

000 001 002 003 004 005 REINFORCEMENT LEARNING FOR SADDLE-POINT 006 EQUILIBRIA WITHOUT FULL STATE EXPLORATION 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

We introduce a new fixed-point condition on the state-action-value Q -function for zero-sum Markov turn games that suffices to construct saddle-point and security policies, but is less restrictive than the classical condition arising from the Bellman equation. We then propose an iterative algorithm that guarantees convergence to a function satisfying this less restrictive condition. The key benefit of the new condition and algorithm is that convergence to a saddle-point can (and typically will) be reached without full exploration of the state-space; generally enabling the solution of larger games with less computation. Our algorithm is based on a limited form of exploration that gathers samples from repeated attempts to certify the current candidate policies as a saddle-point, motivating the terminology “saddle-point exploration” (SPE). We illustrate the use of the new condition/algorithms in several combinatorial games that can be scaled in terms of the size of the state and action spaces. Numerical results, using both tabular and neural network Q -function representations, consistently show that saddle-point policies can be formally certified without full state exploration and, for several games, we can see that the fraction of states explored *decreases* as the size of the game grows.

1 INTRODUCTION

We address **two-player zero-sum Markov turn games** with finite but large state spaces, for which the goal is to find minimax policies with “modest” computation. In this context, *minimax* or *security* policies refer to policies π_1^*, π_2^* that achieve the outer maxima in the following worst-case optimizations

$$\max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} J_1(\pi_1, \pi_2), \quad \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} J_2(\pi_1, \pi_2), \quad (1)$$

where $\Pi_i, i \in \{1, 2\}$ is the policy space for player P_i and $J_i(\pi_1, \pi_2)$ this player’s expected sum of future rewards, with $J_1(\pi_1, \pi_2) = -J_2(\pi_1, \pi_2)$. We use the qualifier “modest” to mean that we seek to certify policies to be solutions to (1) without exploring the full state-space of the game. The terminology *turn games* means that only one player is allowed to make a decision at each state (Sidford et al., 2019; Jia et al., 2019; Shah et al., 2020; Anderson et al., 2025). Turn games generalize *alternate play games* in which players always alternate in making decisions, like chess, checkers, or go. As opposed to general zero-sum Markov games (e.g., Filar & Vrieze (1997)), turn games with finite state and action spaces have pure saddle-point policies under very mild assumptions, avoiding the need to consider mixed or behavioral policies (Hespanha, 2017).

Q -learning, which was originally developed by Watkins (1989) for single-player Markov decision processes and later extended to two-player zero-sum games by Littman (1994); Littman & Szepesvári (1996), remains the most widely used provably correct approach to construct minimax policies. Q -learning performs an iterative computation of the state-action-value function, generally called the Q -function, that assigns to each state-action pair the associated (minimax) future rewards. Correctness of this approach relies on the observation that the iteration converges to a unique fixed point, which is the optimal Q -function. In practice, the Q -learning iteration typically terminates by either explicitly checking whether or not the fixed-point condition holds (often up to some prescribed acceptable error) or by using a fixed number of iterations for which one can guarantee convergence (up to some prescribed acceptable error). Both options require evaluating the Q -function over the whole state-space; either explicitly in the first case, or implicitly in the second case, because the available

sample complexity bounds that guarantee convergence of the Q -function rely on full state-exploration (Even-Dar & Mansour, 2003; Hu & Wellman, 2003; Beck & Srikant, 2012; Wainwright, 2019; Chen et al., 2020; Zhang et al., 2020; Ménard et al., 2021; Li et al., 2021; Lee, 2023; Li et al., 2024).

Our first contribution is a new condition on a candidate Q -function that suffices to guarantee that the policies extracted from it are a solution to (1). This condition, which we call “restricted fixed point,” is expressed as a fixed-point equality on a restricted subset of the state space and can be checked without full state exploration. While the usual (unrestricted) fixed-point condition typically only has a unique solution — precisely the optimal Q -function — our restricted condition typically has multiple solutions, many of which are *not* the optimal Q -function. Regardless, we show in Theorem 2 that all functions satisfying the restricted condition lead to minimax policies in the sense of (1).

The second contribution is an algorithm that guarantees convergence to a restricted fixed point (Algorithm 1). This algorithm relies on updates to the Q -function that are similar to the classical updates (e.g., by Littman & Szepesvári (1996)) adapted to turn games; but it differs from previous work in two aspects: termination condition and sample selection/exploration. Termination is based on checking a saddle-point condition that involves solving two “inner-loop” optimization problems using single-player Q -learning. The proposed algorithm is named “saddle-point exploration” (SPE) because, beyond a termination condition, these inner-loop optimizations provide all the samples that are needed for the (outer-loop) Q -function updates. Embedding two inner-loop Q -learning iterations within an outer-loop iteration might seem to result in a very inefficient algorithm. However, this is not the case, because the outer loop makes use of all the samples generated during the inner-loop optimizations, which is enabled by the off-policy Q -learning updates. **We prove that Algorithm 1 terminates in finite time for deterministic turn games (Theorem 3), while for stochastic turn games we prove an analogous high-probability result (Theorem 4). In both cases, visiting the entire reachable state space is not required for termination (although in the worst case it is unavoidable).**

SPE works with general Q -function representations of the candidate saddle-point, including tabular and neural network forms. For the latter representation, instead of asking for convergence of the neural network during training — typically a difficult condition to verify — the algorithm only requires that the policies derived from the neural network satisfy the saddle-point conditions. The complexity of this verification is relatively low, because it presumes that the policy of one of the players is frozen, greatly reducing the reachable state-space.

We illustrate the benefits of the SPE algorithm by applying it to a collection of scalable board games available in the OpenSpiel software package (Lanctot et al., 2019), including Hex, Y, Breakthrough, Clobber, Dots and Boxes; as well as the strategy game Atlatl (Rood, 2022; Darken, 2025). For all these games, we observe that SPE terminates without full **reachable** state exploration. Moreover, by considering multiple versions of the same game with different board sizes and time-horizon, we observe that the fraction of **reachable** states explored before termination either stabilizes to some percentage as the size of the game increases, or actually decreases.

RELATED WORK

In recent years, significant work has been devoted towards the *sample complexity analysis of Q -learning*; specifically on determining a minimum number of samples for which the policies arising from the Q -learning iteration can be certified as optimal (Even-Dar & Mansour, 2003; Beck & Srikant, 2012; Wainwright, 2019; Chen et al., 2020). For one-player problems, fairly sharp sample complexity bounds can be found in (Li et al., 2024), where it is shown that the number of samples required for (synchronous) Q -learning to obtain an ϵ -accurate estimate of the “exact” Q -function scales with $|\mathcal{S}| \times |\mathcal{A}| \times H^4/\epsilon^2$ (up to logarithmic factors), where \mathcal{S} and \mathcal{A} denotes the state and action spaces, respectively, and $H := 1/(1 - \gamma)$ is an “effective” time horizon for a $\gamma \in (0, 1)$ -discounted infinite-horizon cost. This result is “sharp” in H and ϵ in the sense that the authors provide an MDP for which the Q -function requires a number of order H^4/ϵ^2 to converge. Results of this nature for zero-sum Markov games include an additional term $|\mathcal{B}|$ for the opponent’s action space (Lee, 2023).

It has previously been recognized that it is possible to construct almost-optimal policies from samples without convergence of the Q -function. *Regret-based analyses* accomplish this by bounding the number of samples required to obtain a policy with a small cumulative cost/reward difference compared to the optimal policy. One of the tightest results under this setup was reported by Li et al. (2021), who show accumulated regret over N episodes in a finite-horizon setting with episode length

108 T of order $\sqrt{|\mathcal{S}| \times |\mathcal{A}| \times T^2 \times N}$, but only after $N \geq |\mathcal{S}| \times |\mathcal{A}| \times T^{10}$. While different works obtain
 109 different scaling laws for the regret, the minimum sample size, and the memory complexity, the
 110 existing regret-based analyses of Q -learning still require a sample size on the order of $|\mathcal{S}| \times |\mathcal{A}| \times T$
 111 or greater (Li et al., 2021; Zhang et al., 2020; Ménard et al., 2021).

112 Additional results that are specific for *two-player zero-sum Markov games* include (Bai et al., 2020),
 113 which provides a variant of Nash Q -learning (Hu & Wellman, 2003) with sample complexity bounds
 114 to achieve an ϵ -approximate Nash-equilibrium on the order of $|\mathcal{S}| \times |\mathcal{A}| \times |\mathcal{B}| \times T^5/\epsilon^2$. More
 115 recently, Feng et al. (2024) reduce the polynomial dependence on the horizon to T^3 and obtain
 116 the minimax-optimal dependence on T , $|\mathcal{S}|$ and ϵ . Shreyas & Vijesh (2024) proposed a multi-step
 117 approach that converges with probability one in the setting with discounted rewards.

118 It should be noted that, while our restricted saddle-point condition can be used to certify a policy as
 119 optimal with computational complexity below $|\mathcal{S}| \times |\mathcal{A}|$, it is possible to construct games for which
 120 the only restricted saddle point is the usual (unrestricted saddle point) and no benefits can be gained.
 121

122 SPE’s test of the saddle-point condition can be viewed as trying to find weaknesses in the current
 123 candidate policies, which has similarities with the “Golf with Exploiter” algorithm in Jin et al. (2022).
 124 In that work, iterations are performed over a set of state-value functions from which an optimistic
 125 policy is extracted, as well as the best response against it. A probabilistic guarantee of convergence
 126 is provided in terms of the Bellman Eluder dimension of the game, which for Markov games with
 127 a tabular representation is upper-bounded by the size of the state-action space, but can be smaller.
 128 The key challenge with this work lies in devising algorithms that efficiently iterate over a set of
 129 value functions, which is defined by a growing number of constraints posed on these sets by the
 130 samples. While we arrived at the SPE algorithm from a very different approach (based on the
 131 restricted fixed-point condition), the SPE algorithm can be viewed as a practical implementation of
 132 some of the ideas in (Jin et al., 2022).

133 In addition to the references above, there is a large body of work on *developing heuristic algorithms*
 134 to solve large zero-sum turn games: these include AlphaZero (Silver et al., 2017), AlphaStar (Vinyals
 135 et al., 2019) which uses a variant of Policy Space Response Oracles (Lanctot et al., 2017), and Monte
 136 Carlo Tree Search methods (Silver et al., 2016). However, the focus of these algorithms has not been
 137 on termination with correctness guarantees.

2 ZERO-SUM TURN MARKOV GAMES

140 We consider *Markov games* with state s_t at time $t \geq 0$, taking value in a state-space \mathcal{S} . In *turn games*,
 141 only one player can make a decision at each state, so the state-space \mathcal{S} can be partitioned into two
 142 disjoint sets $\mathcal{S}_1, \mathcal{S}_2$ with the understanding that, when s_t belongs to \mathcal{S}_1 , the action $a_t \in \mathcal{A}$ is selected
 143 by player P_1 . Otherwise, $s_t \in \mathcal{S}_2$ and the action is selected by player P_2 . To simplify the notation, we
 144 use the same symbol \mathcal{A} to denote the set of actions available to both players, with the understanding
 145 that when $s_t \in \mathcal{S}_i$, the elements of \mathcal{A} should be viewed as the options available to P_i , $i \in \{1, 2\}$.
 146

147 In *zero-sum games*, the rewards for the two players add up to zero and we denote by $r_{t+1} \in \mathcal{R} \subset \mathbb{R}$,
 148 $t \geq 0$ the immediate reward collected by the player that selected the action a_t at time t . The total
 149 reward collected by player P_i , $i \in \{1, 2\}$ for the initial state $s_0 \in \mathcal{S}$ is then given by

$$J_i(s_0) := \sum_{t=0}^{\infty} \mathbb{E}[r_{t+1} \operatorname{sgn}_i(s_t)], \quad (2)$$

152 where $\operatorname{sgn}_i(s_t) = 1$ if $s_t \in \mathcal{S}_i$ and $\operatorname{sgn}_i(s_t) = -1$ otherwise. The sets $\mathcal{S}, \mathcal{A}, \mathcal{R}$ are assumed finite
 153 and the state s_t is a *stationary controlled Markov chain* in the sense that

$$P(s_{t+1} = s', r_{t+1} = r \mid s_t = s, a_t = a) = p(s', r \mid s, a) \quad (3)$$

154 $\forall t \geq 0$, $s, s' \in \mathcal{S}$, $a \in \mathcal{A}$, $r \in \mathcal{R}$; where $p : \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is the *transition/reward*
 155 *probability function*. We say that a game is *deterministic* if $p(\cdot, \cdot)$ only takes values in the set $\{0, 1\}$
 156 and that the game *terminates in finite time* if there exists a finite time $T \geq 1$ such that $r_t = 0, \forall t \geq T$
 157 with probability one, regardless of the actions $a_t \in \mathcal{A}$ selected. *Games with finite horizon* can be
 158 trivially reduced to games with infinite horizon but finite termination time, by incorporating time into
 159 the state and creating an absorbing “game-over” state with zero-reward to which the state is forced to
 160 transition once the end of the time horizon is reached.

162 2.1 POLICIES AND VALUE FUNCTION FOR TURN GAMES
163

164 A policy for the player P_i , $i \in \{1, 2\}$ is a deterministic map $\pi_i : \mathcal{S}_i \rightarrow \mathcal{A}$ that selects the action
165 $a_t = \pi_i(s_t)$ when the state s_t is in \mathcal{S}_i . The finite set of all such deterministic policies is denoted by
166 Π_i . We recall that, for turn games, there is no advantage in considering stochastic policies (Anderson
167 et al., 2025). For a pair of policies $(\pi_1, \pi_2) \in \Pi_1 \times \Pi_2$, we define the *policy pair's value function* as

$$168 \quad V_{\pi_1, \pi_2}(s) := \text{sgn}_i(s) \sum_{t=\tau}^{\infty} \mathbb{E}_{\pi_1, \pi_2}[r_{t+1} \text{sgn}_i(s_t) \mid s_{\tau} = s] \quad \forall s \in \mathcal{S}, i \in \{1, 2\}, \quad (4)$$

171 where the subscripts in $\mathbb{E}_{\pi_1, \pi_2}[\cdot]$ highlight that the expectation is conditioned to the actions determined
172 by the given policies. We get the same value for $i = 1$ and $i = 2$ because $\text{sgn}_1(s) = -\text{sgn}_2(s)$,
173 $\forall s \in \mathcal{S}$. The time $\tau \geq 0$ from which the summation is started does not affect its value due to the
174 stationarity of the Markov chain. It is straightforward to verify that the reward (2) collected by player
175 P_i can be obtained from the value function using

$$176 \quad J_i(s_0) = \text{sgn}_i(s_0) V_{\pi_1, \pi_2}(s_0), \quad \forall i \in \{1, 2\}. \quad (5)$$

178 2.2 SADDLE-POINTS AND SECURITY POLICIES

179 A pair of policies (π_1^*, π_2^*) is a *(pure) ϵ -saddle-point* for some $\epsilon \geq 0$, if

$$181 \quad J_1^*(s_0) := \text{sgn}_1(s_0) V_{\pi_1^*, \pi_2^*}(s_0) \geq \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^*}(s_0) - \epsilon, \quad (6a)$$

$$183 \quad J_2^*(s_0) := \text{sgn}_2(s_0) V_{\pi_1^*, \pi_2^*}(s_0) \geq \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^*, \pi_2}(s_0) - \epsilon, \quad (6b)$$

184 and, for $\epsilon = 0$, $J_1^*(s_0) = -J_2^*(s_0)$ is called the *value of the game*. When omitted, $\epsilon = 0$ is assumed.
185 In view of (5), the equality in (6a) with $\epsilon = 0$ expresses no regret in the sense that P_1 does not regret
186 its choice of π_1^* (over any other policy π_1) against π_2^* and, similarly, (6b) with $\epsilon = 0$ expresses no
187 regret for P_2 . Saddle-point policies are known to also be *security policies with values $J_1^*(s_0)$ and*
188 *$J_2^*(s_0)$ for players P_1 and P_2 , respectively*; in the sense that

$$189 \quad J_1^*(s_0) = \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0) = \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1^*, \pi_2}(s_0) \quad (7a)$$

$$191 \quad J_2^*(s_0) = \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0) = \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^*}(s_0) \quad (7b)$$

193 which means that, by using the policy π_i^* , the player P_i can expect a reward at least as large as
194 $J_i^*(s_0)$, no matter what policy the other player uses (see, e.g., (Hespanha, 2017)).

195 Assuming that the per-state reward is bounded, games with infinite horizon but discounted costs,
196 can always be “truncated” to a game with a sufficiently large but finite termination time T , so that
197 the costs of the truncated and the original games differ by less than some arbitrarily small value
198 $\eta > 0$, regardless of the policies used by the players. In this case, using the results in this paper to
199 compute an ϵ -saddle-point for the truncated game, automatically gives us a $(\epsilon + 2\eta)$ -saddle-point to
200 the original infinite-horizon discounted game.

201 2.3 FIXED-POINT SUFFICIENT CONDITION FOR SADDLE-POINT

203 Saddle-point and security policies can be easily constructed provided that we can find a function
204 $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ that is a *fixed point* of

$$206 \quad Q(s, a) = \mathbb{E} [r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1}) \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') \mid s_t = s, a_t = a], \quad (8)$$

207 $\forall s \in \mathcal{S}$, $a \in \mathcal{A}$. The terminology “fixed point” arises from regarding the right-hand side of (8) as the
208 action of an operator that acts on Q , and produces the same function Q . The following result provides
209 an explicit formula (10) for saddle-point policies as a function of the fixed point Q . To express it, we
210 need the following definition: we say that a function $V : \mathcal{S} \rightarrow \mathbb{R}$ is *absolutely summable* if for every
211 pair of policies $(\pi_1, \pi_2) \in \Pi_1 \times \Pi_2$ for players P_1, P_2 , respectively, the series

$$213 \quad \sum_{t=\tau}^{\infty} \mathbb{E}_{\pi_1, \pi_2}[V(s_t) \mid s_{\tau} = s], \quad (9)$$

214 is absolutely convergent for every $s \in \mathcal{S}, \tau \geq 0$. For games that terminate in finite time T , any
215 function $V : \mathcal{S} \rightarrow \mathbb{R}$ for which $V(s_t) = 0, \forall t \geq T$ with probability one is absolutely summable
since the series degenerates into a finite summation.

216 **Theorem 1** (Fixed-point sufficient condition). *Suppose there exists a function $Q^* : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ that*
 217 *is a fixed point of (8) and $V^*(s) := \max_{a \in \mathcal{A}} Q^*(s, a)$, $\forall s \in \mathcal{S}$ is absolutely summable. Then any*
 218 *pair of policies (π_1^*, π_2^*) for which*

$$\pi_i^*(s) \in \arg \max_{a \in \mathcal{A}} Q^*(s, a), \quad \forall s \in \mathcal{S}_i, i \in \{1, 2\} \quad (10)$$

221 *is a saddle-point and these are policies, with values $J_1^*(s_0) = \text{sgn}_1(s_0)V^*(s_0) = -J_2^*(s_0)$. \square*

223 We state this result without proof since it can be derived from classical results (Littman, 1994;
 224 Littman & Szepesvári, 1996), at least when the operator defined by the right-hand side of (8) is a
 225 strict contraction. It also follows from a more general result to be derived shortly.

226 *Q-learning* can be used to iteratively construct a function $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ that satisfies the fixed-point
 227 condition in (8). In the context of zero-sum turn games, *Q-learning* starts from some initial estimate
 228 $Q^0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ and iteratively draws samples $(s_t, a_t, s_{t+1}, r_{t+1})$ from the transition/reward
 229 probability function $p(s_{t+1}, r_{t+1} | s_t, a_t)$, each leading to an update of the form

$$Q^{k+1}(s_t, a_t) = (1 - \alpha_k)Q^k(s_t, a_t) + \alpha_k Q_{\text{target}}^{k+1}, \quad (11)$$

232 for some sequence $\alpha_k \in (0, 1]$ and $Q_{\text{target}}^{k+1} := r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1}) \max_{a' \in \mathcal{A}} Q^k(s_{t+1}, a')$.
 233 Under mild assumptions on the operator defined by the right-hand side of (8) and the sequence α_k ,
 234 this iteration converges to the unique fixed point of (8) when every element of $\mathcal{S} \times \mathcal{A}$ appears infinitely
 235 many times in the sample sequence $\{(s_t, a_t)\}$ (Tsitsiklis, 1994).

3 RESTRICTED FIXED POINT

239 To define ‘‘restricted fixed point’’ we need the following definitions: given a set or pairs of policies
 240 $\Pi \subset \Pi_1 \times \Pi_2$, we define the *set \mathcal{S}_Π of reachable states under Π* to contain all states that can be
 241 reached with positive probability under such policies, i.e.,

$$\mathcal{S}_\Pi := \{s \in \mathcal{S} : \exists t \geq 0, (\pi_1, \pi_2) \in \Pi \text{ such that } P_{\pi_1, \pi_2}(s_t = s) > 0\}. \quad (12)$$

244 We say that a function $Q^\dagger : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a *restricted fixed point of (8)* when this equation holds
 245 over $(s, a) \in \mathcal{S}_{\Pi^\dagger} \times \mathcal{A}$, where $\mathcal{S}_{\Pi^\dagger}$ is the set of reachable states under

$$\Pi^\dagger := \{(\pi_1^\dagger, \pi_2) : \pi_2 \in \Pi_2\} \cup \{(\pi_1, \pi_2^\dagger) : \pi_1 \in \Pi_1\}, \quad (13)$$

248 where

$$\pi_i^\dagger(s) \in \arg \max_{a \in \mathcal{A}} Q^\dagger(s, a), \quad \forall s \in \mathcal{S}_i, i \in \{1, 2\}. \quad (14)$$

251 Every fixed point (over the whole $(s, a) \in \mathcal{S} \times \mathcal{A}$) is necessarily a restricted fixed point, but the
 252 converse is not true since the set $\mathcal{S}_{\Pi^\dagger}$ is typically much smaller than the whole state-space \mathcal{S} . Moreover,
 253 fixed points are often unique (e.g., when the right-hand side of (8) defines the action of an operator
 254 that is a strict contraction), but restricted fixed points are generally not unique. Nevertheless, restricted
 255 fixed points still enable the construction of saddle-point and security policies:

256 **Theorem 2** (Restricted fixed-point sufficient condition). *Suppose there exists a function Q^\dagger that*
 257 *is a restricted fixed point of (8) and for which $V^\dagger(s) := \max_{a \in \mathcal{A}} Q^\dagger(s, a)$, $\forall s \in \mathcal{S}$ is absolutely*
 258 *summable. Then the pair $(\pi_1^\dagger, \pi_2^\dagger)$ is a *saddle-point* and these are security policies, with values*
 259 $J_1^*(s_0) = \text{sgn}_1(s_0)V^\dagger(s_0) = -J_2^*(s_0)$. \square

260 The proof of Theorem 2 is included in Appendix A.1. This proof directly shows that the restricted
 261 fixed-point condition suffices to establish that the saddle-point conditions in (6) hold and takes
 262 advantage of the observation that (6) only involves value functions V_{π_1, π_2} for $(\pi_1, \pi_2) \in \Pi^\dagger$. However,
 263 this derivation cannot use the relationship between the Q^\dagger and dynamic-programming’s cost-to-go,
 264 since (8) will generally not hold over \mathcal{S} for restricted fixed points.

4 SADDLE-POINT EXPLORATION (SPE) ALGORITHM

266 We now describe an algorithm that, like in classical *Q-learning*, constructs an iterative sequence
 267 of functions Q^k that are updated according to (11) and from which we will construct saddle-point

270 policies. However, unlike in classical Q -learning, our goal now is to update Q^k to get convergence to
 271 a *restricted fixed point* rather than a regular fixed point. To accomplish this, the SPE Algorithm 1
 272 selects the samples for (11) by using the current iterate Q^k to construct a candidate saddle-point
 273

$$\pi_1^k(s) \in \arg \max_{a \in \mathcal{A}} Q^k(s, a), \quad \forall s \in \mathcal{S}_1, \quad \pi_2^k(s) \in \arg \max_{a \in \mathcal{A}} Q^k(s, a), \quad \forall s \in \mathcal{S}_2, \quad (15)$$

275 and checks whether these policies form a saddle-point, which justifies the terminology *saddle-point*
 276 *exploration*. Specifically, the code in lines 7–12 fixes P_1 ’s policy at π_1^k and uses (single-player)
 277 Q -learning to find P_2 ’s best-response policy π_2^{br} . The sequence of functions $\{Q_2^0, \dots, Q_2^{k_2}\}$ is used
 278 for this purpose and, upon convergence, the best response has the form
 279

$$\pi_2^{\text{br}}(s) \in \arg \max_{a \in \mathcal{A}} Q_2^{k_2}(s, a), \quad \forall s \in \mathcal{S}_2, \quad (16)$$

280 and its use against π_1^k results in a reward for P_2 equal to
 281

$$\text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^{\text{br}}}(s_0) = \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0). \quad (17)$$

285 Similarly, the code in lines 15–20 computes P_1 ’s best-response policy π_1^{br} to π_2^k , which has the form
 286

$$\pi_1^{\text{br}}(s) \in \arg \max_{a \in \mathcal{A}} Q_1^{k_1}(s, a), \quad \forall s \in \mathcal{S}_1, \quad (18)$$

288 and its use against π_2^k results in rewards for P_1 equal to
 289

$$\text{sgn}_1(s_0) V_{\pi_1^{\text{br}}, \pi_2^k}(s_0) = \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0). \quad (19)$$

290 The termination condition in line 22 essentially guarantees that π_1^k and π_2^k satisfy a saddle-point
 291 condition like (7).
 292

293 We emphasize that the convergence of the sequences $\{Q_1^{k_1}\}$ and $\{Q_2^{k_2}\}$ only requires exploration of
 294 the subsets of the state-space that are reachable when either P_1 ’s policy is frozen at π_1^k or when P_2 ’s
 295 policy is frozen at π_2^k . Even though this test may need to be performed several times, we shall see
 296 that the SPE algorithm typically terminates without selecting a single sample from a large subset of
 297 the reachable states in \mathcal{S} . Nevertheless, the samples gathered still suffice to guarantee convergence of
 298 Q^k to a restricted fixed point. In view of this, line 4 could be skipped altogether, but we include it
 299 because additional samples provide opportunities to speed up termination (see Appendix A.5).
 300

301 4.1 DETERMINISTIC GAMES

302 While SPE is applicable to stochastic zero-sum turn games (not necessarily with finite state and action
 303 spaces, or termination time), the remainder of this section is focused on finite deterministic games,
 304 for which it is straightforward to be precise on two items that were left open: how to represent the
 305 functions $Q^k, Q_1^{k_2}, Q_2^{k_1}$, and how to check in lines 12, 20 that $Q_1^{k_2}, Q_2^{k_1}$ have converged.
 306

307 For deterministic games, the learning rate in (11) can be set to $\alpha_k = 1, \forall k$, which makes establishing
 308 convergence of $Q_1^{k_1}$ relatively simple: it suffices to keep track of the last iteration number at which
 309 the update (11) resulted in a change in $Q_1^{k_1}$ and ensuring, since then, (i) every state $s_t \in \mathcal{S}$ and every
 310 action $a_t \in \mathcal{A}$ that can be reached when P_1 ’s policy is fixed at π_1^k appeared at least once in the samples
 311 generated in line 9, and (ii) none of these updates led to an actual change in $Q_1^{k_1}$. Convergence of
 312 $Q_2^{k_2}$ can be similarly tested. We assumed here that we can perform “exact” updates for $Q_1^{k_1}$ and $Q_2^{k_2}$,
 313 which typically requires a tabular representation. While this may seem restrictive for large games, it
 314 is important to recall that these functions presume that the (deterministic) policy of one of the players
 315 has been fixed, which typically greatly reduces the size of the reachable state-space. In fact, our
 316 numerical experiments show that, when using hash tables of the board configuration to represent $Q_1^{k_1}$
 317 and $Q_2^{k_2}$, the loops in 7–12 and 15–20 converge quickly and the tables remain small.
 318

319 Convergence of the sequence Q^k does not need to be checked because the exit condition in line 22
 320 only involves $Q_1^{k_1}$ and $Q_2^{k_2}$. This provides much greater flexibility in representing Q^k , which can be
 321 represented by a deep neural network trained through a batch update using the samples collected in
 322 lines 9 and 17. However, the theoretical results that follow assume an exact update for Q^k .
 323

The following assumption is needed to establish the correctness for deterministic games.

324 **Algorithm 1** Q -learning with saddle-point exploration (SPE)

325 1: initialize $Q^0(s, a) = 0$, $\forall s \in \mathcal{S}, a \in \mathcal{A}$ and set $k \leftarrow 0$

326 2: **loop**

327 3: \triangleright (Optional) exploration

328 4: generate any number of samples $\{(s_t, a_t, s_{t+1}, r_{t+1})\}$ from (3) using any algorithm

329 5: extract \mathbb{P}_1 's policy π_1^k from Q^k using (15)

330 6: \triangleright proceed by computing \mathbb{P}_2 's best response against π_1^k

331 7: initialize $Q_2^0(s, a) = 0$, $\forall s \in \mathcal{S}, a \in \mathcal{A}$ and set $k_2 \leftarrow 0$

332 8: **repeat**

333 9: generate sample(s) $(s_t, a_t, s_{t+1}, r_{t+1})$ from (3), restricting $a_t = \pi_1^k(s_t)$ when $s_t \in \mathcal{S}_1$

334 10: use sample(s) to update $Q_2^{k_2+1}$ using (11)

335 11: $k_2 \leftarrow k_2 + 1$

336 12: **until** the function $Q_2^{k_2}(\cdot, \cdot)$ has converged (see Sections 4.1, 4.2)

337 13: extract \mathbb{P}_2 's policy π_2^k from Q^k using (15)

338 14: \triangleright proceed by computing \mathbb{P}_1 's best response against π_2^k

339 15: initialize $Q_1^0(s, a) = 0$, $\forall s \in \mathcal{S}, a \in \mathcal{A}$ and set $k_1 \leftarrow 0$

340 16: **repeat**

341 17: generate sample(s) $(s_t, a_t, s_{t+1}, r_{t+1})$ from (3), restricting $a_t = \pi_2^k(s_t)$ when $s_t \in \mathcal{S}_2$

342 18: use sample(s) to update $Q_1^{k_1+1}$ using (11)

343 19: $k_1 \leftarrow k_1 + 1$

344 20: **until** the function $Q_1^{k_1}(\cdot, \cdot)$ has converged (see Sections 4.1, 4.2)

345 21: \triangleright termination condition

346 22: **if** $\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) + \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \leq \eta$ **then** terminate

347 23: \triangleright update Q^k using samples collected above

348 24: **for all** samples $(s_t, a_t, s_{t+1}, r_{t+1})$ collected in lines 4, 9, and 17 **do**

349 25: update Q^{k+1} using (11)

350 26: $k \leftarrow k + 1$

353

354

355

356 **Assumption 1** (Exploration). The algorithms use to generate the sequences of samples in lines 9
357 and 17 guarantee that

- 358 1. If the iteration in lines 7-12 did not converge, every pair (s_t, a_t) in $\mathcal{S}_{\Pi_2^k} \times \mathcal{A}$ would appear
359 infinitely often in the sequence of samples in line 9, where $\mathcal{S}_{\Pi_2^k}$ denotes the set of states
360 reachable under $\Pi_2^k := \{(\pi_1, \pi_2^k) : \pi_1 \in \Pi_1\}$.
- 361 2. If the iteration in lines 15-20 did not converge, every pair (s_t, a_t) in $\mathcal{S}_{\Pi_1^k} \times \mathcal{A}$ would appear
362 infinitely often in the sequence of samples in line 17, where $\mathcal{S}_{\Pi_1^k}$ denotes the set of states
363 reachable under $\Pi_1^k := \{(\pi_1^k, \pi_2) : \pi_2 \in \Pi_2\}$.

364 **Theorem 3** (SPE Algorithm 1 for deterministic games). *Assume that the state and action spaces
365 are finite and that the game is deterministic, terminates in finite time, all updates of Q , Q_1 , Q_2 use
366 $\alpha_k = 1$, $\eta \geq 0$, and Assumption 1 holds. At every iteration, the following bounds on the security
367 values hold:*

368 $\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \leq \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0) \leq \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \quad (20a)$

369 $\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \leq \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0) \leq \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \quad (20b)$

370 and the difference between the upper and lower bounds becomes no larger than η when the
371 algorithm terminates. Moreover, the algorithm terminates after a finite number of iterations
372 and, upon termination at iteration k , the pair (π_1^k, π_2^k) is an η -saddle-point. For $\eta = 0$,
373 $J_1^*(s_0) = \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) = -J_2^*(s_0)$ is the value of the game. \square

378 The proof of Theorem 3 is included in Appendix A.3, but the basic arguments proceeds as follows:
 379 We start by showing that P_1 ’s policy π_1^{br} (18) is optimal against P_2 ’s policy π_2^k with the rewards
 380 in (19) and that P_2 ’s policy π_2^{br} (16) is optimal against P_1 ’s policy π_1^k , with the rewards in (17). Once
 381 this has been established, we show that the termination condition guarantees that the pair (π_1^k, π_2^k)
 382 satisfies the saddle-point conditions (6). The proof that the algorithm terminates in finite time then
 383 relies on showing that Q^k converges in a finite number of steps to a restricted fixed point of (8).

385 4.2 STOCHASTIC GAMES

386 For stochastic games, we cannot expect exact convergence of $Q_1^{k_1}$ and $Q_2^{k_2}$ in lines 7–12 and 15–20
 387 to take place in finite time. Instead, we assume that the number of samples is sufficiently large to
 388 guarantee that, upon exit of these loops, the functions $Q_1^{k_1}$ and $Q_2^{k_2}$ are no more than $\epsilon > 0$ away
 389 from the “optimal” with high probability. Specifically, $Q_2^{k_2}$ reflects the value of P_2 ’s best response
 390 policy against P_1 ’s policy π_1^k with an error smaller than ϵ ; whereas $Q_1^{k_1}$ reflects the value of P_1 ’s best
 391 response against P_2 ’s policy π_2^k with an error also smaller than ϵ :

392 **Assumption 2** (Convergence in stochastic setting). There exists a constant $\epsilon \geq 0$ and a sequence
 393 $\{\delta_\ell \in [0, 1] : \ell \geq 1, \sum_{\ell=1}^{\infty} \delta_\ell \leq \delta^\dagger < 1\}$ such that, for every $\ell \geq 1$, the ℓ -th time that the loops in
 394 lines 7–12 and 15–20 are executed, the number of samples is sufficiently large, so as to guarantee that

$$396 \quad |\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0) - \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0)| \leq \epsilon, \quad (21)$$

$$398 \quad |\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0) - \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0)| \leq \epsilon. \quad (22)$$

400 with probability at least $1 - \delta_\ell$, with the “failure probability” δ_ℓ independent across tests. \square

401 Bounds on the number of samples required for Assumption 2 to hold can be found in several of the
 402 references provided in Section 1. Making sure that $\sum_{\ell=1}^{\infty} \delta_\ell \leq \delta^\dagger$ can be accomplished, e.g., with
 403 $\delta_\ell = O(1/\ell^2)$, which typically requires the number of samples used in lines 7–12 and 15–20 to
 404 increase as the number of tests ℓ increases. However, the dependence of the number of samples on δ_ℓ
 405 is typically logarithmic (Li et al., 2024) so $\delta_\ell = O(1/\ell^2)$ leads to a mild (logarithmic in ℓ) increase
 406 in the number of samples per test. In addition to Assumption 2, we need to make sure that repeated
 407 executions of the loops in lines 7–12 and 15–20, generate a diverse sets of samples:

408 **Assumption 3** (Cross-loop independence). If the loops in lines 7–12 and 15–20 are called infinitely
 409 times with (π_1^k, π_2^k) equal to the same pair $(\pi_1^\dagger, \pi_2^\dagger) \in \Pi_1 \times \Pi_2$, then

$$411 \quad \sum_{t=0}^{\infty} \alpha_k I_{s,a}(s_{t_k}, a_{t_k}) \xrightarrow{\text{wpo}} +\infty, \quad \sum_{t=0}^{\infty} \alpha_k^2 I_{s,a}(s_{t_k}, a_{t_k}) \xrightarrow{\text{wpo}} C < \infty, \quad \forall s \in \mathcal{S}_{\Pi^\dagger}, a \in \mathcal{A}$$

414 for some finite constant C , where $\mathcal{S}_{\Pi^\dagger}$ is defined by (12)–(14) and

$$415 \quad I_{s,a}(\bar{s}, \bar{a}) = \begin{cases} 1 & \bar{s} = s, \bar{a} = a \\ 0 & \text{otherwise.} \end{cases} \quad \square$$

418 This type of assumption is common in stochastic approximation arguments, except that here it does
 419 not need to hold over the whole state-action space $\mathcal{S} \times \mathcal{A}$. Instead, it only needs to hold over sets
 420 $\mathcal{S}_{\Pi^\dagger}$, generated by policies that arise infinitely many times in the sequence (π_1^k, π_2^k) .

421 **Theorem 4** (SPE Algorithm 1 for stochastic games). Assume that the state and action spaces are
 422 finite, the game terminates in finite time, $\eta > 2\epsilon$, and Assumptions 2, 3 hold. After the ℓ th test, the
 423 following bounds on the security values hold:

$$424 \quad \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) - \epsilon \leq \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0) \leq \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) + \epsilon \quad (23a)$$

$$427 \quad \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) - \epsilon \leq \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0) \leq \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) + \epsilon \quad (23b)$$

430 with probability at least $1 - \delta_\ell$. Moreover, the algorithm terminates after a finite number of iterations
 431 with probability 1 and, upon termination at iteration k , the pair (π_1^k, π_2^k) is an $(2\epsilon + \eta)$ -saddle-point
 432 with probability at least $1 - \delta^\dagger$. \square

432 The proof of Theorem 4 follows similar steps to that of Theorem 3, but now uses a stochastic
 433 approximation argument two show that Q^k must eventually converge to a restricted fixed point of (8).
 434 The condition $\sum_{\ell=1}^{\infty} \delta_{\ell} \leq \delta^{\dagger}$ essentially guarantees that the probability of error does not accumulate
 435 too rapidly across multiple tests of the exit condition.

437 5 NUMERICAL RESULTS

438 To demonstrate the performance of Algorithm 1, we use several games available in OpenSpiel (Lanctot
 439 et al., 2019) and the strategy game Atlatl (Rood, 2022; Darken, 2025). These games were chosen
 440 because for all we can select the “board size” and for some we can also select the duration of the
 441 game. This enables us to create game families with varying state-space sizes, where the games within
 442 each family can be meaningfully compared to each other in terms of state-space coverage.

444 5.1 BASELINE

445 We use for term of comparison a lower bound on the number of iterations required by *every* algorithm
 446 whose correctness is based on convergence of the Q -function over the entire $\mathcal{S} \times \mathcal{A}$. As discussed in
 447 Section 1, all such algorithms (as well as all the regret-based algorithms, also discussed there) can only
 448 guarantee correctness if the number of samples exceeds $|\mathcal{S}| \times \text{Poly}(T)$, where $\text{Poly}(T) \geq 1$ represents
 449 a polynomial function of the time horizon T . For simplicity, we are ignoring the multiplicative factor
 450 $|\mathcal{A}|$ that is the same for all algorithms. In reality, \mathcal{S} only needs to contain states that can be reached
 451 from the game’s initial state s_0 , so we use for lower bound the size $|\mathcal{S}_{\Pi_1 \times \Pi_2}|$ of the reachable
 452 states. For fairness, we use the (very optimistic) lower bound $\text{Poly}(T) \geq 1$, because our algorithm
 453 essentially uses a replay buffer for the update of Q^k in lines 24–26, which allows us to reuse the
 454 same sample multiple times with little additional computational cost (Mnih et al., 2013). Alternative
 455 off-policy algorithms that use large replay buffers can similarly decrease the number of game samples
 456 to one per state, potentially reducing the required number of game samples to $|\mathcal{S}_{\Pi_1 \times \Pi_2}|$.

457 In the results below, we compute $|\mathcal{S}_{\Pi_1 \times \Pi_2}|$ using an exhaustive search across the state-space. Even
 458 though we use a fairly efficient search algorithm to determine $|\mathcal{S}_{\Pi_1 \times \Pi_2}|$, for some of largest games
 459 this exhaustive search does not terminate within a reasonable compute time limit (24h) and therefore
 460 we are not able to provide a comparison.

463 5.2 ALGORITHM 1 IMPLEMENTATION DETAILS

464 We consider two representations for the Q -function in (15): (i) a tabular representation hashed by
 465 a bit-vector embedding of the game board; and (ii) a Deep Q -Network (DQN) whose input is the
 466 same bit-vector state embedding with one output per action, as in (Mnih et al., 2013). For the
 467 functions Q_1, Q_2 used in the termination checks in lines 7–12 and 15–20, we only used the tabular
 468 representation because, as noted in Section 4, this greatly facilitates checking for convergence and it
 469 can be very efficient even for relatively large games. To satisfy Assumption 1, we do exploration using
 470 tempered Boltzmann policies (Anderson et al., 2025), but the results would not change significantly
 471 if we used the more common ϵ -greedy exploration. We present a more extensive set of results for
 472 option (i) above, but include a few examples for option (ii) to demonstrate that SPE also works with
 473 other Q -function representations.

474 All results were obtained with a Julia implementation. We call Atlatl using a Julia wrapper to its
 475 Python interface. We use a 2021 M1 Max chip with 10 cores and 32GB RAM. For all the experiments
 476 we only include results that can be solved in less than 24 hours of run time.

478 5.3 RESULTS

480 We first show that Algorithm 1 is able to find a saddle-point without sampling large portions of the
 481 **reachable state space**. We consider several square board sizes for Hex, Y, Breakthrough, and Clobber,
 482 and run Algorithm 1 for each of them. We numerically verify we have obtained a saddle-point with
 483 associated security policies by solving the optimizations in lines 7–12. In Figure 1(left), we plot the
 484 number of states that were explored by Algorithm 1 as a fraction of our baseline $|\mathcal{S}_{\Pi_1 \times \Pi_2}|$ for both
 485 the tabular (purple) and DQN (red) representations. The games in this figure have up to about 8
 million **reachable states**. For tabular representations (purple), we can see that the fraction of states

486 explored decreases as the size of the game increases (with the exception of 5×5 Y). We present
 487 fewer results for the the DQN representation (red), but the results appear to be comparable to the
 488 tabular representations.
 489

500 Figure 1: (left) We run Algorithm 1 for square board games of size $n \times n$ (labeled $-n$) and show (left)
 501 the fraction of [reachable states](#) explored. The size of each marker is proportional to the logarithm
 502 of the total number of [reachable states](#), with the 4×4 Hex game containing about 8 million states.
 503 (right) The left-axis shows the fractional exploration versus the duration of the game for both Atlatl
 504 and Dots and Boxes; the right-axis of the plot indicates exponential growth in the states as the game
 505 duration increases.

512 We then examine how the results scale with the duration of the game (number of moves played)
 513 for Dots and Boxes on a 3×3 board and for the “2v1” Atlatl scenario; as both games are still
 514 meaningful over a variable time horizon. We observe in Figure 1(right) that, as the duration increases,
 515 the fraction of states explored by Algorithm 1 decreases exponentially for Atlatl. For Dots and Boxes
 516 the fraction decreases significantly up until games with 7 moves and then roughly stabilizes but —
 517 when compared to the growth rate of the total number of reachable states (on the right-axis) — this
 518 indicates the total number of states explored by Algorithm 1 grows at a more favorable rate. In fact,
 519 for Dots and Boxes Algorithm 1 can solve this game up to its maximum duration of 24 moves in
 520 less than 8 hours and exploring less than 10M states, whereas we were not able to do an exhaustive
 521 exploration of the [reachable state space](#) for more than 11 moves in 24 hours. For the “2v1” Atlatl
 522 scenario, Algorithm 1 can solve a game with 20 time steps in less than 18 hours, exploring a little
 523 less than 15M states, for a total number of states estimated to be between 100M and 200M.

524 6 CONCLUSIONS AND OUTLOOK

526 We introduced a new notion of fixed point for zero-sum games that is restricted to a subset of the
 527 state-space, but still suffices to construct saddle-point and security policies. We then proposed the SPE
 528 algorithm that provably converges to a Q -function that satisfies the restricted fixed-point condition
 529 for deterministic finite games. The primary benefit of the restricted fixed-point condition is that
 530 convergence to a saddle-point can be achieved without full state exploration, which was required in
 531 previous works. Finally, we presented several numerical examples showing that, in practice, SPE
 532 consistently terminates at a saddle-point without exploring the entire state space. In fact, for several
 533 scalable board games, the fraction of states explored decreases as the game size increases. Importantly,
 534 we demonstrated that the Q -function used to construct the saddle-point can be represented either
 535 tabularly or using a neural network, without having to adapt SPE.

536 Our numerical results showed that some games permit termination at a saddle-point with a smaller
 537 fraction of explored states than others. Characterizing which classes of games are especially attractive
 538 from this perspective remains an important direction for future research. Non-cooperative games
 539 share similar structures with robust optimization, which should enable extending the ideas in this
 paper in that direction.

540 7 REPRODUCIBILITY STATEMENT
541542 This work is reproducible primarily due to inclusion of all technical assumptions and proofs for the
543 formal results in Sections 2-4, which are included either in the main text or in Appendices A.1-A.3.
544 Towards the reproducibility of the numerical results, an anonymized version of the code is available at
545 <https://anonymous.4open.science/r/saddlepointexploration-17BA/>. Im-
546 portantly, all of the games that are used for illustrating the performance of the proposed methods are
547 open-source (Lanctot et al., 2019; Darken, 2025).548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

- 596 Sean Anderson, Chris Darken, and João P. Hespanha. Zero-sum turn games using Q-learning:
597 finite computation with security guarantees. 2025. URL <https://arxiv.org/abs/2509.13585>.
- 599 Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. *Advances in*
600 *neural information processing systems*, 33:2159–2170, 2020.
- 601 Carolyn L. Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. *Systems*
602 & *control letters*, 61(12):1203–1208, 2012.
- 604 Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. Finite-sample
605 analysis of contractive stochastic approximation using smooth convex envelopes. *Advances in*
606 *Neural Information Processing Systems*, 33:8223–8234, 2020.
- 607 Thomas H. Cormen (ed.). *Introduction to algorithms*. MIT Press, Cambridge, Mass, 3rd ed edition,
608 2009. ISBN 978-0-262-03384-8 978-0-262-53305-8. OCLC: ocn311310321.
- 610 Chris Darken. Atlatl, August 2025. URL <https://github.com/cjdarken/atlatl-public>.
- 612 Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. *Journal of Machine Learning*
613 *Research*, 5(Dec):1–25, 2003.
- 615 Songtao Feng, Ming Yin, Yu-Xiang Wang, Jing Yang, and Yingbin Liang. Improving sample
616 efficiency of model-free algorithms for zero-sum markov games. In *Proc. of the Int. Conf. on*
617 *Machine Learning*, ICML’24. JMLR.org, 2024.
- 618 Jerzy Filar and Koos Vrieze. *Competitive Markov Decision Processes*. Springer-Verlag, New York,
619 1997.
- 621 João P. Hespanha. *Noncooperative Game Theory: An Introduction for Engineers and Computer*
622 *Scientists*. Princeton Press, Princeton, New Jersey, June 2017.
- 623 Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic games. *Journal of*
624 *machine learning research*, 4(Nov):1039–1069, 2003.
- 626 Zeyu Jia, Lin F. Yang, and Mengdi Wang. Feature-Based Q-Learning for Two-Player Stochastic
627 Games, June 2019. arXiv:1906.00423 [cs].
- 628 Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of exploiter: Provable multi-agent RL in large
629 state spaces. In *Proc. of the Int. Conf. on Machine Learning*, pp. 10251–10279. PMLR, 2022.
- 631 Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
632 David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
633 learning. *Advances in neural information processing systems*, 30, 2017.
- 634 Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
635 Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
636 Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder,
637 Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser,
638 Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A
639 framework for reinforcement learning in games. *CoRR*, abs/1908.09453, 2019.
- 640 Donghwan Lee. Finite-time analysis of minimax Q-learning for two-player zero-sum markov games:
641 Switching system approach, 2023.
- 642 Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier
643 to regret-optimal model-free reinforcement learning. *Advances in Neural Information Processing*
644 *Systems*, 34:17762–17776, 2021.
- 646 Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a
647 tight sample complexity analysis. *Operations Research*, 72(1):222–236, 2024. doi: 10.1287/opre.2023.2450.

- 648 Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
 649 *Proc. of the 11th Int. Conf. on Machine Learning*, 1994.
 650
- 651 Michael L. Littman and Csaba Szepesvári. A generalized reinforcement-learning model: Convergence
 652 and applications. In Luciano Saitta (ed.), *Proc. of the Int. Conf. on Machine Learning*, pp. 310–318,
 653 Bari, Italy, 1996. Morgan Kaufmann.
- 654 Pierre Ménard, Omar D. Domingues, Xuedong Shang, and Michal Valko. UCB momentum Q-
 655 learning: Correcting the bias without forgetting. In *International Conference on Machine Learning*,
 656 pp. 7609–7618. PMLR, 2021.
- 657 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
 658 Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, December
 659 2013. arXiv:1312.5602 [cs].
 660
- 661 Patrick R Rood. Scaling reinforcement learning through feudal multi-agent hierarchy. *Naval Post-*
 662 *graduate School, Monterey*, 2022.
- 663 Devavrat Shah, Varun Somanai, Qiaomin Xie, and Zhi Xu. On Reinforcement Learning for Turn-based
 664 Zero-sum Markov Games. In *Proceedings of the 2020 ACM-IMS on Foundations of Data Science*
 665 *Conference*, pp. 139–148, Virtual Event USA, October 2020. ACM. ISBN 978-1-4503-8103-1.
 666 doi: 10.1145/3412815.3416888.
 667
- 668 S. R. Shreyas and Antony Vijesh. A multi-step minimax Q-learning algorithm for two-player zero-sum
 669 Markov games, 2024.
- 670 Aaron Sidford, Mengdi Wang, Lin F. Yang, and Yinyu Ye. Solving Discounted Stochastic Two-Player
 671 Games with Near-Optimal Time and Sample Complexity, August 2019. arXiv:1908.11071 [cs].
 672
- 673 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 674 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 675 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.
- 676 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
 677 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
 678 by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*,
 679 2017.
- 680 Paul Tseng. Solving H-horizon, stationary Markov decision problems in time proportional to $\log(h)$.
 681 *Operations Research Lett.*, 9(5):287–297, 1990.
 682
- 683 John N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. *Machine Learning*, 16:
 684 192–202, 1994.
- 685 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
 686 Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
 687 StarCraft II using multi-agent reinforcement learning. *Nature*, 575(7782):350–354, 2019.
- 688 Martin J. Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ_∞ -bounds
 689 for Q-learning. *arXiv preprint arXiv:1905.06265*, 2019.
- 690 Christopher J.C.H. Watkins. *Learning from Delayed Rewards*. PhD thesis, King’s College, Cambridge
 691 United Kingdom, 1989.
- 692 Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning
 693 via reference-advantage decomposition. *Advances in Neural Information Processing Systems*, 33:
 694 15198–15207, 2020.
 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A TECHNICAL APPENDIX**

704 **A.1 PROOF OF THEOREM 2**

706 The following proposition is needed to prove Theorem 2. In stating this and subsequent results,
707 we annotate equalities and inequalities involving random variables with $\stackrel{\text{wpo}}{=}$ or $\stackrel{\text{wpo}}{\geq}$ to indicate that
708 they hold with probability one over the full randomness of the state-action-reward trajectory. This
709 proposition is not really new, but we state it here (and provide a self-contained proof in Appendix
710 A.2) because we could not find a version of it that matches the zero-sum turn games setup.

711 **Proposition 1.** *The following three statements hold for any pair of policies $(\pi_1, \pi_2) \in \Pi_1 \times \Pi_2$ and
712 any absolutely summable function $V : \mathcal{S} \rightarrow \mathbb{R}$:*

714 1. *If*

715
$$V(s_t) \stackrel{\text{wpo}}{=} \mathbb{E}_{\pi_1, \pi_2}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V(s_{t+1}) \mid s_t], \quad \forall t \geq 0, \quad (24)$$

716 *then*

718
$$V(s_\tau) \stackrel{\text{wpo}}{=} V_{\pi_1, \pi_2}(s_\tau), \quad \forall \tau \geq 0. \quad (25)$$

719 2. *If*

721
$$\text{sgn}_1(s_\tau)V(s_\tau) \stackrel{\text{wpo}}{\leq} \mathbb{E}_{\pi_1, \pi_2}[\text{sgn}_1(s_\tau)r_{t+1} + \text{sgn}_1(s_{t+1})V(s_{t+1}) \mid s_\tau], \quad \forall t \geq 0, \quad (26)$$

722 *then*

724
$$\text{sgn}_1(s_\tau)V(s_\tau) \stackrel{\text{wpo}}{\leq} \text{sgn}_1(s_\tau)V_{\pi_1, \pi_2}(s_\tau), \quad \forall \tau \geq 0. \quad (27)$$

726 3. *If*

727
$$\text{sgn}_1(s_\tau)V(s_\tau) \stackrel{\text{wpo}}{\geq} \mathbb{E}_{\pi_1, \pi_2}[\text{sgn}_1(s_\tau)r_{t+1} + \text{sgn}_1(s_{t+1})V(s_{t+1}) \mid s_\tau], \quad \forall t \geq 0, \quad (28)$$

729 *then*

731
$$\text{sgn}_1(s_\tau)V(s_\tau) \stackrel{\text{wpo}}{\geq} \text{sgn}_1(s_\tau)V_{\pi_1, \pi_2}(s_\tau), \quad \forall \tau \geq 0. \quad (29)$$

732 \square

733 We are now ready to prove Theorem 2:

735 *Proof of Theorem 2.* Combining the definition of V^\dagger with the restricted fixed-point condition, we
736 obtain

737
$$\begin{aligned} V^\dagger(s) &= \max_{a \in \mathcal{A}} Q^\dagger(s, a) \\ 738 &= \max_{a \in \mathcal{A}} \mathbb{E}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s, a_t = a], \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \end{aligned} \quad (30)$$

741 When $s \in \mathcal{S}_1$, (14) guarantees that the policy $\pi_1^\dagger(s)$ reaches the maximum in (30), but an arbitrary
742 policy $\pi_1(s)$ may not and therefore

743
$$\begin{aligned} V^\dagger(s) &= \mathbb{E}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s, a_t = \pi_1^\dagger(s)] \\ 744 &= \mathbb{E}_{\pi_1^\dagger \pi_2}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s] \end{aligned} \quad (31)$$

746
$$\geq \mathbb{E}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s, a_t = \pi_1(s)]$$

748
$$= \mathbb{E}_{\pi_1 \pi_2}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s], \quad \forall s \in \mathcal{S}_1 \cap \mathcal{S}_{\Pi^\dagger}, \forall \pi_1, \pi_2, \quad (32)$$

749 where π_2 in (32) can be any policy in Π_2 , because, for a state $s \in \mathcal{S}_1$, the policy of \mathcal{P}_2 makes no
750 difference.

751 In contrast, when $s \in \mathcal{S}_2$, the policy $\pi_2^\dagger(s)$ reaches the maximum in (30), but an arbitrary policy $\pi_2(s)$
752 may not and we have

753
$$V^\dagger(s) = \mathbb{E}_{\pi_1 \pi_2^\dagger}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s] \quad (33)$$

755
$$\geq \mathbb{E}_{\pi_1 \pi_2}[r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1})V^\dagger(s_{t+1}) \mid s_t = s], \quad \forall s \in \mathcal{S}_2 \cap \mathcal{S}_{\Pi^\dagger}, \forall \pi_1, \pi_2. \quad (34)$$

756 From (31) with $\pi_2 = \pi_2^\dagger$ and (33) with $\pi_1 = \pi_1^\dagger$, we obtain
 757

$$758 V^\dagger(s) = \mathbb{E}_{\pi_1^\dagger \pi_2^\dagger} [r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1}) V^\dagger(s_{t+1}) \mid s_t = s], \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \\ 759$$

760 Since the pair $(\pi_1^\dagger, \pi_2^\dagger)$ belongs to Π^\dagger , every trajectory generated under these policies belongs to $\mathcal{S}_{\Pi^\dagger}$
 761 with probability 1, which enable us to use Proposition 1 to conclude that
 762

$$763 V^\dagger(s) = V_{\pi_1^\dagger, \pi_2^\dagger}(s), \quad \forall s \in \mathcal{S}. \quad (35) \\ 764$$

765 Multiplying (31) by $\text{sgn}_1(s) = 1, \forall s \in \mathcal{S}_1 \cap \mathcal{S}_{\Pi^\dagger}$ and combining this equality with (34) multiplied
 766 by $\text{sgn}_1(s) = -1, \forall s \in \mathcal{S}_2 \cap \mathcal{S}_{\Pi^\dagger}$ and with $\pi_1 = \pi_1^\dagger$, we obtain
 767

$$768 \text{sgn}_1(s) V^\dagger(s) \leq \mathbb{E}_{\pi_1^\dagger \pi_2} [r_{t+1} \text{sgn}_1(s_t) + \text{sgn}_1(s_{t+1}) V^\dagger(s_{t+1}) \mid s_t = s], \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \\ 769$$

770 Since every pair (π_1^\dagger, π_2) , $\forall \pi_2 \in \Pi_2$ also belongs to Π^\dagger the trajectories generated under these policies
 771 belongs to $\mathcal{S}_{\Pi^\dagger}$ with probability 1, which enable us again to use Proposition 1 and now conclude that
 772

$$773 \text{sgn}_1(s) V^\dagger(s) \leq \text{sgn}_1(s) V_{\pi_1^\dagger, \pi_2}(s), \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \\ 774$$

775 Combining this inequality with (35) and using the fact that $\text{sgn}_1(s) = -\text{sgn}_2(s), \forall s \in \mathcal{S}$, leads to
 776

$$777 \text{sgn}_1(s) V^\dagger(s) = \text{sgn}_1(s) V_{\pi_1^\dagger, \pi_2^\dagger}(s) \leq \text{sgn}_1(s) V_{\pi_1^\dagger, \pi_2}(s), \quad \forall s \in \mathcal{S}_{\Pi^\dagger} \\ 778 \text{sgn}_2(s) V^\dagger(s) = \text{sgn}_2(s) V_{\pi_1^\dagger, \pi_2^\dagger}(s) \geq \text{sgn}_2(s) V_{\pi_1^\dagger, \pi_2}(s), \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \quad (36)$$

779 If instead we multiply (33) by $\text{sgn}_1(s) = -1, s \in \mathcal{S}_2 \cap \mathcal{S}_{\Pi^\dagger}$ and combine this equality with (32)
 780 multiplied by $\text{sgn}_1(s) = 1, s \in \mathcal{S}_1 \cap \mathcal{S}_{\Pi^\dagger}$ and with $\pi_2 = \pi_2^\dagger$, we obtain
 781

$$782 \text{sgn}_1(s) V^\dagger(s) \geq \mathbb{E}_{\pi_1 \pi_2^\dagger} [r_{t+1} \text{sgn}_1(s_t) + \text{sgn}_1(s_{t+1}) V^\dagger(s_{t+1}) \mid s_t = s], \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \\ 783$$

784 Since every pair (π_1, π_2^\dagger) , $\forall \pi_2 \in \Pi_2$ also belongs to Π^\dagger the trajectories generated under these policies
 785 belongs to $\mathcal{S}_{\Pi^\dagger}$ with probability 1 and we can again use Proposition 1 and (35) to conclude that
 786

$$787 \text{sgn}_1(s) V^\dagger(s) = \text{sgn}_1(s) V_{\pi_1^\dagger, \pi_2^\dagger}(s) \geq \text{sgn}_1(s) V_{\pi_1, \pi_2^\dagger}(s), \quad \forall s \in \mathcal{S}_{\Pi^\dagger}. \quad (37)$$

788 The saddle-point inequalities (6) follow from (36) and (37). ■
 789

790 A.2 PROOF OF PROPOSITION 1

792 *Proof of Proposition 1.* To prove the first statement, we multiply both sides of (24) by $\text{sgn}_1(s_t)$, to
 793 conclude that
 794

$$795 \text{sgn}_1(s_t) V(s_t) - \mathbb{E}[\text{sgn}_1(s_{t+1}) V(s_{t+1}) \mid s_t] \stackrel{\text{wpo}}{=} \mathbb{E}[r_{t+1} \text{sgn}_1(s_t) \mid s_t], \quad \forall t \geq 0. \quad (38)$$

796 Suppose now that we pick some $\tau \geq 0$ and take conditional expectations of both sides of (38) given
 797 s_τ . By the smoothing property of conditional expectations, we conclude that
 798

$$799 \mathbb{E}[\text{sgn}_1(s_t) V(s_t) \mid s_\tau] - \mathbb{E}[\text{sgn}_1(s_{t+1}) V(s_{t+1}) \mid s_\tau] \stackrel{\text{wpo}}{=} \mathbb{E}[r_{t+1} \text{sgn}_1(s_t) \mid s_\tau]. \\ 800$$

801 Adding both sides of this equality from $t = \tau$ to $t \rightarrow \infty$ and using the absolute convergence of the
 802 two series on the left-hand side, obtain
 803

$$804 \text{sgn}_1(s_\tau) V(s_\tau) \stackrel{\text{wpo}}{=} \sum_{t=\tau}^{\infty} \mathbb{E}[r_{t+1} \text{sgn}_1(s_t) \mid s_\tau], \quad (39) \\ 805$$

806 from which (25) follows by multiplying both sides of the equality above by $\text{sgn}_1(s_\tau)$ and using the
 807 definition of the value function in (4).
 808

809 The subsequent statements can be similarly derived, by starting with the inequalities (26) and (28),
 810 instead of the equality in (38). ■

810 A.3 PROOF OF THEOREM 3
811

812 The statement that we get a pair of saddle-point policies is an almost direct consequence of the
813 termination condition in line 22, because the code in lines 7–12 and 15–20 essentially solves the
814 optimizations that appear in the definition of saddle-point in (6). The proof of termination in finite
815 time is more involved and requires both Theorem 2 and the following result:

816 **Lemma 1** (Finite convergence over a subset of $\mathcal{S} \times \mathcal{A}$). *Assume that the state and action spaces are*
817 *finite, the game is deterministic, terminates in finite time, and $\alpha_k = 1, \forall k \geq 0$. Let $\mathcal{Z}_\infty \subset \mathcal{S} \times \mathcal{A}$*
818 *denote the set of states-action pairs (s_t, a_t) that appears infinitely many times in the samples*
819 *in lines 24–26. Then the sequence Q^k converges in a finite number of iterations to a function*
820 $Q^\dagger : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ *for which (8) holds $\forall (s, a) \in \mathcal{Z}_\infty$.* \square

821 The following definitions and basic result will be used to prove Lemma 1: we say that a state $s \in \mathcal{S}$
822 is *recurrent* if there exists a finite sequence of actions that takes the state s to itself with positive
823 probability. States that are not recurrent are called transients and we denote the sets of transient and
824 recurrent states by $\mathcal{S}_{\text{recurrent}}$ and $\mathcal{S}_{\text{transient}}$, respectively. For games with finite termination time,
825 recurrent states must have zero reward and, in fact, must always be followed by states also with zero
826 reward, as noted in the following proposition:

827 **Proposition 2.** *Consider a stationary Markov game with finite termination time and an arbitrary*
828 *sequence of actions a_0, a_1, \dots . If the sequence of states s_0, s_1, \dots and rewards r_1, r_2, \dots can occur*
829 *with positive probability, i.e.,*

$$830 \quad p(s_{t+1}, r_{t+1} \mid s_t, a_t) > 0, \quad \forall t \geq 0, \quad (40)$$

831 and if $s_\tau \in \mathcal{S}_{\text{recurrent}}$ for some $\tau \geq 0$, then $r_{t+1} = 0, \forall t \geq \tau$. \square

832 *Proof of Proposition 2.* Assume by contradiction that there exist times $t \geq \tau \geq 0$ for which $s_\tau \in$
833 $\mathcal{S}_{\text{recurrent}}$ and $r_{t+1} > 0$, which means that the sequence of actions a_τ, \dots, a_t takes the state from s_τ
834 to s_{t+1} and leads to the reward $r_{t+1} > 0$ with some positive probability, in the sense of (40).

835 Since $s_\tau \in \mathcal{S}_{\text{recurrent}}$ there must also exist a (possibly quite different) finite sequence of actions
836 $\bar{a}_\tau, \dots, \bar{a}_{\bar{t}}$ that takes the state back to s_τ at some time $\bar{t} > \tau$. Specifically, there exist associated
837 sequences of states $\bar{s}_\tau, \dots, \bar{s}_{\bar{t}+1}$ and rewards $\bar{r}_\tau, \dots, \bar{r}_{\bar{t}+1}$ that satisfy

$$838 \quad \bar{s}_\tau = \bar{s}_{\bar{t}+1} = s_\tau, \quad p(\bar{s}_{t+1}, \bar{r}_{t+1} \mid \bar{s}_t, \bar{a}_t) > 0, \quad \forall t \in \{\tau, \dots, \bar{t}\}. \quad (41)$$

839 Since it is possible to return to the recurrent state s_τ as many times as we want, we can assume
840 without loss of generality that \bar{t} is larger than the termination time T , after which all rewards must be
841 zero with probability one.

842 To complete the contradiction argument, we “concatenate” the above sequences of actions and states
843 in the following order:

$$844 \quad \begin{array}{ccc} a_0, \dots, a_{\tau-1}, & \bar{a}_\tau, \dots, \bar{a}_{\bar{t}}, & a_\tau, \dots, a_t \\ \underbrace{s_0, \dots, s_{\tau-1}}_{\text{from original seq.}} & \underbrace{s_\tau = \bar{s}_\tau, \dots, \bar{s}_{\bar{t}}}_{\text{from recurrence of } s_\tau} & \underbrace{\bar{s}_{\bar{t}+1} = s_\tau, s_{\tau+1}, \dots, s_t}_{\text{back to original seq.}} \end{array}$$

845 All transitions in this sequence have positive probability because of either (40) or (41). In addition,
846 the last state s_t and action a_t lead to a reward $r_{t+1} > 0$, which contradicts the fact that $\bar{t} > T$ and all
847 rewards after that time must be zero with probability one. \blacksquare

848 *Proof of Lemma 1.* We now construct the function $Q^\dagger : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ to which Q^k will converge. We
849 start by setting

$$850 \quad Q^\dagger(s, a) = 0, \quad \forall s \in \mathcal{S}_{\text{recurrent}}, a \in \mathcal{A}.$$

851 In view of Proposition 2, at every recurrent state $s_t \in \mathcal{S}_{\text{recurrent}}$ the reward r_{t+1} must be equal to
852 zero with probability one, regardless of the action a_t , and the same will happen for every subsequent
853 reward $r_{\tau+1}, \forall \tau \geq t$. This means that, when we apply the update rule (11) for any state $s \in \mathcal{S}_{\text{recurrent}}$

864 or for any state $s \in \mathcal{S}$ that can succeed a state in $\mathcal{S}_{\text{recurrent}}$ with positive probability, we will continue
 865 to have

$$866 \quad Q^k(s, a) = 0, \quad \forall a \in \mathcal{A}, k \geq 0. \quad (42)$$

868 This guarantees that Q^\dagger will always match Q^k , at least over the set $\mathcal{S}_{\text{recurrent}} \times \mathcal{A}$.

869 Since $\mathcal{S} \times \mathcal{A}$ is finite and $\mathcal{Z}_\infty \subset \mathcal{S} \times \mathcal{A}$ includes all state-action pairs that appear infinitely many
 870 times in the samples in lines 24–26, there is going to exist a finite integer K_0 such that for every
 871 $k \geq K_0$ only states $(s_t, a_t) \in \mathcal{Z}_\infty$ appear in these samples. This means that we can define

$$872 \quad Q^\dagger(s, a) = Q^{K_0}(s, a), \quad \forall (s, a) \notin \mathcal{Z}_\infty, \quad (43)$$

874 because after time K_0 no update of $Q^\dagger(s, a)$ outside \mathcal{Z}_∞ will ever take place.

875 To complete the definition of $Q^\dagger(s, a)$ it now remains to define this function for pairs $(s, a) \in \mathcal{Z}_\infty$
 876 with $s \in \mathcal{S}_{\text{transient}}$. To this effect, consider a directed graph \mathcal{G} whose nodes are the transient states in
 877 $\mathcal{S}_{\text{transient}}$, with an edge from $s \in \mathcal{S}_{\text{transient}}$ to $s' \in \mathcal{S}_{\text{transient}}$ if there is an action $a \in \mathcal{A}$ for which a
 878 transition from s to s' is possible, i.e.,

$$879 \quad \exists a \in \mathcal{A}, r \in \mathcal{R} : p(s', r | s, a) = 1.$$

880 This graph cannot have cycles because any nodes in a cycle would be recurrent and thus not in
 881 $\mathcal{S}_{\text{transient}}$. The absence of cycle guarantees that this graph has at least one topological ordering $<$,
 882 i.e., there exists a total order on the set $\mathcal{S}_{\text{transient}}$ transient states so that $s < s'$ if and only if the state
 883 s cannot be reached from s' (Cormen, 2009).

884 Let s_{\max} be the “largest” state in $\mathcal{S}_{\text{transient}}$ with respect to the order $<$, i.e., $s_{\max} > s, \forall s \in \mathcal{S}_{\text{transient}} \setminus \{s_{\max}\}$. If for a given action $a \in \mathcal{A}$, we have that $(s_{\max}, a) \notin \mathcal{Z}_\infty$, convergence of
 885 $Q^k(s_{\max}, a)$ to (43) at iteration K_0 has already been established. If instead $(s_{\max}, a) \in \mathcal{Z}_\infty$, then
 886 $Q^k(s_{\max}, a)$ will eventually be updated using (11) at some finite iteration $k \geq K_0$. Moreover, since
 887 s_{\max} is the “largest” state in $\mathcal{S}_{\text{transient}}$, it cannot transition to any transient state so it must necessarily
 888 transition to a recurrent state. In view of (42), the update in (11) with $\alpha_k = 1$ will necessarily be of
 889 the form

$$890 \quad Q^{k+1}(s_{\max}, a) = r_{t+1} =: Q^\dagger(s_{\max}, a), \quad (44)$$

891 where r_{t+1} is the (deterministic) reward arising from state $s_t = s_{\max}$ and action $a_t = a$. This means
 892 that every $Q^k(s_{\max}, a), a \in \mathcal{A}$ will converge to the value $Q^\dagger(s_{\max}, a)$ defined in (44), right after
 893 their first update.

894 We now use the order $>$ to build an induction argument showing that finite-time convergence will
 895 also happen for every other $s \in \mathcal{S}_{\text{transient}}$ and every $a \in \mathcal{A}$. To this effect, pick some $s \in \mathcal{S}_{\text{transient}}$,
 896 $a \in \mathcal{A}$ and assume by the induction hypothesis that every $Q^k(s', a)$ has converged to $Q^\dagger(s', a)$ for
 897 every $s' > s, a \in \mathcal{A}$ at some finite iteration $K_s \geq K_0$.

898 In case $(s, a) \notin \mathcal{Z}_\infty$, convergence of $Q^k(s_{\max}, a)$ to (43) at iteration K_0 has already been established.
 899 If instead $(s, a) \in \mathcal{Z}_\infty$, then $Q^k(s, a)$ will eventually be updated using (11) at some finite iteration
 900 $k \geq K_s$. At this iteration, the update in (11) with $\alpha_k = 1$ takes the form

$$901 \quad Q^{k+1}(s, a) = r_{t+1} + \text{sgn}_1(s) \text{sgn}_1(s_{t+1}) \max_{a' \in \mathcal{A}} Q^k(s_{t+1}, a'),$$

902 where r_{t+1} and $s_{t+1} > s$ are the (deterministic) reward and next state, respectively, arising from state
 903 $s_t = s$ and action $a_t = a$. But since $s_{t+1} > s$, the induction hypothesis guarantees that at this and at
 904 any subsequent update for the pair (s, a) , we have

$$905 \quad Q^{k+1}(s, a) = r_{t+1} + \text{sgn}_1(s) \text{sgn}_1(s_{t+1}) \max_{a' \in \mathcal{A}} Q^\dagger(s_{t+1}, a') =: Q^\dagger(s, a). \quad (45)$$

906 This shows that every $Q^k(s, a), a \in \mathcal{A}$ will converge to the value $Q^\dagger(s, a)$ defined in (45), at their
 907 first update after K_s . By induction, and recursively defining $Q^\dagger(s, a)$ for every transient state s , we
 908 then conclude that $Q^k(s, a)$ converges to $Q^\dagger(s, a)$ also for every $s \in \mathcal{S}_{\text{transient}}, a \in \mathcal{A}$. \blacksquare

913 The following result can be obtained by combining Lemma 1 and Theorem 2, when we freeze the
 914 policy of P_1 ’s at π_1^k and optimize over the policies of P_2 or, alternatively, freeze the policy of P_2 ’s at
 915 π_2^k and optimize over the policies of P_1 . Note that when the policy of one of the players is “frozen”
 916 (i.e., not optimized) there is no distinction between restricted or regular fixed point. In this case,
 917 Lemma 1 guarantees convergence to a fixed point and Theorem 2 optimality (for the player that is
 918 not frozen).

918 **Corollary 1.** Assume that the state and action spaces are finite and that the game is deterministic,
 919 terminates in finite time, the updates of Q_2 and Q_1 use $\alpha_k = 1$, and Assumption 1 holds. Then P_2 's
 920 policy π_2^{br} (16) is optimal against P_1 's policy π_1^k , with the rewards in (17), which means that
 921

$$922 \quad \bar{J}_2(s_0) = \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) = \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^{\text{br}}}(s_0) = \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) \quad (46)$$

923 and P_1 's policy π_1^{br} (18) is optimal against P_2 's policy π_2^k with the rewards in (19), which means that
 924

$$925 \quad \tilde{J}_1(s_0) = \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) = \text{sgn}_1(s_0) V_{\pi_1^{\text{br}}, \pi_2^k}(s_0) = \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0). \quad (47)$$

□

925 We are now ready to prove Theorem 3:
 926

927 *Proof of Theorem 3.* Since $\text{sgn}_2(s_0) = -\text{sgn}_1(s_0)$, we conclude from (46) that
 928

$$929 \quad \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) = \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) \geq \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0) \quad (48a)$$

$$930 \quad \begin{aligned} \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) &= -\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) = -\max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) \\ &= \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1^k, \pi_2}(s_0) \leq \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0). \end{aligned} \quad (48b)$$

931 Similarly, since $\text{sgn}_2(s_0) = -\text{sgn}_1(s_0)$, we conclude from (47) that
 932

$$933 \quad \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) = \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) \geq \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0) \quad (49a)$$

$$934 \quad \begin{aligned} \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) &= -\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) = -\max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) \\ &= \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0) \leq \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0). \end{aligned} \quad (49b)$$

935 The bounds in (20) follow from combining (48) with (49).
 936

937 Upon termination, we have that

$$938 \quad \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) + \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \leq \eta$$

939 and, since $\text{sgn}_2(s_0) = -\text{sgn}_1(s_0)$, we conclude from (46) and (47) that
 940

$$941 \quad \begin{aligned} \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) &= \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \leq -\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) + \eta \\ &= -\max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) + \eta = \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0) + \eta. \end{aligned}$$

942 Using the definition of max (on left-hand side) and of min (on right-hand side), we obtain
 943

$$944 \quad \begin{aligned} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) &\leq \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) \\ &= \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \leq -\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) + \eta \\ &= \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0) + \eta \leq \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) + \eta, \end{aligned}$$

945 from which we conclude that
 946

$$947 \quad \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) \geq \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) - \eta$$

948 and also that
 949

$$950 \quad \begin{aligned} -\text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) &\geq -\min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0, a) - \eta \\ \Leftrightarrow \quad \text{sgn}_1(s_0) V_{\pi_1^k, \pi_2^k}(s_0) &\geq \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0, a) - \eta, \end{aligned}$$

951 from which we conclude that (π_1^k, π_2^k) is an η -saddle-point.
 952

Having established that the algorithm can only terminate at an η -saddle point, it remains to prove it always terminates in finite time. By contradiction, assume that the algorithm does not terminate. Since the state and action sets are finite, the number of pairs of deterministic policies in $\Pi_1 \times \Pi_2$ policies is also finite, which means that there must then exist at least one pair of policies $(\pi_1^\dagger, \pi_2^\dagger)$ for which the pairs (π_1^k, π_2^k) defined in lines 7 and 15 turns out to be equal to $(\pi_1^\dagger, \pi_2^\dagger)$ infinitely many times.

Suppose now that we define the following set of pairs of policies

$$\Pi^\dagger := \Pi_1^\dagger \cup \Pi_2^\dagger, \quad \Pi_1^\dagger := \{(\pi_1^\dagger, \pi_2) : \pi_2 \in \Pi_2\}, \quad \Pi_2^\dagger := \{(\pi_1, \pi_2^\dagger) : \pi_1 \in \Pi_1\}.$$

Verifying in line 12 that $Q_2^{k_2}(\cdot, \cdot)$ has converged, requires the set of samples in line 9 to include every pair (s_t, a_t) in $\mathcal{S}_{\Pi_1^\dagger} \times \mathcal{A}$, whereas verifying in line 20 that $Q_1^{k_1}(\cdot, \cdot)$ has converged, requires the set of samples in line 17 to include every pair (s_t, a_t) in $\mathcal{S}_{\Pi_2^\dagger} \times \mathcal{A}$. This means that each of the updates of Q^k in lines 24–26 will include, at least, every pair (s_t, a_t) in $\mathcal{S}_{\Pi^\dagger} \times \mathcal{A}$ infinitely many times. This enable us to then apply Lemma 1 to conclude that, Q^k must converge in a finite number of iterations to a function $Q^\dagger : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ for which (8) holds $\forall (s, a) \in \mathcal{Z}_\infty \supset \mathcal{S}_{\Pi^\dagger} \times \mathcal{A}$.

We have just established that the function $Q^\dagger : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ satisfies the assumptions of Theorem 2, from which we conclude that $(\pi_1^\dagger, \pi_2^\dagger)$ must be a saddle point policy that was reached by (π_1^k, π_2^k) at some finite iteration k . This establishes a contradiction, because as soon as (π_1^k, π_2^k) reaches a saddle-point the algorithm will terminate. \blacksquare

A.4 PROOF OF THEOREM 4

To extend Lemma 1 to the stochastic case, we start with a zero initial estimate $Q^0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, $Q^0(s, a) = 0, \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$, and iteratively draws samples $\{(s_{t_k}, a_{t_k}, s_{t_k+1}, r_{t_k+1}) : \forall k \geq 0\}$ from the transition/reward probability function $p(s_{t_k+1}, r_{t_k+1} | s_{t_k}, a_{t_k})$, leading to an update of the form

$$Q^{k+1}(s, a) = \begin{cases} (1 - \alpha_k)Q^k(s, a) + \alpha_k Q_{\text{target}}^{k+1} & s = s_{t_k}, a = a_{t_k}, \\ Q^k(s, a) & \text{otherwise,} \end{cases} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}, \quad (50)$$

for some sequence $\alpha_k \in (0, 1)$ and

$$Q_{\text{target}}^{k+1} := r_{t_k+1} + \text{sgn}_1(s_{t_k}) \text{sgn}_1(s_{t_k+1}) \max_{a' \in \mathcal{A}} Q^k(s_{t_k+1}, a').$$

Defining the indicator function

$$I_{s,a}(\bar{s}, \bar{a}) = \begin{cases} 1 & \bar{s} = s, \bar{a} = a \\ 0 & \text{otherwise.} \end{cases}$$

and the (random) sequences

$$\{\bar{\alpha}_k(s, a) := \alpha_k I_{s,a}(s_{t_k}, a_{t_k}) : \forall k \geq 0\}, \quad \forall s \in \mathcal{S}, a \in \mathcal{A},$$

we can compactly re-write (50) as

$$Q^{k+1}(s, a) = (1 - \bar{\alpha}_k(s, a))Q^k(s, a) + \bar{\alpha}_k(s, a)Q_{\text{target}}^{k+1}, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$

Lemma 2 (Finite convergence over a subset of $\mathcal{S} \times \mathcal{A}$: Stochastic Case). *Assume that the state and action spaces are finite and that the game terminates in finite time. Let $\mathcal{Z}_\infty \subset \mathcal{S} \times \mathcal{A}$ denote the (random) set of states-action pairs (s_t, a_t) that appears infinitely many times in the samples in lines 24–26 and assume that the sequences $\{\bar{\alpha}_k(s, a) \in (0, 1) : \forall k \geq 0\}, s \in \mathcal{S}, a \in \mathcal{A}$ satisfy*

$$P \left(\sum_{t=0}^{\infty} \bar{\alpha}_k(s, a) = +\infty, \quad \sum_{t=0}^{\infty} \bar{\alpha}_k^2(s, a) < \infty, \quad \forall (s, a) \in \mathcal{Z}_\infty \right) = 1.$$

Then the sequence Q^k converges with probability one and

$$P \left(\lim_{k \rightarrow \infty} Q^k = Q^\dagger, \text{ and (8) holds for } Q^\dagger, \forall (s, a) \in \mathcal{Z}_\infty \right) = 1. \quad \square$$

1026 It is important to note that, while Lemma 2 guarantees convergence to a function Q^\dagger for which (8)
 1027 holds on \mathcal{Z}_∞ , different realizations of the random variables will typically lead to distinct sets \mathcal{Z}_∞ and
 1028 to different limits Q^\dagger and that these Q^\dagger will generally not satisfy (8) outside \mathcal{Z}_∞ .

1029 The proof of Lemma 2 combines elements from the proof of Lemma 1 with a stochastic approximation
 1030 argument, which needs the following result.

1032 **Lemma 3** (Restricted contraction). *Assume that the state and action spaces are finite and that the
 1033 game terminates in finite time. Given a set $\mathcal{Z}_\infty \subset \mathcal{S} \times \mathcal{A}$ and a function $Q^\perp : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ with the
 1034 property that*

$$1035 \quad Q^\perp(s, a) = 0, \quad \forall s \in \mathcal{S}_{\text{recurrent}}, a \in \mathcal{A}, \quad (51)$$

1036 consider the operator F that maps a function $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ to another function $F[Q] : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
 1037 defined by

$$1038 \quad F[Q](s, a) = \begin{cases} \mathbb{E} [r_{t+1} + \text{sgn}_1(s_t) \text{sgn}_1(s_{t+1}) \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') \mid s_t = s, a_t = a], & (s, a) \in \mathcal{Z}_\infty, s \notin \mathcal{S}_{\text{recurrent}} \\ Q^\perp(s, a) & \text{otherwise.} \end{cases} \quad (52)$$

1042 *The set of functions*

$$1043 \quad \mathcal{Q}^\perp := \{Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} : Q(s, a) = Q^\perp(s, a), \forall (s, a) \notin \mathcal{Z}_\infty\}, \quad (53)$$

1045 that match the value of Q^\perp on \mathcal{Z}_∞ is invariant under F and F is a contraction on \mathcal{Q}^\perp , i.e.,

$$1046 \quad F(\mathcal{Q}^\perp) \subset \mathcal{Q}^\perp, \quad \|F(Q_1 - Q_2)\| \leq \gamma \|Q_1 - Q_2\|, \quad \forall Q_1, Q_2 \in \mathcal{Q}^\perp$$

1047 for a suitably selected constant $\gamma \in (0, 1)$ and norm $\|\cdot\|$. \square

1049 *Proof of Lemma 3.* F is invariant on \mathcal{Q}^\perp simply because $F[Q](s, a) = Q^\perp(s, a)$, $\forall (s, a) \notin \mathcal{Z}_\infty$.
 1050 In view of Proposition 2, the set of recurrent states $\mathcal{S}_{\text{recurrent}}$ is absorbing and has zero reward,
 1051 regardless of the control action. This, together with the finite-time assumption, enable us to use
 1052 (Tseng, 1990, Lemma 3) to conclude that there exists constants $\gamma \in [0, 1)$, $\omega_s > 0$, $s \in \mathcal{S}$ such that

$$1054 \quad \sum_{s' \notin \mathcal{S}_{\text{recurrent}}} P(s_{t+1} = s' \mid s_t = s, a_t = a) \omega_{s'} \leq \gamma \omega_s. \quad (54)$$

1056 Pick two arbitrary functions $Q_1, Q_2 \in \mathcal{Q}^\perp$ and $(s, a) \in \mathcal{Z}_\infty, s \notin \mathcal{S}_{\text{recurrent}}$. From the definition of F ,
 1057 we conclude that

$$1058 \quad F[Q_1](s, a) - F[Q_2](s, a) = \\ 1059 \quad = \mathbb{E} [\text{sgn}_1(s_t) \text{sgn}_1(s_{t+1}) \left(\max_{a_1 \in \mathcal{A}} Q_1(s_{t+1}, a_1) - \max_{a_2 \in \mathcal{A}} Q_2(s_{t+1}, a_2) \right) \mid s_t = s, a_t = a] \\ 1060 \quad = \sum_{s' \in \mathcal{S}} \text{sgn}_1(s) \text{sgn}_1(s') \left(\max_{a_1 \in \mathcal{A}} Q_1(s', a_1) - \max_{a_2 \in \mathcal{A}} Q_2(s', a_2) \right) P(s_{t+1} = s' \mid s_t = s, a_t = a) \\ 1061 \quad \leq \sum_{s' \in \mathcal{S}} \text{sgn}_1(s) \text{sgn}_1(s') \left(Q_1(s', a_{s'}) - Q_2(s', a_{s'}) \right) P(s_{t+1} = s' \mid s_t = s, a_t = a)$$

1066 where

$$1067 \quad a_{s'} \in \begin{cases} \arg \max_{a_1 \in \mathcal{A}} Q_1(s', a_1) & \text{sgn}_1(s) \text{sgn}_1(s') = 1, \\ \arg \max_{a_2 \in \mathcal{A}} Q_2(s', a_2) & \text{sgn}_1(s) \text{sgn}_1(s') = -1. \end{cases}$$

1071 Using (51) and (54), we further conclude that

$$1072 \quad F[Q_2](s, a) - F[Q_1](s, a) \\ 1073 \quad \leq \sum_{s' \notin \mathcal{S}_{\text{recurrent}}} \text{sgn}_1(s) \text{sgn}_1(s') \left(Q_1(s', a_{s'}) - Q_2(s', a_{s'}) \right) P(s_{t+1} = s' \mid s_t = s, a_t = a) \\ 1074 \quad = \sum_{s' \notin \mathcal{S}_{\text{recurrent}}} \text{sgn}_1(s) \text{sgn}_1(s') \frac{Q_1(s', a_{s'}) - Q_2(s', a_{s'})}{\omega_{s'}} P(s_{t+1} = s' \mid s_t = s, a_t = a) \omega_{s'} \\ 1075 \quad \leq \gamma \omega_s \max_{s' \notin \mathcal{S}_{\text{recurrent}}} \frac{1}{\omega_{s'}} |Q_1(s', a_{s'}) - Q_2(s', a_{s'})|.$$

1080 Similarly, we can also conclude that
 1081
 1082
$$F[Q_1](s, a) - F[Q_2](s, a) \leq \gamma \omega_s \max_{s' \notin \mathcal{S}_{\text{recurrent}}} \frac{1}{\omega_{s'}} |Q_1(s', a_{s'}) - Q_2(s', a_{s'})|,$$

 1083 from which we obtain the bound
 1084
 1085
$$|F[Q_1](s, a) - F[Q_2](s, a)| \leq \gamma \omega_s \max_{s' \notin \mathcal{S}_{\text{recurrent}}} \frac{1}{\omega_{s'}} |Q_1(s', a_{s'}) - Q_2(s', a_{s'})|,$$

 1086
 1087 $\forall (s, a) \in \mathcal{Z}_\infty, s \notin \mathcal{S}_{\text{recurrent}}$. In view of the definition of F and the set \mathcal{Q} , both the left and right-hand
 1088 sides of the inequality above are equal to zero for all remaining pairs $s \in \mathcal{S}, a \in \mathcal{A}$, which means that
 1089 this inequality actually holds over $\mathcal{S} \times \mathcal{A}$. Dividing both sides of the inequality by ω_s and taking a
 1090 maximum over $\mathcal{S} \times \mathcal{A}$, we conclude that
 1091
 1092
$$\max_{s \in \mathcal{S}} \max_{a \in \mathcal{A}} \frac{1}{\omega_s} |F[Q_1](s, a) - F[Q_2](s, a)| \leq \gamma \max_{s' \in \mathcal{S}} \max_{a \in \mathcal{A}} \frac{1}{\omega_{s'}} |Q_1(s', a) - Q_2(s', a)|,$$

 1093 which confirms that F is a contraction on \mathcal{Q}^\perp , with respect to an L_∞ -norm weighted by the scalars
 1094 ω_s . ■
 1095
 1096 *Proof of Lemma 2.* Proceeding exactly as in the proof of Lemma 1, we conclude that
 1097
 1098
$$Q^k(s, a) = 0, \quad \forall (s, a) \in \mathcal{S}_{\text{recurrent}} \times \mathcal{A}, \quad k \geq 0 \quad (55)$$

 1099 and also that there exists a finite integer K_0 such that $(s_{t_k}, a_{t_k}) \in \mathcal{Z}_\infty$, for every $k \geq K_0$. This means
 1100 that we can define
 1101
 1102
$$Q^\dagger(s, a) = Q^{K_0}(s, a), \quad \forall (s, a) \notin \mathcal{Z}_\infty \text{ or } (s, a) \in \mathcal{S}_{\text{recurrent}} \times \mathcal{A} \quad (56)$$

 1103 because after time K_0 no update of $Q^\dagger(s, a)$ outside \mathcal{Z}_∞ will ever take place. The remainder of this
 1104 proof uses an stochastic approximation argument to show that the values of $Q^k(s, a)$ also converge
 1105 for the pairs $(s, a) \in \mathcal{Z}_\infty, s \notin \mathcal{S}_{\text{recurrent}}$.
 1106
 1107 In general, the set \mathcal{Z}_∞ , the integer K_0 , and the function Q^{K_0} are all random. In the remainder of the
 1108 proof, we fix a realization for $\mathcal{Z}_\infty, K_0, Q^{K_0}$ that can occur with positive probability and condition all
 1109 probabilities to this realization. To emphasize this, we use a subscript $E_{\mathcal{Z}_\infty, K_0, Q^{K_0}}$ in the expected
 1110 value operator. For statements that occur “with probability one” this is not needed, since conditioning
 1111 to a positive probability event will not affect whether or not the statement holds with probability one.
 1112
 1113 We proceed by re-writing (50) as
 1114
 1115
$$Q^{k+1}(s, a) = (1 - \bar{\alpha}_k)Q^k(s, a) + \bar{\alpha}_k(F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q^k](s_{t_k}, a_{t_k}) + w_k)$$

 1116 where $F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}$ is the operator defined in (52) and
 1117
 1118
$$w_k := Q_{\text{target}}^{k+1} - F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q^k](s_{t_k}, a_{t_k}).$$

 1119 The subscript in $F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}$ emphasizes that, for the purposes of this proof, the expectation in (52)
 1120 should be understood as conditioned to a positive probability realization of $\mathcal{Z}_\infty, K_0, Q^{K_0}$.
 1121
 1122 For $k \geq K_0$ and $s_{t_k} \notin \mathcal{S}_{\text{recurrent}}$, the value of $F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q^k](s_{t_k}, a_{t_k})$ is defined by the top branch
 1123 in (52) and we have that
 1124
 1125
$$F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q^k](s_{t_k}, a_{t_k}) \stackrel{\text{wpo}}{=} E_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q_{\text{target}}^{k+1} \mid s_{t_k}, a_{t_k}]$$

 1126
 1127
$$\Rightarrow E_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[w_k \mid s_{t_k}, a_{t_k}] \stackrel{\text{wpo}}{=} 0.$$

 1128
 1129 Alternatively, when $k \geq K_0$ but $s_{t_k} \in \mathcal{S}_{\text{recurrent}}$, we can conclude form Proposition 2 that all
 1130 subsequent states belong to $\mathcal{S}_{\text{recurrent}}$ and all subsequent rewards are zero with probability one.
 1131 Because of this and (55), we conclude that, also in this case, we have
 1132
 1133
$$F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q^k](s_{t_k}, a_{t_k}) \stackrel{\text{wpo}}{=} E_{\mathcal{Z}_\infty, K_0, Q^{K_0}}[Q_{\text{target}}^{k+1} \mid s_{t_k}, a_{t_k}] = 0$$

 1134
 1135 In view of Lemma 3, the operator $F_{\mathcal{Z}_\infty, K_0, Q^{K_0}}$ is a contraction on \mathcal{Q}^\perp defined in (53), which enable
 1136 us to use (Tsitsiklis, 1994, Theorem 3) to conclude that Q^k converges to a fixed-point of F within
 1137 \mathcal{Q} and conclude the proof. In applying Lemma 3, all probabilities need to be conditioned to a
 1138 specific positive probability realization of $\mathcal{Z}_\infty, K_0, Q^{K_0}$, but that does not invalidate the result. It
 1139 does however mean that, different realizations may lead to different contraction constants γ . ■

1134 We are now ready to prove Theorem 4:
 1135

1136 *Proof of Theorem 4.* Since $\text{sgn}_2(s_0) = -\text{sgn}_1(s_0)$, we conclude from (21) that
 1137

$$1138 \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \geq \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) - \epsilon \geq \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0) - \epsilon \quad (57a)$$

$$1140 \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) = -\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \leq -\max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) + \epsilon \\ 1141 = \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1^k, \pi_2}(s_0) + \epsilon \leq \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0) + \epsilon. \quad (57b)$$

1144 Similarly, since $\text{sgn}_2(s_0) = -\text{sgn}_1(s_0)$, we conclude from (22) that
 1145

$$1147 \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \geq \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) - \epsilon \geq \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} \text{sgn}_1(s_0) V_{\pi_1, \pi_2}(s_0) - \epsilon \quad (58a)$$

$$1150 \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) = -\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \leq -\max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) + \epsilon \\ 1151 = \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0) + \epsilon \leq \max_{\pi_2 \in \Pi_2} \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2}(s_0) + \epsilon. \quad (58b)$$

1154 The bounds in (23) follow from combining (57) with (58).
 1155

1156 Upon termination, we have that
 1157

$$\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) + \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) \leq \eta$$

1159 and, since $\text{sgn}_2(s_0) = -\text{sgn}_1(s_0)$, we conclude from (21) and (22) that
 1160

$$1161 \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) - \epsilon \leq \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \leq -\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) + \eta \\ 1163 \leq -\max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) + \epsilon + \eta = \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0) + \epsilon + \eta.$$

1164 Using the definition of max (on left-hand side) and of min (on right-hand side), we obtain
 1165

$$1166 \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) - \epsilon \leq \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) - \epsilon \\ 1168 \leq \text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0, a) \leq -\text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0, a) + \eta \\ 1170 \leq \min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0, a) + \epsilon + \eta \leq \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) + \epsilon + \eta,$$

1172 from which we conclude that
 1173

$$\text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) \geq \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) - 2\epsilon - \eta$$

1175 and also that
 1176

$$1177 -\text{sgn}_2(s_0) V_{\pi_1^k, \pi_2^k}(s_0) \geq -\min_{\pi_1 \in \Pi_1} \text{sgn}_2(s_0) V_{\pi_1, \pi_2^k}(s_0, a) - 2\epsilon - \eta \\ 1178 \Leftrightarrow \text{sgn}_1(s_0) V_{\pi_1^k, \pi_2^k}(s_0) \geq \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0, a) - 2\epsilon - \eta,$$

1180 from which we conclude that (π_1^k, π_2^k) is a $(2\epsilon + \eta)$ -saddle-point.
 1181

1182 To prove termination in finite time, assume by contradiction that the algorithm does not terminate.
 1183 Since the state and action sets are finite, the number of pairs of deterministic policies in $\Pi_1 \times \Pi_2$
 1184 policies is also finite, which means that there must then exist at least one pair of policies $(\pi_1^\dagger, \pi_2^\dagger)$ for
 1185 which the pairs (π_1^k, π_2^k) defined in lines 7 and 15 turns out to be equal to $(\pi_1^\dagger, \pi_2^\dagger)$ infinitely many
 1186 times. Assumption 3, then enable us to use Lemma 2, with the guarantee that $\mathcal{Z}_\infty \overset{\text{wpo}}{\supset} \mathcal{S}_{\Pi^\dagger} \times \mathcal{A}$, to
 1187 conclude that the sequence Q^k converges to a function Q^\dagger , for which (8) holds $\forall (s, a) \in \mathcal{S}_{\Pi^\dagger} \times \mathcal{A}$ and

1188 therefore Q^\dagger is a restricted fixed point. In view of Theorem 2, this means that any policies $(\pi_1^\dagger, \pi_2^\dagger)$
 1189 that satisfy (14) are a saddle-point. While Q^k may never reach Q^\dagger for a finite iteration k , the policies
 1190 (π_1^k, π_2^k) derived from Q^k using (15) will become saddle-point for after some sufficiently large (but
 1191 finite) iteration K . This is because, the set of policies is finite.
 1192

1193 Since for every $k \geq K$, every pair (π_1^k, π_2^k) is a saddle-point, we conclude from the definition of
 1194 saddle point and (6) that

$$1195 \max_{\pi_1 \in \Pi_1} \text{sgn}_1(s_0) V_{\pi_1, \pi_2^k}(s_0) + \max_{\pi_2 \in \Pi_2} \text{sgn}_2(s_0) V_{\pi_1^k, \pi_2}(s_0) = 0$$

1197 and, in view of Assumption 2 that

$$1199 |\text{sgn}_2(s_0) \max_{a \in \mathcal{A}} Q_2^{k_2}(s_0) + \text{sgn}_1(s_0) \max_{a \in \mathcal{A}} Q_1^{k_1}(s_0)| \leq 2\epsilon$$

1200 with probability larger than $1 - \delta > 0$. When $\eta > 2\epsilon$, this means that for each $k > K$ the algorithm
 1201 will terminate with positive probability, from which we conclude that it will terminate in finite time
 1202 with probability one; thus completing the contradiction argument.
 1203

1204 To complete the proof, we need to compute the probability that the algorithms terminates at some
 1205 finite iteration k without satisfying the saddle-point condition. To this effect let e_ℓ , $\ell \geq 1$ be a boolean
 1206 random variable that is equal to 1 if the test in line 22 is executed at least ℓ times and the ℓ th test
 1207 results in termination, but the exit policies (π_1^k, π_2^k) are not a saddle point (false positive). In terms
 1208 of these variables, the probability that the algorithms terminates without satisfying the saddle-point
 1209 condition is given by

$$1210 P(\exists i : e_i = 1) = \sup_{\ell \geq 0} y_\ell = \lim_{\ell \rightarrow \infty} y_\ell,$$

1211 where

$$1212 y_\ell := P(\exists i \leq \ell : e_i = 1).$$

1213 These probabilities can be computed recursively, defining $y_0 = 0$ and noting that for $\ell \geq 1$, we have
 1214 that

$$1215 \begin{aligned} y_\ell &= P(e_\ell = 1, \forall i < \ell, e_i = 0) + P(\exists i < \ell : e_i = 1) \\ &= P(e_\ell = 1 | \forall i < \ell, e_i = 0) P(\forall i < \ell, e_i = 0) + P(\exists i < \ell : e_i = 1) \\ &= P(e_\ell = 1 | \forall i < \ell, e_i = 0) (1 - y_{\ell-1}) + y_{\ell-1}. \end{aligned}$$

1216 To get $e_\ell = 1$, the policies (π_1^k, π_2^k) at the ℓ th test must not be a saddle-point and yet trigger the
 1217 exit condition. In view of Assumption 2, this can only happen with probability smaller than δ_ℓ and
 1218 therefore

$$1219 y_\ell \leq \delta_\ell (1 - y_{\ell-1}) + y_{\ell-1} \leq \delta_\ell + y_{\ell-1}$$

1220 Adding both sides from $\ell = 1$ to $\ell \rightarrow \infty$, we conclude that

$$1221 \lim_{\ell \rightarrow \infty} y_\ell \leq \sum_{\ell=1}^{\infty} \delta_\ell,$$

1222 which conclude the proof. ■

1232 A.5 SPEEDING UP CONVERGENCE

1233 As noted before, the samples $(s_t, a_t, s_{t+1}, r_{t+1})$ generated in lines 9 and 17 to verify the saddle-point
 1234 condition suffice to guarantee convergence to a restricted fixed point. However, executing the code in
 1235 lines 7–12 and 15–20 until convergence of Q_1^k and Q_2^k can be costly for games with large state-spaces.
 1236 This motivates using an additional mechanism to approximately solve the optimizations in (16), (18);
 1237 which does not need to be “sufficiently accurate” to certify that (π_1^k, π_2^k) is a saddle-point but it is
 1238 computationally much cheaper. Such a mechanism can be used in line 4 without compromising the
 1239 guarantees provided by Theorem 3.

1240 Procedure 2 provides such a mechanism by essentially replicating in line 4 what is done in lines 7–12
 1241 and 15–20 with additional tables \hat{Q}_1 , \hat{Q}_2 that function within the scope of line 4:

- 1242 1. Collect samples using \hat{Q}_1 and \hat{Q}_2 as in lines 7–12 and 15–20, but repeat the loops only over
 1243 a finite number of iterations L , rather than waiting until convergence.
 1244 2. Only initialize \hat{Q}_1 and \hat{Q}_2 at the start of Algorithm 1 instead of re-initializing them before
 1245 executing each check as in lines 7–12 and 15–20.

1247
 1248 **Procedure 2** Optional procedure for line 4 of Algorithm 1, assuming an initialization $\hat{Q}_i^0(s, a) = 0$,
 1249 $\forall s \in \mathcal{S}, a \in \mathcal{A}, i \in \{1, 2\}$ at the start of Algorithm 1.

- 1250 1: extract \mathbb{P}_1 's policy π_1^k from Q^k using (15)
 1251 2: extract \mathbb{P}_2 's policy π_2^k from Q^k using (15)
 1252 3: **for** L iterations **do**
 1253 4: generate sample(s) $(s_t, a_t, s_{t+1}, r_{t+1})$ from (3), restricting $a_t = \pi_1^k(s_t)$ when $s_t \in \mathcal{S}_1$
 1254 5: use sample(s) to update \hat{Q}_2^k using (11)
 1255
 1256 6: generate sample(s) $(s_t, a_t, s_{t+1}, r_{t+1})$ from (3), restricting $a_t = \pi_2^k(s_t)$ when $s_t \in \mathcal{S}_2$
 1257 7: use sample(s) to update \hat{Q}_1^k using (11)

1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295