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ABSTRACT

We introduce a new fixed-point condition on the state-action-value (Q-function for
zero-sum Markov turn games that suffices to construct saddle-point and security
policies, but is less restrictive than the classical condition arising from the Bellman
equation. We then propose an iterative algorithm that guarantees convergence to
a function satisfying this less restrictive condition. The key benefit of the new
condition and algorithm is that convergence to a saddle-point can (and typically
will) be reached without full exploration of the state-space; generally enabling the
solution of larger games with less computation. Our algorithm is based on a limited
form of exploration that gathers samples from repeated attempts to certify the
current candidate policies as a saddle-point, motivating the terminology “saddle-
point exploration” (SPE). We illustrate the use of the new condition/algorithms
in several combinatorial games that can be scaled in terms of the size of the
state and action spaces. Numerical results, using both tabular and neural network
@-function representations, consistently show that saddle-point policies can be
formally certified without full state exploration and, for several games, we can see
that the fraction of states explored decreases as the size of the game grows.

1 INTRODUCTION

We address two-player zero-sum Markov games with finite but large state spaces, for which the goal
is to find minimax policies with “modest” computation. In this context, minimax or security policies
refer to policies 7§, 74 that achieve the outer maxima in the following worst-case optimizations

max min Jy(m,m2), max min Ja(m,m2), )
m1€lly mo€elly mwo€lly w1 elly
where I1;, i € {1, 2} is the policy space for player P; and J;(m1, m2) this player’s expected sum of
future rewards, with Jy (71, m2) = —Ja(m1, m2). We use the qualifier “modest” to mean that we seek
to certify policies to be solutions to (1)) without exploring the full state-space of the game.

Q@-learning, which was originally developed by [Watkins| (1989) for single-player Markov decision
processes and later extended to two-player zero-sum games by [Littman|(1994); Littman & Szepesvari
(1996)), remains the most widely used provably correct approach to construct minimax policies.
(Q-learning performs an iterative computation of the state-action-value function, generally called the
Q-function, that assigns to each state-action pair the associated (minimax) future rewards. Correctness
of this approach relies on the observation that the iteration converges to a unique fixed point, which is
the optimal @-function. In practice, the ()-learning iteration typically terminates by either explicitly
checking whether or not the fixed-point condition holds (often up to some prescribed acceptable
error) or by using a fixed number of iterations for which one can guarantee convergence (up to
some prescribed acceptable error). Both options require evaluating the (Q-function over the whole
state-space; either explicitly in the first case, or implicitly in the second case, because the available
sample complexity bounds that guarantee convergence of the ()-function rely on full state-exploration
(Even-Dar & Mansour, 2003; Hu & Wellman| [2003}; |Beck & Srikant, [2012; [Wainwright, 2019} |Chen
et al., [2020; [Zhang et al., [2020; [Ménard et al., 2021} |Li et al., |2021} |Lee, [2023} |L1 et al., [ 2024)).

The first contribution of this paper is a new condition on a candidate Q-function that suffices to
guarantee that the policies extracted from it are a solution to (I). This condition, which we call
“restricted fixed point,” is expressed as a fixed-point equality on a restricted subset of the state space
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and can be checked without full state exploration. While the usual (unrestricted) fixed-point condition
typically only has a unique solution — precisely the optimal @)-function — our restricted condition
typically has multiple solutions, many of which are not the optimal Q)-function. Regardless, we show
in Theorem [2] that all functions satisfying the restricted condition lead to minimax policies in the
sense of (I). This result is applicable to Markov zero-sum turn games, where turn games means that
only one player is allowed to make a decision at each state (Sidford et al.,|2019; Jia et al., 2019; |Shah
et al.|, 20205 |/Anderson et al., |2025)). Turn games generalize alternate play games in which players
always alternate in making decisions, like chess, checkers, or go. As opposed to general zero-sum
Markov games (e.g., [Filar & Vrieze|(1997)), turn games with finite state and action spaces have pure
saddle-point policies under very mild assumptions, avoiding the need to consider mixed or behavioral
policies (Hespanhal [2017)).

The second contribution is an algorithm that guarantees convergence to a restricted fixed point
(Algorithm [I). This algorithm relies on updates to the Q-function that are similar to the classical
updates (e.g., by Littman & Szepesvari| (1996))) adapted to turn games; but it differs from previous
work in two aspects: termination condition and sample selection/exploration. Termination is based
on checking a saddle-point condition that involves solving two “inner-loop” optimization problems
using single-player -learning. The proposed algorithm is named “saddle-point exploration” (SPE)
because, beyond a termination condition, these inner-loop optimizations provide all the samples that
are needed for the (outer-loop) Q-function updates; resulting in guaranteed convergence to a restricted
fixed point. This result (Theorem [3) is stated for the more restricted class of deterministic games
with finite termination time. Embedding two inner-loop @-learning iterations within an outer-loop
iteration might seem to result in a very inefficient algorithm. However, this is not the case, because
the outer loop makes use of all the samples generated during the inner-loop optimizations, which is
enabled by the off-policy Q-learning updates.

SPE works with general (Q-function representations of the candidate saddle-point, including tabular
and neural network forms. For the latter representation, instead of asking for convergence of the
neural network during training — typically a difficult condition to verify — the algorithm only
requires that the policies derived from the neural network satisfy the saddle-point conditions. The
complexity of this verification is relatively low, because it presumes that the policy of one of the
players is frozen, greatly reducing the reachable state-space.

We illustrate the benefits of the SPE algorithm by applying it to a collection of scalable board games
available in the OpenSpiel software package (Lanctot et al.,[2019), including Hex, Y, Breakthrough,
Clobber, Dots and Boxes; as well as the strategy game Atlatl (Rood, 2022; |Darken, |2025)). For all
these games, we observe that SPE terminates without full state exploration. Moreover, by considering
multiple versions of the same game with different board sizes and time-horizon, we observe that the
fraction of states explored before termination either stabilizes to some percentage as the size of the
game increases, or actually decreases.

RELATED WORK

In recent years, significant work has been devoted towards the sample complexity analysis of Q-
learning; specifically on determining a minimum number of samples for which the policies arising
from the (-learning iteration can be certified as optimal (Even-Dar & Mansour, 2003} [Beck &
Srikant, 2012} 'Wainwright, 2019} |Chen et al.,|2020). For one-player problems, fairly sharp sample
complexity bounds can be found in (Li et al., 2024}, where it is shown that the number of samples
required for (synchronous) Q-learning to obtain an e-accurate estimate of the “exact” Q-function
scales with |S| x |A| x H*/e? (up to logarithmic factors), where S and A denotes the state and action
spaces, respectively, and H = 1/(1 — «) is an “effective” time horizon for a y € (0, 1)-discounted
infinite-horizon cost. This result is “sharp” in H and € in the sense that the authors provide an MDP
for which the Q-function requires a number of order H*/¢? to converge. Results of this nature for
zero-sum Markov games include an additional term || for the opponent’s action space (Lee, [2023).

It has previously been recognized that it is possible to construct almost-optimal policies from samples
without convergence of the Q-function. Regret-based analyses accomplish this by bounding the
number of samples required to obtain a policy with a small cumulative cost/reward difference
compared to the optimal policy. One of the tightest results under this setup was reported by Li et al.
(2021), who show accumulated regret over /N episodes in a finite-horizon setting with episode length
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T of order 4/|S| x |A] x T2 x N, butonly after N > |S| x | A| x T1°. While different works obtain
different scaling laws for the regret, the minimum sample size, and the memory complexity, the
existing regret-based analyses of ()-learning still require a sample size on the order of |S| x |A| x T
or greater (Li et al.|, 2021 [Zhang et al., [2020; Ménard et al.| [2021).

Additional results that are specific for two-player zero-sum Markov games include (Bai et al.| 2020),
which provides a variant of Nash @)-learning (Hu & Wellman, 2003) with sample complexity bounds
to achieve an e-approximate Nash-equilibrium on the order of [S| x |A| x |B| x T°/e2. More
recently, [Feng et al.| (2024)) reduce the polynomial dependence on the horizon to T2 and obtain
the minimax-optimal dependence on 7, |S| and e. |Shreyas & Vijesh! (2024)) proposed a multi-step
approach that converges with probability one in the setting with discounted rewards.

It should be noted that, while our restricted saddle-point condition can be used to certify a policy as
optimal with computational complexity below |S| x |.A|, it is possible to construct games for which
the only restricted saddle point is the usual (unrestricted saddle point) and no benefits can be gained.

SPE’s test of the saddle-point condition can be viewed as trying to find weaknesses in the current
candidate policies, which has similarities with the “Golf with Exploiter” algorithm proposed by Jin
et al.|(2022). In that work, iterations are performed over a set of state-value functions from which an
optimistic policy is extracted, as well as the best response against it. A probabilistic guarantee of
convergence is provided in terms of the Bellman Eluder dimension of the game, which for Markov
games with a tabular representation is upper-bounded by the size of the state-action space, but can be
smaller. The key challenge with this work lies in devising algorithms that efficiently iterate over a
set of value functions, which is defined by a growing number of constraints posed on these sets by
the samples. While we arrived at the SPE algorithm from a very different approach (based on the
restricted fixed-point condition), the SPE algorithm can be viewed as a practical implementation of
some of the ideas in (Jin et al.| [2022)).

In addition to the references above, there is a large body of work on developing heuristic algorithms
to solve large zero-sum turn games: these include AlphaZero (Silver et al.,[2017), AlphaStar (Vinyals
et al.,|2019) which uses a variant of Policy Space Response Oracles (Lanctot et al.l 2017), and Monte
Carlo Tree Search methods (Silver et al., 2016). However, the focus of these algorithms has not been
on termination with correctness guarantees.

2 ZERO-SUM TURN MARKOV GAMES

We consider Markov games with state s, at time ¢ > 0, taking value in a state-space S. In turn games,
only one player can make a decision at each state, so the state-space S can be partitioned into two
disjoint sets S, So with the understanding that, when s; belongs to S1, the action a; € A is selected
by player P;. Otherwise, s; € S and the action is selected by player Po. To simplify the notation, we
use the same symbol A to denote the set of actions available to both players, with the understanding
that when s; € S;, the elements of .4 should be viewed as the options available to P;, i € {1, 2}.

In zero-sum games, the rewards for the two players add up to zero and we denote by ;11 € R < R,
t > 0 the immediate reward collected by the player that selected the action a at time ¢. The total
reward collected by player P;, i € {1, 2} for the initial state s € S is then given by

Ji(s0) = Dr o Elres1 sgn;(se)], )

where sgn,(s;) = 1if s; € S; and sgn;(s;) = —1 otherwise. The sets S,.A, R are assumed finite
and the state s; is a stationary controlled Markov chain in the sense that

P(siy1 =811 =718 =s,a, =a) =p(s,r|s,a) 3)

V=0, s, €S8, ae A, reR;wherep: S xR xS x A— [0,1] is the transition/reward
probability function. It is often the case that some, not all, actions in A are available to the player that
selects a; in state s;. We say that a game is deterministic if p(-, -) only takes values in the set {0, 1}
and that the game ferminates in finite time if there exists a finite time 7" > 1 such thatr, = 0,Vt > T
with probability one, regardless of the actions a; € A selected.
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2.1 POLICIES AND VALUE FUNCTION FOR TURN GAMES

A policy for the player P;, i € {1,2} is a deterministic map 7; : S; — .A that selects the action
a; = m;(s;) when the state s, is in S;. The finite set of all such deterministic policies is denoted by
II;. We recall that, for turn games, there is no advantage in considering stochastic policies (Anderson
et al., 2025). For a pair of policies (71, ) € II; x II, we define the policy pair’s value function as

0
V7T17ﬂ’2 (8) = Sgni(s) 2 Eﬂ’l,ﬂ'z [rt+1 Sgni<st) ‘ Sr = S] Vs e Sai € {17 2}’ “

t=1
where the subscripts in E, ,[-] highlight that the expectation assumes that the actions are determined
by the given policies. We get the same value for ¢ = 1 and i = 2 because sgn; (s) = —sgny(s),

Vs € S. The time 7 > 0 from which the summation is started also does not affect its value due to the
stationarity of the Markov chain. It is straightforward to verify that the reward (2)) collected by player
P; can be obtained from the value function using

Ji(SQ) = Sgni(So)Vﬂhﬂ—z (SQ), Vie {1, 2} (5)
2.2 SADDLE-POINTS AND SECURITY POLICIES

A pair of policies (75, 73) for players Py, Py respectively, is a (pure) saddle-point if for every other
pair of policies (71, m2) € II; x I3, we have that

Ji (s0) = sgny (s0)Vier px (s0) = max sgn, (so) Ve, - (s0), (6a)
’ mell M2

J3(s0) = s8gny(80) Vo o (s0) = max sgny(so)Vix -, (0), (6b)
’ 7T2€H2 12

and J5 (sg) = —J5 (so) is called the value of the game. In view of (3)), the equality in (6a) expresses
no regret in the sense that P, does not regret its choice of 7§ (over any other policy ;) against 75
and, similarly, (6b) expresses no regret for Po. Saddle-point policies are known to also be securiry
policies with values J{ (so) and J5 (so) for players P and Py, respectively; in the sense that

J¥(s0) = max 7Trzneiﬁlz sgny (80) Vi, s (S0) = 7Trzneirr112 sgny (s0) Vo 1, (50) (7a)

J3(sp) = max min sgny(so)Va, x,(S0) = min sgny(se)V,. . (so) (7b)
mo€lls w1 €lly m1€lly 1,72

which means that, by using the policy 7, the player P; can expect a reward at least as large as
J¥ (s0), no matter what policy the other player uses (see, e.g., (Hespanhal [2017)).

2.3  FIXED-POINT SUFFICIENT CONDITION FOR SADDLE-POINT

Saddle-point and security policies can be easily constructed provided that we can find a function
Q:S x A— Rthatis a fixed point of

Q(s,a) = E [ri41 + sgny (s¢) sgny (se41) g}gﬁ@(sﬂrlva/) |50 =s,a; = a, (3)

Vs e S, a € A. The terminology “fixed point” arises from regarding the right-hand side of (8) as the
action of an operator that acts on (), and produces the same function ). The following result provides
an explicit formula (TT)) for saddle-point policies as a function of the fixed point Q). To express it, we
need the following definition: we say that a function V' : § — R is absolutely summable if for every
pair of policies (71, 72) € II; x Il for players Py, Po, respectively, the series

ZZT Eﬂ’l’ﬂ'z [V(St> | Sr = 8]7 ©
is absolutely convergent for every s € S,7 > 0. For games that terminate in finite time 7', any
function V : § — R for which V(s;) = 0, V¢t > T with probability one is absolutely summable
since the series degenerates into a finite summation.

Theorem 1 (Fixed-point sufficient condition). Suppose there exists a function Q) : S x A — R that
is a fixed point of ({8) and

V(s) = m%i(Q(s, a), VseS§, (10)
ae
is absolutely summable. Then any pair of policies (75, %) for which
ﬂf(s)eargmaj(Q(s,a), VseS;, ie{1,2} (11)
ae
is a saddle-point and these are policies, with values J(sg) = sgn, (so)V (so) = —J5F (s0). ]
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We state this result without proof since it can be derived from classical results (Littman) [1994;
Littman & Szepesvari, [1996), at least when the operator defined by the right-hand side of (8) is a
strict contraction. It also follows from a more general result to be derived shortly.

Q-learning can be used to iteratively construct a function ) : S x A — R that satisfies the fixed-point
condition in (8). In the context of zero-sum turn games, Q-learning starts from some initial estimate
Q" : S x A — R and iteratively draws samples (s;, as, S¢11,7¢+1) from the transition/reward
probability function p(s¢y1,7¢41 | St, at), each leading to an update of the form

QkH(Suat) =(1- Oék)Qk(Smat) + akaatéet, (12)

for some sequence oy, € (0,1] and
Qo = reen + s () s (511) may @ (1.1, ).

Under mild assumptions on the operator defined by the right-hand side of (§)) and the sequence ay,
this iteration converges to the unique fixed point of (8)) when every element of S x A appears infinitely
many times in the sample sequence {(s;, a;)} (Tsitsiklis| |1994).

3 RESTRICTED FIXED POINT

To define “restricted fixed point” we need the following definitions: given a set or pairs of policies
II < II; x I, we define the set Sty of reachable states under 11 to contain all states that can be
reached with positive probability under such policies, i.e.,

Su = {s€8:3t >0, (m,m2) € Hsuch that Py, ,(s; = s) > 0}.

We say that a function @ : S x A — R is a restricted fixed point of (8) when this equation holds
over (s,a) € Spx x A, where Sy« is the set of reachable states under

II* = {(ﬂ'ik,’ﬂ'z) tmg € Mo} U {(my,7a) iy € Hl},

for the pair of policies (7§, 7%) that satisfy (TI). Every fixed point (over the whole (s,a) € S x A)
is necessarily a restricted fixed point, but the converse is not true since the set Sy« is typically
much smaller than the whole state-space S. Moreover, fixed points are often unique (e.g., when the
right-hand side of (8) defines the action of an operator that is a strict contraction), but restricted fixed
points are generally not unique since no constraints are posed on the values of Q(s, a) for s ¢ Spx«.
Nevertheless, restricted fixed points still enable the construction of saddle-point and security policies:

Theorem 2 (Restricted fixed-point sufficient condition). Suppose there exists a function @ : S x A —
R that is a restricted fixed point of @) and for which (10) is absolutely summable. Then the
pair (¥, 7%) is a feedback saddle-point and these are security policies, with values Ji (so) =
sgny (s0)V (s0) = —J5 (s0). O

The proof of Theorem [2]is included in Appendix This proof directly shows that the restricted
fixed-point condition suffices to establish that the saddle-point conditions in (6) hold and takes
advantage of the observation that (6 only involves value functions V, , for (w1, m2) € II*. However,
this derivation cannot use the relationship between the Q-function and cost-to-go in (T0), since this
equation will generally not hold over S for restricted fixed points.

4 SADDLE-POINT EXPLORATION (SPE) ALGORITHM

We now describe an algorithm that, like in classical ()-learning, constructs an iterative sequence
of functions @ that are updated according to and from which we will construct saddle-point
policies. However, unlike in classical Q-learning, our goal now is to update Q* to get convergence to
a restricted fixed point rather than a regular fixed point. To accomplish this, the SPE Algorithm [I]

selects the samples for by using the current iterate Q* to construct a candidate saddle-point
7 (s) eargmaj(Qk(s,a), Vs e Sy, Th (s) eargmzii(Qk(s,a), Vs e So, (13)
ae ae

and checks whether these policies form a saddle-point, which justifies the terminology saddle-point
exploration. Specifically, the code in lines fixes Py’s policy at 7% and uses (single-player)
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Q-learning to find P,’s best-response policy W;. The sequence of functions {Q9, .. ., QSQ} is used
for this purpose and, upon convergence, the best response has the form

73(s) € arg max QX2 (s,a), Vs e Ss, (14)
aceA

and its use against ¥ results in a reward for Py equal to
5215(50) Vg 1 (50) = sgny (s0) max Q32 (so). (15)

Similarly, the code in lines computes P’s best-response policy 771 to 5, which has the form
ﬁI(S) € arg max Q}fl (s,a), VseSy, (16)
aceA

and its use against 5 results in rewards for P; equal to
sgnl(so)Vﬂmg (s0) = sgn;(so) %163% Q’lﬁ (50)- a7

The termination condition in line essentially guarantees that 7F and 7§ satisfy the saddle-point
condition (7).

We emphasize that the convergence of the sequences {Q]iCl } and {Q’;z} only requires exploration of
the subsets of the state space that are reachable when either P;’s policy is frozen at 7F or when Py’s
policy is frozen at 7%. Even though this test may need to be performed several times, we shall see
that the SPE algorithm typically terminates without selecting a single sample from a large subset of
the reachable states in S. Nevertheless, the samples gathered still suffice to guarantee convergence of
QF to a restricted fixed point. In view of this, line 4|could be skipped altogether, but we include it
because additional samples provide opportunities to speed up termination (see Appendix [A.4).

4.1 DETERMINISTIC FINITE GAMES

While SPE is applicable to general zero-sum turn games, the remainder of this section is focused
on deterministic finite games, for which we can be precise on two items that were left open: how to

represent the functions Q¥, Q*2, Q5*, and how to check in lines that Q%2 Q5" have converged.

For deterministic games, the learning rate in (I2) can be set to o, = 1, Yk, which makes establishing
convergence of Q’fl relatively simple: it suffices to keep track of the last iteration number at which
the update (T2) resulted in a change in Q]f ! and ensuring, since then, (i) every state s; € S and every
action a; € A that can be reached when P ’s policy is fixed at 7§ appeared at least once in the samples
generated in line |§I, and (ii) none of these updates led to an actual change in Q]fl. Convergence of
Q;” can be similarly tested. We assumed here that we can perform “exact” updates for Q’fl and ng
which typically requires a tabular representation. While this may seem restrictive for large games, it

is important to recall that these functions presume that the (deterministic) policy of one of the players
has been fixed, which typically greatly reduces the size of the reachable state-space. In fact, our

numerical experiments show that, when using hash tables of the board configuration to represent Qlf !
and Q%2, the loops in[7H12|and converge quickly and the tables remain small.

Convergence of the sequence Q¥ does not need to be checked because the exit condition in line

only involves Q’f ! and QgQ. This provides much greater flexibility in representing Q*, which can be
represente a deep neural network trained through a batch update using the samples collected in
llnes and However, the theoretical results that follow assume an exact update for Qk.

4.2 CONVERGENCE

The following assumption is needed to establish the correctness of the SPE Algorithm 1]

Assumption 1 (Exploration). The algorithms use to generate the sequences of samples in lines 9]
and[T7] guarantee that

1. If the iteration in lines did not converge, every pair (s¢, a;) in Syx x A would appear
infinitely often in the sequence of samples in line H, where SHJS denotes the set of states

reachable under I1% == {(7y,75) : 7 € II; }.
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Algorithm 1 Q-learning with saddle-point exploration (SPE)
I: initialize Q°(s,a) = 0,Vs € S,a € Aand set k < 0

2: loop
3: = (Optional) exploration <
4: ’ generate any number of samples {(s¢, a;, St+1,7¢+1)} from (3)) using any algorithm
5. extract Py’s policy 7f from Q¥ using (13)
6: > proceed by computing Po’s best response against ¥ <
7:  |initialize QY(s,a) = 0, Vs € S,a € A and set kg < 0
8: repeat
9: generate sample(s) (¢, at, Si41, 71+1) from (3)), restricting a; = 75 (s;) when s, € S
10: use sample(s) to update Q52! using (12)
11: ko — ko +1
12: until the function Q42 (-, -) has converged (see Section
13:  extract Py’s policy 7 from QF using (13)
14: > proceed by computing P, ’s best response against 75 <
15: | |initialize Q9(s,a) =0, Vs € S,a € Aand setk; < 0
16: repeat
17: generate sample(s) (¢, a¢, S¢41,7+1) from (3)), restricting a; = 75 (s;) when s; € Sy
18: use sample(s) to update Q¥ 1 using (12)
19: ki — k1 +1
20: until the function Q%" (-, -) has converged (see Section 4. 1)
21: > termination condition <
22: if max Q1(so, @) = max Q2(sp, a) then terminate
L acA acA
23: = update QF using samples collected above <
24: for all samples (s, a;, $411,7¢+1) collected in lines 4] [0 and[17)do
25: update Q¥+ using (12)
26: | kE—k+1

2. If the iteration in lines did not converge, every pair (s, a;) in Spe x A would appear
infinitely often in the sequence of samples in 1ine|Z|, where SH;{» denotes the set of states

reachable under IT¥ == {(7¥, 7o) : w2 € IIo}.

We are now ready to certify the correctness of Algorithm I]for deterministic finite games:

Theorem 3 (SPE Algorithm |I| correctness). Assume that the state and action spaces are finite and
that the game is deterministic, terminates in finite time, all updates of Q, Q1, Q2 use o = 1, and
Assumption[I|holds. At every iteration, the following bounds on the security values hold:

sgn, (so) max Q52 (s9) < max min sgny (s0) Vi, m (S0) < sgny (so) max Q4 (s0) (18a)
aceA 7T1€H1 ’7T2€H2 aceA

sgn, (sg) max Q’fl(so) < max min sgn,(so)Va ., (S0) < sgny(so) maXQISQ(so) (18b)
ac A 71'2€H2 7\'1€H1 ac A

and the upper and lower bounds become equal when the algorithm terminates. Moreover,
the algorithm terminates after a finite number of iterations and, upon termination at iteration
k, the pair (7¥,7%) is a saddle-point and these are security policies, with values Ji(sg) =

sgny (Sp) maxeea Q]fl (s0,a) = —JF(s0).

The proof of Theorem [3]is included in Appendix[A.3] but the basic arguments proceeds as follows:
We start by showing that P;’s policy ﬂ'{ (T6) is optimal against Py’s policy 75 with the rewards
in (T7) and that P5’s policy ol (T4) is optimal against P;’s policy 75, with the rewards in (T3). Once
this has been established, we show that the termination condition guarantees that the pair (7%, 75)
satisfies the saddle-point conditions (6). The proof that the algorithm terminates in finite time then
relies on showing that Q* converges in a finite number of steps to a restricted fixed point of (§).
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5 NUMERICAL RESULTS

To demonstrate the performance of Algorithm[I] we use several games available in OpenSpiel (Lanctot
et al.,[2019) and the strategy game Atlatl (Rood) 2022; Darkenl 2025)). These games were chosen
because for all we can select the “board size” and for some we can also select the duration of the
game. This enables us to create game families with varying state-space sizes, where the games within
each family can be meaningfully compared to each other in terms of state-space coverage.

5.1 BASELINE

Rather than comparing our work against a specific competing algorithm, we use for term of compari-
son a lower bound on the number of iterations required by any algorithm whose correctness is based
on convergence of the Q-function over the entire S x A. As discussed in Section[I] all such algorithms
(as well as all the regret-based algorithms, also discussed there) can only guarantee correctness if the
number of samples exceeds |S| x Poly(T'), where Poly(7") > 1 represents a polynomial function of
the time horizon T'. For simplicity, we are ignoring the multiplicative factor |.A| that is the same for
all algorithms. In reality, S only needs to contain states that can be reached from the game’s initial
state s, so we use for lower bound the size |Str, <11, | of the reachable states. For fairness, we use the
(very optimistic) lower bound Poly(T") > 1, because our algorithm essentially uses a replay buffer
for the update of Q¥ in lines which allows us to reuse the same sample multiple times with
little additional computational cost (Mnih et al.l[2013). Alternative off-policy algorithms that use
large replay buffers can similarly decrease the number of game samples to one per state, potentially
reducing the required number of game samples to our lower bound of | Sy, x11, |-

In the results below, we compute |Sir, «11, | using an exhaustive search across the state-space. Even
though we use a fairly efficient search algorithm to determine |Sty, x11, |, for some of largest games
this exhaustive search does not terminate within a reasonable compute time limit (24h) and therefore
we are not able to provide a comparison.

5.2 ALGORITHM [l IMPLEMENTATION DETAILS

We consider two representations for the Q-function in (T3): (i) a tabular representation hashed by
a bit-vector embedding of the game board; and (ii) a Deep Q-Network (DQN) whose input is the
same bit-vector state embedding with one output per action, as in (Mnih et al.| [2013)). For the
functions @1, Q2 used in the termination checks in lines and [T5H20] we only used the tabular
representation because, as noted in Section[d] this greatly facilitates checking for convergence and it
can be very efficient even for relatively large games. To satisfy Assumption[I] we do exploration using
tempered Boltzmann policies (Anderson et al.,[2025)), but the results would not change significantly
if we used the more common e-greedy exploration. We present a more extensive set of results for
option (i) above, but include a few examples for option (ii) to demonstrate that SPE also works with
other Q-function representations.

All results were obtained with a Julia implementation. We call OpenSpiel through its Julia interface
and connect to Atlatl using a Julia wrapper to its Python interface. We use a 2021 M1 Max chip with
10 cores and 32GB RAM. For all the experiments we only include results that can be solved in less
than 24 hours of run time.

5.3 RESULTS

We first show that Algorithm|I]is able to find a saddle-point without sampling large portions of the
state space. We consider several square board sizes for Hex, Y, Breakthrough, and Clobber, and run
Algorithm{[T]for each of them. We numerically verify we have obtained a saddle-point with associated
security policies by solving the optimizations in lines In Figure[I|left), we plot the number of
states that were explored by Algorithm [1]as a fraction of our baseline [St, x11, | for both the tabular
(purple) and DQN (red) representations. The games in this figure have up to about 8 million states.
For tabular representations (purple), we can see that the fraction of states explored decreases as the
size of the game increases (with the exception of 5 x 5 Y). We present fewer results for the the DQN
representation (red), but the results appear to be comparable to the tabular representations.
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Figure 1: (left) We run Algorithmﬂ]for square board games of size n x n (labeled —n) and show (left)
the fraction of states explored. The size of each marker is proportional to the logarithm of the total
number of game states with the 4 x 4 Hex game containing ~8 million states. (right) The left-axis
shows the fractional exploration versus the duration of the game for both Atlatl and Dots and Boxes;
the right-axis of the plot indicates exponential growth in the states as the game duration increases.

We then examine how the results scale with the duration of the game (number of moves played)
for Dots and Boxes on a 3 x 3 board and for the “2v1” Atlatl scenario; as both games are still
meaningful over a variable time horizon. We observe in Figure Ekri ght) that, as the duration increases,
the fraction of states explored by Algorithm T|decreases exponentially for Atlatl. For Dots and Boxes
the fraction decreases significantly up until games with 7 moves and then roughly stabilizes but —
when compared to the growth rate of the total number of reachable states (on the right-axis) — this
indicates the total number of states explored by Algorithm[I] grows at a more favorable rate. In fact,
for Dots and Boxes Algorithm [I]can solve this game up to its maximum duration of 24 moves in
less than 8 hours and exploring less than 10M states, whereas we were not able to do an exhaustive
exploration of the state space for more than 11 moves in 24 hours. For the “2v1” Atlatl scenario,
Algorithm [T]can solve a game with 20 time steps in less than 18 hours, exploring a little less than
15M states, for a total number of states estimated to be between 100M and 200M.

6 CONCLUSIONS AND OUTLOOK

We introduced a new notion of fixed point for zero-sum games that is restricted to a subset of the
state-space, but still suffices to construct saddle-point and security policies. We then proposed the SPE
algorithm that provably converges to a Q-function that satisfies the restricted fixed-point condition
for deterministic finite games. The primary benefit of the restricted fixed-point condition is that
convergence to a saddle-point can be achieved without full state exploration, which was required in
previous works. Finally, we presented several numerical examples showing that, in practice, SPE
consistently terminates at a saddle-point without exploring the entire state space. In fact, for several
scalable board games, the fraction of states explored decreases as the game size increases. Importantly,
we demonstrated that the Q)-function used to construct the saddle-point can be represented either
tabularly or using a neural network, without having to adapt SPE.

Important directions for future research include extending the SPE convergence result to stochastic
games, which primarily requires relaxing the saddle-point exit checks to enable termination in finite
time at an e-saddle point. Our numerical results showed that some games permit termination at a
saddle-point with a smaller fraction of explored states than others. Characterizing which classes of
games are especially attractive from this perspective remains another important direction for future
research. Finally, non-cooperative games share similar structures with robust optimization, which
should enable extending the ideas in this paper in that direction.
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7 REPRODUCIBILITY STATEMENT

This work is reproducible primarily due to inclusion of all technical assumptions and proofs for the
formal results in Sections 2}4] which are included either in the main text or in Appendices[A.T{A.3]
Towards the reproducibility of the numerical results, an anonymized version of the code is available at
https://anonymous.4open.science/r/saddlepointexploration-17BA/. Im-
portantly, all of the games that are used for illustrating the performance of the proposed methods are
open-source (Lanctot et al.| 2019; Darken, [2025)).
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A TECHNICAL APPENDIX

A.1 PROOF OF THEOREM[Z]

The following proposition is needed to prove Theorem [2} In stating this and subsequent results,

we annotate equalities and inequalities involving random variables with "2 or W§° to indicate that
they hold with probability one over the full randomness of the state-action-reward trajectory. This
proposition is not really new, but we state it here (and provide a self-contained proof in Appendix
[A.2)) because we could not find a version of it that matches the zero-sum turn games setup.

Proposition 1. The following three statements hold for any pair of policies (71, 7o) € I1I; x Iy and
any absolutely summable function V : S — R:

1. If
V(st) "2 Eny molreen +sgny(se)sgny (see)V(sinn) | &), VE=0,  (19)
then
V(sr) "2 Vi, my(sr), V7= 0. (20)
2. If
wpo
sgny (s7)V(sr) < Erm, [Sgnl(sT)Tt+1 + sgny (5¢41)V (S41) | 37’]7 vi=0, (21)
then
sgn; (s-)V(s;) Wg) sgny (87)Vry mo(s7), V7 =0. (22)
3. If
wpo
sgny (s7)V(sr) = Erom, [Sgnl(ST)Tt+1 +sgny (5¢41)V (St41) | 37’]7 vE=0, (23)
then
sgn; (s-)V(s;) Wﬁo sgny (7)Vr, mo(s7), V7 =0. (24)
O

We are now ready to prove Theorem 2}

Proof of Theorem 2] Combining (I0) with the restricted fixed-point condition, we obtain
V(s) = max Q(s,a)
acA
= Iclllé?:i(E [Tt+1 + sgny (s¢) sgng (si+1)V (Sp41) | Sg = S, a; = a], Vs € St (25)
When s € Sy, (TI)) guarantees that the policy 75 (s) reaches the maximum in (23)), but an arbitrary
policy 1 (s) may not and therefore
V(s) = E[res1 + sgny () sgny (se41)V (s41) | 8¢ = 5,00 = 71 (5)]
= E s, [ren +sgny (se) sgny (se41)V(seqn) | se = 5] (26)

= E[rie1 + sgn(se) sgng (8e41)V (St41) | 8¢ = s,a: = m1(8)]
= Er mo[rt41 +sgn; (5t) sgng (s¢41)V (s¢41) | st = 8], Vs e Sy n Spx, Vmry,me, (27)

where 7 in (27) can be any policy in II5, because, for a state s € Sy, the policy of P, makes no
difference.

In contrast, when s € Sa, the policy 73 (s) reaches the maximum in (23), but an arbitrary policy
m2(s) may not and we have

V(s) = Ep zxlreen + sgny(se) sgny (se41)V (se41) | s¢ = 5] (28)
= Erymo[7e41 + 804 (8t) sgny (se41)V (St41) | st = 8], Vs € San Spx, Vmry, ma. (29)
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From (26) with 5 = 7% and (28) with m; = 7§, we obtain
Vi(s) = Eﬂfwg [re1 + sgny (se) sgny (se41)V (se41) [ ¢ = s], Vs € Sps.

Since the pair (7§, 73) belongs to IT*, every trajectory generated under these policies belongs to
Spix with probability 1, which enable us to use Proposition [T]to conclude that

V(s) = Vit (s), VseS. (30)

Multiplying 26) by sgn, (s) = 1, Vs € S; N Sp and combining this equality with (29) multiplied
by sgn; (s) = —1, Vs € So N Spp+ and with m; = 75, we obtain
sgny (s)V(s) < E_x_ [re+15en1(s¢) +sgny(se41)V (se41) | st = s], Vs e Spx.

ﬂ'l T2

Since every pair (75, m2), Vg € Il also belongs to IT* the trajectories generated under these policies
belongs to Spyx with probability 1, which enable us again to use Proposition [I|and now conclude that

sgny(s)V (s) < sgny(s)Vox o, (s), Vs € S
Combining this inequality with (30) and using the fact that sgn, (s) = — sgn,(s), Vs € S, leads to
sgny (s)V(s) = sgny (5)Vesx . (5)
sy (5)V(5) = sgug(s)Ve 4(s)

‘ﬂ'l ,7T2

sgny (s)VﬂkJr2 (s), Vse S

<
> sgnQ(s)Vﬂk,Tr2 (s), VseSp=. 3D

If instead we multiply (28) by sgn,(s) = —1, s € So n Sp* and combine this equality with 27)
multiplied by sgn, (s) = 1, s € S; n S and with 2 = 74, we obtain
sgny(s)V(s) = E; x[reensgn (se) + sgny (se41)V(se41) | se = ], Vs € Spx.

Since every pair (71, 74 ), Vg € II also belongs to IT* the trajectories generated under these policies
belongs to Spys with probability 1 and we can again use Proposition [[]and (30) to conclude that
sgny (s)V(s) = sgny (s)Vos 15 (s) = sgny(s)Vo s (s), Vs € Spx. (32)

T1,To

The saddle-point inequalities () follow from (3T) and (32). [

A.2 PROOF OF PROPOSITION[]

Proof of Proposition[I} To prove the first statement, we multiply both sides of (I9) by sgn, (s¢), to
conclude that

sgny (s))V (s¢) — Elsgny (se41)V (se11) | s¢] "= Elrecisgny(se) | s, VE=0.  (33)

Suppose now that we pick some 7 > 0 and take conditional expectations of both sides of (33) given
s,. By the smoothing property of conditional expectations, we conclude that

Elsgny (s0)V (se) | s7] = Elsgny (s141)V (se41) | 571 = Elrecasgny (se) | s0].

Adding both sides of this equality from ¢ = 7 to t — o0 and using the absolute convergence of the
two series on the left-hand side, obtain

18

sgny (s.)V (sr) 2 ) Blreyrsgng (se) | 501, (34)

t

T

from which (20) follows by multiplying both sides of the equality above by sgn, (s, ) and using the
definition of the value function in (@).

The subsequent statements can be similarly derived, by starting with the inequalities (ZI) and 23)),
instead of the equality in (33). [

14
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A.3 PROOF OF THEOREM[3]

The statement that we get a pair of saddle-point policies is an almost direct consequence of the
termination condition in line 22] because the code in lines and essentially solves the
optimizations that appear in the definition of saddle-point in (6). The proof of termination in finite
time is more involved and requires both Theorem [2]and the following result:

Lemma 1 (Finite convergence over a subset of S x A). Assume that the state and action spaces are
finite, the game is deterministic, terminates in finite time, and o, = 1, Vk 2 0. Let Z,, € S x A
denote the set of states-action pairs (Si,a;) that appears infinitely many times in the samples
in lines Then the sequence QF converges in a finite number of iterations to a function
Q' : S x A — R for which @) holds ¥(s,a) € Zy. O

The following definitions and basic result will be used to prove Lemmal[l} we say that a state s € S
is recurrent if there exists a finite sequence of actions that takes the state s to itself with positive
probability. States that are not recurrent are called transients and we denote the sets of transient and
recurrent states by Syecurrent @0d Stransient, respectively. For games with finite termination time,
recurrent states must have zero reward and, in fact, must always be followed by states also with zero
reward, as noted in the following proposition:

Proposition 2. Consider a stationary Markov game with finite termination time and an arbitrary
sequence of actions aq, a1, . . .. If the sequence of states Sg, S1, ... and rewards r1,73, ... can occur
with positive probability, i.e.,

p(si1,7e41 | se,a) >0, ¥Vt =0, (35)

and if s: € Srecurrent for some T = 0, then vy = 0, Vt = 7. OJ

Proof of Proposition[2] Assume by contradiction that there exist times ¢ > 7 > 0 for which s, €
Srecurrent and ;11 > 0, which means that the sequence of actions a., . . ., a; takes the state from s,
to s¢+1 and leads to the reward ;1 > 0 with some positive probability, in the sense of (33).

Since s; € Srecurrent there must also exist a (possibly quite different) finite sequence of actions

ar,...,ar that takes the state back to s, at some time ¢ > 7. Specifically, there exist associated
sequences of states 5., ..., 57,1 and rewards 7, ..., 77, that satisfy
Sr = Si41 = S7s p(Se41,7eq1 |5e,ae) >0, Vie{r,... i} (36)

Since it is possible to return to the recurrent state s, as many times as we want, we can assume
without loss of generality that ¢ is larger than the termination time 7', after which all rewards must be
zero with probability one.

To complete the contradiction argument, we “concatenate” the above sequences of actions and states
in the following order:

ag, ..., Qr-1, a‘ra"'aafa Q... 0

805y ST—1, Sr = 38r,...,5%, §f+1:57—,37—+17---75t-
—_— _

from original seq. from recurrence of s back to original seq.

All transitions in this sequence have positive probability because of either (33)) or (36). In addition,
the last state s; and action a; lead to a reward r;, 1 > 0, which contradicts the fact that ¢ > 7T and all
rewards after that time must be zero with probability one. [ |

Proof of Lemmal[l} We now construct the function QT : S x A — R to which the restriction of Q*
will converge. We start by setting

QT(Sa Cl) =0, Vsé€ Seecurrent, @ € A.

In view of Proposition E], at every recurrent state $; € Syecurrens the reward 7,1 must be equal to
zero with probability one, regardless of the action a;, and the same will happen for every subsequent
reward r-, 1, V7 > t. This means that, when we apply the update rule (I12)) for any state s € Syecurrent
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or for any state s € S that can succeed a state in Syecurrent With positive probability, we will continue
to have

Q%(s,a) =0, Yaec A k=>0,. (37)
This guarantees that Q' will always match Q% at least over the set Syecurrent X A.

Since S x A is finite and Z,, = S x A includes all state-action pairs that appear infinitely many
times in the samples in lines 24H26] there is going to exist a finite integer /¢ such that for every
k = K only states (s, a;) € Z4 appear in these samples. This means that we can define

QT(S,CL) = QK0(57a)7 V(s,a) ¢ ZOO» (38)
because after time K no update of QT (s, a) outside Z,, will ever take place.

To complete the definition of Q(s, a) it now remains to define this function for pairs (s,a) € 2
with s € Siransient. To this effect, consider a directed graph G whose nodes are the transient states in
Stransient> With an edge from s € Siransient 10 8" € Stransient if there is an action a € A for which a
transition from s to s’ is possible, i.e.,

Jae A,;r e R:p(s',rls,a) = 1.
This graph cannot have cycles because any nodes in a cycle would be recurrent and thus not in
Stransient- The absence of cycle guarantees that this graph has at least one topological ordering <,

i.e., there exists a total order on the set Siransiens transient states so that s < s’ if and only if the state
s’ can be reached from s (Cormen, [2009).

Let spax be the “largest” state in Siransient With respect to the order <, i.e., Spax > S, Vs €
Stransient \{ Smax }- If for a given action a € A, we have that (Spax,a) ¢ Z, convergence of
Q" (8max, @) to at iteration K has already been established. If instead (Syax,a) € Z4, then
Q" (Smax, a) will eventually be updated using (T2)) at some finite iteration k& > K. Moreover, since
Smax 18 the “largest” state in S¢ransient, it cannot transition to any transient state so it must necessarily
transition to a recurrent state. In view of , the update in with ay, = 1 will necessarily be of
the form

Qk+1(8maxa a) = Tt41 = QT (SmaX7 a)7 (39)
where ;1 is the (deterministic) reward arising from state s; = Syax and action a; = a. This means
that every Q" (smax, @), a € A will converge to the value QT (spay, a) defined in (39), right after
their first update.

We now use the order > to build an induction argument showing that finite-time convergence will
also happen for every other s € Siyansient and every a € A. To this effect, pick some s € Sgpansients
a € A and assume by the induction hypothesis that every Q*(s’, a) has converged to Q' (s, a) for
every s’ > s, a € A at some finite iteration K, > K.

In case (s,a) ¢ 2., convergence of Q" (smax, a) to (38) at iteration K has already been established.
If instead (s,a) € 24, then Q¥ (s, a) will eventually be updated using (T2) at some finite iteration
k > K. At this iteration, the update in with ap, = 1 takes the form

QkH(S» a) = rip1 +sgng(s) sgny (s¢41) g}g«% Qk(5t+17 a’),

where ;11 and ;41 > s are the (deterministic) reward and next state, respectively, arising from state
s¢ = s and action a; = a. But since s;4+1 > s, the induction hypothesis guarantees that at this and at
any subsequent update for the pair (s, a), we have

QkH(SaG) =1y +sgny(s) sgny (se41) E}?X QT(3t+17fl/) = QT(S,G)~ (40)

This shows that every Q* (s, a), a € A will converge to the value Q(s, a) defined in (@0), at their
first update after K. By induction, and recursively defining Q (s, a) for every transient state s, we
then conclude that Q¥ (s, a) converges to Q' (s, a) also for every s € Siransient» @ € A. [

The following result can be obtained by combining Lemma|[I]and Theorem 2] when we freeze the
policy of P;’s at ¥ and optimize over the policies of Py or, alternatively, freeze the policy of Py’s at
75 and optimize over the policies of P1. Note that when the policy of one of the players is “frozen”
(i.e., not optimized) there is no distinction between restricted or regular fixed point. In this case,
Lemmal [I] guarantees convergence to a fixed point and Theorem [2]optimality (for the player that is
not frozen).
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Corollary 1. Assume that the state and action spaces are finite and that the game is deterministic,
terminates in finite time, the updates of Q2 and Q1 use o, = 1, and Assumption[I) holds. Then Py’s

policy wb (T3) is optimal against P1’s policy 7, with the rewards in (I3), which means that
Jo(s0) = sgny(sp) max ng (so0) = sgnQ(so)Vﬂk ﬂ_T(So) = max sg;nz(sO)VTrk’7r2 (s0)- 41)
aceA 172 mo€lls 1
and P1’s policy 771f (T6) is optimal against Py’s policy 7§ with the rewards in ([7), which means that
J1(s0) = sgn, (s0) max Q¥ (so) = sgny (s0) V.1« (S0) = max sgn (so)V,, x(s0).  (42)
acA 172 m1€lly »h2
O

We are now ready to prove Theorem [3}

Proof of Theorem 3] Since sgn,(sg) = — sgn, (o), we conclude from (@) that

sgn, (Sp) max Q’gz (s0) = max sgnz(so)vwlf’,r2 (s0) = max min sgny(so)Va, m,(s0)  (43a)
aeA mo€lly mwo€lly mi€lly

sgn, (s0) max Q42 (s0) = — sgny(s0) max Q4% (sg) = — max sgny(s0) Vs , (50)
aeA aceA mo€lly 1
= min sgn, (s9)Vyr ., (50) < max min sgn;(s0)Vr, x,(50). (43b)
‘II'QEHQ 1 7\'1€H1 7'!'2€H2
Similarly, since sgn,(so) = — sgn, (so), we conclude from @2) that

sgn, (sp) max Q]fl(so) = max sgn,(s0)V,, ,x(s0) = max min sgn;(so)Vr, ,(50) (44a)
aeA m1€lly 2 €Il maelly

sgny (s0) max Q' (sg) = — sgn, (s0) max Q¥ (sg) = — max sgn, (50) Vi, .k (50)
aeA acA m1€lly 2

= min sgny(so)V,, rx(s0) < max min sgny(so)Vr, x,(50). (44b)
m1€lly ] mo€lly melly

The bounds in (T8) follow from combining [@3) with @4).

Upon termination, we have that
ka2 _ k1
max Qy* (so) = max Q7" (so)
and, since sgn,(so) = — sgn, (so), we conclude from (#T)) and (#2) that

1ax sgny(s0) Vet r, (50) = sgny(s0) max Q5° (so)

= —sgnl(so)maxQ’f1 (s0) = — max sgny (s0)Vy, »+(s0) = min sgny(so)V,, r»(s0)
aeA w1 €llq 2 m1€lly 2

Using the definition of max (on left-hand side) and of min (on right-hand side), we obtain
5819 (SO)V;TiC 7r’2‘ (80) < max 581y (80)‘/71"C T (80)
’ mo€lly 1
_ k2 _ k1
= sg1(s0) max @ (s0) = —sgny (s0) max Qr* (so)

= min sgny(s0)Vy, rx(50) < sgny(so)Vir ok (s0)-
mielly 2 1272

Since the left- and right-most terms in this chain of inequalities are equal, all terms must be equal,

from which we conclude that the pair (7, 75) satisfies the saddle-point conditions (6)).

Having established that the algorithm can only terminate at a saddle point, it remains to prove it
always terminates in finite time. By contradiction, assume that the algorithm does not terminate.
Since the state and action sets are finite, the number of pairs of deterministic policies in II; x Il
policies is also finite, which means that there must then exist at least one pair of policies (75, 7%) for
which the pairs (7%, 7%) defined in lines7|and|15|turns out to be equal to (7}, 7) infinitely many

times.
Suppose now that we define the following set of pairs of policies

I* = 11} U 13, I = {(r§,m2) : mp € 1L}, II5 = {(my,7m3) s m € I }.
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Veritying in linethat QSQ (v, -) has converged, requires the set of samples in line@to include every
pair (s¢, a;) in Sy x A, whereas verifying in linethat Q%' (-, -) has converged, requires the set of
samples in line [17|to include every pair (s, a;) in SH;< x A. This means that each of the updates of

Q" in lines will include, at least, every pair (s, a;) in S« x A infinitely many times. This
enable us to then apply Lemma to conclude that, Q* must converge in a finite number of iterations
to a function Q* : S x A — R for which @) holds ¥(s,a) € Z,, D Spx x A.

We have just established that the function Q* : S x A — R satisfies the assumptions of Theorem 2]
from which we conclude that (7, 73 ) must be a saddle point policy that was reached by (75, 75)
at some finite iteration k. This establishes a contradiction, because as soon as (7%, 75) reaches a

saddle-point the algorithm will terminate. [

A.4 SPEEDING UP CONVERGENCE

As noted before, the samples (s, ag, S¢11,7¢+1) generated in lines@]andto verify the saddle-point
condition suffice to guarantee convergence to a restricted fixed point. However, executing the code in
lines anduntil convergence of Q¥ and Q5 can be costly for games with large state-spaces.
This motivates using an additional mechanism to approximately solve the optimizations in (T4}, (I6);
which does not need to be “sufficiently accurate” to certify that (7f, 75) is a saddle-point but it is
computationally much cheaper. Such a mechanism can be used in line 4] without compromising the

guarantees provided by Theorem 3]

Procedure [2] provides such a mechanism by essentially replicating in line[d] what is done in lines [7HI2]
and with additional tables ()1, Q2 that function within the scope of line

1. Collect samples using Q1 and Q5 as in lines and , but repeat the loops only over
a finite number of iterations L, rather than waiting until convergence.

2. Only initialize Ql and QQ at the start of Algorithminstead of re-initializing them before

executing each check as in lines and [I5H20]

Procedure 2 Optional procedure for line 4|of Algorithm assuming an initialization Q? (s,a) =0,
Vs e S,ae A, ie{1,2} at the start of Algorithm|[1]
1: extract P;’s policy w’g from Q* using (T3)
2: extract Py’s policy 7§ from Q¥ using (T3)
3: for L iterations do
4: generate sample(s) (¢, at, ¢41,7¢+1) from (3), restricting a; = 75 (s;) when s; € S
5: use sample(s) to update Q’§ using

S

generate sample(s) (¢, at, S¢11,7¢+1) from (3)), restricting a; = 75 (s¢) when s; € Sy
use sample(s) to update Q% using (12)

~
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