrix, Wi, which takes the form

Ho(W
i,Wi) = Wi+1⊤ · · ·WL⊤

WL · · ·Wi+1 ⊗ Wi−1 · · ·W1 Σxx W
1⊤ · · ·Wi−1⊤ ,

where Σxx = E [xx⊤]. We can observe that the above expression depends linearly on the data,
through the uncentered data covariance Σxx computed over the dataset. Likewise the functional
Hessian for MLPs, has a linear dependence on the data, but through a different matrix which carries
the covariance of the residuals δx,y = F(x)−y with the input x. Importantly, the Hessian diagonal
blocks are entirely comprised of the contribution from the outer-product Hessian, as the functional
Hessian has a block-hollow structure (zero diagonal blocks, which also extends to any piecewise
non-linearity in the sense of almost everywhere).

Thus, a noteworthy difference from our setup is that these works aggregate the Hessian over the
dataset while, for the sake of brevity, we focus on a single sample setting.1 As a side-benefit, this
allows us to cast their (non-sequential) setup one-to-one here by considering their whole dataset in
the form of a single sequence, where the MLP is applied separately to each element of the sequence.
This point of view helps facilitate a precise comparison between the two settings.

3 EXACT STRUCTURE OF THE SELF-ATTENTION HESSIAN

We start by studying the Hessian of standard self-attention with square loss. We present our main
results regarding the exact Hessian in the form of two theorems, each of them targeting one specific
term in the Gauss-Newton decomposition from Equation (2), further broken down into parameter
blocks from Equation (3). After stating the exact results, our goal is to analyze and interpret them
further through simplifications. For brevity, we omit the blocks w.r.t. the key weight matrix as they
are essentially symmetric (modulo differences in arrangement) and defer the proofs to the appendix.

Theorem 3.1. Outer Product Hessian Ho. For a single self-attention layer, Equation (1),
with classical self-attention that feeds into the square loss, the blocks of Ho are

Ho (WV,WV) =
2

LdV
M⊤

1 M1 ⊗ IdV
,

Ho (WQ,WQ) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WV,WQ) =
2

LdV
√
dK

(
M⊤

1 ⊗W⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WQ,WK) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (WQ ⊗ IdV

)KdK ,dV
,

with the first attention moment matrix M1 := AX ∈ RL×dV (see Section 3.2) and where
Z1 := (IL ⊗X⊤)(∂A/∂T)(X⊗X) ∈ RLdV ×d2

V contains first derivatives of the softmax.

To arrive at these expressions we start from Equation (2), insert ∂2ℓ/∂2F, and use the self-attention
Jacobians derived by Noci et al. (2022). See Appendix B for details. We note that the value diagonal

1Here we discuss the Hessian in a single data point setting to improve exposition, but our insights translate
directly into a batch setting — one just needs to average the Hessian formulas over the data points.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

block is structurally the same as the outer product Hessian of an MLP, while the query diagonal and
the mixed query-key blocks display very similar Kronecker product structure – just with varying
weight matrices.

Theorem 3.2. Functional Hessian Hf . For the same setup as in Theorem 3.1, the F –
functional Hessian with respect to the value weight matrix Hf (WV,WV) is zero and the
remaining blocks are given by,

Hf (WQ,WQ) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (IdV

⊗WK) ,

Hf (WV,WQ) =
2

LdV
√
dK

Rd2
V
(IL ⊗ S) Z1 (IdV

⊗WK) ,

Hf (WQ,WK) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (WQ ⊗ IdV

)KdK ,dV

+
2

LdV
√
dK

RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S⊗ IdK
,

with the duplicated residual Rm := vecr (F(X)−Y)
⊤ ⊗ Im ∈ Rm×mLdV , a shuffling ma-

trix S := (IdV
⊗KdV ,dV

) (vecr IdV
⊗ IdV

) ∈ Rd3
V ×dV where KdV ,dV

is a commutation
matrix (see e.g. Lemma B.2), Z1 defined as in Theorem 3.1, and Z2 := (IL ⊗ X⊤ ⊗ X⊤ ⊗
X⊤)(∂2A/∂T2)(X⊗X) ∈ RLd3

V ×d2
V containing second-order softmax derivatives.

For Theorem 3.2, we differentiate the self-attention Jacobian, and multiply it with the square loss
gradient ∂ℓ/∂F. See Appendix B for details. Similarly to the MLP F–functional Hessian the diag-
onal value block of the self-attention F–functional Hessian disappears. Again, structurally similar
expressions appear in the query-key mixed term, and the query diagonal block, with the query-key
mixed term being the most involved and consisting of two summands.

Categorizing the Constituent Terms. To simplify the analysis of Theorems 3.1 and 3.2,we divide
the terms into four categories: Firstly, the least important are layout matrices that copy or shuffle en-
tries via Kronecker product with an identity or permutation matrix. These serve to correctly arrange
the entries in the Hessian from our matrix layout in Equation (4) and therefore we will often ignore
them. Second, we have the matrices Z1,Z2, which contain first- and second-order derivatives of the
softmax and have explicit dependencies on the data X (Section 3.1). Third, we identify first-order
moments M1 of the attention matrix, as well as higher moments in the attention derivatives in Z1,2

(Section 3.2). Fourth, the Hessian depends on the weight matrices WV,WQ,WQ (Section 3.3).

As one of our main interests is the scaling behavior of blocks w.r.t. different dependencies, we will
simplify expressions using the Landau notation from Martens (2020, Section 14), where for two
matrices A,B, denoting f ∈ O(AB) means all entries of f are O(Ai,jBk,l) for any i, j, k, l. Due
to their boundedness to [0, 1], we can ignore the softmax expressions in the attention matrix.

3.1 DATA DEPENDENCE VARIES ACROSS HESSIAN BLOCKS

One characteristic of self-attention is that the data X enters multiple times: as keys, queries, and
values. This leads to highly non-linear data dependencies in the Hessian. For brevity omitting the
the dependence of all the F–functional Hessian blocks on the residual δXY := vecr (F(X)−Y)

⊤,
we find that for the expressions in Theorems 3.1 and 3.2

Ho ∈

Q K V Q O(X6) O(X6) O(X4)

K · O(X6) O(X4)

V · · O(X2)

,Hf ∈

Q K V Q O(X5) O(X5 +X3) O(X3)

K O(X5) O(X3)

V · · O(1)

. (5)

Data-Heterogeneity. Throughout different Hessian blocks, we observe a varying depen-
dence on the embedding matrix X. The most data-dependent blocks are the key and query
ones. For the outer product Hessian Ho, each key and query weight contributes a cubic de-
pendence on X while value weight matrix WV brings a linear dependence on X. This obser-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

10−2

101

σ2

Ho

10−2

101

σ2

H

10−2 10−1 100 101

σ

10−7

10−1

105

σ6

10−2 10−1 100 101

σ

10−5

101

σ5

Hf

10−2 10−1 100 101

σ

10−5

101

σ5

B
lo

ck
‖·
‖ F

H(WV,WV)

H(WQ,WQ)

(a) No LN. We omit Hf(WV,WV) as it equals zero.

10−2

100

102

σ−1.2

Ho

10−2

100

102

σ−1.3

Hf

10−2

100

102

σ−1.2

H

10−2 10−1 100 101

σ

10−2

100

σ−1.2

10−2 10−1 100 101

σ

10−1

101

σ−0.7

10−2 10−1 100 101

σ

10−1

101

σ−0.6

B
lo

ck
‖·
‖ F

(b) Pre-LN.

Figure 3: (Plotted in log-log scale.) Empirical verification with a CE loss confirms derived scal-
ing laws w.r.t. magnitude σ of X from Equation (5). We demonstrate the scaling laws through the
Frobenius norm ∥ · ∥F of value and query diagonal blocks. The dashed lines correspond to the trend
(a) predicted by theory as in Equation (5), (b) estimated from the Frobenius norm measurements
on the log-log scale by the linear regression slope. For details on the experimental setting, see Ap-
pendix F. σ < 1 (LHS of the vertical line) correspond to practical values of X standard deviation.

vation confirms a finding of Noci et al. (2022) who show ∥∂F/∂WV∥F ∈ O(∥X∥F), while
∥∂F/∂WK∥F, ∥∂F/∂WQ∥F ∈ O(∥X∥3F). The block-heterogenous dependence is also visible in
the F–functional Hessian Hf, which includes an additional dependence on X through the residual
δXY. If we ignore δXY, then the outer-product Hessian dominates the Hessian for large X.

Empirical validation. We test our theoretical derivations empirically using a single GPT-2 Trans-
former block (Radford et al., 2019) on a digit addition task adapted from Quirke & Barez (2024).
The problem is set up as a next-token prediction task, with cross-entropy (CE) loss (see Appendix F)
— a setting closer to a realistic Transformer application. We initialize the embedding X from a
distribution with varying standard deviation σ and measure the Frobenius norm of the Hessian’s di-
agonal blocks (Figure 3a). The scaling laws from Equation (5) directly transfer to the dependence of
the block Frobenius norm on σ. We omit the value functional Hessian block Hf (WV,WV) from
the plot because it equals zero in both theory and our empirical evaluation. For the value block,
the full Hessian follows the σ2 trend from the outer product Hessian from Equation (5), since the
functional block is zero. The query block follows the functional Hessian’s σ5 trend, and not the
σ6 trend from the functional Hessian, which is likely suppressed by other non-data dependencies.
Overall, this confirms that although our theoretical results were derived for MSE loss and only a
self-attention layer, they extend faithfully to CE loss and a full Transformer block.

3.2 ATTENTION MOMENTS AFFECT THE HESSIAN

Attention Scores Induce Distributions. Each row of the self-attention matrix A(X) is a normal-
ized distribution over the input tokens, and we already saw the first moment M1 (i.e. multiplying
the sequence by the attention matrix) of those distributions emerge in Theorems 3.1 and 3.2. To
further simplify the Z1,2 matrices, we now introduce the natural generalization to higher-order cen-
tered attention moments. The i-th centered attention moment matrix Mi should be thought of as an
L×dV × . . .×dV tensor (where dV appears i times) that stacks the i-th centered moments for each
distribution, which is then flattened into a Ldi−1

V × dV matrix. In matrix notation, we have:

Definition 3.1. Attention Moment Matrices. Let A ∈ RL×L be an attention matrix and
X ∈ RL×dV be the token embeddings. We define the first attention moment matrix as

M1 := AX =
[
A⊤

i, :X
]
1≤i≤L

∈ RL×dV .

Similarly, the second and the third central moment matrices are

M2 :=
[∑L

j=1 Ai,j (Xj, : − [M1]i,:) (Xj, : − [M1]i,:)
⊤
]
1≤i≤L

∈ RLdV ×dV

M3 :=
[∑L

j=1 Ai,j(Xj, : − [M1]i,:)⊗ (Xj, : − [M1]i,:)(Xj, : − [M1]i,:)
⊤
]
1≤i≤L

∈ RLd2
V ×dV .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Transformer Hessian Dependency on Attention Moments. Definition 3.1 allows us to further
simplify the matrices Z1,2 from Theorems 3.1 and 3.2. In addition to the dependency on the first
attention moment matrix, we obtain dependencies on the second and third moment matrices:

Remark 3.1. The data terms emerging in the self-attention Hessian can be expressed as func-
tions of the self-attention central moment matrices,

Z1 = X ∗M2 , and Z2 = (IL ⊗KdV ,dV
⊗ IdV

)
(
X ∗X⊤ ∗M3

)
,

where ∗ is the Khatri-Rao product (Liu, 1999), see Definition A.2.

Proof of Remark 3.1 can be found in Appendix C. Regarding attention moments, the value outer
product Hessian depends on the first moment, while the query-key outer product Hessians are influ-
enced by the second central moment. The query-key functional Hessian even exhibits a dependency
on the third central moment.

If the attention scores are highly dispersed across different tokens, the query-key outer product
Hessian will dominate. Conversely, if the attention scores were data-independent,2 which happens
almost surely at initialization for large dK , sequences with more similar words will result in a lower
contribution from the query-key block. If instead, the attention matrix is sparse and some tokens
attend to only one token (attention row is a one-hot vector), the contribution of the query-key part of
the Hessian diminishes because the second and third central moment matrices of such one-hot self-
attention distributions are equal to zero. To our knowledge, our work is the first one to notice the
relationship between self-attention Hessian and self-attention moments. Knowing this dependence
can contribute to a better understanding and interpretability of the Hessian – especially its evolution
during training.

3.3 DEPENDENCE ON THE WEIGHT MATRICES

The blocks in the self-attention Hessian vary significantly when it comes to the dependence on the
weight matrices, beyond their influence through the softmax function. Among the terms on the diag-
onal of the outer product Hessian, only the query and key components explicitly (and quadratically)
depend on the weights beyond their influence through the attention scores. This dependence is on
both the value weight matrix and one of the key and query matrix. The mixed terms involving
queries and keys depend linearly on the keys and queries weights and quadratically on the value
weights. Finally, the mixed terms involving values depend linearly on the selected weight matrices.

Also, the blocks of the functional Hessian depend on the weight matrix in a varied manner. The
first observation is that the diagonal value functional Hessian block is always zero. Furthermore,
the diagonal query block depends quadratically on the key weight matrix and linearly on the value
weight matrix. The mixed value-query block depends only linearly on the key weight matrix.

� We find highly non-linear dependencies and block heterogeneity in terms of data, degrees
of attention moments, and weights. We expect that identified sources of heterogeneity in-
fluence different algebraic properties, such as traces, norms, and eigenvalues of blocks —
possibly explaining the varying block spectra, previously observed by Zhang et al. (2024a).

4 IMPACT OF TRANSFORMER DESIGN COMPONENTS ON THE HESSIAN

The Transformer architecture has several key components that distinguish it from the more classical
models like MLPs and CNNs. In the previous section, we analyzed how the data dependence is one
big distinguishing factor between the Hessian for Transformers and classical architectures. Now, we
proceed to the other two significant departures within a Transformer. Namely, the effects of having
(i) a softmax non-linearity within a layer block, and (ii) a quadratic weight interaction through the
query-key parameterization, by in turn disabling them.

2Similar to the uniform attention assumption in Noci et al. (2022).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

H(WV,WV) H(WQ,WQ)

10−7 10−5 10−3
0

2500

5000

F
re

qu
en

cy

10−7 10−5 10−3

Absolute Entries

linear
classical

linearclassical

Figure 4: Softmax results in
heterogeneity in magnitudes of
Hessian block entries. Histogram
of (absolute) entries corresponding
to the value and query diagonal
Hessian blocks of a single block
Transformer. High and low sat-
uration correspond to linear and
classical self-attention respectively.

4.1 SOFTMAX ACTIVATION

Apart from the Transformer architecture, softmax is not a common choice for an intermediate layer
activation. It is usually used as the final layer activation in classification tasks to model a distribution.
It is not an easy activation to work with, as it is prone to numerical instabilities and vanishing
gradient problems. Here, we study its influence on the self-attention Hessian.

Hessian of linear self-attention. To study the influence of softmax, we compare self-attention to
linear self-attention, i.e. a = id and T(X) = XWQW

⊤
KX

⊤/
√
dK in Equation (1). In Theo-

rems 3.1 and 3.2, we can now use that the first and second derivatives of A w.r.t.T are Id2
V

and 0,
respectively:

Remark 4.1. Assume a linear self-attention F with a = id and T(X) = XWQW
⊤
KX

⊤/
√
dK

followed by square loss. Then the outer-product Hessian blocks are

Ho (WV,WV) =
2L2

dV dK
ΣXXWKW

⊤
QΣXXWQW

⊤
KΣXX ⊗ IdV

,

Ho (WQ,WQ) =
2L2

dV dK
ΣXX ⊗W⊤

KΣXXWVW
⊤
VΣXXWK,

Ho (WV,WQ) =
2L2

dV dK

(
ΣXXWKW

⊤
QΣXX ⊗W⊤

VΣXXWK

)
,

Ho (WQ,WK) =
2L2

dV dK

(
ΣXXWQ ⊗W⊤

KΣXXWVW
⊤
VΣXX

)
KdK ,dV

,

where ΣXX := 1
LX

⊤X is empirical (uncentered) intra-sequence covariance.

Moreover, only the off-diagonal functional Hessian blocks are non-zero and equal to

Hf (WV,WQ) =
2

dV
√
dK

(
δ⊤XY ⊗ Id2

V

)
(IL ⊗ S) (X⊗ΣXXWK)

Hf (WQ,WK) =
2

dV
√
dK

(
δ⊤XY

(
X⊗W⊤

VΣXX

)
⊗ IdV

)
S⊗ IdK

where δXY := vecr (F(X)−Y) and S is defined as in Theorem 3.2.

Since linear self-attention is simple matrix multiplication, we observe a Kronecker product structure
akin to that emerging from the outer product of matrix multiplication derivatives (Equation (15)).
Moreover, we note that the F–functional Hessian has a block hollow structure, similar to the MLP
functional Hessian as discussed in Section 2.

Softmax makes the Hessian block-heterogenous. Removing the softmax from the self-attention
definition makes the dependence of the Hessian blocks on the data more uniform across blocks. All
blocks of the F–outer product Hessian depend cubically on ΣXX, while the non-zero F functional
Hessian blocks depend linearly on X ⊗ ΣXX. Similarly, the number of weight matrices entering
the expressions for the blocks for the Hessian without softmax is the same for the F–outer product
Hessian and across non-zero blocks of the F–functional Hessian.

Figure 4 empirically demonstrates that removing softmax from self-attention makes the magnitudes
of the Hessian entries more homogeneous across blocks. For the classical attention (see also Fig-
ure 1a), we see that the distribution of Hessian block entries varies between query and value blocks –

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the entries of the query block are two orders of magnitude smaller than the entries of the value block.
We could explain this by X being initialized to values < 1 and the query Hessian block having a
higher order dependence on X than the value Hessian block (see Section 3.1). After removing the
softmax (Figure 4), we see that both query and value histograms are largely similar as we would
expect from Remark 4.1. Figure 4 also informs us that softmax has a particularly strong influence
on the magnitude of the query Hessian block and not on the value Hessian block.

Softmax makes the Hessian diagonal blocks more indefinite. When we remove the softmax from
the self-attention definition, the F–functional Hessian has a block-hollow structure with zero blocks
on the diagonal. This means that the the Hessian blocks are fully defined by the outer product
Hessian, which ensures that they are positive-semidefinite. Park & Kim (2022) empirically noticed
the more indefinite nature of Transformer Hessian compared to CNNs – our observation suggest that
the reason for that could lie in the ubiquitous use of softmax in Transformers.

Linear self-attention vs MLP. The loss Hessian of an MLP and CNN has been previously theoreti-
cally studied in the setting without nonlinearities, so analyzing the linear self-attention Hessian lets
us compare the two in a similar setting. The Transformer Hessian is much more data-dependent than
that of MLPs and CNNs, and we summarize this in Section 4.1 using the matrix big-O notation.

MLP/CNN Transformer

Ho O(ΣXX) O(Σ3
XX)

Hf O(Ωxy) O(ΩxyΣXX)

Table 1: Dependence of the Hessian of a linear
self-attention layer on the intra-sequence covariance
ΣXX and the input-residual covariance Ωxy :=
1
LX

⊤(F(X)−Y) in big-O notation (Remark 4.1).

One crucial difference is the scaling w.r.t. depth. If we stack D linear self-attention layers, the
block-diagonal matrices of the Hessian will contain 3D input intra-sequence covariances ΣXX.
This result follows directly from the fact that a D-layer linear self-attention network, as well as its
Jacobian w.r.t. any weight matrix, is a matrix chain involving 3D input sequence matrices X due to
the recurrence that the output of a layer is used three times by the consecutive layer. This is in stark
contrast to a linear MLP, whose Jacobian is only linear w.r.t.x, and therefore a Hessian diagonal
block contains only 2 data instances, independent of depth.

4.2 QUERY-KEY PARAMETRIZATION

In practice, self-attention relies on an interesting design decision to parametrize T using two matri-
ces WQ and WK. While this ensures having clearly defined, interpretable token embeddings on the
self-attention level and for small dK results in fewer parameters, we could, equivalently from the
function class perspective, replace the product WQW

⊤
K with a single matrix WQK. This, however,

changes the loss landscape.

Single-matrix self-attention parametrization. From Theorem 3.2 we know that we can further
decompose the the query-key blocks of the F–functional Hessian of classical self-attention. We
present this in detail in Appendix D. This decomposition and specifically T–functional Hessian
from Remark D.1 are by-products of parametrizing the self-attention matrix with two matrices WQ

and WK. To see that, let us consider a self-attention parametrized with a single matrix as another
control model. In the definition of self-attention from Equation (1) we assume a = softmax applied
row-wise and T(X) = XWQKX

⊤. In Lemma 4.1 we present the Hessian of this model with
respect to WQK.

Lemma 4.1. Hessian of Self-Attention with Single Matrix Attention Parametrization.
Assume self-attention definition from Equation (1), where a = softmax applied row-wise and
T(X) = XWQKX

⊤ followed by an MSE loss function. The loss Hessian w.r.t. WQK is

H(WQK,WQK) = Z⊤
1

(
IL ⊗WVW

⊤
V

)
Z1 +

(
δ⊤XY(IL ⊗W⊤

V)⊗ Id2
V

)
Z2

where Z1,Z2, δXY are defined as in Theorem 3.1, Theorem 3.2, and Remark D.1.

The Hessian w.r.t. WQK is the same as matrix U from the T–outer product Hessian of the classical
self-attention in Remark D.1, while there is no counterpart expression to the T–functional Hes-
sian. Double matrix parametrization of self-attention implies also that the query-key Hessian part
explicitly depends on the query and key weight matrices WQ and WK.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 OTHER COMMON DESIGN CHOICES

Temperature scaling. Assume that in the definition of self-attention from Equation (1) we em-
ploy the classical self-attention but with an additional temperature scaling, namely T(X) =
XWQW

⊤
KX

⊤/t
√
dK . This impacts the scaling factors in the T – Gauss-Newton decomposi-

tion from Remark D.1. The T–outer product Hessian will be scaled by 1/t2, while the T–funtional
Hessian by 1/t. To see that, note that t is just an extra multiplier in front of

√
dK and formula for HT

f

and HT
o depend on 1/

√
dK linearly and quadratically respectively. This implies that as t grows, HT

f

dominates the query-key part of the Hessian and when t → 0, HT
o becomes the more prominent part.

Layer norm. Layer norm is used either in the original Post-LN version, where it is applied between
residual blocks, or in the Pre-LN version (see Baevski & Auli (2018); Wang et al. (2019); Xiong et al.
(2020)), where it is placed inside the residual connection and additionally after the final layer. The
heavy dependence of the Hessian on the input matrix X, growing super-exponentially with network
depth (see Section 4.1), means that, unless the data is standardized, we can observe exploding or
vanishing phenomena, which will be more pronounced than in MLPs. This highlights the importance
of layer norm in the Transformer architecture. Moreover, the proper placement of layer norm, as
in the Pre-LN setting, addresses the data heterogeneity across Hessian blocks. In Figure 3b we
plot the Frobenius norm of the Hessian blocks for the Transformer block including the Pre-LN. We
verify that Pre-LN indeed addresses the block-heterogeneity w.r.t. data scaling laws – the difference
between the trend exponent in the two compared blocks is much smaller than in Figure 3.

5 CONCLUSION

Summary. In this work, we theoretically derived the entire structure of the self-attention Hessian
and discussed, in detail, how it behaves. In particular, we explicitly characterized that the self-
attention Hessian blocks have heterogeneous dependence on the data, weight, and degree of the
attention moment matrices. Further, we identified that Transformer-specific design decisions, such
as query-key parametrization and softmax, result in a more non-linear and heterogeneous Hessian
structure. Thus, theoretical works should be mindful of not discarding these design choices for the
sake of mathematical convenience, as they can significantly alter the Hessian structure across blocks.

Discussion. Our results contribute to the theoretical and practical discussion:

(i) Understanding Transformer optimization. The research community has been exploring why opti-
mizing Transformers is more challenging than other architectures (Zhang et al., 2024b; Xiong et al.,
2020; Liu et al., 2019; Pan & Li, 2022). Ahn et al. (2024) proposed a linear self-attention model
with a single-weight matrix parametrization to examine the Transformer’s loss landscape. Using
this simplified model, they reproduced key optimization phenomena, such as the performance gap
between Adam and SGD. Our work provides a Hessian-based perspective on this model, providing
new hypotheses which components may drive Transformer optimization challenges.

(ii) Transformer-specific optimizers. We believe that analyzing the block-diagonal structure can
be beneficial for developing optimization algorithms specifically tailored to Transformer models.
For example, there is evidence Zhang et al. (2024b;a) suggesting that the memory consumption
of adaptive optimizers can be significantly reduced by assigning a single adaptive learning rate to
parameters corresponding to a homogeneous block on the Hessian diagonal. Knowing the exact
block structure in self-attention layers, we could now use it to adapt the learning rate.

Limitations. While our theoretical setting is limited to a simple, single-layer3 model, we saw that
it displays a rich algebraic structure that is contained within the Hessian. Nevertheless, it would
be interesting to extend it to multi-layer networks that resemble fully-fledged Transformers, at least
along some specific axes. Moreover, since usually the embedding matrix X is also learned, it would
be worth studying its Hessian blocks.
Notwithstanding, our work lays a crucial foundation for the theoretical analysis of Transformer
Hessian – to our knowledge, we are the first to study its exact expressions and their dependencies.

3Theorems 3.1 and 3.2 directly generalize to the last layer of any deep self-attention network if we replace
the data matrix X with the output from the penultimate layer. Moreover, thanks to the chain rule, the second
derivatives of self-attention we derive are useful for the analysis of any depth Transformer.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We attach proofs of all theorems, lemmas, and more involved remarks presented in this manuscript
in the appendix. Specifically, Appendix A discusses prerequisites, and Appendices B and C outline
the proofs. Appendix F contains details on the experimental setup.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
ear attention is (maybe) all you need (to understand transformer optimization). In International
Conference on Learning Representations, 2024. 10

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
International Conference on Learning Representations, 2018. 10

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade: Second edition, pp. 437–478. Springer, 2012. 1

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2021. 2

Felix Dangel, Stefan Harmeling, and Philipp Hennig. Modular block-diagonal curvature approxi-
mations for feedforward architectures. In International Conference on Artificial Intelligence and
Statistics, 2020. 3

Felix Julius Dangel. Backpropagation beyond the gradient. PhD thesis, Universität Tübingen, 2023.
30

Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Neglected hessian component explains
mysteries in sharpness regularization. arXiv preprint arXiv:2401.10809, 2024. 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 1

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, 2019. 2

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011. 1

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016. 1

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In International Conference on Machine Learning, 2020. 1

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2019. 2

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2016. 2

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015. 1

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approxima-
tion for natural gradient descent. In Advances in Neural Information Processing Systems, 2019.
3

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in Neural Information
Processing Systems, 1989. 2

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998. 1

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2019. 10

Shuangzhe Liu. Matrix results on the khatri-rao and tracy-singh products. Linear Algebra and its
Applications, 1999. 7, 14, 22, 23

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. 1

Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons, 2019. 3, 14, 15, 16, 27

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, 2010. 2

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 2020. 3, 5

Neel Nanda and Joseph Bloom. Transformerlens. github.com/TransformerLensOrg/
TransformerLens, 2022. 30

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 2022. 4, 6, 7, 16

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for trans-
formers. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.
10

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra. Journal of
Machine Learning Research, 2020. 2

Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference on
Learning Representations, 2022. 2, 9

Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces via random matrix
theory. In International Conference on Machine Learning, 2017. 2

Martin Popel and Ondřej Bojar. Training tips for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 2018. 1

Philip Quirke and Fazl Barez. Understanding addition in transformers. In International Conference
on Learning Representations, 2024. 6, 30

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. 1

12

github.com/TransformerLensOrg/TransformerLens
github.com/TransformerLensOrg/TransformerLens


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 6, 30

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological Review, 1958. 1

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv preprint arXiv:1611.07476, 2016. 2

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017. 2, 3

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International Con-
ference on Machine Learning, 2013. 2

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 2002. 3

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 2020. 2

Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. Analytic insights into structure and
rank of neural network hessian maps. Advances in Neural Information Processing Systems, 2021.
2, 3, 4, 15, 27, 34

Sidak Pal Singh, Thomas Hofmann, and Bernhard Schölkopf. The hessian perspective into the nature
of convolutional neural networks. In International Conference on Machine Learning, 2023. 2, 3,
4

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017. 1, 3, 16, 29

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, 2019. 10

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, 2020. 1, 10

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE International Conference on Big Data, 2020. 2

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. Advances in Neural Information Processing Systems,
2024a. 2, 7, 10

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024b. 10

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A KNOWN DEFINITIONS & PROPERTIES

In this manuscript, we make extensive use of the Kronecker product, as introduced in Definition
A.1. Some of our results rely on the generalization of the Kronecker product named Khatri–Rao
product from Definition A.2. This section lists matrix calculus and linear algebra properties used in
this manuscript.

Definition A.1. Kronecker Product. Let A ∈ Rm×n and B ∈ Rp×q matrix. The Kronecker
product A⊗B ∈ Rmp×nq is a block matrix given by:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

Definition A.2. Khatri–Rao Product Liu (1999). Let A and B be block matrices with n×m
blocks. The Khatri–Rao product A ∗B is a block matrix with n×m blocks defined as:

A ∗B = (Ai,j ⊗Bi,j)i,j =

A1,1 ⊗B1,1 · · · A1,m ⊗B1,m

...
. . .

...
An,1 ⊗Bn,1 · · · An,m ⊗Bn,m

 ,

where Al,k and Bl,k are the blocks from lth block row and kth block column of A and B,
respectively.

Basic Kronecker product properties. Here we list some useful properties of the Kronecker prod-
uct. A discussion on the Kronecker product and proofs of the listed properties can be found in
Magnus & Neudecker (2019). For all the listed properties, we assume that the matrices are of the
appropriate dimensions to perform the operations.

A⊗ (B+C) = A⊗B+A⊗C and (B+C)⊗A = B⊗A+C⊗A (6)
(kA)⊗B = A⊗ (kB) = k(A⊗B), k ∈ R (7)

(A⊗B)⊗C = A⊗ (B⊗C) (8)
(A⊗B)(C⊗D) = (AC)⊗ (BD) (9)

(A⊗B)⊤ = A⊤ ⊗B⊤ (10)

For a,b being column vectors
a⊤ ⊗ b = ba⊤ = b⊗ a⊤ (11)

Vector-matrix Kronecker product. Assume that A and B can be multiplied. Based on the mixed
product property and the fact that taking a Kronecker product of a matrix and a scalar only scales
matrix entries we can write

A(v⊤ ⊗B) = (1⊗A)(v⊤ ⊗B) = (v⊤ ⊗AB). (12)

Vectorization & Kronecker product. Assume that A ∈ R×mn and B can be multiplied. Based
on the mixed product property and the fact that taking a Kronecker product of a matrix with a scalar
only scales matrix entries we can write

vecr A = (A⊗ In) vecr A. (13)

Proof. For a column-wise vectorization, Theorem 2.2 from Magnus & Neudecker (2019) tells us
that for a matrix B ∈ Rp×q it holds that vecc B = (Iq ⊗B) vecc Ip. Hence, we can write

vecr A = Km,n vecc A = Km,n (In ⊗A) vecc In

= (A⊗ In)Kn,n vecc In = (A⊗ In) vecr In.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Product of a block-diagonal matrix and a Kronecker product. Let for any i ∈ {1, . . . ,m}
A ∈ Rq×r, B ∈ Rm×n and C ∈ Rr×t. Then, thanks to the vector-matrix Kronecker product
property (Equation (12)) the following expression holds

blockdiag (Ai) (B⊗C) =

A1 . . . 0
...

. . .
...

0 . . . Am



B

⊤
1, :
...

B⊤
m, :

⊗C


=

A1 . . . 0
...

. . .
...

0 . . . Am


B

⊤
1, : ⊗C

...
B⊤

m, : ⊗C

 =

 A1

(
B⊤

1, : ⊗C
)

...
Am

(
B⊤

m, : ⊗C
)


=

 B⊤
1, : ⊗A1C

...
B⊤

m, : ⊗AmC

 .

(14)

Derivative of a matrix product. If F(X) = AXB, then

∇XF = A⊗B⊤. (15)

The proof of the above formula can be found in Singh et al. (2021).

Derivative of a Kronecker product. Let’s take F(X) = X ⊗ Y, where X ∈ Rn×q and Y ∈
Rp×r. Then

∇XF = (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecr Y) , (16)

and analogously

∇YF = (In ⊗Kp,q ⊗ Ir) (vecr X⊗ Ipr) . (17)

Proof. The proof makes use of the same formula but for the column-wise definition of derivative that
can be found in Magnus & Neudecker (2019) and states that the column-wise derivative of F w.r.t. X
is given by (Iq ⊗Kr,n ⊗ Ip) (Inq ⊗ vecc Y). We will use the above formula with X⊤,Y⊤ instead
of X,Y respectively together with the first identification theorem (Theorem 5.6 from Magnus &
Neudecker (2019)).

d(vecr (X⊗Y)) = d(vecc (X⊗Y)⊤) = d(vecc (X
⊤ ⊗Y⊤))

= (In ⊗Kp,q ⊗ Ir)
(
Inq ⊗ vecc Y

⊤) d(vecc X⊤)

= (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecr Y) d(vecr X),

so again by the first identification theorem, we obtain Equation (16).

To prove Equation (17) we again use the formula for column-wise derivative of F w.r.t. Y from
Magnus & Neudecker (2019), namely (Iq ⊗Kr,n ⊗ Ip) (vecc X⊗ Ipr). As for the previous for-
mula, we again use the first identification theorem.

d(vecr (X⊗Y)) = d(vecc (X⊗Y)⊤) = d(vecc (X
⊤ ⊗Y⊤))

= (In ⊗Kp,q ⊗ Ir)
(
vecc X

⊤ ⊗ Ipr
)
d(vecc Y

⊤)

= (In ⊗Kp,q ⊗ Ir) (vecr X⊗ Ipr) d(vecr Y),

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Derivative of transposition. Let F(X) = X⊤ where X ∈ Rn×q . Then

d vecr F(X) = d vecr X
⊤ = Kq,n d vecr X,

so from the first identification theorem (Theorem 5.6 from Magnus & Neudecker (2019))
∇XF = Kq,n. (18)

B GRADIENT & HESSIAN EXPRESSIONS

In this section, we derive the expression for the self-attention Hessian. Firstly, we focus on the clas-
sical self-attention which we discuss in Section 3. Next, we move on to self-attention parametrized
by a single query-key matrix, as discussed in Section 4.2.

B.1 CLASSICAL SELF-ATTENTION

Knowing the Jacobian of self-attention is a crucial step in deriving the Hessian (the loss gradient’s
Jacobian). We start by recalling the formulas for self-attention Jacobians w.r.t. weight matrices
derived in Noci et al. (2022).

Lemma B.1. Jacobians of Self-Attention Noci et al. (2022). The Jacobians of the classical
self-attention layer (Vaswani et al., 2017) have the following form:

∂F

∂WV
= softmax

(
XWQW

⊤
KX

⊤
√
dK

)
X⊗ IdV

,

∂F

∂WQ
=
(
IL ⊗W⊤

VX
⊤) ∂A

∂T

(
X⊗XWK√

dK

)
,

where the Jacobian of the row-wise softmax w.r.t. its inputs is as follows:

∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
, (19)

and where
∂Ai, :

∂Ti, :
= diag(Ai, :)−Ai, :A

⊤
i, :,

with Ai, : being the i-th row of A in column vector format.

With the Jacobians of self-attention w.r.t. the weight matrices established, we can now introduce
the Hessian. We will begin by focusing on the F–outer product Hessian and then proceed to the
functional Hessian.

Theorem 3.1. Outer Product Hessian Ho. For a single self-attention layer, Equation (1),
with classical self-attention that feeds into the square loss, the blocks of Ho are

Ho (WV,WV) =
2

LdV
M⊤

1 M1 ⊗ IdV
,

Ho (WQ,WQ) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WV,WQ) =
2

LdV
√
dK

(
M⊤

1 ⊗W⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WQ,WK) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (WQ ⊗ IdV

)KdK ,dV
,

with the first attention moment matrix M1 := AX ∈ RL×dV (see Section 3.2) and where
Z1 := (IL ⊗X⊤)(∂A/∂T)(X⊗X) ∈ RLdV ×d2

V contains first derivatives of the softmax.

Proof. Hessian of the mean-square error loss w.r.t. network prediction is an identity matrix scaled
by 2

LdV
. Hence, computing the F–outer product Hessian block is just taking the F–outer products of

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the appropriate self-attention Jacobians from Lemma B.1 and scaling them by 2
LdV

. The expressions
can be further simplified using the mixed-product property of the Kronecker product (Equation (9)).

Let us prove the exact formula for the mixed query-value block. The remaining formulas follow
exactly the same steps.

HF
o (WV,WQ) =

2

LdV

∂F

∂WV

⊤ ∂F

∂WQ

=
2

Ldv

(
X⊤A⊤ ⊗ IdV

) (
IL ⊗W⊤

VX
⊤) ∂A

∂T

(
X⊗XWK√

dK

)
=

2

LdV
√
dK

(
X⊤A⊤ ⊗W⊤

VX
⊤) ∂A

∂T

(
X⊗XWK√

dK

)
=

2

LdV
√
dK

(
T⊤

1 ⊗W⊤
V

) (
IL ⊗X⊤) ∂A

∂T
(X⊗X) ∈ RLdV ×d2

V (IdV
⊗WK)

=
2

LdV
√
dK

(
T⊤

1 ⊗W⊤
V

)
Z1 (IdV

⊗WK) .

Before we derive the F–functional Hessian expressions, we prove two helper lemmas which al-
low us to unify the structuring expressions that emerge in the F–functional Hessian. For clearer
presentation in Lemma B.2, we change the commutation matrix notation.

Lemma B.2. Let K(M,N) ∈ RMN×MN denote the commutation matrix, which permutes
two indices in a super-index, i.e. suppose v ∈ RMN is a vector indexed by a super-
index (mn), then [Kv](nm) = [v](mn). In index notation, the entries of K(M,N) are
[K(M,N)](nm),(m′n′) = δnn′δmm′ . Further, the following relation holds:

(IM ⊗K(M,N)) (vecr IM ⊗ IN ) = (K(N,M)⊗ IM ) (IN ⊗ vecr IM ) . (20)

Specifically, for M = N we obtain (I⊗K)(vecr I⊗ I) = (K⊗ I)(I⊗ vecr I).

Proof. Consider the left hand side of Equation (20) in index notation and simplify, which yields

[(IM ⊗K(M,N)) (vecr IM ⊗ IN )](m1n1m2),n2

=
∑

m′
1,m

′
2,n

′
1

[IM ⊗K(M,N)](m1n1m2),(m′
1m

′
2n

′
1)
[vecr IM ⊗ IN ](m′

1m
′
2n

′
1),n2

=
∑

m′
1,m

′
2,n

′
1

δm1,m′
1
δm2,m′

2
δn1,n′

1
δm′

1,m
′
2
δn′

1,n2

=
∑

m′
1,m

′
2,n

′
1

δm′
1,m1,m′

2,m2
δn′

1,n1,n2
.

Simplifying the right hand side of Equation (20) in index notation yields the same expression and
thereby establishes the equality:

[(K(N,M)⊗ IM ) (IN ⊗ vecr IM )](m1n1m2),n2

=
∑

m′
1,m

′
2,n

′
1

[K(N,M)⊗ IM ](m1n1m2),(n′
1m

′
1m

′
2)
[IN ⊗ vecr IM ](n′

1m
′
1m

′
2),n2

=
∑

m′
1,m

′
2,n

′
1

δm1,m′
1
δn1,n′

1
δm2,m′

2
δn′

1,n2
δm′

1,m
′
2

=
∑

m′
1,m

′
2,n

′
1

δm′
1,m1,m′

2,m2
δn′

1,n1,n2
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma B.3. For any matrix A ∈ Rm×n it holds that

(Im ⊗Km,n) (vecr A⊗A) = (A⊗A⊗ In) (In ⊗Kn,n) (vecr In ⊗ In) .

Proof. The equality follows from the chain of transformations

(Im ⊗Km,n) (vecr A⊗A) = (Im ⊗Km,n) ((A⊗ In) vecr In ⊗A)

= (Im ⊗Km,n) (A⊗ In ⊗A) (vecr In ⊗ In)

= (A⊗Km,n (In ⊗A)) (vecr In ⊗ In)

= (A⊗ (A⊗ In)Kn,n) (vecr In ⊗ In)

= (A⊗A⊗ In) (In ⊗Kn,n) (vecr In ⊗ In) ,

were the first equality comes from Equation (13) and the remaining ones are consequences of the
mixed product property (Equation (9)) and fundamental properties of the commutation matrix.

Theorem 3.2. Functional Hessian Hf . For the same setup as in Theorem 3.1, the F –
functional Hessian with respect to the value weight matrix Hf (WV,WV) is zero and the
remaining blocks are given by,

Hf (WQ,WQ) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (IdV

⊗WK) ,

Hf (WV,WQ) =
2

LdV
√
dK

Rd2
V
(IL ⊗ S) Z1 (IdV

⊗WK) ,

Hf (WQ,WK) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (WQ ⊗ IdV

)KdK ,dV

+
2

LdV
√
dK

RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S⊗ IdK
,

with the duplicated residual Rm := vecr (F(X)−Y)
⊤ ⊗ Im ∈ Rm×mLdV , a shuffling ma-

trix S := (IdV
⊗KdV ,dV

) (vecr IdV
⊗ IdV

) ∈ Rd3
V ×dV where KdV ,dV

is a commutation
matrix (see e.g. Lemma B.2), Z1 defined as in Theorem 3.1, and Z2 := (IL ⊗ X⊤ ⊗ X⊤ ⊗
X⊤)(∂2A/∂T2)(X⊗X) ∈ RLd3

V ×d2
V containing second-order softmax derivatives.

Proof. We derive the F–functional block by block. For each block, we derive the second derivative
matrix of F, as in Figure 2. Each of the derived expressions can be represented as in the theorem
statement by multiplying the second derivative matrix by the gradient of the loss according to the
definition of F–functional Hessian. applying the mixed product property Equation (9).

F–functional Hessian w.r.t. WV & WQ. Let us find the formula for the second derivative of
the Hessian w.r.t. value and key weight matrices WV & WQ. To do that we take the Jacobian of
∂F/∂WV w.r.t. the query weight matrix WQ. To simplify the expression, consider the following
assignments

F1 :=
∂F

∂WV
= F2 ⊗ IdV

,

F2 := softmax

(
XWQWK

⊤X⊤
√
dK

)
X.

By the chain rule, we know that

∂2F

∂WV∂WQ
=

∂F1

∂WQ
=

∂F1

∂F2

∂F2

∂WQ
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

From Equation (16) we obtain

∂F1

∂F2
= (IL ⊗KdV ,dV

⊗ IdV
) (ILdV

⊗ vecr(IdV
))

= IL ⊗ (KdV ,dV
⊗ IdV

) (IdV
⊗ vecr(IdV

))︸ ︷︷ ︸
S

,

where S is as in the theorem statement.

Moreover, by observing that F2 differs from A only by the presence of matrix WV, from Lemma
B.1 we get the derivative

∂F2

∂WQ
=
(
IL ⊗X⊤) ∂A

∂T

(
X⊗XWK√

dK

)
.

Plugging the formulas together yields the formula for the second derivative. The formula for the
second derivative w.r.t. value and key weight matrices can be derived in the same way, with the only
exception being that we take a derivative of F2 w.r.t. WK instead of w.r.t. WQ.

F–functional Hessian w.r.t. WQ. To obtain the query-query block, we will start by differentiating
the Jacobian to obtain the formula for the second derivative of self-attention w.r.t. query weight
matrix WQ. Let

F1 :=
∂F

∂WQ
=
(
IL ⊗WV

⊤X⊤
)
G

(
X⊗XWK√

dK

)
,

G :=
∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
,

T :=
1√
dK

XWQ(XWK)
⊤,

as in Lemma B.1. By the chain rule, we obtain

∂2F

∂WQ∂WQ
=

∂F1

∂WQ
=

∂F1

∂G

∂G

∂T

∂T

∂WQ
.

Thanks to Equation (15) and the mixed product property (Equation (9)) we can write that

∂F1

∂G
=
(
IL ⊗WV

⊤X⊤
)
⊗
(
X⊗XWK√

dK

)⊤

,

=

(
IL ⊗WV

⊤X⊤ ⊗X⊤ ⊗WK
⊤X⊤

√
dK

)
,

∂T

∂WQ
=

(
X⊗XWK√

dK

)
.

Additionally, we note that ∂G/∂T is the second derivative of row-wise softmax

∂G

∂T
=

∂2A

∂T∂T
,

which we describe in detail in Appendix C.1. Plugging in the above formulas to the chain rule yields
the formula for the second derivative we were looking for.

F–functional Hessian w.r.t. WQ & WK. We proceed by differentiating the Jacobian of F w.r.t
WQ. Let us again start with defining some helper terms

F1 :=
(
IL ⊗WV

⊤X⊤
)
,

G :=
∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
,

F2 :=

(
X⊗XWK√

dK

)
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Note that only G and F2 depend on WK so by applying the chain rule to the product of functions
and using a derivative of a matrix product formula (Equation (15)) we get

∂2F

∂WQ∂WK
=

∂F1GF2

∂WK
=
(
F1 ⊗ F⊤

2

) ∂G

∂WK
+ (F1G⊗ IdV dK

)
∂F2

∂WK
. (21)

Now, thanks to the chain rule, a derivative of a matrix product (Equation (15)) and the derivative of
a transposition (Equation (18))

∂G

∂WK
=

∂2A

∂T∂T

(
XWQ ⊗X√

dK

)
KdK ,dV

.

Additionally, due to the chain rule and the formula for the Kronecker product derivative (Equa-
tion (17))

∂F2

∂WK
= (IL ⊗KL,dV

⊗ IdK
) (vecr X⊗ ILdK

)

(
X⊗ IdK√

dK

)
=

1√
dK

(IL ⊗KL,dV
⊗ IdK

) (vecr X⊗X⊗ IdK
)

=
1√
dK

(IL ⊗KL,dV
) (vecr X⊗X)⊗ IdK

=
1√
dK

(X⊗X⊗ IdV
) (IdV

⊗KdV ,dV
) (vecr IdV

⊗ IdV
)⊗ IdK

=
1√
dK

(X⊗X⊗ IdV
) (KdV ,dV

⊗ IdV
) (IdV

⊗ vecr(IdV
))︸ ︷︷ ︸

S

⊗IdK

where the first two transformations follow from the mixed product property (Equations (9) and (12))
and the remaining two from Lemmas B.2 and B.3. Plugging in all the terms we obtain the Hessian
block.

B.2 SELF-ATTENTION WITH SINGLE-MATRIX PARAMETRIZATION

Lemma 4.1. Hessian of Self-Attention with Single Matrix Attention Parametrization. As-
sume self-attention definition from Equation (1), where a = softmax applied row-wise and
T(X) = XWQKX

⊤ followed by an MSE loss function. The loss Hessian w.r.t. WQK is

H(WQK,WQK) = Z⊤
1

(
IL ⊗WVW

⊤
V

)
Z1 +

(
δ⊤XY(IL ⊗W⊤

V)⊗ Id2
V

)
Z2

where Z1,Z2, δXY are defined as in Theorem 3.1, Theorem 3.2, and Remark D.1.

Proof. The Jacobian of self-attention for WQK matrix is given by

∂F

∂WQK
=
(
IL ⊗WV

⊤X⊤
) ∂A

∂T
(X⊗X) , (22)

where ∂A/∂T is defined as in Lemma B.1. The proof follows from applying the chain rule and the
derivative of matrix multiplication as in Equation (15).

Now, to obtain the functional Hessian formula, let

F1 :=
∂F

∂WQK
=
(
IL ⊗WV

⊤X⊤
) ∂A

∂T
(X⊗X) ,

G :=
∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
,

T := XWQKX
⊤.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

From the chain rule, we obtain
∂2F

∂WQK∂WQK
=

∂F1

∂G

∂G

∂T

∂T

∂WQK

=
(
IL ⊗WV

⊤X⊤ ⊗X⊤ ⊗X⊤
) ∂2A

∂T∂T
(X⊗X) ,

where to get the second line we use the formula for the derivative of a matrix product (Equation (15))
twice. The formula from the lemma statement follows directly from plugging in the above compo-
nents to Equation (2).

C SELF-ATTENTION MOMENT MATRICES

In this section, we prove Remark 3.1. To notice the dependence of the Hessian on the second moment
matrix, we need to derive and simplify the second derivative of the row-wise softmax – we focus on
that in Appendix C.1. In Appendix C.2 we move on to interpreting matrices Z1 and Z2 through the
lens of the self-attention moment matrices.

C.1 SECOND DERIVATIVE OR ROW-WISE SOFTMAX

To gain some intuition on the structure of the second derivative of the row-wise softmax, we begin
with the simplest possible case, assuming a sequence length of L = 2.

Remark C.1. Assume that the sequences are of length L = 2, meaning that the attention matrix
is of the form

A =

[
a1,1 a1,2
a2,1 a2,2

]
.

By Lemma B.1 the Jacobian of the row-wise softmax is given by matrix
∂A

∂T
of the form

a1,1 − a21,1 −a1,1a1,2 0 0
−a1,1a1,2 a1,2 − a21,2 0 0

0 0 a2,1 − a22,1 −a2,1a2,2
0 0 −a2,1a2,1 a2,2 − a22,2

 .

By vectorizing the above matrix row-wise, computing derivatives with respect to corresponding
softmax inputs, and defining bi,j := 1− 2ai,j we obtain that the second derivative matrix is of
the form

∂2F

∂T∂T
=



(a1,1 − a21,1)b1,1 −a1,1a1,2b1,1 0 0
−a1,1a1,2b1,1 −a1,1a1,2b1,2 0 0

0 0 0 0
0 0 0 0

−a1,1a1,2b1,1 −a1,1a1,2b1,2 0 0
−a1,1a1,2b1,2 (a1,2 − a21,2)b1,2 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 (a2,1 − a22,1)b2,1 −a2,1a2,2b2,1
0 0 −a2,1a2,2b2,1 −a2,1a2,2b2,2
0 0 0 0
0 0 0 0
0 0 −a2,1a2,2b2,1 −a2,1a2,2b2,2
0 0 −a2,1a2,2b2,2 (a2,2 − a22,2)b2,2



.

To obtain each entry of the matrix, we simply apply the chain rule. This means that each entry is a
sum of products, where the first factor is the derivative of the entries of ∂A/∂T with respect to ai,j ,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

and the second factor is the derivative of ai,j with respect to the entries of T. These derivatives can
be found directly in the ∂A/∂T matrix. The blocks of zeros occur because the softmax function is
applied independently to each row, so the second derivative for mixed-row entries is always zero.

Lemma C.1 generalizes the above observations to any sequence length L.

Lemma C.1. Second Derivative of Row-Wise Softmax. Assume self-attention matrix A =
[a]i,j≤L. Then the second derivative of the row-wise softmax has a block-diagonal structure,
namely

∂2F

∂T∂T
= blockdiagDi ∈ RL4×L2

,

where Di ∈ RL3×L is of the form

Di =

Di,1

...
Di,L,

 , with Di,j = ei ⊗
∂2Ai,j

∂Ti, :∂Ti, :
,

and ei being unit vectors in the standard basis. Moreover, the single-element second derivatives
can be expressed as

∂2Ai,j

∂Ti, :∂Ti, :
= Ai,j

(
2Ai, :A

⊤
i, : +EL,L

j,j − diag(Ai, :)− ejA
⊤
i, : −Ai, :e

⊤
j

)
∈ RL×L,

where Em,n
j,j = eje

⊤
j ∈ Rm×n is a matrix filled with zeros except for entry in jth row and jth

column which is 1.

Additionally, if we structure the single entry second derivatives into a block column matrix
∂2Ai, :

∂Ti, :∂Ti, :
=

[
∂2Ai,1

∂Ti, :∂Ti, :
, . . . ,

∂2Ai,L

∂Ti, :∂Ti, :

]⊤
we can rewrite Di concisely as

Di =

(
(1L,1 ⊗ ei) ∗

∂2Ai, :

∂Ti, :∂Ti, :

)
, (23)

where ∗ represents Khatri-Rao product Liu (1999) (see Definition A.2) with blocks defined by
the standard basis vectors in the LHS matrix and by the second derivatives of a single row entry
in the RHS matrix.

Proof. Let us start with discussing the general structure of the second derivative matrix. Later we
will focus on specific matrix entries.

Block-column structure. Recall that we are computing the second derivative of a matrix-valued
function A that takes a matrix T as an argument. In the layout and vectorization scheme assumed
in this manuscript, the Hessians of every entry of A in the row-wise order are placed consecutively
into a block-column matrix (see Figure 2).

Block-diagonal structure. Let us consider a single block from the block-column structure discussed
in the previous paragraph. Since the softmax acts on every row of T separately, and the Hessian of
Ai,j is computed with respect to all L2 entries of T, the Hessian will have potentially non-zero
values only in one sub-block on the diagonal whose rows end columns have indices in the range
from (i− 1)L+ 1 to iL inclusive. This translates into the derivative of the row-wise softmax

∂2F

∂T∂T

also having the block-diagonal structure. Specifically, let us enumerate the L2 × L2 single-entry
Hessians placed into this block-column matrix with an index J . For any integer i such that 1 ≤ i ≤ L
when (i− 1)L+1 ≤ J ≤ iL we have possible non-zero values only in columns iL to (i+1)L− 1
inclusive. Now let us group these Hessians into L larger blocks corresponding to a single row of A
- the whole such block corresponding to Ai, : has possible non-zero entries only in columns from

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(i− 1)L+ 1 to iL inclusive. Hence the structure of the second derivative of self-attention is block-
diagonal if we consider only the non-zero sub-blocks. We refer to the sub-block corresponding to
row Ai, : w.r.t Ti, : by Di.

Block-column structure of Di. Finally, Di consists of row blocks, cut out of the element-wise
Hessians we have just discussed, which explains the Khatri-Rao product in Equation (23).

Non-zero elements. The non-zero entries of Di correspond to

∂2Ai,j

∂Ti, :∂Ti, :
.

We now find its exact formula.

Recall from Theorem B.1 that

∂Ai, :

∂Ti, :
= diag(Ai, :)−Ai, :A

⊤
i, :,

which means that

∂Ai,j

∂Ti, :
= (ej −Ai, :)

⊤Ai,j ∈ R1×L.

To get the second derivative it is enough to differentiate the transpose of the above function using
the Leibniz product rule, namely

∂2Ai,j

∂Ti, :∂Ti, :
=

∂(ej −Ai, :)

∂Ti, :
Ai,j + (ej −Ai, :)

∂Ai,j

∂Ti, :

= −∂Ai, :

∂Ti, :
Ai,j + (ej −Ai, :)

∂Ai,j

∂Ti, :
.

Since we already know both derivatives from this expression from Lemma B.1 it is enough to sub-
stitute them to obtain

∂2Ai,j

∂Ti, :∂Ti, :
= −

(
diag(Ai, :)−Ai, :A

⊤
i, :

)
Ai,j + (ej −Ai, :)(ej −Ai, :)

⊤Ai,j

= Ai,j

(
2Ai, :A

⊤
i, : + eje

⊤
j − diag(Ai, :)− ejA

⊤
i, : −Ai, :e

⊤
j

)
.

C.2 SELF-ATTENTION MOMENT MATRICES

Remark 3.1. The data terms emerging in the self-attention Hessian can be expressed as func-
tions of the self-attention central moment matrices,

Z1 = X ∗M2 , and Z2 = (IL ⊗KdV ,dV
⊗ IdV

)
(
X ∗X⊤ ∗M3

)
,

where ∗ is the Khatri-Rao product (Liu, 1999), see Definition A.2.

Proof. Before starting the derivations, let us specify that for the Khatri-Rao product in the theo-
rem statement, X is split row-wise and Mk is split block-row-wise into central moment matrices
corresponding to attention rows as in Definition 3.1. The proof follows straight from transforming
matrices Z1 and Z2.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Dependence on the second central moment matrix M2. It holds that

Z1 =
(
IL ⊗X⊤) ∂A

∂M
(X⊗X)

= blockdiag

(
X⊤ ∂Ai, :

∂Ti, :

)
(X⊗X)

=


X⊤

1, : ⊗X⊤ ∂A1, :

∂T⊤
1, :

X

...

X⊤
L, : ⊗X⊤ ∂AL, :

∂T⊤
L, :

X

 = X ∗M2,

where the first line follows from the two first matrices in the product being block diagonal and the
second from Equation (14).

Dependence on the third central moment matrix M3. Let’s recall from Theorem 3.2 that

Z2 =
(
IL ⊗X⊤ ⊗X⊤ ⊗X⊤) ∂2A

∂T∂T
(X⊗X)

=
(
IL ⊗X⊤ ⊗X⊤ ⊗X⊤) blockdiagDi (X⊗X) .

The first two matrices in the above product are block-diagonal with L equal-sized blocks, so their
product is also a block-diagonal matrix with L equal-sized blocks. By Equation (14) we know that
Z has a block structure Z2 = [Z2;i]1≤i≤L , where

Z2;i =
(
X⊤ ⊗X⊤ ⊗X⊤)Di

(
X⊤

i, : ⊗X
)
,

with Xi, : ∈ RdV ×1 being the ith row of X as a column vector.

Let us recall Lemma C.1 that gives us the Di formula to transform the expression for Zi

Z2;i =
(
X⊤ ⊗X⊤ ⊗X⊤)Di

(
X⊤

i, : ⊗X
)

=
(
X⊤ ⊗X⊤ ⊗X⊤)((1L,1 ⊗ ei) ∗

∂2Ai

∂Ti, :∂Ti, :

)(
X⊤

i, : ⊗X
)

=
[
x1 ⊗X⊤ ⊗X⊤ . . . xL ⊗X⊤ ⊗X⊤]


ei ⊗

∂2Ai,1

∂Ti, :∂Ti, :
...

ei ⊗
∂2Ai,L

∂Ti, :∂Ti, :


(
X⊤

i, : ⊗X
)

=

 L∑
j=1

(
Xj, : ⊗X⊤) ei ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :

(X⊤
i, : ⊗X

)

=

L∑
j=1

(
Xj, : ⊗X⊤) eiX⊤

i, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

=

L∑
j=1

Xj, : ⊗Xi, :X
⊤
i, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X,

where the last equality follows from the mixed product property of the Kronecker product, namely(
Xj, : ⊗X⊤) eiX⊤

i, : =
(
X⊤

j, : ⊗X⊤
)(

1⊗ eiX
⊤
i, :

)
= Xj, : ⊗X⊤eiX

⊤
i, : = Xj, : ⊗Xi, :X

⊤
i, :.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Using known properties of the commutation matrix and the mixed product property (Equation (9)),
we can further simplify the expression

Z2;i =

L∑
j=1

Xj, : ⊗Xi, :X
⊤
i, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

=

L∑
j=1

KdV ,dV

(
Xi, :X

⊤
i, : ⊗Xj, :

)
⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

=

L∑
j=1

(KdV ,dV
⊗ IdV

)

(
Xi, :X

⊤
i, : ⊗Xj, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

)

=(KdV ,dV
⊗ IdV

)

Xi, :X
⊤
i, : ⊗

L∑
j=1

Xj, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X︸ ︷︷ ︸

N

 .

Finally, after plugging in ∂2Ai,j/∂Ti, :∂Ti, : from Lemma C.1 and extracting Ai,j in front of the
Kronecker product we simplify the expression under the summation N

N =

L∑
j=1

Xj, : ⊗X⊤Ai,j

(
2Ai, :A

⊤
i, : +EL,L

j,j − diag(Ai, :)− ejA
⊤
i, : −Ai, :e

⊤
j

)
X

=

L∑
j=1

Ai,jXj, : ⊗
(
2[M1]i,:[M1]

⊤
i,: +Xj, :X

⊤
j, : −X⊤ diag(Ai, :)X− [M1]i,:X

⊤
j, : −Xj, :[M1]

⊤
i,:

)
.

This can be further simplified. We firstly note that

[M1]i,:[M1]
⊤
i,: +Xj, :X

⊤
j, : − [M1]i,:X

⊤
j, : −Xj, :[M1]

⊤
i,: = ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)

⊤
.

Moreover, from the fact that Kronecker product distributes over addition (Equation (6))
L∑

j=1

Ai,jXj, : ⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)

=

 L∑
j=1

Ai,jXj, :

⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
= [M1]i,: ⊗

(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
.

These two equations give us

N =

L∑
j=1

Ai,jXj, : ⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
+

L∑
j=1

Ai,jXj, : ⊗
(
[M1]i,:[M1]

⊤
i,: +Xj, :X

⊤
j, : − [M1]i,:X

⊤
j, : −Xj, :[M1]

⊤
i,:

)
= [M1]i,: ⊗

(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
+

L∑
j=1

Ai,jXj, : ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤
.

We are now at the finish line of obtaining the desired formula. Let us note that the covariance appears
in both summands of the equation above, specifically(

X⊤ diag(Ai, :)X− [M1]i,:[M1]
⊤
i,:

)
=

L∑
j=1

Ai,j ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤
.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Hence,

N = [M1]i,: ⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
+

L∑
j=1

Ai,jXj, : ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

= −
L∑

j=1

Ai,j [M1]i,: ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

+

L∑
j=1

Ai,jXj, : ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

=

L∑
j=1

Ai,j (Xj, : − [M1]i,:)⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

= [M3]i,:.

After plugging in the above into the Z2;i formula, we obtain

Z2;i = (KdV ,dV
⊗ IdV

)
(
Xi, :X

⊤
i, : ⊗ [M3]i,:

)
.

Finally, note that

X ∗X⊤ ∗M3 = [Xi, :X
⊤
i, : ⊗ [M3]i,:]1≤i≤L ∈ RLd2

V ×dV ,

and
M3 = (IL ⊗KdV ,dV

⊗ IdV
)
(
X ∗X⊤ ∗M3

)
.

D MORE ON THE QUERY-KEY HESSIAN BLOCK

Nested structure of the query-key Hessian. The query-key Hessian blocks exhibit a nested struc-
ture which prompts us to define a Gauss-Newton-like decomposition of the query-key Hessian
blocks. The mixed query-key block of the Hessian consists of three summands - one coming from
the F–outer product Hessian and two from the F–functional Hessian. The F – outer product term
as well as one of the F – functional terms are structurally similar to the query blocks we can find
on the diagonal. Together they can be expressed as an outer product. This observation results in the
decomposition from Remark D.1.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Remark D.1. The query-key part of the Hessian from Theorems 3.1 and 3.2 can be equivalently
decomposed into a sum of T–outer product and T–functional Hessians, respectively given by

HT
o (WQK,WQK) =

1

dK
V⊤

(
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 +

(
δ⊤XY(IL ⊗W⊤

V)⊗ Id2
V

)
Z2

)
︸ ︷︷ ︸

U

V,

HT
f (WQK,WQK) =

1√
dK

[
0 B⊤ ⊗ IdK

B⊗ IdK
0

]
=

1√
dK

[
0 B⊤

B 0

]
⊗ IdK

.

In the above formulas WQK :=

[
WQ

WK

]
, δXY := vecr (F(X)−Y) and,

V := [(WQ ⊗ IdV
)KdK ,dV

IdV
⊗WK] , B := RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S.

This decomposition can be thought of as a Gauss-Newton decomposition when we split the
function composition ℓ◦(A 7→ AXWV)◦a◦T at the level of T(X) = XWQW

⊤
KX

⊤/
√
dK .

Query-key Hessian eigenspectrum. The structure of the query-key Hessian block implies a spe-
cific configuration of the eigenvalues of its summands. The T–functional Hessian has a character-
istic block-hollow structure with blocks of zeros on the diagonal, which makes it responsible for
the bulk eigenvalues of the query-key Hessian. This specific structure allows us to reason about the
eigenspectrum of the query-key Hessian. Eigenvalues of T–functional Hessian come in pairs Z1λi

for 1 ≤ i ≤ dV . To see that it is enough to note that if λi is an eigenvalue with an eigenvector
[v⊤

1 ,v
⊤
2 ]

⊤, then also [−v⊤
1 ,v

⊤
2 ]

⊤ is an eigenvector with corresponding eigenvalue −λi.

Moreover, by Theorem 2.1 from Magnus & Neudecker (2019) eigenvalues of the Kronecker prod-
uct are products of the factor matrices’ eigenvalues. Since all dK eigenvalues of IdK

are ones,
eigenvalues of T–functional Hessian are the same as eigenvalues of

1√
dK

[
0 B⊤

B 0

]
,

each with multiplicity dK . This is exactly like the eigenvalue structure of the functional Hessian of
a two-layer MLP, where the eigenvalues are known to come in positive-negative pairs Singh et al.
(2021), each with multiplicity dK .

Furthermore, the T–outer product Hessian has at most 2dKdV − d2K non-zero eigenvalues when
dV > dK and at most d2V non-zero eigenvalues when dV ≤ dK . This is because of the rank bound
from Lemma D.2 and the fact that rank is equal to the number of non-zero eigenvalues for symmetric
matrices.

Lemma D.1. Singh et al. (2021)
Let A ∈ Rm×n and B ∈ Rp×q . Then

rk

([
Iq ⊗A
B⊗ In

])
= q rk (A) + n rk (B)− rk (A) rk (B) .

Lemma D.2. Under the same assumptions as Remark D.1, the rank of the T–outer product
Hessian can by bounded by

rk
(
HT

o (WQK,WQK)
)
≤
{
2dKdV − d2K if dK < dV
d2V if dK ≥ dV .

Proof.

rk
(
HT

o (WQK,WQK)
)
= rk

(
1

dK
V⊤UV

)
≤ min

(
rk (U) , rk

(
V⊤)) ≤ rk

(
V⊤) .

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

To get the rank of V⊤ we use Lemma D.1.

rk
(
V⊤) ≤ rk

([
WQ

⊤ ⊗ IdV

IdV
⊗WK

⊤

])
= rk

([
IdV

⊗WK
⊤

WQ
⊤ ⊗ IdV

])
= dV rk (WK) + dV rk (WQ)− rk (WK) rk (WQ)

=

{
2dV dK − d2K when dK < dV ,

d2V when dK ≥ dV .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E MULTI-HEAD SELF-ATTENTION HESSIAN

Multi-head self-attention, a mechanism that allows the model to jointly attend to information from
different representation subspaces (Vaswani et al., 2017), enforces an interesting structure in self-
attention Jacobians and the Hessian of the self-attention loss. A multi-head self-attention layer can
be defined as

F(X) =

H∑
h

Fh(X) =

H∑
h

Ah(X)XWh
V where Ah(X) = a

(
Th(X)

)
,

where Th do not share weights. For example, in the classical definition of multi-head self-attention,
we have Th(X) = XWh

QW
h⊤
K X⊤ /

√
dK with different Wh

Q and Wh
K for every head.

Multi-head classical self-attention Jacobian blocks depend only on single-head parameters.
Note that F is a sum of completely independent functions of X, as every weight matrix enters Fh

for exactly one h. This implies that a block of the Jacobian corresponding to weights parametrizing
Fh depends only on Wh

K,W
h
Q and Wh

V. Recalling the formulas for the gradient from Lemma B.1,
we arrive at the following Remark E.1.

Remark E.1. The Jacobians of the multi-head classical self-attention layer (Vaswani et al.,
2017) have the following form:

∂F

∂Wh
V

=
∂Fh

∂Wh
V

= softmax

(
XWh

QW
h⊤
K X⊤

√
dK

)
X⊗ IdV

,

∂F

∂Wh
Q

=
∂Fh

∂Wh
Q

=
(
IL ⊗Wh⊤

V X⊤) ∂Ah

∂Th

(
X⊗XWh

K√
dK

)
,

where the Jacobian of the row-wise softmax w.r.t. its inputs is defined in Lemma B.1.

With an increasing number of heads, the outer product Hessian dominates the Hessian. Note
that the mixed inter-head terms of the Hessian are fully defined by the outer product Hessian part.
This is because the inter-head functional Hessian blocks are always zero, as the second derivative
of F with respect to arbitrary inter-head weight matrices Whi

c ∈ Rpc×qc and W
hj

t ∈ Rpt×qt for
hi ̸= hj is zero. This results from the Jacobian expressions in Remark E.1, which always depend
on weight matrices parametrizing just a single self-attention head. Hence,

Hf

(
Whi

c ,W
hj

t

)
=

(
∂ℓ

∂F
(F(·))⊗ Ipcqc

)
∂2F

∂Whi
c ∂W

hj

t

(·)︸ ︷︷ ︸
=0, when hi ̸=hj

= 0 .

One consequence of this is that, for a fixed dV and dK = dV /H , the functional Hessian becomes
increasingly sparse as the number of heads grows. This leads to most entries of the Hessian being
fully defined by the outer product Hessian. Notably, this observation holds irrespective of the loss
function used.

E.1 INFLUENCE OF THE LOW-RANK NATURE OF WV ON THE SELF-ATTENTION HESSIAN.

A practical implementation of the multi-head self-attention assumes that Wh
V is low-rank, namely, it

is parametrized as Wh
V = Wh

OW
h
U, for some Wh

O ∈ RdV ×dK and Wh
U ∈ RdK×dV . In this setting,

we compute the Hessian w.r.t. Wh
O and Wh

U instead of Wh
V and the only self-attention Hessian

blocks that get affected are the ones w.r.t. Wh
O or Wh

U.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

The (Wh
O,W

h
U) Hessian block resembles the Hessian of a linear two-layer MLP. Note that

Fh(X) = Ah(X)XWh
OW

h
U = M1W

h
OW

h
U (24)

resembles a two-layer linear MLP if we treated M1 as a single input matrix. Hence, the discus-
sion from Section 2 on the Hessian of MLPs applies to the value matrix block of the self-attention
Hessian. For instance, its diagonal consists entirely of the outer-product Hessian entries, since its
functional Hessian counterpart has a block-hollow structure.

The main difference compared to a full rank parametrization by a single matrix Wh
V is that now the

Hessian also includes mixed blocks w.r.t. Wh
O and Wh

U. For the MSE loss, the functional part of
these blocks has a quadratic dependence on the first moment matrix M1, as both the derivative of
the loss w.r.t. the model output ∂ℓ/∂F, and the mixed second derivative matrix of Fh w.r.t. Wh

O and
Wh

U (see Equation (2)) depend on it linearly. Additionally, the outer product Hessian block w.r.t.
the value matrices Wh

O and Wh
U has an extra quadratic dependence on the selected value matrices

themselves and on the first moment matrix M1.

F EXPERIMENTAL SETUP

For the numerical experiments, we adapt the setting from Quirke & Barez (2024). They frame
number addition as the next token prediction task and generate a custom dataset, which we also use
in our experiments. For 5-digit number addition that we use, the sequence length is equal to L = 17.
The model we consider is (unless stated otherwise) a single-block GPT-2 Transformer (Radford
et al., 2019) from TransformerLens (Nanda & Bloom, 2022), in most experiments without layer
normalization unless noted otherwise. The tokens and their positions are embedded and passed into
a single-head self-attention layer, followed by a two-layer MLP. In all figures except for Figures 7
and 8 we use cross-entropy (CE) as a loss function.

To obtain Figures 1 and 4 we initialize the weights of the model the same way as GPT-2, so biases
are initialized to 0 and weights are initialized by sampling from N (0, 0.64/dV ). In Figure 1 we use
the classical definition of self-attention, while in Figure 4 we additionally compare to self-attention
without softmax. The size of the model is dV = dK = 16, and the latent dimension of the MLP is
64. The Hessian is computed using 64 data samples.

To obtain Figures 3 and 5 we vary the standard deviation of the initialization of the embedding
layer while leaving the initialization scheme of the rest of the model unchanged. We compare
(Figure 3a) the model without layer normalization with (Figure 3b) a model with Pre-LN (meaning
that layer normalization is applied before the self-attention layer, before the MLP layer, and after
the last Transformer block as in GPT-2 Radford et al. (2019)). The size of the Transformer block
is dV = dK = 128 and the Hessian is computed using 64 sequences. We estimate the block
Frobenius norm using the Hutchinson trace estimator of the block outer product, implemented in
the Curvlinops library (Dangel, 2023). Every configuration is repeated 20 times and we report the
mean and standard error of the mean. For the Pre-LN we select the slope of the dashed trend lines
by fitting a linear regression model into pairs of points (log σ, log f̄(σ))) where f̄(σ) is the mean
Frobenius norm of the block, estimated at σ.

The setting of Figure 6 is the same as in Figure 3a with the only difference that we consider multi-
layer GPT-2 Transformers without layer normalization.

To obtain Figure 7 we use multi-layer linear self-attention networks, meaning that we simply chain
self-attention layers w/o softmax. The loss we use in this experiment is mean squared error (MSE).
Similar to the experiment in Figure 3, we vary the standard deviation σ used to initialize the embed-
ding matrix X.

To obtain Figure 8 we use linear MLPs with the hidden dimension 128. The loss we use in this
experiment is also MSE.

G ADDITIONAL EXPERIMENTAL RESULTS

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

2

4

σ2

Ho

2

4

σ2

H

0.01 0.50 1.00
σ

2

4

σ6

0.01 0.50 1.00
σ

2.5

5.0

7.5

σ5

Hf

0.01 0.50 1.00
σ

2.5

5.0

7.5

σ5

B
lo

ck
‖·
‖ F

H(WV,WV)

H(WQ,WQ)

(a) Practical range, i.e., σ ∈ (0, 1)

200

400

σ2

Ho

0.0

0.5

1.0

0 1 4 7 10
σ

0

25000

50000

75000

σ6

0 1 4 7 10
σ

0

50000

100000

σ5

Hf

0 1 4 7 10
0.0

0.5

1.0

B
lo

ck
‖·
‖ F

H(WV,WV)

H(WQ,WQ)

(b) Non-Practical & Practical range, i.e., σ ∈ (0, 10)

Figure 5: (Plotted in linear scale.) Empirical verification with a CE loss confirms derived scaling
laws w.r.t. magnitude σ of X from Equation (5). We demonstrate the scaling laws through the
Frobenius norm ∥ · ∥F of value and query diagonal blocks for (a) practical range σ ∈ (0, 1) and
(b) bigger σ values σ ∈ (0, 10). The dashed lines correspond to the trend predicted by theory as
in Equation (5). For details on the experimental setting, see Appendix F. This figure presents the
same data as in Figure 3a but using a linear scale on both axes instead of a log-log scale.

Hessian blocks at different layers of a multi-layer Transformer follow the scaling laws pre-
dicted for a single-layer self-attention model. With the experiment in Figure 6 we try to answer
a question: How well do our results for a single-layer network generalize to an isolated layer inside a
deep network? To do that we empirically demonstrate how the self-attention (with softmax) Hessian
blocks of multi-layer Transformers scale with the input matrix X scale σ.

We observe that for a realistic range of σ ∈ (0, 1), which we refer to as the practical range, the
query outer product and functional blocks as well as the value outer product block scale exactly as
the prediction for a single layer. Moreover, the lines corresponding to earlier layers are lower on the
log-log scale for σ ∈ (0, 1), which means that their Hessian blocks have smaller multipliers as part
of their expressions.

For σ > 1 and deeper layers we start observing some higher-order dependencies on σ. This suggests
that similarly to the deep linear attention networks (see Section 4.1), the Hessian of a multi-layer
Transformer with softmax attention exhibit a dependence on X that grows with depth. These higher
order dependencies are not visible for σ < 1, because they converge to zero quicker than the lower
order dependencies. We also note, that the Frobenius norm of the query Hessian block and the value
outer product Hessian block corresponding to the top layer quite closely follow our prediction for a
single self-attention layer, also for deeper networks and σ > 1.

For layers other than the top one, the value functional Hessian block does not follow our theoretical
prediction, because, for deeper layers, this Hessian block no longer equals zero. Note that the top
layer (largest layer identifier in the plot) is not present in the figure, as in the single layer case,
because it does equal zero.

Empirical comparison between self-attention networks and MLPs. In Figures 7 and 8 we com-
pare the diagonal blocks of the linear self-attention and MLP Hessians. In Figure 7a we observe the
scaling predicted by Remark 4.1 for a single layer of linear self-attention. As expected, the diagonal
blocks are fully driven by the outer product Hessian, as the functional Hessian blocks equal zero.
For growing network depth D, we observe that the scaling of the outer-product Ho Hessian blocks
becomes super-exponential. The complete Hessian H blocks also follow this trend – the last layer
for any σ and the remaining ones for bigger σ. This is inline with the discussion in Section 4.1.

In contrast, the diagonal blocks of a linear MLP Hessian Figure 8 scale quadratically with σ, for any
of the tested network depths.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H(WV,WV) H(WQ,WQ)

10−1

103

σ2

Ho

Layer:

1

2

10−15

10−8

10−1

106
Hf

10−1

103

σ2

H

10−2 10−1 100 101

σ

10−6

101

108

σ6

Layer:

1

2

10−2 10−1 100 101

σ

10−4

103

σ5

10−2 10−1 100 101

σ

10−4

103

σ5

B
lo

ck
‖·
‖ F

(a) Depth = 2

100

104

σ2

Ho

Layer:

1

2

3

10−15

10−7

101

Hf

100

104

108

σ2

H

10−2 10−1 100 101

σ

10−6

101

σ6

Layer:

1

2

3

10−2 10−1 100 101

σ

10−3

104

σ5

10−2 10−1 100 101

σ

10−3

104

σ5

B
lo

ck
‖·
‖ F

(b) Depth = 3

101

106

σ2

Ho

Layer:

1

2

3

4

10−15

10−7

101

109
Hf

101

106

σ2

H

10−2 10−1 100 101

σ

10−5

102

109

σ6

Layer:

1

2

3

4

10−2 10−1 100 101

σ

10−3

104

σ5

10−2 10−1 100 101

σ

10−3

104

σ5

B
lo

ck
‖·
‖ F

(c) Depth = 4

101

105

σ2

Ho

Layer:

1

2

3

4

5

10−15

10−6

103

Hf

102

107

σ2

H

10−2 10−1 100 101

σ

10−5

102

109

σ6

Layer:

1

2

3

4

5

10−2 10−1 100 101

σ

10−3

104

1011

σ5

10−2 10−1 100 101

σ

10−3

104

1011

σ5

B
lo

ck
‖·
‖ F

(d) Depth = 5

Figure 6: (Plotted in log-log scale.) Value and query Hessian diagonal blocks at different layers
follow the predicted theoretical scaling law for practical ranges of the input. Frobenius norm
∥ · ∥F of the self-attention Hessian blocks for multi-layer GPT-2 Transformers without layer nor-
malization on the next token prediction task, split by Transformer block (1 corresponds to the input
Transformer block). We indicate the scaling laws predicted by Theorems 3.1 and 3.2 with the gray
dashed lines and the annotation in the bottom right corners. As for the single layer, the complete
Hessian H value and query blocks follow the trend of the outer product and functional Hessian
blocks respectively.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

102

105

σ6

Ho

10−17

10−10

10−3

Hf

102

105

σ6

H

0.1 0.2 0.5 1.0
σ

102

105

σ6

0.1 0.2 0.5 1.0
σ

10−17

10−10

10−3

0.1 0.2 0.5 1.0
σ

102

105

σ6

B
lo

ck
‖·
‖ F

(a) Depth = 1
There is no prediction for the functional Hessian, because (as predicted by

Remark 4.1) the diagonal blocks of the functional Hessian equal zero.

10−2

105

σ18

Ho

Layer:

1

2

10−17

10−7

103

σ18

Hf

10−2

105

σ18

H

0.1 0.2 0.5 1.0
σ

10−2

105

σ18

Layer:

1

2

0.1 0.2 0.5 1.0
σ

10−17

10−7

103

σ18

0.1 0.2 0.5 1.0
σ

10−2

105

σ18

B
lo

ck
‖·
‖ F

(b) Depth = 2

10−17

10−4

109

σ54

Ho

Layer:

1

2

3

10−17

10−4

109

σ54

Hf

10−17

10−4

109

σ54

H

0.1 0.2 0.5 1.0
σ

10−17

10−4

109

σ54

Layer:

1

2

3

0.1 0.2 0.5 1.0
σ

10−17

10−4

109

σ54

0.1 0.2 0.5 1.0
σ

10−17

10−4

109

σ54

B
lo

ck
‖·
‖ F

(c) Depth = 3

Figure 7: (Plotted in log-log scale.) In linear self-attention networks value and query Hessian
diagonal blocks at different layers partially follow the super-exponential scaling with depth.
Frobenius norm ∥ · ∥F of the self-attention Hessian blocks for multi-layer self-attention network on
the next token prediction task, split by layer (1 corresponds to the input layer). We limit the range
of sigma and the network depth, due to numerical problems caused by the super-exponential scaling
for larger σ and deeper networks. The dashed lines indicate the trend σ2·3D , where D is the network
depth.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0.01 0.1 1.0 10.0
σ

103

106

σ2

H
Layer:

1

B
lo

ck
‖·
‖ F

(a) Depth = 1

0.01 0.1 1.0 10.0
σ

102

105

σ2

H
Layer:

1

2

B
lo

ck
‖·
‖ F

(b) Depth = 2

0.01 0.1 1.0 10.0
σ

102

105

σ2

H
Layer:

1

2

3

B
lo

ck
‖·
‖ F

(c) Depth = 3

0.01 0.1 1.0 10.0
σ

101

104

σ2

H
Layer:

1

2

3

4

B
lo

ck
‖·
‖ F

(d) Depth = 4

Figure 8: (Plotted in log-log scale.) Diagonal blocks of a linear MLP scale the same with σ
irrespective of network depth. Frobenius norm ∥ · ∥F of diagonal Hessian blocks for a linear MLP
on the next token prediction task, split by layer (1 corresponds to the input layer). For a linear
MLP the diagonal blocks of a functional Hessian are always zero (Singh et al., 2021), so we simply
plot the complete Hessian diagonal blocks, without splitting them into outer product and functional
Hessians. We plot the block Frobenius norm separately for every layer, but they perfectly overlap.

34


	Introduction and Related Work
	Setup and Background
	Exact Structure of the Self-Attention Hessian
	Data Dependence Varies across Hessian Blocks
	Attention Moments Affect the Hessian
	Dependence on the Weight Matrices

	Impact of Transformer Design Components on the Hessian
	Softmax Activation
	Query-Key Parametrization
	Other Common Design Choices

	Conclusion
	Known Definitions & Properties
	Gradient & Hessian Expressions
	Classical Self-Attention
	Self-Attention with Single-Matrix Parametrization

	Self-Attention Moment Matrices
	Second Derivative or Row-Wise Softmax
	Self-Attention Moment Matrices

	More on the Query-Key Hessian Block
	Multi-head self-attention Hessian
	Influence of the low-rank nature of PurplePrintWV on the self-attention Hessian.

	Experimental Setup
	Additional Experimental Results

