
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING FOR SADDLE-POINT
EQUILIBRIA WITHOUT FULL STATE EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new fixed-point condition on the state-action-value Q-function for
zero-sum Markov turn games that suffices to construct saddle-point and security
policies, but is less restrictive than the classical condition arising from the Bellman
equation. We then propose an iterative algorithm that guarantees convergence to
a function satisfying this less restrictive condition. The key benefit of the new
condition and algorithm is that convergence to a saddle-point can (and typically
will) be reached without full exploration of the state-space; generally enabling the
solution of larger games with less computation. Our algorithm is based on a limited
form of exploration that gathers samples from repeated attempts to certify the
current candidate policies as a saddle-point, motivating the terminology “saddle-
point exploration” (SPE). We illustrate the use of the new condition/algorithms
in several combinatorial games that can be scaled in terms of the size of the
state and action spaces. Numerical results, using both tabular and neural network
Q-function representations, consistently show that saddle-point policies can be
formally certified without full state exploration and, for several games, we can see
that the fraction of states explored decreases as the size of the game grows.

1 INTRODUCTION

We address two-player zero-sum Markov games with finite but large state spaces, for which the goal
is to find minimax policies with “modest” computation. In this context, minimax or security policies
refer to policies π˚

1 , π˚
2 that achieve the outer maxima in the following worst-case optimizations

max
π1PΠ1

min
π2PΠ2

J1pπ1, π2q, max
π2PΠ2

min
π1PΠ1

J2pπ1, π2q, (1)

where Πi, i P t1, 2u is the policy space for player Pi and Jipπ1, π2q this player’s expected sum of
future rewards, with J1pπ1, π2q “ ´J2pπ1, π2q. We use the qualifier “modest” to mean that we seek
to certify policies to be solutions to (1) without exploring the full state-space of the game.

Q-learning, which was originally developed by Watkins (1989) for single-player Markov decision
processes and later extended to two-player zero-sum games by Littman (1994); Littman & Szepesvári
(1996), remains the most widely used provably correct approach to construct minimax policies.
Q-learning performs an iterative computation of the state-action-value function, generally called the
Q-function, that assigns to each state-action pair the associated (minimax) future rewards. Correctness
of this approach relies on the observation that the iteration converges to a unique fixed point, which is
the optimal Q-function. In practice, the Q-learning iteration typically terminates by either explicitly
checking whether or not the fixed-point condition holds (often up to some prescribed acceptable
error) or by using a fixed number of iterations for which one can guarantee convergence (up to
some prescribed acceptable error). Both options require evaluating the Q-function over the whole
state-space; either explicitly in the first case, or implicitly in the second case, because the available
sample complexity bounds that guarantee convergence of the Q-function rely on full state-exploration
(Even-Dar & Mansour, 2003; Hu & Wellman, 2003; Beck & Srikant, 2012; Wainwright, 2019; Chen
et al., 2020; Zhang et al., 2020; Ménard et al., 2021; Li et al., 2021; Lee, 2023; Li et al., 2024).

The first contribution of this paper is a new condition on a candidate Q-function that suffices to
guarantee that the policies extracted from it are a solution to (1). This condition, which we call
“restricted fixed point,” is expressed as a fixed-point equality on a restricted subset of the state space

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and can be checked without full state exploration. While the usual (unrestricted) fixed-point condition
typically only has a unique solution — precisely the optimal Q-function — our restricted condition
typically has multiple solutions, many of which are not the optimal Q-function. Regardless, we show
in Theorem 2 that all functions satisfying the restricted condition lead to minimax policies in the
sense of (1). This result is applicable to Markov zero-sum turn games, where turn games means that
only one player is allowed to make a decision at each state (Sidford et al., 2019; Jia et al., 2019; Shah
et al., 2020; Anderson et al., 2025). Turn games generalize alternate play games in which players
always alternate in making decisions, like chess, checkers, or go. As opposed to general zero-sum
Markov games (e.g., Filar & Vrieze (1997)), turn games with finite state and action spaces have pure
saddle-point policies under very mild assumptions, avoiding the need to consider mixed or behavioral
policies (Hespanha, 2017).

The second contribution is an algorithm that guarantees convergence to a restricted fixed point
(Algorithm 1). This algorithm relies on updates to the Q-function that are similar to the classical
updates (e.g., by Littman & Szepesvári (1996)) adapted to turn games; but it differs from previous
work in two aspects: termination condition and sample selection/exploration. Termination is based
on checking a saddle-point condition that involves solving two “inner-loop” optimization problems
using single-player Q-learning. The proposed algorithm is named “saddle-point exploration” (SPE)
because, beyond a termination condition, these inner-loop optimizations provide all the samples that
are needed for the (outer-loop) Q-function updates; resulting in guaranteed convergence to a restricted
fixed point. This result (Theorem 3) is stated for the more restricted class of deterministic games
with finite termination time. Embedding two inner-loop Q-learning iterations within an outer-loop
iteration might seem to result in a very inefficient algorithm. However, this is not the case, because
the outer loop makes use of all the samples generated during the inner-loop optimizations, which is
enabled by the off-policy Q-learning updates.

SPE works with general Q-function representations of the candidate saddle-point, including tabular
and neural network forms. For the latter representation, instead of asking for convergence of the
neural network during training — typically a difficult condition to verify — the algorithm only
requires that the policies derived from the neural network satisfy the saddle-point conditions. The
complexity of this verification is relatively low, because it presumes that the policy of one of the
players is frozen, greatly reducing the reachable state-space.

We illustrate the benefits of the SPE algorithm by applying it to a collection of scalable board games
available in the OpenSpiel software package (Lanctot et al., 2019), including Hex, Y, Breakthrough,
Clobber, Dots and Boxes; as well as the strategy game Atlatl (Rood, 2022; Darken, 2025). For all
these games, we observe that SPE terminates without full state exploration. Moreover, by considering
multiple versions of the same game with different board sizes and time-horizon, we observe that the
fraction of states explored before termination either stabilizes to some percentage as the size of the
game increases, or actually decreases.

RELATED WORK

In recent years, significant work has been devoted towards the sample complexity analysis of Q-
learning; specifically on determining a minimum number of samples for which the policies arising
from the Q-learning iteration can be certified as optimal (Even-Dar & Mansour, 2003; Beck &
Srikant, 2012; Wainwright, 2019; Chen et al., 2020). For one-player problems, fairly sharp sample
complexity bounds can be found in (Li et al., 2024), where it is shown that the number of samples
required for (synchronous) Q-learning to obtain an ϵ-accurate estimate of the “exact” Q-function
scales with |S| ˆ |A| ˆH4{ϵ2 (up to logarithmic factors), where S and A denotes the state and action
spaces, respectively, and H – 1{p1 ´ γq is an “effective” time horizon for a γ P p0, 1q-discounted
infinite-horizon cost. This result is “sharp” in H and ϵ in the sense that the authors provide an MDP
for which the Q-function requires a number of order H4{ϵ2 to converge. Results of this nature for
zero-sum Markov games include an additional term |B| for the opponent’s action space (Lee, 2023).

It has previously been recognized that it is possible to construct almost-optimal policies from samples
without convergence of the Q-function. Regret-based analyses accomplish this by bounding the
number of samples required to obtain a policy with a small cumulative cost/reward difference
compared to the optimal policy. One of the tightest results under this setup was reported by Li et al.
(2021), who show accumulated regret over N episodes in a finite-horizon setting with episode length

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

T of order
a

|S| ˆ |A| ˆ T 2 ˆ N , but only after N ě |S|ˆ|A|ˆT 10. While different works obtain
different scaling laws for the regret, the minimum sample size, and the memory complexity, the
existing regret-based analyses of Q-learning still require a sample size on the order of |S| ˆ |A| ˆ T
or greater (Li et al., 2021; Zhang et al., 2020; Ménard et al., 2021).

Additional results that are specific for two-player zero-sum Markov games include (Bai et al., 2020),
which provides a variant of Nash Q-learning (Hu & Wellman, 2003) with sample complexity bounds
to achieve an ϵ-approximate Nash-equilibrium on the order of |S| ˆ |A| ˆ |B| ˆ T 5{ϵ2. More
recently, Feng et al. (2024) reduce the polynomial dependence on the horizon to T 3 and obtain
the minimax-optimal dependence on T , |S| and ϵ. Shreyas & Vijesh (2024) proposed a multi-step
approach that converges with probability one in the setting with discounted rewards.

It should be noted that, while our restricted saddle-point condition can be used to certify a policy as
optimal with computational complexity below |S| ˆ |A|, it is possible to construct games for which
the only restricted saddle point is the usual (unrestricted saddle point) and no benefits can be gained.

SPE’s test of the saddle-point condition can be viewed as trying to find weaknesses in the current
candidate policies, which has similarities with the “Golf with Exploiter” algorithm proposed by Jin
et al. (2022). In that work, iterations are performed over a set of state-value functions from which an
optimistic policy is extracted, as well as the best response against it. A probabilistic guarantee of
convergence is provided in terms of the Bellman Eluder dimension of the game, which for Markov
games with a tabular representation is upper-bounded by the size of the state-action space, but can be
smaller. The key challenge with this work lies in devising algorithms that efficiently iterate over a
set of value functions, which is defined by a growing number of constraints posed on these sets by
the samples. While we arrived at the SPE algorithm from a very different approach (based on the
restricted fixed-point condition), the SPE algorithm can be viewed as a practical implementation of
some of the ideas in (Jin et al., 2022).

In addition to the references above, there is a large body of work on developing heuristic algorithms
to solve large zero-sum turn games: these include AlphaZero (Silver et al., 2017), AlphaStar (Vinyals
et al., 2019) which uses a variant of Policy Space Response Oracles (Lanctot et al., 2017), and Monte
Carlo Tree Search methods (Silver et al., 2016). However, the focus of these algorithms has not been
on termination with correctness guarantees.

2 ZERO-SUM TURN MARKOV GAMES

We consider Markov games with state st at time t ě 0, taking value in a state-space S . In turn games,
only one player can make a decision at each state, so the state-space S can be partitioned into two
disjoint sets S1, S2 with the understanding that, when st belongs to S1, the action at P A is selected
by player P1. Otherwise, st P S2 and the action is selected by player P2. To simplify the notation, we
use the same symbol A to denote the set of actions available to both players, with the understanding
that when st P Si, the elements of A should be viewed as the options available to Pi, i P t1, 2u.

In zero-sum games, the rewards for the two players add up to zero and we denote by rt`1 P R Ă R,
t ě 0 the immediate reward collected by the player that selected the action at at time t. The total
reward collected by player Pi, i P t1, 2u for the initial state s0 P S is then given by

Jips0q –
ř8

t“0 Errt`1 sgnipstqs, (2)

where sgnipstq “ 1 if st P Si and sgnipstq “ ´1 otherwise. The sets S,A,R are assumed finite
and the state st is a stationary controlled Markov chain in the sense that

Ppst`1 “ s1, rt`1 “ r | st “ s, at “ aq “ pps1, r | s, aq (3)

@t ě 0, s, s1 P S, a P A, r P R; where p : S ˆ R ˆ S ˆ A Ñ r0, 1s is the transition/reward
probability function. It is often the case that some, not all, actions in A are available to the player that
selects at in state st. We say that a game is deterministic if pp¨, ¨q only takes values in the set t0, 1u

and that the game terminates in finite time if there exists a finite time T ě 1 such that rt “ 0, @t ě T
with probability one, regardless of the actions at P A selected.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.1 POLICIES AND VALUE FUNCTION FOR TURN GAMES

A policy for the player Pi, i P t1, 2u is a deterministic map πi : Si Ñ A that selects the action
at “ πipstq when the state st is in Si. The finite set of all such deterministic policies is denoted by
Πi. We recall that, for turn games, there is no advantage in considering stochastic policies (Anderson
et al., 2025). For a pair of policies pπ1, π2q P Π1 ˆ Π2, we define the policy pair’s value function as

Vπ1,π2
psq – sgnipsq

8
ÿ

t“τ

Eπ1,π2
rrt`1 sgnipstq | sτ “ ss @s P S, i P t1, 2u, (4)

where the subscripts in Eπ1,π2r¨s highlight that the expectation assumes that the actions are determined
by the given policies. We get the same value for i “ 1 and i “ 2 because sgn1psq “ ´ sgn2psq,
@s P S . The time τ ě 0 from which the summation is started also does not affect its value due to the
stationarity of the Markov chain. It is straightforward to verify that the reward (2) collected by player
Pi can be obtained from the value function using

Jips0q “ sgnips0qVπ1,π2
ps0q, @i P t1, 2u. (5)

2.2 SADDLE-POINTS AND SECURITY POLICIES

A pair of policies pπ˚
1 , π

˚
2 q for players P1,P2 respectively, is a (pure) saddle-point if for every other

pair of policies pπ1, π2q P Π1 ˆ Π2, we have that
J˚
1 ps0q – sgn1ps0qVπ˚

1 ,π˚
2

ps0q “ max
π1PΠ1

sgn1ps0qVπ1,π
˚
2

ps0q, (6a)

J˚
2 ps0q – sgn2ps0qVπ˚

1 ,π˚
2

ps0q “ max
π2PΠ2

sgn2ps0qVπ˚
1 ,π2

ps0q, (6b)

and J˚
1 ps0q “ ´J˚

2 ps0q is called the value of the game. In view of (5), the equality in (6a) expresses
no regret in the sense that P1 does not regret its choice of π˚

1 (over any other policy π1) against π˚
2

and, similarly, (6b) expresses no regret for P2. Saddle-point policies are known to also be security
policies with values J˚

1 ps0q and J˚
2 ps0q for players P1 and P2, respectively; in the sense that

J˚
1 ps0q “ max

π1PΠ1

min
π2PΠ2

sgn1ps0qVπ1,π2
ps0q “ min

π2PΠ2

sgn1ps0qVπ˚
1 ,π2

ps0q (7a)

J˚
2 ps0q “ max

π2PΠ2

min
π1PΠ1

sgn2ps0qVπ1,π2
ps0q “ min

π1PΠ1

sgn2ps0qVπ1,π
˚
2

ps0q (7b)

which means that, by using the policy π˚
i , the player Pi can expect a reward at least as large as

J˚
i ps0q, no matter what policy the other player uses (see, e.g., (Hespanha, 2017)).

2.3 FIXED-POINT SUFFICIENT CONDITION FOR SADDLE-POINT

Saddle-point and security policies can be easily constructed provided that we can find a function
Q : S ˆ A Ñ R that is a fixed point of

Qps, aq “ E
“

rt`1 ` sgn1pstq sgn1pst`1qmax
a1PA

Qpst`1, a
1q
ˇ

ˇ st “ s, at “ a
‰

, (8)

@s P S, a P A. The terminology “fixed point” arises from regarding the right-hand side of (8) as the
action of an operator that acts on Q, and produces the same function Q. The following result provides
an explicit formula (11) for saddle-point policies as a function of the fixed point Q. To express it, we
need the following definition: we say that a function V : S Ñ R is absolutely summable if for every
pair of policies pπ1, π2q P Π1 ˆ Π2 for players P1,P2, respectively, the series

ř8

t“τ Eπ1,π2
rV pstq | sτ “ ss, (9)

is absolutely convergent for every s P S, τ ě 0. For games that terminate in finite time T , any
function V : S Ñ R for which V pstq “ 0, @t ě T with probability one is absolutely summable
since the series degenerates into a finite summation.
Theorem 1 (Fixed-point sufficient condition). Suppose there exists a function Q : S ˆ A Ñ R that
is a fixed point of (8) and

V psq – max
aPA

Qps, aq, @s P S, (10)

is absolutely summable. Then any pair of policies pπ˚
1 , π

˚
2 q for which

π˚
i psq P argmax

aPA
Qps, aq, @s P Si, i P t1, 2u (11)

is a saddle-point and these are policies, with values J˚
1 ps0q “ sgn1ps0qV ps0q “ ´J˚

2 ps0q. l

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We state this result without proof since it can be derived from classical results (Littman, 1994;
Littman & Szepesvári, 1996), at least when the operator defined by the right-hand side of (8) is a
strict contraction. It also follows from a more general result to be derived shortly.

Q-learning can be used to iteratively construct a function Q : SˆA Ñ R that satisfies the fixed-point
condition in (8). In the context of zero-sum turn games, Q-learning starts from some initial estimate
Q0 : S ˆ A Ñ R and iteratively draws samples pst, at, st`1, rt`1q from the transition/reward
probability function ppst`1, rt`1 | st, atq, each leading to an update of the form

Qk`1pst, atq “ p1 ´ αkqQkpst, atq ` αkQ
k`1
target, (12)

for some sequence αk P p0, 1s and

Qk`1
target – rt`1 ` sgn1pstq sgn1pst`1qmax

a1PA
Qkpst`1, a

1q.

Under mild assumptions on the operator defined by the right-hand side of (8) and the sequence αk,
this iteration converges to the unique fixed point of (8) when every element of SˆA appears infinitely
many times in the sample sequence tpst, atqu (Tsitsiklis, 1994).

3 RESTRICTED FIXED POINT

To define “restricted fixed point” we need the following definitions: given a set or pairs of policies
Π Ă Π1 ˆ Π2, we define the set SΠ of reachable states under Π to contain all states that can be
reached with positive probability under such policies, i.e.,

SΠ –
␣

s P S : Dt ě 0, pπ1, π2q P Π such that Pπ1,π2
pst “ sq ą 0

(

.

We say that a function Q : S ˆ A Ñ R is a restricted fixed point of (8) when this equation holds
over ps, aq P SΠ˚ ˆ A, where SΠ˚ is the set of reachable states under

Π˚ –
␣

pπ˚
1 , π2q : π2 P Π2u Y tpπ1, π

˚
2 q : π1 P Π1

(

,

for the pair of policies pπ˚
1 , π

˚
2 q that satisfy (11). Every fixed point (over the whole ps, aq P S ˆ A)

is necessarily a restricted fixed point, but the converse is not true since the set SΠ˚ is typically
much smaller than the whole state-space S. Moreover, fixed points are often unique (e.g., when the
right-hand side of (8) defines the action of an operator that is a strict contraction), but restricted fixed
points are generally not unique since no constraints are posed on the values of Qps, aq for s R SΠ˚ .
Nevertheless, restricted fixed points still enable the construction of saddle-point and security policies:
Theorem 2 (Restricted fixed-point sufficient condition). Suppose there exists a function Q : SˆA Ñ

R that is a restricted fixed point of (8) and for which (10) is absolutely summable. Then the
pair pπ˚

1 , π
˚
2 q is a feedback saddle-point and these are security policies, with values J˚

1 ps0q “

sgn1ps0qV ps0q “ ´J˚
2 ps0q. l

The proof of Theorem 2 is included in Appendix A.1. This proof directly shows that the restricted
fixed-point condition suffices to establish that the saddle-point conditions in (6) hold and takes
advantage of the observation that (6) only involves value functions Vπ1,π2 for pπ1, π2q P Π˚. However,
this derivation cannot use the relationship between the Q-function and cost-to-go in (10), since this
equation will generally not hold over S for restricted fixed points.

4 SADDLE-POINT EXPLORATION (SPE) ALGORITHM

We now describe an algorithm that, like in classical Q-learning, constructs an iterative sequence
of functions Qk that are updated according to (12) and from which we will construct saddle-point
policies. However, unlike in classical Q-learning, our goal now is to update Qk to get convergence to
a restricted fixed point rather than a regular fixed point. To accomplish this, the SPE Algorithm 1
selects the samples for (12) by using the current iterate Qk to construct a candidate saddle-point

πk
1 psq P argmax

aPA
Qkps, aq, @s P S1, πk

2 psq P argmax
aPA

Qkps, aq, @s P S2, (13)

and checks whether these policies form a saddle-point, which justifies the terminology saddle-point
exploration. Specifically, the code in lines 7–12 fixes P1’s policy at πk

1 and uses (single-player)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Q-learning to find P2’s best-response policy π:
2. The sequence of functions tQ0

2, . . . , Q
k2
2 u is used

for this purpose and, upon convergence, the best response has the form

π:
2psq P arg max

aPA
Qk2

2 ps, aq, @s P S2, (14)

and its use against πk
1 results in a reward for P2 equal to

sgn2ps0qVπk
1 ,π

:
2
ps0q “ sgn2ps0qmax

aPA
Qk2

2 ps0q. (15)

Similarly, the code in lines 15–20 computes P1’s best-response policy π:
1 to πk

2 , which has the form

π:
1psq P arg max

aPA
Qk1

1 ps, aq, @s P S1, (16)

and its use against πk
2 results in rewards for P1 equal to

sgn1ps0qVπ:
1,π

k
2

ps0q “ sgn1ps0qmax
aPA

Qk1
1 ps0q. (17)

The termination condition in line 22 essentially guarantees that πk
1 and πk

2 satisfy the saddle-point
condition (7).

We emphasize that the convergence of the sequences tQk1
1 u and tQk2

2 u only requires exploration of
the subsets of the state-space that are reachable when either P1’s policy is frozen at πk

1 or when P2’s
policy is frozen at πk

2 . Even though this test may need to be performed several times, we shall see
that the SPE algorithm typically terminates without selecting a single sample from a large subset of
the reachable states in S . Nevertheless, the samples gathered still suffice to guarantee convergence of
Qk to a restricted fixed point. In view of this, line 4 could be skipped altogether, but we include it
because additional samples provide opportunities to speed up termination (see Appendix A.4).

4.1 DETERMINISTIC FINITE GAMES

While SPE is applicable to general zero-sum turn games, the remainder of this section is focused
on deterministic finite games, for which we can be precise on two items that were left open: how to
represent the functions Qk, Qk2

1 , Qk1
2 , and how to check in lines 12, 20 that Qk2

1 , Qk1
2 have converged.

For deterministic games, the learning rate in (12) can be set to αk “ 1, @k, which makes establishing
convergence of Qk1

1 relatively simple: it suffices to keep track of the last iteration number at which
the update (12) resulted in a change in Qk1

1 and ensuring, since then, (i) every state st P S and every
action at P A that can be reached when P1’s policy is fixed at πk

1 appeared at least once in the samples
generated in line 9, and (ii) none of these updates led to an actual change in Qk1

1 . Convergence of
Qk2

2 can be similarly tested. We assumed here that we can perform “exact” updates for Qk1
1 and Qk2

2 ,
which typically requires a tabular representation. While this may seem restrictive for large games, it
is important to recall that these functions presume that the (deterministic) policy of one of the players
has been fixed, which typically greatly reduces the size of the reachable state-space. In fact, our
numerical experiments show that, when using hash tables of the board configuration to represent Qk1

1

and Qk2
2 , the loops in 7–12 and 15–20 converge quickly and the tables remain small.

Convergence of the sequence Qk does not need to be checked because the exit condition in line 22
only involves Qk1

1 and Qk2
2 . This provides much greater flexibility in representing Qk, which can be

represented by a deep neural network trained through a batch update using the samples collected in
lines 9 and 17. However, the theoretical results that follow assume an exact update for Qk.

4.2 CONVERGENCE

The following assumption is needed to establish the correctness of the SPE Algorithm 1.
Assumption 1 (Exploration). The algorithms use to generate the sequences of samples in lines 9
and 17 guarantee that

1. If the iteration in lines 7-12 did not converge, every pair pst, atq in SΠk
2

ˆ A would appear
infinitely often in the sequence of samples in line 9, where SΠk

2
denotes the set of states

reachable under Πk
2 – tpπ1, π

k
2 q : π1 P Π1u.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Q-learning with saddle-point exploration (SPE)
1: initialize Q0ps, aq “ 0, @s P S, a P A and set k Ð 0
2: loop
3: Ź (Optional) exploration Ÿ

4: generate any number of samples tpst, at, st`1, rt`1qu from (3) using any algorithm
5: extract P1’s policy πk

1 from Qk using (13)
6: Ź proceed by computing P2’s best response against πk

1 Ÿ

7: initialize Q0
2ps, aq “ 0, @s P S, a P A and set k2 Ð 0

8: repeat
9: generate sample(s) pst, at, st`1, rt`1q from (3), restricting at “ πk

1 pstq when st P S1

10: use sample(s) to update Qk2`1
2 using (12)

11: k2 Ð k2 ` 1
12: until the function Qk2

2 p¨, ¨q has converged (see Section 4.1)

13: extract P2’s policy πk
2 from Qk using (13)

14: Ź proceed by computing P1’s best response against πk
2 Ÿ

15: initialize Q0
1ps, aq “ 0, @s P S, a P A and set k1 Ð 0

16: repeat
17: generate sample(s) pst, at, st`1, rt`1q from (3), restricting at “ πk

2 pstq when st P S2

18: use sample(s) to update Qk1`1
1 using (12)

19: k1 Ð k1 ` 1
20: until the function Qk1

1 p¨, ¨q has converged (see Section 4.1)
21: Ź termination condition Ÿ

22: if max
aPA

Q1ps0, aq “ max
aPA

Q2ps0, aq then terminate

23: Ź update Qk using samples collected above Ÿ

24: for all samples pst, at, st`1, rt`1q collected in lines 4, 9, and 17 do
25: update Qk`1 using (12)
26: k Ð k ` 1

2. If the iteration in lines 15-20 did not converge, every pair pst, atq in SΠk
1

ˆ A would appear
infinitely often in the sequence of samples in line 17, where SΠk

1
denotes the set of states

reachable under Πk
1 – tpπk

1 , π2q : π2 P Π2u.

We are now ready to certify the correctness of Algorithm 1 for deterministic finite games:

Theorem 3 (SPE Algorithm 1 correctness). Assume that the state and action spaces are finite and
that the game is deterministic, terminates in finite time, all updates of Q, Q1, Q2 use αk “ 1, and
Assumption 1 holds. At every iteration, the following bounds on the security values hold:

sgn1ps0qmax
aPA

Qk2
2 ps0q ď max

π1PΠ1

min
π2PΠ2

sgn1ps0qVπ1,π2
ps0q ď sgn1ps0qmax

aPA
Qk1

1 ps0q (18a)

sgn2ps0qmax
aPA

Qk1
1 ps0q ď max

π2PΠ2

min
π1PΠ1

sgn2ps0qVπ1,π2
ps0q ď sgn2ps0qmax

aPA
Qk2

2 ps0q (18b)

and the upper and lower bounds become equal when the algorithm terminates. Moreover,
the algorithm terminates after a finite number of iterations and, upon termination at iteration
k, the pair pπk

1 , π
k
2 q is a saddle-point and these are security policies, with values J˚

1 ps0q “

sgn1ps0qmaxaPA Qk1
1 ps0, aq “ ´J˚

2 ps0q.

The proof of Theorem 3 is included in Appendix A.3, but the basic arguments proceeds as follows:
We start by showing that P1’s policy π:

1 (16) is optimal against P2’s policy πk
2 with the rewards

in (17) and that P2’s policy π:
2 (14) is optimal against P1’s policy πk

1 , with the rewards in (15). Once
this has been established, we show that the termination condition guarantees that the pair pπk

1 , π
k
2 q

satisfies the saddle-point conditions (6). The proof that the algorithm terminates in finite time then
relies on showing that Qk converges in a finite number of steps to a restricted fixed point of (8).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 NUMERICAL RESULTS

To demonstrate the performance of Algorithm 1, we use several games available in OpenSpiel (Lanctot
et al., 2019) and the strategy game Atlatl (Rood, 2022; Darken, 2025). These games were chosen
because for all we can select the “board size” and for some we can also select the duration of the
game. This enables us to create game families with varying state-space sizes, where the games within
each family can be meaningfully compared to each other in terms of state-space coverage.

5.1 BASELINE

Rather than comparing our work against a specific competing algorithm, we use for term of compari-
son a lower bound on the number of iterations required by any algorithm whose correctness is based
on convergence of the Q-function over the entire SˆA. As discussed in Section 1, all such algorithms
(as well as all the regret-based algorithms, also discussed there) can only guarantee correctness if the
number of samples exceeds |S| ˆ PolypT q, where PolypT q ě 1 represents a polynomial function of
the time horizon T . For simplicity, we are ignoring the multiplicative factor |A| that is the same for
all algorithms. In reality, S only needs to contain states that can be reached from the game’s initial
state s0, so we use for lower bound the size |SΠ1ˆΠ2

| of the reachable states. For fairness, we use the
(very optimistic) lower bound PolypT q ě 1, because our algorithm essentially uses a replay buffer
for the update of Qk in lines 24–26, which allows us to reuse the same sample multiple times with
little additional computational cost (Mnih et al., 2013). Alternative off-policy algorithms that use
large replay buffers can similarly decrease the number of game samples to one per state, potentially
reducing the required number of game samples to our lower bound of |SΠ1ˆΠ2

|.

In the results below, we compute |SΠ1ˆΠ2
| using an exhaustive search across the state-space. Even

though we use a fairly efficient search algorithm to determine |SΠ1ˆΠ2
|, for some of largest games

this exhaustive search does not terminate within a reasonable compute time limit (24h) and therefore
we are not able to provide a comparison.

5.2 ALGORITHM 1 IMPLEMENTATION DETAILS

We consider two representations for the Q-function in (13): (i) a tabular representation hashed by
a bit-vector embedding of the game board; and (ii) a Deep Q-Network (DQN) whose input is the
same bit-vector state embedding with one output per action, as in (Mnih et al., 2013). For the
functions Q1, Q2 used in the termination checks in lines 7–12 and 15–20, we only used the tabular
representation because, as noted in Section 4, this greatly facilitates checking for convergence and it
can be very efficient even for relatively large games. To satisfy Assumption 1, we do exploration using
tempered Boltzmann policies (Anderson et al., 2025), but the results would not change significantly
if we used the more common ϵ-greedy exploration. We present a more extensive set of results for
option (i) above, but include a few examples for option (ii) to demonstrate that SPE also works with
other Q-function representations.

All results were obtained with a Julia implementation. We call OpenSpiel through its Julia interface
and connect to Atlatl using a Julia wrapper to its Python interface. We use a 2021 M1 Max chip with
10 cores and 32GB RAM. For all the experiments we only include results that can be solved in less
than 24 hours of run time.

5.3 RESULTS

We first show that Algorithm 1 is able to find a saddle-point without sampling large portions of the
state space. We consider several square board sizes for Hex, Y, Breakthrough, and Clobber, and run
Algorithm 1 for each of them. We numerically verify we have obtained a saddle-point with associated
security policies by solving the optimizations in lines 7-12. In Figure 1(left), we plot the number of
states that were explored by Algorithm 1 as a fraction of our baseline |SΠ1ˆΠ2

| for both the tabular
(purple) and DQN (red) representations. The games in this figure have up to about 8 million states.
For tabular representations (purple), we can see that the fraction of states explored decreases as the
size of the game increases (with the exception of 5 ˆ 5 Y). We present fewer results for the the DQN
representation (red), but the results appear to be comparable to the tabular representations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 1: (left) We run Algorithm 1 for square board games of size nˆn (labeled ´n) and show (left)
the fraction of states explored. The size of each marker is proportional to the logarithm of the total
number of game states with the 4 ˆ 4 Hex game containing ~8 million states. (right) The left-axis
shows the fractional exploration versus the duration of the game for both Atlatl and Dots and Boxes;
the right-axis of the plot indicates exponential growth in the states as the game duration increases.

We then examine how the results scale with the duration of the game (number of moves played)
for Dots and Boxes on a 3 ˆ 3 board and for the “2v1” Atlatl scenario; as both games are still
meaningful over a variable time horizon. We observe in Figure 1(right) that, as the duration increases,
the fraction of states explored by Algorithm 1 decreases exponentially for Atlatl. For Dots and Boxes
the fraction decreases significantly up until games with 7 moves and then roughly stabilizes but —
when compared to the growth rate of the total number of reachable states (on the right-axis) — this
indicates the total number of states explored by Algorithm 1 grows at a more favorable rate. In fact,
for Dots and Boxes Algorithm 1 can solve this game up to its maximum duration of 24 moves in
less than 8 hours and exploring less than 10M states, whereas we were not able to do an exhaustive
exploration of the state space for more than 11 moves in 24 hours. For the “2v1” Atlatl scenario,
Algorithm 1 can solve a game with 20 time steps in less than 18 hours, exploring a little less than
15M states, for a total number of states estimated to be between 100M and 200M.

6 CONCLUSIONS AND OUTLOOK

We introduced a new notion of fixed point for zero-sum games that is restricted to a subset of the
state-space, but still suffices to construct saddle-point and security policies. We then proposed the SPE
algorithm that provably converges to a Q-function that satisfies the restricted fixed-point condition
for deterministic finite games. The primary benefit of the restricted fixed-point condition is that
convergence to a saddle-point can be achieved without full state exploration, which was required in
previous works. Finally, we presented several numerical examples showing that, in practice, SPE
consistently terminates at a saddle-point without exploring the entire state space. In fact, for several
scalable board games, the fraction of states explored decreases as the game size increases. Importantly,
we demonstrated that the Q-function used to construct the saddle-point can be represented either
tabularly or using a neural network, without having to adapt SPE.

Important directions for future research include extending the SPE convergence result to stochastic
games, which primarily requires relaxing the saddle-point exit checks to enable termination in finite
time at an ϵ-saddle point. Our numerical results showed that some games permit termination at a
saddle-point with a smaller fraction of explored states than others. Characterizing which classes of
games are especially attractive from this perspective remains another important direction for future
research. Finally, non-cooperative games share similar structures with robust optimization, which
should enable extending the ideas in this paper in that direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

This work is reproducible primarily due to inclusion of all technical assumptions and proofs for the
formal results in Sections 2-4, which are included either in the main text or in Appendices A.1-A.3.
Towards the reproducibility of the numerical results, an anonymized version of the code is available at
https://anonymous.4open.science/r/saddlepointexploration-17BA/. Im-
portantly, all of the games that are used for illustrating the performance of the proposed methods are
open-source (Lanctot et al., 2019; Darken, 2025).

10

https://anonymous.4open.science/r/saddlepointexploration-17BA/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sean Anderson, Chris Darken, and João P. Hespanha. Zero-sum turn games using Q-learning:
finite computation with security guarantees. 2025. URL https://arxiv.org/abs/2509.
13585.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. Advances in
neural information processing systems, 33:2159–2170, 2020.

Carolyn L. Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. Systems
& control letters, 61(12):1203–1208, 2012.

Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. Finite-sample
analysis of contractive stochastic approximation using smooth convex envelopes. Advances in
Neural Information Processing Systems, 33:8223–8234, 2020.

Thomas H. Cormen (ed.). Introduction to algorithms. MIT Press, Cambridge, Mass, 3rd ed edition,
2009. ISBN 978-0-262-03384-8 978-0-262-53305-8. OCLC: ocn311310321.

Chris Darken. Atlatl, August 2025. URL https://github.com/cjdarken/
atlatl-public.

Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

Songtao Feng, Ming Yin, Yu-Xiang Wang, Jing Yang, and Yingbin Liang. Improving sample
efficiency of model-free algorithms for zero-sum markov games. In Proc. of the Int. Conf. on
Machine Learning, ICML’24. JMLR.org, 2024.

Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Spinger-Verlag, New York,
1997.

João P. Hespanha. Noncooperative Game Theory: An Introduction for Engineers and Computer
Scientists. Princeton Press, Princeton, New Jersey, June 2017.

Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Zeyu Jia, Lin F. Yang, and Mengdi Wang. Feature-Based Q-Learning for Two-Player Stochastic
Games, June 2019. arXiv:1906.00423 [cs].

Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of exploiter: Provable multi-agent RL in large
state spaces. In Proc. of the Int. Conf. on Machine Learning, pp. 10251–10279. PMLR, 2022.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing systems, 30, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder,
Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrit-
twieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A
framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019.

Donghwan Lee. Finite-time analysis of minimax Q-learning for two-player zero-sum markov games:
Switching system approach, 2023.

Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier
to regret-optimal model-free reinforcement learning. Advances in Neural Information Processing
Systems, 34:17762–17776, 2021.

Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a
tight sample complexity analysis. Operations Research, 72(1):222–236, 2024. doi: 10.1287/opre.
2023.2450.

11

https://arxiv.org/abs/2509.13585
https://arxiv.org/abs/2509.13585
https://github.com/cjdarken/atlatl-public
https://github.com/cjdarken/atlatl-public

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proc. of the 11th Int. Conf. on Machine Learning, 1994.

Michael L. Littman and Csaba Szepesvári. A generalized reinforcement-learning model: Convergence
and applications. In Luciano Saitta (ed.), Proc. of the Int. Conf. on Machine Learning, pp. 310–318,
Bari, Italy, 1996. Morgan Kaufmann.

Pierre Ménard, Omar D. Domingues, Xuedong Shang, and Michal Valko. UCB momentum Q-
learning: Correcting the bias without forgetting. In International Conference on Machine Learning,
pp. 7609–7618. PMLR, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, December
2013. arXiv:1312.5602 [cs].

Patrick R Rood. Scaling reinforcement learning through feudal muti-agent hierarchy. Naval Post-
graduate School, Monterey, 2022.

Devavrat Shah, Varun Somani, Qiaomin Xie, and Zhi Xu. On Reinforcement Learning for Turn-based
Zero-sum Markov Games. In Proceedings of the 2020 ACM-IMS on Foundations of Data Science
Conference, pp. 139–148, Virtual Event USA, October 2020. ACM. ISBN 978-1-4503-8103-1.
doi: 10.1145/3412815.3416888.

S. R. Shreyas and Antony Vijesh. A multi-step minimax Q-learning algorithm for two-player zero-sum
Markov games, 2024.

Aaron Sidford, Mengdi Wang, Lin F. Yang, and Yinyu Ye. Solving Discounted Stochastic Two-Player
Games with Near-Optimal Time and Sample Complexity, August 2019. arXiv:1908.11071 [cs].

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

John N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning, 16:
192–202, 1994.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Martin J. Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ8-bounds
for Q-learning. arXiv preprint arXiv:1905.06265, 2019.

Christopher J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge
United Kingdom, 1989.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning
via reference-advantage decomposition. Advances in Neural Information Processing Systems, 33:
15198–15207, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDIX

A.1 PROOF OF THEOREM 2

The following proposition is needed to prove Theorem 2. In stating this and subsequent results,

we annotate equalities and inequalities involving random variables with wpo
“ or

wpo
ě to indicate that

they hold with probability one over the full randomness of the state-action-reward trajectory. This
proposition is not really new, but we state it here (and provide a self-contained proof in Appendix
A.2) because we could not find a version of it that matches the zero-sum turn games setup.
Proposition 1. The following three statements hold for any pair of policies pπ1, π2q P Π1 ˆ Π2 and
any absolutely summable function V : S Ñ R:

1. If

V pstq
wpo
“ Eπ1,π2

rrt`1 ` sgn1pstq sgn1pst`1qV pst`1q
ˇ

ˇ sts, @t ě 0, (19)

then

V psτ q
wpo
“ Vπ1,π2

psτ q, @τ ě 0. (20)

2. If

sgn1psτ qV psτ q
wpo
ď Eπ1,π2

“

sgn1psτ qrt`1 ` sgn1pst`1qV pst`1q
ˇ

ˇ sτ
‰

, @t ě 0, (21)

then

sgn1psτ qV psτ q
wpo
ď sgn1psτ qVπ1,π2

psτ q, @τ ě 0. (22)

3. If

sgn1psτ qV psτ q
wpo
ě Eπ1,π2

“

sgn1psτ qrt`1 ` sgn1pst`1qV pst`1q
ˇ

ˇ sτ
‰

, @t ě 0, (23)

then

sgn1psτ qV psτ q
wpo
ě sgn1psτ qVπ1,π2

psτ q, @τ ě 0. (24)

l

We are now ready to prove Theorem 2:

Proof of Theorem 2. Combining (10) with the restricted fixed-point condition, we obtain

V psq “ max
aPA

Qps, aq

“ max
aPA

E
“

rt`1 ` sgn1pstq sgn1pst`1qV pst`1q
ˇ

ˇ st “ s, at “ a
‰

, @s P SΠ˚ . (25)

When s P S1, (11) guarantees that the policy π˚
1 psq reaches the maximum in (25), but an arbitrary

policy π1psq may not and therefore

V psq “ Errt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ s, at “ π˚
1 psqs

“ Eπ˚
1 π2

rrt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ ss (26)

ě Errt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ s, at “ π1psqs

“ Eπ1π2rrt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ ss, @s P S1 X SΠ˚ ,@π1, π2, (27)

where π2 in (27) can be any policy in Π2, because, for a state s P S1, the policy of P2 makes no
difference.

In contrast, when s P S2, the policy π˚
2 psq reaches the maximum in (25), but an arbitrary policy

π2psq may not and we have

V psq “ Eπ1π
˚
2

rrt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ ss (28)

ě Eπ1π2
rrt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ ss, @s P S2 X SΠ˚ ,@π1, π2. (29)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From (26) with π2 “ π˚
2 and (28) with π1 “ π˚

1 , we obtain

V psq “ Eπ˚
1 π˚

2
rrt`1 ` sgn1pstq sgn1pst`1qV pst`1q | st “ ss, @s P SΠ˚ .

Since the pair pπ˚
1 , π

˚
2 q belongs to Π˚, every trajectory generated under these policies belongs to

SΠ˚ with probability 1, which enable us to use Proposition 1 to conclude that

V psq “ Vπ˚
1 ,π˚

2
psq, @s P S. (30)

Multiplying (26) by sgn1psq “ 1, @s P S1 X SΠ˚ and combining this equality with (29) multiplied
by sgn1psq “ ´1, @s P S2 X SΠ˚ and with π1 “ π˚

1 , we obtain

sgn1psqV psq ď Eπ˚
1 π2

rrt`1 sgn1pstq ` sgn1pst`1qV pst`1q | st “ ss, @s P SΠ˚ .

Since every pair pπ˚
1 , π2q, @π2 P Π2 also belongs to Π˚ the trajectories generated under these policies

belongs to SΠ˚ with probability 1, which enable us again to use Proposition 1 and now conclude that

sgn1psqV psq ď sgn1psqVπ˚
1 ,π2

psq, @s P SΠ˚ .

Combining this inequality with (30) and using the fact that sgn1psq “ ´ sgn2psq, @s P S, leads to

sgn1psqV psq “ sgn1psqVπ˚
1 ,π˚

2
psq ď sgn1psqVπ˚

1 ,π2
psq, @s P SΠ˚

sgn2psqV psq “ sgn2psqVπ˚
1 ,π˚

2
psq ě sgn2psqVπ˚

1 ,π2
psq, @s P SΠ˚ . (31)

If instead we multiply (28) by sgn1psq “ ´1, s P S2 X SΠ˚ and combine this equality with (27)
multiplied by sgn1psq “ 1, s P S1 X SΠ˚ and with π2 “ π˚

2 , we obtain

sgn1psqV psq ě Eπ1π
˚
2

rrt`1 sgn1pstq ` sgn1pst`1qV pst`1q | st “ ss, @s P SΠ˚ .

Since every pair pπ1, π
˚
2 q, @π2 P Π2 also belongs to Π˚ the trajectories generated under these policies

belongs to SΠ˚ with probability 1 and we can again use Proposition 1 and (30) to conclude that

sgn1psqV psq “ sgn1psqVπ˚
1 ,π˚

2
psq ě sgn1psqVπ1,π

˚
2

psq, @s P SΠ˚ . (32)

The saddle-point inequalities (6) follow from (31) and (32).

A.2 PROOF OF PROPOSITION 1

Proof of Proposition 1. To prove the first statement, we multiply both sides of (19) by sgn1pstq, to
conclude that

sgn1pstqV pstq ´ Ersgn1pst`1qV pst`1q | sts
wpo
“ Errt`1 sgn1pstq | sts, @t ě 0. (33)

Suppose now that we pick some τ ě 0 and take conditional expectations of both sides of (33) given
sτ . By the smoothing property of conditional expectations, we conclude that

Ersgn1pstqV pstq | sτ s ´ Ersgn1pst`1qV pst`1q | sτ s
wpo
“ Errt`1 sgn1pstq | sτ s.

Adding both sides of this equality from t “ τ to t Ñ 8 and using the absolute convergence of the
two series on the left-hand side, obtain

sgn1psτ qV psτ q
wpo
“

8
ÿ

t“τ

Errt`1 sgn1pstq | sτ s, (34)

from which (20) follows by multiplying both sides of the equality above by sgn1psτ q and using the
definition of the value function in (4).

The subsequent statements can be similarly derived, by starting with the inequalities (21) and (23),
instead of the equality in (33).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 3

The statement that we get a pair of saddle-point policies is an almost direct consequence of the
termination condition in line 22, because the code in lines 7–12 and 15–20 essentially solves the
optimizations that appear in the definition of saddle-point in (6). The proof of termination in finite
time is more involved and requires both Theorem 2 and the following result:

Lemma 1 (Finite convergence over a subset of S ˆ A). Assume that the state and action spaces are
finite, the game is deterministic, terminates in finite time, and αk “ 1, @k ě 0. Let Z8 Ă S ˆ A
denote the set of states-action pairs pst, atq that appears infinitely many times in the samples
in lines 24–26. Then the sequence Qk converges in a finite number of iterations to a function
Q: : S ˆ A Ñ R for which (8) holds @ps, aq P Z8. l

The following definitions and basic result will be used to prove Lemma 1: we say that a state s P S
is recurrent if there exists a finite sequence of actions that takes the state s to itself with positive
probability. States that are not recurrent are called transients and we denote the sets of transient and
recurrent states by Srecurrent and Stransient, respectively. For games with finite termination time,
recurrent states must have zero reward and, in fact, must always be followed by states also with zero
reward, as noted in the following proposition:

Proposition 2. Consider a stationary Markov game with finite termination time and an arbitrary
sequence of actions a0, a1, If the sequence of states s0, s1, . . . and rewards r1, r2, . . . can occur
with positive probability, i.e.,

p
`

st`1, rt`1 | st, at
˘

ą 0, @t ě 0, (35)

and if sτ P Srecurrent for some τ ě 0, then rt`1 “ 0, @t ě τ . l

Proof of Proposition 2. Assume by contradiction that there exist times t ě τ ě 0 for which sτ P

Srecurrent and rt`1 ą 0, which means that the sequence of actions aτ , . . . , at takes the state from sτ
to st`1 and leads to the reward rt`1 ą 0 with some positive probability, in the sense of (35).

Since sτ P Srecurrent there must also exist a (possibly quite different) finite sequence of actions
āτ , . . . , āt̄ that takes the state back to sτ at some time t̄ ą τ . Specifically, there exist associated
sequences of states s̄τ , . . . , s̄t̄`1 and rewards r̄τ , . . . , r̄t̄`1 that satisfy

s̄τ “ s̄t̄`1 “ sτ , p
`

s̄t`1, r̄t`1 |s̄t, āt
˘

ą 0, @t P tτ, . . . , t̄u. (36)

Since it is possible to return to the recurrent state sτ as many times as we want, we can assume
without loss of generality that t̄ is larger than the termination time T , after which all rewards must be
zero with probability one.

To complete the contradiction argument, we “concatenate” the above sequences of actions and states
in the following order:

a0, . . . , aτ´1, āτ , . . . , āt̄, aτ , . . . , at

s0, . . . , sτ´1
loooooomoooooon

from original seq.

, sτ “ s̄τ , . . . , s̄t̄
loooooooomoooooooon

from recurrence of sτ

, s̄t̄`1 “ sτ , sτ`1, . . . , st
looooooooooooomooooooooooooon

back to original seq.

.

All transitions in this sequence have positive probability because of either (35) or (36). In addition,
the last state st and action at lead to a reward rt`1 ą 0, which contradicts the fact that t̄ ą T and all
rewards after that time must be zero with probability one.

Proof of Lemma 1. We now construct the function Q: : S ˆ A Ñ R to which the restriction of Qk

will converge. We start by setting

Q:ps, aq “ 0, @s P Srecurrent, a P A.

In view of Proposition 2, at every recurrent state st P Srecurrent the reward rt`1 must be equal to
zero with probability one, regardless of the action at, and the same will happen for every subsequent
reward rτ`1, @τ ě t. This means that, when we apply the update rule (12) for any state s P Srecurrent

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

or for any state s P S that can succeed a state in Srecurrent with positive probability, we will continue
to have

Qkps, aq “ 0, @a P A, k ě 0, . (37)

This guarantees that Q: will always match Qk, at least over the set Srecurrent ˆ A.

Since S ˆ A is finite and Z8 Ă S ˆ A includes all state-action pairs that appear infinitely many
times in the samples in lines 24–26, there is going to exist a finite integer K0 such that for every
k ě K0 only states pst, atq P Z8 appear in these samples. This means that we can define

Q:ps, aq “ QK0ps, aq, @ps, aq R Z8, (38)

because after time K0 no update of Q:ps, aq outside Z8 will ever take place.

To complete the definition of Q:ps, aq it now remains to define this function for pairs ps, aq P Z8

with s P Stransient. To this effect, consider a directed graph G whose nodes are the transient states in
Stransient, with an edge from s P Stransient to s1 P Stransient if there is an action a P A for which a
transition from s to s1 is possible, i.e.,

Da P A, r P R : pps1, r|s, aq “ 1.

This graph cannot have cycles because any nodes in a cycle would be recurrent and thus not in
Stransient. The absence of cycle guarantees that this graph has at least one topological ordering ă,
i.e., there exists a total order on the set Stransient transient states so that s ă s1 if and only if the state
s1 can be reached from s (Cormen, 2009).

Let smax be the “largest” state in Stransient with respect to the order ă, i.e., smax ą s, @s P

Stransientztsmaxu. If for a given action a P A, we have that psmax, aq R Z8, convergence of
Qkpsmax, aq to (38) at iteration K0 has already been established. If instead psmax, aq P Z8, then
Qkpsmax, aq will eventually be updated using (12) at some finite iteration k ě K0. Moreover, since
smax is the “largest” state in Stransient, it cannot transition to any transient state so it must necessarily
transition to a recurrent state. In view of (37), the update in (12) with αk “ 1 will necessarily be of
the form

Qk`1psmax, aq “ rt`1 — Q:psmax, aq, (39)
where rt`1 is the (deterministic) reward arising from state st “ smax and action at “ a. This means
that every Qkpsmax, aq, a P A will converge to the value Q:psmax, aq defined in (39), right after
their first update.

We now use the order ą to build an induction argument showing that finite-time convergence will
also happen for every other s P Stransient and every a P A. To this effect, pick some s P Stransient,
a P A and assume by the induction hypothesis that every Qkps1, aq has converged to Q:ps, aq for
every s1 ą s, a P A at some finite iteration Ks ě K0.

In case ps, aq R Z8, convergence of Qkpsmax, aq to (38) at iteration K0 has already been established.
If instead ps, aq P Z8, then Qkps, aq will eventually be updated using (12) at some finite iteration
k ě Ks. At this iteration, the update in (12) with αk “ 1 takes the form

Qk`1ps, aq “ rt`1 ` sgn1psq sgn1pst`1qmax
a1PA

Qkpst`1, a
1q,

where rt`1 and st`1 ą s are the (deterministic) reward and next state, respectively, arising from state
st “ s and action at “ a. But since st`1 ą s, the induction hypothesis guarantees that at this and at
any subsequent update for the pair ps, aq, we have

Qk`1ps, aq “ rt`1 ` sgn1psq sgn1pst`1qmax
a1PA

Q:pst`1, a
1q — Q:ps, aq. (40)

This shows that every Qkps, aq, a P A will converge to the value Q:ps, aq defined in (40), at their
first update after Ks. By induction, and recursively defining Q:ps, aq for every transient state s, we
then conclude that Qkps, aq converges to Q:ps, aq also for every s P Stransient, a P A.

The following result can be obtained by combining Lemma 1 and Theorem 2, when we freeze the
policy of P1’s at πk

1 and optimize over the policies of P2 or, alternatively, freeze the policy of P2’s at
πk
2 and optimize over the policies of P1. Note that when the policy of one of the players is “frozen”

(i.e., not optimized) there is no distinction between restricted or regular fixed point. In this case,
Lemma 1 guarantees convergence to a fixed point and Theorem 2 optimality (for the player that is
not frozen).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Corollary 1. Assume that the state and action spaces are finite and that the game is deterministic,
terminates in finite time, the updates of Q2 and Q1 use αk “ 1, and Assumption 1 holds. Then P2’s
policy π:

2 (14) is optimal against P1’s policy πk
1 , with the rewards in (15), which means that

J̄2ps0q “ sgn2ps0qmax
aPA

Qk2
2 ps0q “ sgn2ps0qVπk

1 ,π
:
2
ps0q “ max

π2PΠ2

sgn2ps0qVπk
1 ,π2

ps0q. (41)

and P1’s policy π:
1 (16) is optimal against P2’s policy πk

2 with the rewards in (17), which means that

J̃1ps0q “ sgn1ps0qmax
aPA

Qk1
1 ps0q “ sgn1ps0qVπ:

1,π
k
2

ps0q “ max
π1PΠ1

sgn1ps0qVπ1,πk
2

ps0q. (42)

l

We are now ready to prove Theorem 3:

Proof of Theorem 3. Since sgn2ps0q “ ´ sgn1ps0q, we conclude from (41) that

sgn2ps0qmax
aPA

Qk2
2 ps0q “ max

π2PΠ2

sgn2ps0qVπk
1 ,π2

ps0q ě max
π2PΠ2

min
π1PΠ1

sgn2ps0qVπ1,π2
ps0q (43a)

sgn1ps0qmax
aPA

Qk2
2 ps0q “ ´ sgn2ps0qmax

aPA
Qk2

2 ps0q “ ´ max
π2PΠ2

sgn2ps0qVπk
1 ,π2

ps0q

“ min
π2PΠ2

sgn1ps0qVπk
1 ,π2

ps0q ď max
π1PΠ1

min
π2PΠ2

sgn1ps0qVπ1,π2
ps0q. (43b)

Similarly, since sgn2ps0q “ ´ sgn1ps0q, we conclude from (42) that

sgn1ps0qmax
aPA

Qk1
1 ps0q “ max

π1PΠ1

sgn1ps0qVπ1,πk
2

ps0q ě max
π1PΠ1

min
π2PΠ2

sgn1ps0qVπ1,π2
ps0q (44a)

sgn2ps0qmax
aPA

Qk1
1 ps0q “ ´ sgn1ps0qmax

aPA
Qk1

1 ps0q “ ´ max
π1PΠ1

sgn1ps0qVπ1,πk
2

ps0q

“ min
π1PΠ1

sgn2ps0qVπ1,πk
2

ps0q ď max
π2PΠ2

min
π1PΠ1

sgn2ps0qVπ1,π2
ps0q. (44b)

The bounds in (18) follow from combining (43) with (44).

Upon termination, we have that

max
aPA

Qk2
2 ps0q “ max

aPA
Qk1

1 ps0q

and, since sgn2ps0q “ ´ sgn1ps0q, we conclude from (41) and (42) that

max
π2PΠ2

sgn2ps0qVπk
1 ,π2

ps0q “ sgn2ps0qmax
aPA

Qk2
2 ps0q

“ ´ sgn1ps0qmax
aPA

Qk1
1 ps0q “ ´ max

π1PΠ1

sgn1ps0qVπ1,πk
2

ps0q “ min
π1PΠ1

sgn2ps0qVπ1,πk
2

ps0q

Using the definition of max (on left-hand side) and of min (on right-hand side), we obtain

sgn2ps0qVπk
1 ,π

k
2

ps0q ď max
π2PΠ2

sgn2ps0qVπk
1 ,π2

ps0q

“ sgn2ps0qmax
aPA

Qk2
2 ps0q “ ´ sgn1ps0qmax

aPA
Qk1

1 ps0q

“ min
π1PΠ1

sgn2ps0qVπ1,πk
2

ps0q ď sgn2ps0qVπk
1 ,π

k
2

ps0q.

Since the left- and right-most terms in this chain of inequalities are equal, all terms must be equal,
from which we conclude that the pair pπk

1 , π
k
2 q satisfies the saddle-point conditions (6).

Having established that the algorithm can only terminate at a saddle point, it remains to prove it
always terminates in finite time. By contradiction, assume that the algorithm does not terminate.
Since the state and action sets are finite, the number of pairs of deterministic policies in Π1 ˆ Π2

policies is also finite, which means that there must then exist at least one pair of policies pπ˚
1 , π

˚
2 q for

which the pairs pπk
1 , π

k
2 q defined in lines 7 and 15 turns out to be equal to pπ˚

1 , π
˚
2 q infinitely many

times.

Suppose now that we define the following set of pairs of policies

Π˚ – Π˚
1 Y Π˚

2 , Π˚
1 –

␣

pπ˚
1 , π2q : π2 P Π2u, Π˚

2 – tpπ1, π
˚
2 q : π1 P Π1

(

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Verifying in line 12 that Qk2
2 p¨, ¨q has converged, requires the set of samples in line 9 to include every

pair pst, atq in SΠ˚
1

ˆA, whereas verifying in line 20 that Qk1
1 p¨, ¨q has converged, requires the set of

samples in line 17 to include every pair pst, atq in SΠ˚
2

ˆ A. This means that each of the updates of
Qk in lines 24–26 will include, at least, every pair pst, atq in SΠ˚ ˆ A infinitely many times. This
enable us to then apply Lemma 1 to conclude that, Qk must converge in a finite number of iterations
to a function Q˚ : S ˆ A Ñ R for which (8) holds @ps, aq P Z8 Ą SΠ˚ ˆ A.

We have just established that the function Q˚ : S ˆ A Ñ R satisfies the assumptions of Theorem 2,
from which we conclude that pπ˚

1 , π
˚
2 q must be a saddle point policy that was reached by pπk

1 , π
k
2 q

at some finite iteration k. This establishes a contradiction, because as soon as pπk
1 , π

k
2 q reaches a

saddle-point the algorithm will terminate.

A.4 SPEEDING UP CONVERGENCE

As noted before, the samples pst, at, st`1, rt`1q generated in lines 9 and 17 to verify the saddle-point
condition suffice to guarantee convergence to a restricted fixed point. However, executing the code in
lines 7–12 and 15–20 until convergence of Qk

1 and Qk
2 can be costly for games with large state-spaces.

This motivates using an additional mechanism to approximately solve the optimizations in (14), (16);
which does not need to be “sufficiently accurate” to certify that pπk

1 , π
k
2 q is a saddle-point but it is

computationally much cheaper. Such a mechanism can be used in line 4 without compromising the
guarantees provided by Theorem 3.

Procedure 2 provides such a mechanism by essentially replicating in line 4 what is done in lines 7–12
and 15–20 with additional tables Q̂1, Q̂2 that function within the scope of line 4:

1. Collect samples using Q̂1 and Q̂2 as in lines 7–12 and 15–20, but repeat the loops only over
a finite number of iterations L, rather than waiting until convergence.

2. Only initialize Q̂1 and Q̂2 at the start of Algorithm 1 instead of re-initializing them before
executing each check as in lines 7–12 and 15–20.

Procedure 2 Optional procedure for line 4 of Algorithm 1, assuming an initialization Q̂0
i ps, aq “ 0,

@s P S, a P A, i P t1, 2u at the start of Algorithm 1.

1: extract P1’s policy πk
1 from Qk using (13)

2: extract P2’s policy πk
2 from Qk using (13)

3: for L iterations do
4: generate sample(s) pst, at, st`1, rt`1q from (3), restricting at “ πk

1 pstq when st P S1

5: use sample(s) to update Q̂k
2 using (12)

6: generate sample(s) pst, at, st`1, rt`1q from (3), restricting at “ πk
2 pstq when st P S2

7: use sample(s) to update Q̂k
1 using (12)

18

	Introduction
	Zero-sum turn Markov games
	Policies and value function for turn games
	Saddle-points and security policies
	Fixed-point sufficient condition for saddle-point

	Restricted fixed point
	Saddle-point exploration (SPE) algorithm
	Deterministic finite games
	Convergence

	Numerical Results
	Baseline
	Algorithm 1 implementation details
	Results

	Conclusions and outlook
	Reproducibility Statement
	Technical Appendix
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Theorem 3
	Speeding up convergence

