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Abstract
Tree-Sliced methods have recently emerged as an
alternative to the traditional Sliced Wasserstein
(SW) distance, replacing one-dimensional lines
with tree-based metric spaces and incorporating
a splitting mechanism for projecting measures.
This approach enhances the ability to capture the
topological structures of integration domains in
Sliced Optimal Transport while maintaining low
computational costs. Building on this foundation,
we propose a novel nonlinear projectional frame-
work for the Tree-Sliced Wasserstein (TSW) dis-
tance, substituting the linear projections in earlier
versions with general projections, while ensur-
ing the injectivity of the associated Radon Trans-
form and preserving the well-definedness of the
resulting metric. By designing appropriate pro-
jections, we construct efficient metrics for mea-
sures on both Euclidean spaces and spheres. Fi-
nally, we validate our proposed metric through
extensive numerical experiments for Euclidean
and spherical datasets. Applications include gra-
dient flows, self-supervised learning, and gener-
ative models, where our methods demonstrate
significant improvements over recent SW and
TSW variants. The code is publicly available
at https://github.com/thanhqt2002/
NonlinearTSW.

1. Introduction
Optimal Transport (OT) (Villani, 2008; Peyré et al., 2019)
and Sliced-Wasserstein (SW) (Rabin et al., 2011; Bonneel
et al., 2015) provide geometrically meaningful metrics in
the space of probability measures, making them widely
applicable across various fields. These include machine
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learning (Nguyen et al., 2021b; Bunne et al., 2022; Hua
et al., 2023; Fan et al., 2022; Le et al., 2024a;b; Kessler
et al., 2025; Chapel et al., 2025; Chapel & Tavenard, 2025),
multimodal data analysis (Park et al., 2024; Luong et al.,
2024), computer vision and graphics (Lavenant et al., 2018;
Nguyen et al., 2021a; Saleh et al., 2022; Rabin et al., 2011;
Solomon et al., 2015; Vu et al., 2025), statistics (Mena
& Niles-Weed, 2019; Weed & Berthet, 2019; Wang et al.,
2022; Pham et al., 2024; Liu et al., 2022; Nguyen et al.,
2022; Nietert et al., 2022). By utilizing the closed-form
solution of one-dimensional OT problems, SW substantially
reduces the computational complexity typically associated
with OT (Rabin et al., 2011; Bonneel et al., 2015; Peyré
et al., 2019).

Related work. Several enhancements have been proposed
to improve different aspects of the SW framework, including
optimizing the sampling process (Nguyen et al., 2020; Nad-
jahi et al., 2021; Nguyen et al., 2024a), selecting optimal
projection directions (Deshpande et al., 2019), and refining
the projection mechanism (Kolouri et al., 2019; Chen et al.,
2022; Bonet et al., 2023).

The Tree-Sliced framework (Tran et al., 2025c;a;b) has re-
cently emerged as an alternative to the traditional SW frame-
work by replacing one-dimensional projection lines with
more structured domains, known as tree systems. These sys-
tems function similarly to lines but incorporate a more so-
phisticated and interconnected structure. Instead of project-
ing measures onto individual lines, this method distributes
them across multiple linked lines, forming a hierarchical
structure. This approach enhances the representation of
topological information while preserving the computational
efficiency by leveraging the closed-form solution of OT
problems in tree-metric spaces (Indyk & Thaper, 2003; Le
et al., 2019). However, Tree-Sliced frameworks are still re-
stricted to linear projections, as the integration domains used
in (Tran et al., 2025c;b) remain confined to hyperplanes. In
contrast, several advanced projection techniques have been
investigated for SW, enhancing its flexibility and effective-
ness (Kuchment, 2006; Kolouri et al., 2019; Chen et al.,
2022; Bonet et al., 2023). Building on these advancements,
this paper introduces a novel framework for the tree-sliced
method that integrates nonlinear projections, further broad-
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ening its scope and improving its performance.

Contribution. Our contributions are three-fold:

• We introduce the Generalized Radon Transform and
Spatial Radon Transform on Systems of Lines, ex-
tending previous variants that were limited to linear
projections. Along with these extensions, we provide
theoretical results and proofs demonstrating their in-
jectivity. Furthermore, we generalize the conventional
Euclidean framework by proposing a spherical tree-
sliced version tailored for nonlinear Radon transforms.

• We introduce Tree-Sliced distances based on the pro-
posed Radon Transform, namely the Circular Tree-
Sliced Wasserstein distance and the Spatial Tree-Sliced
Wasserstein distance, along with an extended version
for the spherical setting, called the Spatial Spherical
Tree-Sliced Wasserstein distance. Furthermore, we ex-
amine different choices of functions that define the non-
linear projections, analyze their computational com-
plexity and explain why certain choices lead to more
efficient metrics.

• We assess the proposed metrics across various tasks,
including gradient flows and generative models, on
both Euclidean and spherical data, highlighting their
practical effectiveness and computational efficiency.

Organization. The structure of the paper is as follows:
Section 2 provides an overview of different variants of the
Wasserstein distance, while Section 3 explores various forms
of the Radon Transform with Nonlinear Projection used to
derive corresponding Wasserstein distances. Section 4 in-
troduces novel Radon Transforms on Systems of Lines with
Nonlinear Projection and examines their injectivity. In Sec-
tion 5, two new Tree-Sliced Wasserstein distances associated
with the proposed transform are introduced, along with an
analysis of their fundamental components. Finally, Section
6 assesses the performance of the proposed methods on both
Euclidean and Spherical data. Additional materials related
to the spherical settings of the proposed method, as well
as background, theoretical foundations, and supplementary
content, are provided in the Appendix.

2. Preliminaries
This section reviews the Wasserstein distance between mea-
sures and its various sliced variants. For simplicity, the focus
is on measures with a finite first moment, while measures
with a finite pth-moment are treated analogously.

Wasserstein distance. Given a measurable space Ω en-
dowed with a metric d. Let µ, ν ∈ P(Ω), and P(µ, ν) be
the set of distributions π coupling between µ and ν. The

Wasserstein distance (W) (Villani, 2008) between µ, ν is:

W(µ, ν) = inf
π∈P(µ,ν)

∫
Ω×Ω

d(x, y) dπ(x, y). (1)

Sliced Wasserstein distance. The Radon Transform (Hel-
gason, 2011) R : L1(Rd) ! L1(R× Sd−1) is:

Rf(t, θ) =
∫
Rd

f(y) · δ(t− ⟨y, θ⟩) dy, (2)

where δ is the Dirac delta function.

The Sliced Wasserstein distance (SW) (Rabin et al., 2011;
Bonneel et al., 2015) between µ, ν ∈ P(Rd) is:

SW(µ, ν) =

∫
Sd−1

W(Rfµ(·, θ),Rfν(·, θ)) dσ(θ), (3)

where σ = U(Sd−1) is the uniform distribution
on the sphere, and fµ, fν are the probability density
functions of µ, ν, respectively. The one-dimensional
Wasserstein distance in Eq. (3) has the closed-form
W(θ♯µ, θ♯ν) =

∫ 1

0
|F−1

Rfµ(·,θ)(z)− F−1
Rfν(·,θ)(z)|dz, where

FRfµ(·,θ), FRfν(·,θ) are the cumulative distribution func-
tions of Rfµ(·, θ), Rfν(·, θ), respectively. The Monte
Carlo method is employed to approximate the intractable
integral in Eq. (3):

ŜW(µ, ν) =
1

L

L∑
i=1

W(Rfµ(·, θi),Rfν(·, θi)), (4)

where θ1, . . . , θL are drawn independently from σ.

Tree-Sliced Wasserstein distance on Systems of Lines.
Rather than projecting functions onto lines, i.e., directions
in Sd−1, as in the original Radon Transform, (Tran et al.,
2025c;b) introduces an alternative approach that replaces
lines with different metric measure spaces, known as tree
systems. These tree systems are formed by connecting
multiple copies of real lines, creating a structured space.
Functions are then partitioned using a splitting mechanism
and projected onto these spaces, effectively capturing the
positional information of both measure supports and slices.
Further details on this Tree-Sliced framework can be found
in Appendix A and Appendix C.1.

3. Radon Transform with Nonlinear Projection
In this section, we explore nonlinear projections utilized in
various existing Sliced Wasserstein variants, and compare
them with the traditional linear projection in the original
Radon Transform that leads to the Sliced Wasserstein dis-
tance. Based on these observations, we provide an overview
of how these nonlinear projections can be incorporated into
the framework of the Radon Transform on Systems of Lines.
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3.1. Generalized and Spatial Radon Transforms

Let Ψ be a set of feasible parameter, the Generalized Radon
Transform G (GRT) (Kolouri et al., 2019) is defined by:

G : L1(Rd) −! L1(R×Ψ),

s.t. Gf(t, ψ) =
∫
Rd

f(y) · δ(t− g(y, ψ)) dy. (5)

Here, g : Rd × Ω ! R is called the defining function of
G. The GRT of f ∈ L1(Rd) is the integration of f over
hypersurfaces {y ∈ Rd : t = g(y, ψ)} for t ∈ R, ψ ∈ Ψ.
One common choice for the defining function occurs when
Ψ = R⩾0 × Sd−1, and g is defined as the circular function:

g(y, r, θ) = ∥y − rθ∥2 , ∀y ∈ Rd, (r, θ) ∈ Ψ. (6)

This choice results in the Circular Radon Transform (CRT)
(Kuchment, 2006). Another possible defining function,
based on homogeneous polynomials of odd degree, is pre-
sented in (Rouvière, 2015). However, this represents a
special case of the next Radon Transform we discuss. Given
a positive integer dθ, the Spatial Radon Transform H (SRT)
(Chen et al., 2022) is defined by:

H : L1(Rd) −! L1(R× Sdθ−1),

s.t. Hf(t, θ) =
∫
Rd

f(y) · δ(t− ⟨h(y), θ⟩) dy, (7)

where h : Rd ! Rdθ is an injective continuous map. The
SRT of f ∈ L1(Rd) is defined as the integration of f over
the hypersurfaces given by {y ∈ Rd : t = ⟨h(y), θ⟩} for
t ∈ R, θ ∈ Sdθ−1.
Remark 3.1. When Ωθ = Sd−1, g(y, θ) = ⟨y, θ⟩ in Eq. (5),
or d = dθ, h(y) = y in Eq. (7), it is clear that the GRT and
SRT recover the original Radon Transform in Eq. (2).

By definition, the SRT is a special case of the GRT, but
these two transforms can be interpreted from two distinct
perspectives. For a general function g, the GRT represents a
projection along hypersurfaces in Rd, defined by the level
sets of g. In contrast, for a general function h, the SRT
involves mapping functions from Rd to a new space Rdθ ,
where the Radon Transform is then applied.

Well-definedness and injectivity. Certain conditions on
g in GRT and h in SRT are necessary to ensure the well-
definedness of GRT and SRT. Additionally, since injectivity
is typically required for Radon Transform variants, spe-
cific assumptions on g and h are made to achieve this prop-
erty. However, since these properties, along with the in-
verse problem related to Radon Transform variants, remain
long-standing research questions (Beylkin, 1984; Ehren-
preis, 2003; Uhlmann, 2003; Homan & Zhou, 2017) and fall
beyond the scope of this paper, we restrict our discussion to
mentioned examples of g and h found in the literature.

3.2. Incorporating Nonlinear Projectional Framework
into Systems of Lines Setting

Here, we provide a brief overview of the Radon Transform
on Systems of Lines (RTSL) to highlight the potential of
integrating the nonlinear approach discussed in Section 3.1.
The formal construction of RTSL with notations is detailed
in Appendix A and in (Tran et al., 2025c;b). Roughly speak-
ing, unlike the traditional Radon Transform in Eq. (2), which
projects onto one line at a time, RTSL extends this concept
by simultaneously projecting onto a set of interconnected
multiple lines, denoted as L, using a splitting mechanism:

Rα : L1(Rd) !
∏

L∈Ld
k

L1(L) where f 7! (Rα
Lf)L∈Ld

k
,

s.t. Rα
Lf(xi + t · θi)

=

∫
Rd

f(y) · α(y,L)i · δ (t− ⟨y − xi, θi⟩) dy. (8)

Here, α is a continuous map from Rd × Ldk to ∆k−1 pre-
senting the splitting mechanism, and (xi, θi) indicates ith-
line in L. Eq. (8) can be interpreted as integrating the
ith portion of f , given by f · αi, over the hyperplanes
{y ∈ Rd : ⟨y, θi⟩ = t+ ⟨xi, θi⟩}.
Remark 3.2. It is important to note that the partitioning
process depends on both y ∈ Rd and the set of lines L.
This splitting mechanism is absent in the traditional Radon
Transform and its variants, as seen in Eqs. (2), (5), (7). This
naturally leads to the question:

Can a nonlinear projectional framework, similar to GRT
and SRT, be developed for RTSL?

Notably, the presence of the map α introduces a trade-off
between the effectiveness of the induced Wasserstein metric
and the associated theoretical guarantees. Empirical find-
ings indicate that, given the same number of projections
(and consequently the same computational cost), the dis-
tances derived from RTSL surpass those obtained from the
original Radon Transform. However, incorporating α shifts
the transformation from operating on straight lines to a more
intricate space. This transition may compromise fundamen-
tal properties of the transform, such as injectivity, which
might no longer be assured in this new framework.

In the next sections, we propose an approach for incorporat-
ing the nonlinear projectional framework into the systems
of lines setting, thereby generalizing the current RTSL and
inducing new variants of the tree-sliced distance.

4. Radon Transform on Systems of Lines with
Nonlinear Projection

In this section, we extend the current Radon Transform on
Systems of Lines (Tran et al., 2025c;b) by incorporating
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nonlinear projections. We then analyze key properties of
the resulting transforms, including injectivity.

4.1. Nonlinear Radon Transform on Systems of Lines

Given a positive integer k representing the number of lines
in a tree system, and a continuous splitting map function
α ∈ C(Rd × Ldk,∆k−1) defining the splitting mechanism.
Let L be a system of k lines in Ldk and a scalar r ⩾ 0. For a
function f ∈ L1(Rd), define the function CRα

L,rf ∈ L1(L)
as follows:

CRα
L,rf(xi + t · θi)

=

∫
Rd

f(y) · α(y,L)i · δ (t− ∥y − xi − rθi∥2) dy. (9)

The Circular Radon Transform on Systems of Lines
(CRTSL) is defined as the operator:

CRα : L1(Rd) −!
∏

L∈Ld
k,r⩾0

L1(L)

f 7−!
(
CRα

L,rf
)
L∈Ld

k,r⩾0
. (10)

This is analogous to the CRT described in Section 3.1. In
the case of SRT, consider a positive integer dθ, an injective
continuous map h : Rd ! Rdθ , and a splitting map α ∈
C(Rdθ × Ldθk ,∆k−1). Let L be a system of lines in Ldθk .
For a function f ∈ L1(Rd), define the function Hα

L as:

Hα
Lf(xi + t · θi) (11)

=

∫
Rd

f(y) · α(h(y),L)i · δ (t− ⟨h(y)− xi, θi⟩) dy.

The Spatial Radon Transform on Systems of Lines (SRTSL)
is defined as the operator:

Hα : L1(Rd) −!
∏

L∈Ldθ
k

L1(L)

f 7−! (Hα
Lf)L∈Ldθ

k

. (12)

Remark 4.1. It is important to note that when the system
of lines consists of a single line, i.e. k = 1, CRα and Hα

recover the GRT and the SRT, respectively.

Properties of CRα and Hα are discussed in the next part.

4.2. Well-definedness and Injectivity

Well-definedness. Given the setting of CRα and Hα as
defined in Eqs. (9), (11), we have CRα

L,rf ∈ L1(L) and
Hα

Lf ∈ L1(L) for f ∈ L1(Rd). Furthermore, we have the
bounds:

∥CRα
L,rf∥L ⩽ ∥f∥1 and ∥Hα

Lf∥L ⩽ ∥f∥1. (13)

The proofs for these properties are provided in Appen-
dices B.1 and B.2. Additionally, these proofs imply that if
f ∈ P(Rd), then CRα

L,rf,Hα
Lf ∈ P(L).

Injectivity. For injectivity of CRα and Hα, we refer to
the concept of E(d)-invariance in splitting maps as intro-
duced in (Tran et al., 2025b). The group E(d) represents
the Euclidean group, which consists of all transformations
of Euclidean space Rd that preserve the Euclidean distance
between any two points. Through the canonical action of
E(d) on Rd, an induced action of E(d) on Ldk follows. Ap-
pendix A provides a formal description of the underlying
group actions associated with these equivariant construc-
tions. A splitting map α ∈ C(Rd × Ldk,∆k−1) is E(d)-
invariant if:

α(gy, gL) = α(y,L), (14)

for all (y,L) ∈ Rd×Ldk and g ∈ E(d). We have two results
about injectivity of operator CRα and Hα.

Theorem 4.2. For an E(d)−invariant splitting map α ∈
C(Rd × Ldk,∆k−1), CRα is injective.

Theorem 4.3. For an E(dθ)−invariant splitting map α ∈
C(Rdθ × Ldθk ,∆k−1), Hα is injective.

The proofs of Theorem 4.2 and Theorem 4.3 are provided
in Appendices B.3 and B.4. Intuitively, the reason why
E(d)−invariance in splitting maps ensures the injectivity of
CRα stems from the fact that the circular defining function
in Eq. (6) is primarily based on the Euclidean norm ∥ · ∥2,
which itself is an E(d)− function. Similarly, the reason why
E(dθ)-invariance in splitting maps guarantees the injectivity
of Hα is that this property is essential for achieving injec-
tivity in the standard Radon Transform on Systems of Lines
in Rdθ , as discussed in (Tran et al., 2025b).

4.3. Spatial Spherical Radon Transform on Spherical
Trees

In (Tran et al., 2025a), the tree-sliced framework is extended
to functions defined on hyperspheres. The techniques pre-
sented in Sections 4.1 and 4.2 can be adapted to the spher-
ical setting. We provide a brief derivation here, while a
more detailed background and notation are given in Ap-
pendix C.1. For f ∈ L1(Sd), we recall the Spherical Radon
Transform on Spherical Trees (SRTST), which transforms
f to Rα

T f ∈ L1(T ), where:

Rα
T f(t, r

x
yi)

=

∫
Sd
f(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy, (15)

Since the literature on defining functions for GRT on the
sphere is limited, we focus only on the spatial version of
SRTST. Given a positive integer dθ and an injective con-
tinuous map h : Sd ! Sdθ , the Spatial Spherical Radon
Transform on Spherical Trees transforms f ∈ L1(Sd) to
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Hα
T f ∈ L1(T ), where:

Hα
T f(t, r

x
yi) (16)

=

∫
Sd
f(y) · α(h(y), T )i · δ(t− arccos ⟨x, h(y)⟩) dy.

As stated in (Tran et al., 2025a), O(d + 1)-invariance is
a necessary property of the splitting map α to ensure the
injectivity of Rα. A similar result holds in our setting, as
described below.
Theorem 4.4. For an O(dθ + 1)-invariant splitting map
α ∈ C(Sdθ × Tdθk ,∆k−1), Hα is injective.

The detailed derivation of the Spatial Spherical Radon Trans-
form on Spherical Trees and the proof of Theorem 4.4 are
provided in Appendices C.2 and C.3.

5. Tree-Sliced Wasserstein Distance with
Nonlinear Projection

In this section, we propose new distance between measures
derived from the variants of the Radon Transform introduced
in Section 4. We also examine different choices of functions
that define the nonlinear projections and explain why certain
choices lead to more efficient metrics.

5.1. Definition of Tree-Sliced Distances

For two probability measures µ and ν with density function
fµ and fν , and a fixed r ⩾ 0, the Circular Tree-Sliced
Wasserstein Distance (CircularTSW) between µ and ν is
defined as the average Wasserstein distance on the tree-
metric space L between the CRTSL of fµ and fν . Following
(Tran et al., 2025c;b), this averaging is taken over the space
of trees Tdk ⊂ Ldk, according to a distribution σ on Tdk which
arises from the tree sampling process.
Definition 5.1. The Circular Tree-Sliced Wasserstein Dis-
tance between µ and ν in P(Rd) is defined by:

CircularTSW(µ, ν)

:=

∫
Td
k

W(CRα
L,rfµ, CR

α
L,rfν) dσ(L). (17)

Similarly, given a choice of the continuous injective map
h : Rd ! Rdθ in SRTSL, we have the definition of the
Spatial Tree-Sliced Wasserstein Distance (SpatialTSW) be-
tween µ and ν.
Definition 5.2. The Spatial Tree-Sliced Wasserstein Dis-
tance between µ and ν in P(Rd) is defined by:

SpatialTSW(µ, ν) :=

∫
Tdθ
k

W(Hα
Lfµ,Hα

Lfν) dσ(L). (18)

Both CircularTSW and SpatialTSW distances are, indeed,
metrics on the space P(Rd) of measures on Rd.

Theorem 5.3. CircularTSW and SpatialTSW are metrics
on the space P(Rd).

The proof of Theorem 5.3 is presented in Appendix B.5. The
algorithms for CircularTSW and SpatialTSW are presented
in Appendix D.1 (Alg. 1 and 2 respectively).

5.2. Components in CircularTSW and SpatialTSW

Both CircularTSW and SpatialTSW distances depend on
the choice of splitting maps α. Additionally, CircularTSW
is influenced by the parameter r ⩾ 0, whereas SpatialTSW
is determined by the selection of the injective map h.

Splitting maps α. For both CircularTSW and SpatialTSW,
we follow the construction of the splitting map α as pro-
posed in (Tran et al., 2025b), defined as:

α(x,L)l = softmax
(
{d(x,L)i}ki=1

)
, (19)

where d(x,L)i represents the distance between x and ith

line of L. This choice of α ensures the E(d)-invariance
while also incorporating positional information between
a point and the tree system. Consequently, it results in
meaningful and varied mass distributions that adapt to each
specific system. Moreover, the use of the softmax function
guarantees that α produces a valid probability vector in the
standard simplex ∆k−1. The splitting map for CircularTSW
is further discussed in Appendix D.4.

Radius r in CircularTSW. In the formulation of the orig-
inal Circular Radon Transform, the radius r plays a crucial
role. Together with θ ∈ Sd−1, the term rθ spans the entire
space Rd. This ensures that the level sets defined by the
defining circular function in Eq. (6) can represent arbitrary
(d− 1)-dimensional spheres in Rd:

{y ∈ Rd : t = ∥y − rθ∥2} for t ⩾ 0. (20)

However, in the framework of Tree-Sliced methods, since
the sources within tree systems already encompass the en-
tire space Rd, considering all values of r ⩾ 0 becomes
redundant. In other words, for a fixed r ⩾ 0, the level
sets arising in the Circular Radon Transform on Systems of
Lines from Eq. (9) can still effectively represent arbitrary
(d− 1)-dimensional spheres in Rd:

{y ∈ Rd : t = ∥y − xi − rθi∥2} for t ⩾ 0. (21)

This is why, in the definition of CircularTSW, we fix
a specific r ⩾ 0. Furthermore, we want to examine
CircularTSWr=0, a special case of CircularTSW when
r = 0. In this scenario, by selecting the concurrent tree
space as proposed in Tran et al. (2025b), the practical im-
plementation of CircularTSW becomes significantly more
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Figure 1: An illustration depicting CircularTSWr=0. Given
a support, the projection coordinates are identical when
projected onto k lines.

efficient, reducing computational complexity. In summary,
transforming a measure µ ∈ P(Rd) involves projecting its
support onto k lines in the tree system. When r = 0, all sup-
port points of µ share the same coordinates when projected
onto these k lines. As a result, projecting and sorting cost is
reduced. Figure 1 illustrates this phenomenon. Furthermore,
we emphasize that CircularTSWr=0 is specifically designed
for tree settings, where splitting maps play a crucial role.
Since the coordinates are identical across these lines, the
tree structure and the distance-based splitting map are nec-
essary to distinguish between the k lines. Empirical results
in Appendix D.5 show that CircularTSWr=0 performs well
in a tree setting but poortly in original sliced setting.

The choice of the map h in SpatialTSW. As discussed
in Section 4.1, the map h in SpatialTSW must be both in-
jective and continuous. One approach to selecting this map
is based on odd degree homogeneous polynomials. How-
ever, following the constructions in (Kolouri et al., 2019;
Rouvière, 2015) can lead to an excessively large new di-
mension dθ =

(
m+d−1
d−1

)
. To address this, we propose an

alternative approach: Consider h : Rd ! Rd defined by:

h(x1, . . . , xd) = (f1(x1), . . . , fd(xd)), (22)

where {fi : R ! R}di=1 are injective and continuous func-
tions. A simple choice for fi is an odd-degree polynomial
that remains injective, such as fi(x) = xi+x

3
i . Another ap-

proach, inspired by (Chen et al., 2022), involves concatenat-
ing the input with the output of a neural network by concate-
nating input with an arbitrary neural network ϕ(·). Specif-
ically, we define h : Rd ! Rd+d′ as h(x) = (x, ϕ(x)),
where ϕ : Rd ! Rd′ is a neural network. This choice in-
troduces learnable parameters for h, offering a trade-off
between potentially improving performance and increasing
computational cost.

5.3. Computational Complexity

Consider two discrete measures µ, ν ∈ P(Rd) with m,n
support points, respectively. The computational complexity
of the original Sliced Wasserstein distance is O(Ln log n+
Ldn), where L represents the number of samples used in
the Monte Carlo approximation (Peyré et al., 2019; Nguyen
et al., 2024a). In comparison, the computational complex-
ity of the Tree-Sliced Wasserstein (TSW) distances, such
as TSW-SL in (Tran et al., 2025c) or Db-TSW in (Tran
et al., 2025b), is O(Lkn log n + Lkdn), where L denotes
the number of tree samples used in the Monte Carlo ap-
proximation, and k is the number of lines per tree. This
computational difference highlights why a fair compari-
son between the sliced method and the tree-sliced method
requires ensuring that the total number of directions re-
mains the same. For SpatialTSW, its computational com-
plexity is O(Lkn log n + Lkdθn), with an additional ini-
tial cost for computing the function h. This complex-
ity matches TSW-SL and Db-TSW but operates in the
transformed space Rdθ . For CircularTSW with a general
r ⩾ 0, the complexity remains O(Lkn log n + Lkdθn),
yet it achieves faster empirical runtime than Db-TSW by
computing vector norms instead of vector products. No-
tably, for r = 0, CircularTSWr=0 improves complexity
to O(Ln log n + Lkdθn). This reduction arises because
the O(n log n) sorting step per line is required for only a
single line, rather than all k lines in a tree, as illustrated
in Figure 1. The empirical efficiency of CircularTSW and
CircularTSWr=0 is demonstrated in Figure 2, where we use
L = 10000 for SW and L = 2500, k = 4 for Tree-Sliced
methods, following the practical setting used in the Diffu-
sion Model experiment. CircularTSWr=0 scales efficiently
with the number of supports n and is the only Tree-Sliced
method that closely matches the speed of vanilla SW.

5.4. Spatial Spherical Tree-Sliced Wasserstein Distance

From the Spatial Spherical Radon Transform on Spherical
Trees, we introduce a spherical variant of the Spatial Tree-
Sliced Wasserstein distance, referred to as SpatialSTSW
distance. A detailed derivation, along with the selection of
the corresponding injective map and theoretical proofs for
the SpatialSTSW distance, is provided in Appendix C.4.

6. Experimental Results
In this section, we thoroughly assess the validity of our
proposed metric through extensive numerical experiments
on both Euclidean and spherical datasets.

6.1. Euclidean Datasets

Denoising Diffusion Generative Adversarial Network.
This experiment investigates training denoising diffusion
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Figure 2: Runtime comparison of our proposed distances
and baseline methods. We randomize the measures and
projection directions and benchmark runtime over 10 runs.
CircularTSWr=0 is comparable to SW and significantly out-
performs existing Tree-Sliced distances in terms of speed.

models for unconditional image synthesis. Following the
approach of Nguyen et al. (2024b), we incorporate a Wasser-
stein distance into the Augmented Generalized Mini-batch
Energy (AGME) loss function of the Denoising Diffusion
Generative Adversarial Network (DDGAN) (Xiao et al.,
2021). We benchmark our proposed methods – SpatialTSW-
DD, CircularTSW, and CircularTSWr=0 – against Sliced
and Tree-Sliced Wasserstein-based DDGAN variants, as
detailed in Table 1. All models are trained for 1800 epochs
on the CIFAR10 dataset (Krizhevsky et al., 2009). For
vanilla SW and its variants, we follow the parameter set-
tings from Nguyen et al. (2024b), using L = 10000. For
Tree-Sliced methods, including our own, we adopt the con-
figuration from Tran et al. (2025b), setting L = 2500 and
k = 4. Further details on this experiment can be found in
Appendix D.6

The results in Table 1 show that SpatialTSW-DD,
CircularTSW-DD, and CircularTSWr=0-DD achieve no-
table improvements in FID compared to all baselines. They
surpass the current state-of-the-art OT-based DDGAN, Db-
TSW-DD⊥ (Tran et al., 2025b), by margins of 0.01, 0.2, and
0.05, respectively. Additionally, our methods offer faster
training times compared to existing Tree-Sliced approaches.
CircularTSW-DD and CircularTSW reduce training time
relative to Db-TSW-DD⊥ by 10% and 19%, respectively.
These enhancements in both training efficiency and model
performance underscore the practical advantages of our pro-
posed methods.

Gradient Flow. The goal of gradient flow is to minimize
the distance between a source distribution µ and a target dis-
tribution ν through gradient-based optimization. The update
rule follows ∂tµt = −∇D(µt, ν), µ0 = N (0, 1), where
µt represents the distribution at time t, and ∇D(µt, ν) is

Table 1: Fréchet Inception Distance (FID) scores and per-
epoch training times of different DDGAN variants for un-
conditional generation on CIFAR-10.

Model FID # Time/Epoch(s) #

DDGAN (Xiao et al., 2021) 3.64 188
SW-DD (Nguyen et al., 2024b) 2.90 192
DSW-DD (Nguyen et al., 2024b) 2.88 1268
EBSW-DD (Nguyen et al., 2024b) 2.87 188
RPSW-DD (Nguyen et al., 2024b) 2.82 194
IWRPSW-DD (Nguyen et al., 2024b) 2.70 194

TSW-SL-DD (Tran et al., 2025c) 2.83 249
Db-TSW-DD (Tran et al., 2025b) 2.60 256
Db-TSW-DD⊥ (Tran et al., 2025b) 2.53 262

SpatialTSW-DD (ours) 2.52 262
CircularTSW-DD (ours) 2.33 234
CircularTSWr=0-DD (ours) 2.48 211

the gradient of the distance function D with respect to µt.
We evaluate SpatialTSW, CircularTSW, CircularTSWr=0,
and several established Sliced-Wasserstein (SW) variants,
including vanilla SW (Bonneel et al., 2015), MaxSW (Desh-
pande et al., 2019), LCVSW (Nguyen & Ho, 2023), SWGG
(Mahey et al., 2023), alongside the recently introduced Tree-
Sliced distances, such as TSW-SL (Tran et al., 2025c), Db-
TSW⊥, and Db-TSW (Tran et al., 2025b). We conduct
experiments on the 25 Gaussians dataset and use the Wasser-
stein distance to evaluate the average distance between the
source and target distributions. We report results over 5 runs
at iterations 500, 1000, 1500, 2000, and 2500.

The results presented in Table 2 demonstrate that Spa-
tialTSW achieves the best performance across all itera-
tions, reaching a final W2 distance of 1.17e−7 at the last
step. This represents a significant improvement over vanilla
SW (3.59e−2) and LCVSW (9.28e−3). Furthermore, com-
pared to the best existing Tree-Sliced distances, SpatialTSW
achieves better results than Db-TSW (1.3e−7), exhibiting
faster convergence, and maintaining similar computational
efficiency. In this experiment, SpatialTSW outperforms
CircularTSW, aligning with the findings from (Kolouri
et al., 2019), where polynomial-based defining functions
yield superior results over circular defining functions in
gradient flow tasks. Nevertheless, both CircularTSW and
CircularTSWr=0 still achieve better results than vanilla SW
while offering significant computational speedups. Specifi-
cally, CircularTSW and CircularTSWr=0 are approximately
5% and 16% faster than vanilla SW, respectively.

6.2. Spherical Datasets

Gradient Flow on The Sphere. We now evaluate the abil-
ity to learn distributions by iteratively minimizing d(ν, µ),
where d is a distance metric such as SSW (Bonet et al.,
2022), S3W variants (Tran et al., 2024a) and STSW (Tran
et al., 2025a). In line with previous works (Tran et al., 2024a;
2025a), we consider a mixture of 12 von Mises-Fisher distri-
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Table 2: Average Wasserstein distance between source and
target distributions of 5 runs on 25 Gaussians datasets. All
methods use 100 projecting directions.

Methods Iteration Time/Iter(s)
500 1000 1500 2000 2500

SW 4.21e-1 1.54e-1 7.72e-2 4.97e-2 3.59e-2 0.0018
MaxSW 5.23e-1 2.36e-1 1.23e-1 8.04e-2 6.76e-2 0.1020
SWGG 6.59e-1 3.62e-1 1.92e-1 9.07e-2 4.42e-2 0.0019
LCVSW 3.46e-1 6.96e-2 2.26e-2 1.31e-2 9.28e-3 0.0019

TSW-SL 3.49e-1 8.10e-2 1.06e-2 2.68e-3 3.16e-6 0.0019
Db-TSW 3.50e-1 8.12e-2 1.09e-2 1.77e-3 1.30e-7 0.0020
Db-TSW⊥ 3.52e-1 7.69e-2 2.73e-2 2.56e-3 2.03e-6 0.0021

SpatialTSW 3.20e-1 3.44e-2 2.95e-3 3.97e-4 1.17e-7 0.0021
CircularTSW 4.28e-1 1.20e-1 3.48e-2 1.41e-2 7.86e-3 0.0017
CircularTSWr=0 4.32e-1 1.22e-1 3.41e-2 1.45e-2 8.94e-3 0.0015

Table 3: Average Log of the Wasserstein distance between
source and target distributions over 5 runs on a mixture of
12 vMFs.

Methods Epoch Time/Epoch(s)
50 100 150 200 250

SSW -2.4274 -2.7893 -2.9226 -2.9882 -3.0313 0.4323
S3W -2.0204 -2.1920 -2.2615 -2.2699 -2.2734 0.0151
RI-S3W (1) -2.1107 -2.5163 -2.7295 -2.8568 -2.9447 0.0182
RI-S3W (5) -2.4399 -2.8273 -3.0093 -3.1234 -3.2145 0.0503
ARI-S3W (30) -2.6508 -3.0279 -3.2405 -3.4385 -3.6661 0.1884

STSW -2.9545 -3.5322 -3.9992 -4.3623 -4.6486 0.0134
SpatialSTSW -2.8824 -3.4626 -4.0903 -4.5368 -4.6859 0.0145

butions (vMFs) from which we have access to a sample set
{yi}Mi=1 with M = 2400. The optimization procedure uses
projected gradient descent (Bonet et al., 2022), applied on
the sphere with full-batch size. Table 3 illustrates the evo-
lution of the log 2-Wasserstein distance at epochs 50, 100,
150, 200, and 250, averaged over 5 runs. From these results,
SpatialSTSW demonstrates better performance compared to
baselines while maintaining computational efficiency close
to STSW.

Self-Supervised Learning (SSL). In earlier work, Wang
& Isola (2020) have shown that the contrastive objective can
be broken down into an alignment loss, which ensures that
representations of similar inputs are close together, and a
uniformity loss, which prevents representations from col-
lapsing by encouraging them to spread out evenly. Inspired
by Bonet et al. (2022), we replace the Gaussian kernel in
uniformity loss with our SpatialSTSW:

L =
1

n

n∑
i=1

∥∥zAi − zBi
∥∥2
2︸ ︷︷ ︸

Alignment loss

+

λ

2

(
SpatialSTSW(zA, ν) + SpatialSTSW(zB , ν)

)︸ ︷︷ ︸
Uniformity loss

,

where ν = U(Sd) is the uniform distribution on Sd,
zA, zB ∈ Rn×(d+1) are feature embeddings of two aug-
mented views of the same image and λ > 0 is regular-
ization factor that balances the loss components. Follow-

Table 4: Accuracy of the linear classifier on encoded (E)
features and projected (P) features on S9. ARI-S3W and
RI-S3W use 5 rotations.

Method Acc. E(%) " Acc. P(%) " Time (s/ep.)

Hypersphere 79.78 74.60 13.10
SimCLR 79.86 72.79 12.71

SSW 70.37 64.76 13.31
S3W 78.53 73.73 12.90
RI-S3W (5) 79.96 74.02 13.08
ARI-S3W (5) 80.06 75.10 13.01

STSW 80.51 76.79 12.81
SpatialSTSW 80.68 77.31 12.87

ing a similar approach to Bonet et al. (2022); Tran et al.
(2024a; 2025a), we use the above objective function to pre-
train a ResNet18 (He et al., 2016) encoder on CIFAR-10
(Krizhevsky et al., 2009) for 200 epochs and then train a
linear classifier to evaluate learned features. The results in
Table 4 indicate that SpatialSTSW achieves the best per-
formance compared to various baseline methods, including
Hypersphere (Wang & Isola, 2020), SimCLR (Chen et al.,
2020), SSW, S3W variants, and STSW.

Sliced-Wasserstein Auto-Encoder. In this study, we uti-
lize the Sliced-Wasserstein Auto-Encoder (SWAE) frame-
work introduced by Kolouri et al. (2018) to evaluate the per-
formance of various distances, including SW, SSW (Bonet
et al., 2022), S3W variants (Tran et al., 2024a), and STSW
(Tran et al., 2025a). The target of SWAE is to ensure that
the encoded embeddings follow a predefined prior distri-
bution q in the latent space. Let the encoder be denoted
as φ : X ! Sd and the decoder as ψ : Sd ! X . The
optimizing objective is defined as:

min
φ,ψ

Ex∼p [c(x, ψ(φ(x)))] + λ · SpatialSTSW (φ♯p, q) ,

where p represents the data distribution, λ acts as a regular-
ization weight, and c(·, ·) measures the reconstruction error.
For reconstruction loss, we use Binary Cross Entropy (BCE)
and adopt a mixture of 10 von Mises-Fisher (vMF) distri-
butions as the prior. We report results in Table 5, where we
evaluate performance using the same metrics as in Tran et al.
(2024a; 2025a). We observe that SpatialSTSW achieves
better results in terms of logW2 and NLL while maintain-
ing a competitive reconstruction loss (BCE) and efficient
computation times.

7. Conclusion
This paper introduces the Circular Tree-Sliced Wasserstein
Distance (CircularTSW) and the Spatial Tree-Sliced Wasser-
stein Distance (SpatialTSW) as novel approaches for com-
paring probability measures in Euclidean spaces. These
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Table 5: CIFAR-10 results for SWAE evaluated on latent
regularization.

Method log W2 # NLL # BCE # Time (s/ep.)

SW -3.3181 -0.0010 0.6330 6.8939
SSW -2.3425 0.0037 0.6316 16.8639

S3W -3.3181 0.0018 0.6307 8.9703
RI-S3W -3.1857 -0.0034 0.6357 10.1904
ARI-S3W -3.3850 0.0020 0.6328 9.5882

STSW -3.4098 -0.0045 0.6347 7.1623
SpatialSTSW -3.4254 -0.0049 0.6368 7.2811

approaches integrate nonlinear projection techniques from
the Sliced Wasserstein distance into the recent Tree-Sliced
Wasserstein framework, resulting in enhanced performance
and more efficient metric computations. The paper presents
a formal derivation of these metrics and provides compre-
hensive theoretical guarantees to ensure their practical ap-
plicability. Furthermore, the proposed techniques are ex-
tended to the tree-sliced framework with a spherical set-
ting. Experimental evaluations show that CircularTSW, Spa-
tialTSW, and their spherical variant consistently outperform
state-of-the-art Sliced Wasserstein and Tree-Sliced Wasser-
stein methods across various tasks, including gradient flows
and diffusion models, while maintaining comparable or
improved runtime efficiency. These results highlight Tree-
Sliced Wasserstein distance as a promising and impactful
research direction, complementing the Sliced Wasserstein
distance in practical applications.
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Rd d-dimensional Euclidean space
Sd d-dimensional hypersphere
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd−1 (d− 1)-dimensional hypersphere
θ unit vector
⊔ disjoint union
L1(X) space of Lebesgue integrable functions on X
P(X) space of probability distributions (or measures) on X
µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd−1) uniform distribution on Sd−1

♯ pushforward (measure)
C(X,Y ) space of continuous maps from X to Y
d(·, ·) metric in metric space
T(d) translation group of order d
O(d) orthogonal group of order d
E(d) Euclidean group of order d
g element of group
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
L system of lines, tree system
rxy spherical ray
T , T x

y1,...,yk
spherical tree

Ldk space of symtems of k lines in Rd

L number of tree systems
k number of lines in a system of lines or a tree system
R original Radon Transform
Rα Radon Transform on Systems of Lines, or Radon Transform on

Spherical Trees
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
δ Dirac delta function
T space of tree systems
σ distribution on space of tree systems
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Supplemental Material for
“Tree-Sliced Wasserstein Distance with Nonlinear Projection”

The supplementary is organized into four parts as follows:

• In Section A, we provide background for Tree-Sliced Wasserstein distance.

• In Section B, we derive theoretical proofs for Radon transform on systems of lines with nonlinear projection.

• In Section C, we describe Radon transform on systems of lines for spherical functions.

• In Section D, we provide further details for the experiments.

A. Background for Tree-Sliced Wasserstein Distance
In this section, we briefly outline the notion of the Radon Transform on Systems of Lines (Tran et al., 2025c) with its
distance-based extension (Tran et al., 2025b).

Building blocks of Tree-sliced Wasserstein distance on Systems of Lines. The Tree-sliced Wasserstein distance on
Systems of Lines is constructed step-by-step as follows:

1. Given a positive number d presenting the dimension.

2. A line in Rd is an element l = (x, θ) ∈ Rd × Sd−1. Here, x is called the source and θ is called the direction of the line.

3. A system of k lines in Rd is an element of (Rd × Sd−1)k. Denote a system of lines as L, and the space of all systems of
k lines by Ldk.

4. A point x in L can be parameterized as xi + t · θi, where i is the index of the line, and t is the coordinate of the point
on that ith lines.

5. A system of line L with additional tree structure is called a tree system (see (Tran et al., 2025c;b)). Each tree system is
a measure space, endowed with a tree metric.

6. A space of trees (collections of all tree systems with the same tree structure) is denoted by T with a probability
distribution σ on T, which comes from the tree sampling process.

7. For L ∈ Ldk, the space of integrable functions on L is:

L1(L) =

{
f : L ! R : ∥f∥L =

k∑
i=1

∫
R
|f(xi + t · θi)| dt <∞

}
. (23)

8. A splitting map α is a continuous map from Rd × Ldk to the (k − 1)-dimensional standard simplex ∆k−1, i.e.
α ∈ C(Rd × Ld,∆k−1). For f ∈ L1(Rd), we define:

Rα
Lf : L −! R (24)

xi + t · θi 7−!
∫
Rd

f(y) · α(y,L)i · δ (t− ⟨y − xi, θi⟩) dy. (25)

The function Rα
Lf is in L1(L).

9. The operator:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k

is called the Radon Transform on Systems of Lines.
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10. When the splitting map α is E(d)-invariant (this E(d)-invariance will be described in the next part), the Radon
Transform on Systems of Lines is injective (see (Tran et al., 2025b)).

11. The Tree-Sliced Wasserstein Distance on Systems of Lines, denoted by TSW-SL as in (Tran et al., 2025c), or its
Distance-based variant Db-TSW as in (Tran et al., 2025b), between µ, ν in P(Rd) is defined by:

Db-TSW(µ, ν) =

∫
Td
k

WdL,1(Rα
Lfµ,Rα

Lfν) dσ(L). (26)

We choose the notation Db-TSW since this variant is a generalization of TSW-SL. Db-TSW is identical with the
definition of SW when k = 1, i.e. tree systems in Ldk have only one line.

12. The Db-TSW distance is a metric on P(Rd) (see (Tran et al., 2025b)).

13. It is worth noting that, on tree systems, optimal transport problems admits closed-form expression, since it is a metric
space with tree metric (see (Le et al., 2019)). Leveraging this closed-form expression and the Monte Carlo method,
the distance in Eq. (26) can be efficiently approximated by a closed-form expression. Additionally, for the p-order
Wasserstein with p > 1, one may consider the scalable variant—Sobolev transport (Le et al., 2022), which also yields a
closed-form expression for a fast computation, and generalizes tree-Wasserstein (i.e., 1-order Wasserstein on a tree) to
a more general settings such as for p > 1, and for measures on a graph.

The group E(d) and its action. The Euclidean group E(d) is the group of all transformations of Rd that preserve the
Euclidean distance between any two points. It is the semidirect product between T(d) and O(d), i.e.

E(d) ≃ T(d)⋊O(d), (27)

where T(d) is group of all translations in Rd and O(d) is the orthogonal group of Rd. Each element g of T(d) can be
presented as a pair:

g = (Q, a) ∈ T(d) where Q ∈ O(d) and a ∈ Rd. (28)

The group E(d) acts on Rd naturally as follows: For x ∈ Rd and g = (Q, a) ∈ T(d), we have:

(g, x) 7−! gx = Q · x+ a. (29)

It naturally induces a group action on the set of all lines in Rd, i.e. Rd × Sd−1: For l = (x, θ) ∈ Rd × Sd−1 and
g = (Q, a) ∈ E(d), we have:

(g, l) 7−! gl = (Q · x+ a,Q · θ) ∈ Rd × Sd−1. (30)

For L =
{
li = (xi, θi)

}k
i=1

∈ Ldk, the action of E(d) on Ldk is defined as:

gL =
{
gli = (Q · xi + a,Q · θi)

}k
i=1

∈ Ldk. (31)

The tree structure of a tree system is preserved under the action of E(d) (see (Tran et al., 2025c;b)). In other words, if L ∈ T
is a tree system, then gL is also a tree system. The group action of E(d) on Ldk induces a group action of E(d) on T.

E(d)-invariant splitting maps. A splitting map α ∈ C(Rd × Ldk,∆k−1) is E(d)-invariant, if:

α(gy, gL) = α(y,L), (32)

for all (y,L) ∈ Rd × Ldk and g ∈ E(d).
Remark A.1. Equivariance is widely used in machine learning across various contexts, including equivariant models (Tran
et al., 2024c) and equivariant metanetworks (Vo et al., 2024; Tran et al., 2024d;b;d). These approaches leverage symmetries
in data or model architectures to improve generalization, reduce sample complexity, and ensure consistency under group
transformations.
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B. Theoretical Proofs for Radon Transform on Systems of Lines with Nonlinear Projection
B.1. CRα is well-defined

We show that the Circular Radon Transform on Systems of Lines is well-defined.

Proof. Recall from Eq. (9), we have:

CRα : L1(Rd) −!
∏

L∈Ld
k,r⩾0

L1(L) where f 7−!
(
CRα

L,rf
)
L∈Ld

k,r⩾0
, (33)

and CRα
L,rf(xi + t · θi) =

∫
Rd

f(y) · α(y,L)i · δ (t− ∥y − xi − rθi∥2) dy. (34)

We have:

∥CRα
L,rf∥L =

k∑
i=1

∫
R

∣∣CRα
L,rf(xi + t · θ)

∣∣ dtx
=

k∑
i=1

∫
R

∣∣∣∣∫
Rd

f(y) · α(y,L)i · δ (t− ∥y − xi − rθi∥2) dy
∣∣∣∣ dt

⩽
k∑
i=1

∫
R

(∫
Rd

|f(y)| · α(y,L)i · δ (t− ∥y − xi − rθi∥2) dy
)
dt

=

k∑
i=1

∫
Rd

(∫
R
|f(y)| · α(y,L)i · δ (t− ∥y − xi − rθi∥2) dt

)
dy

=

k∑
i=1

∫
Rd

|f(y)| · α(y,L)i ·
(∫

R
δ (t− ∥y − xi − rθi∥2) dt

)
dy

=

k∑
i=1

∫
Rd

|f(y)| · α(y,L)i dy

=

∫
Rd

|f(y)| ·

(
k∑
i=1

α(y,L)i

)
dy

=

∫
Rd

|f(y)| dy

= ∥f∥1. (35)

So CRα
L,rf ∈ L1(L). It implies that the operator CRα

L,r : L
1(Rd) ! L1(L) is well-defined, as well as CRα.

Remark B.1. Note that, from the above proof, we see that if f ∈ P(Rd), i.e. f ∈ L1(Rd), ∥f∥1 = 1 and f(y) ⩾ 0 for all
y ∈ Rd, we also have ∥CRα

L,rf∥L = 1 and CRα
L,rf(xi + t · θi) ⩾ 0 for all xi + t · θi ∈ L. It implies that CRα

L,rf ∈ P(L).

B.2. Hα is well-defined

We show that the Spatial Radon Transform on Systems of Lines is well-defined.

Proof. Recall from Eq. (11), we have:

Hα : L1(Rd) !
∏

L∈Ldθ
k

L1(L) where f 7! (Hα
Lf)L∈Ldθ

k

,

and Hα
Lf(xi + t · θi) =

∫
Rd

f(y) · α(h(y),L)i · δ (t− ⟨h(y)− xi, θi⟩) dy. (36)
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We have:

∥Hα
Lf∥L =

k∑
i=1

∫
R
|Hα

Lf(xi + t · θi)| dtx

=

k∑
i=1

∫
R

∣∣∣∣∫
Rd

f(y) · α(h(y),L)i · δ (t− ⟨h(y)− xi, θi⟩) dy
∣∣∣∣ dt

⩽
k∑
i=1

∫
R

(∫
Rd

|f(y)| · α(h(y),L)i · δ (t− ⟨h(y)− xi, θi⟩) dy
)
dt

=

k∑
i=1

∫
Rd

(∫
R
|f(y)| · α(h(y),L)i · δ (t− ⟨h(y)− xi, θi⟩) dt

)
dy

=

k∑
i=1

∫
Rd

|f(y)| · α(h(y),L)i ·
(∫

R
δ (t− ⟨h(y)− xi, θi⟩) dt

)
dy

=

k∑
i=1

∫
Rd

|f(y)| · α(h(y),L)i dy

=

∫
Rd

|f(y)| ·

(
k∑
i=1

α(h(y),L)i

)
dy

=

∫
Rd

|f(y)| dy

= ∥f∥1. (37)

So Hα
Lf ∈ L1(L). It implies the operator Hα

L : L1(Rd) ! L1(L) is well-defined, as well as Hα.

Remark B.2. Note that, from the above proof, we see that if f ∈ P(Rd), i.e. f ∈ L1(Rd), ∥f∥1 = 1 and f(y) ⩾ 0 for all
y ∈ Rd, we also have ∥Hα

Lf∥L = 1 and Hα
Lf(xi + t · θi) ⩾ 0 for all xi + t · θi ∈ L. It implies that Hα

Lf ∈ P(L).

B.3. Proof for Theorem 4.2

Recall the original Circular Radon Transform CR (Kuchment, 2006; Kolouri et al., 2019) as follows:

CR : L1(Rd) −! L1(R× Sd−1 × R⩾0)

f 7−! CRf, (38)

where:

CRf : R× Sd−1 × R⩾0 −! R (39)

(t, θ, r) 7−!

∫
Rd

f(y) · δ (t− ∥y − rθ∥2) dy. (40)

In (Kuchment, 2006), it is showed that the Circular Radon Transform CR is injective. We will leverage this result to prove
the injectivity of the proposed Circular Radon Transform on Systems of Lines CRα.

First, for each θ ∈ Sd−1, consider the tree system L(i) consists of k identical lines (0, θ). Define the function g as follows:

g : R× Sd−1 × R⩾0 −! R (41)

(t, θ, r) 7−!
k∑
j=1

CRα
L(j),rf(xL(j):i + t · θL(j):i). (42)

Since

CRα
L,rf(xi + t · θi) =

∫
Rd

f(y) · α(y,L)i · δ (t− ∥y − xi − rθi∥2) dy. (43)
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We have:

g(t, θ, r) =

k∑
j=1

CRα
L(j),rf(xL(j):i + t · θL(j):i) (44)

=

k∑
i=1

∫
Rd

f(y) · α(y,L(j))i · δ (t− ∥y − xL(j):i − rθL(j):i∥2) dy (45)

=

k∑
i=1

∫
Rd

f(y) · α(y,L(j))i · δ (t− ∥y − rθ∥2) dy (46)

=

k∑
i=1

∫
Rd

f(y) · δ (t− ∥y − rθ∥2) ·

(
k∑
i=1

α(y,L(j))i

)
dy (47)

=

k∑
i=1

∫
Rd

f(y) · δ (t− ∥y − rθ∥2) · dy (48)

= CRf. (49)

It is clear that CRα is a linear operator. To prove CRα injective, consider f ∈ Ker(CRα). By the definition of g in Eq. (41),
we have g is the function 0. But g is exactly is the Circular Radon Transform of f , and since the Circular Radon Transform
is injective, we conclude that f is the function 0. In conclusion, CRα is injective.

B.4. Proof for Theorem 4.3

We present the proof for Theorem 4.3.

Proof. Recall the Radon Transform on Systems of Lines Rα (Tran et al., 2025b) as follows:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k
, (50)

where

Rα
Lf : L −! R

xi + t · θi 7−!

∫
Rd

f(y) · α(y,L)i · δ (t− ⟨y − xi, θi⟩) dy, (51)

It is proved in (Tran et al., 2025b) that Rα is injective for E(d)-invariant splitting map α. We leverage this result to prove
the Spatial Radon Transform on Systems of Lines is injective. First, by the injective continuous map h : Rd ! Rdθ , we
show that the push-forward of f ∈ Rd via h, defined as:

h♯f(y) =

{
f(h−1(y)) , for all y ∈ Rdθ such that y ∈ h(Rd),
0 , for all y ∈ Rdθ such that y /∈ h(Rd).

(52)

has its Radon Transform on Systems of Lines, i.e. {Rα
L(h♯f)}L∈Ldθ

k

, equal to the Spatial Radon Transform on Systems of

Lines of f , i.e. {Hα
Lf}L∈Ldθ

k

. In other words, for all L ∈ Ldθk , we have:

Hα
Lf = Rα

L(h♯f). (53)

Indeed, we have:

Rα
L(h♯f)(xi + t · θi) =

∫
Rdθ

h♯f(y) · α(y,L)l · δ (t− ⟨y − xi, θi⟩) dy
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=

∫
h(Rd)

h♯f(y) · α(y,L)l · δ (t− ⟨y − xi, θi⟩) dy

=

∫
Rd

f(h−1(h(y)) · α(h(y),L)l · δ (t− ⟨h(y)− xi, θi⟩) dy

=

∫
Rd

f(y) · α(h(y),L)l · δ (t− ⟨h(y)− xi, θi⟩) dy

= Hα
Lf(xi + t · θi). (54)

It is clear that Hα is a linear operator. To prove Hα is injective, consider f ∈ Ker(Hα). Since Hα
Lf = Rα

L(h♯f), it implies
that h♯f ∈ Ker(Rα). Since Rα is injective, it implies that h♯f is the function 0. By the definition of the push-forward h♯f
as in Eq. (52), we conclude that f is the function 0. In conclusion, Hα is injective.

B.5. Proof of Theorem 5.3

We show that CircularTSW is a metric on P(Rd). The proof for SpatialTSW is similar.

Proof. We will show that:

CircularTSW(µ, ν) =

∫
Td
k

W(CRα
L,rfµ, CR

α
L,rfν) dσ(L), (55)

is a metric on P(Rd), by verifying its positive definiteness, symmetry and triangle inequality.

Positive definiteness. For µ, ν ∈ P(Rd), it is clear that

CircularTSW(µ, µ) = 0, (56)

and

CircularTSW(µ, ν) ⩾ 0. (57)

If CircularTSW(µ, ν) = 0, then W(CRα
L,rfµ, CR

α
L,rfν) = 0 for almost every L ∈ Tdk. Since W is a metric on P(L), we

have CRα
L,rfµ = CRα

L,rfν for almost every L ∈ T. By Theorem 4.2, it implies that µ = ν.

Symmetry. For µ, ν ∈ P(Rd), we have:

CircularTSW(µ, ν) =

∫
Td
k

W(CRα
L,rfµ, CR

α
L,rfν) dσ(L)

=

∫
Td
k

W(CRα
L,rfν , CR

α
L,rfµ) dσ(L)

= CircularTSW(ν, µ) (58)

So CircularTSW(µ, ν) = CircularTSW(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(RD), we have:

CircularTSW(µ1, µ2) + CircularTSW(µ2, µ3)

=

∫
Td
k

W(CRα
L,rfµ1

, CRα
L,rfµ2

) dσ(L) +
∫
Td
k

W(CRα
L,rfµ2

, CRα
L,rfµ3

) dσ(L)

=

∫
Td
k

(
W(CRα

L,rfµ1
, CRα

L,rfµ2
) + W(CRα

L,rfµ1
, CRα

L,rfµ2
)
)
dσ(L)

⩾
∫
Td
k

W(CRα
L,rfµ1 , CR

α
T ,rfµ3) dσ(L)

= CircularTSW(µ1, µ3). (59)

The triangle inequality holds for CircularTSW.

In conclusion, CircularTSW is a metric on the space P(Rd).
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C. Radon Transform on Systems of Lines for Spherical Functions
In this section, we review (Tran et al., 2025a) which proposes Spherical Radon Transform on Spherical Trees and Spherical
Tree-Sliced Wasserstein distance, which are analogs to Radon Transform on Systems of Lines (Tran et al., 2025c;b) and
corresponding metric, applied for spherical functions. Then, we explain how to apply Generalized-like framework in this
paper for spherical settings

C.1. Background for Spherical Radon Transform on Spherical Trees

To make this easy to follow, we will follow the construction of Appendix A. Building blocks of Spherical Tree-Sliced
Wasserstein distance.

1. Given a positive number d presenting the dimension. We will work with functions on the d-dimensional hypersphere
Sd ⊂ Rd+1, where:

Sd :=
{
x = (x0, x1, . . . , xd) ∈ Rd+1 : ∥x∥2 = 1

}
⊂ Rd+1.

Note that Sd is a metric space with the metric dSd defined as dSd(a, b) = arccos ⟨a, b⟩Rd+1 .

2. The stereographic projection corresponding to x ∈ Sd is defined by:

φx : Sd \ {x} −! Hx

y 7−!
−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y. (60)

By convention, let φx(x) = ∞, then φx : Sd ! Hx ∪ {∞}.

3. The spherical ray with root x and direction y, denoted by rxy , is defined as

rxy = φ−1
x

(
{t · y : t > 0} ∪ {∞}

)
. (61)

Each ray rxy is isomorphic to [0, π] via dSd(x, ·), so it is parameterized as (t, rxy ).

4. Spherical trees T x
y1,...,yk

in Sd is the gluing space of k spherical rays rxyi at the root x. x is the root and y1, . . . , yk are
the edges of T x

y1,...,yk
. It is a measure metric space, endowed with tree metric.

5. The space of spherical trees with k edges in Sd is denoted by Tdk, with a probability distribution σ on Tdk, which comes
from the tree sampling process.

6. For T ∈ Tdk, the space of integrable functions on T is:

L1(T ) =

{
f : T ! R : ∥f∥L =

k∑
i=1

∫ π

0

|f(t, rxy )| dt <∞

}
. (62)

7. A splitting map α is a continuous map from Sd × Tdk to the (k − 1)-dimensional standard simplex ∆k−1, i.e.
α ∈ C

(
Sd × Tdk,∆k−1

)
. For f ∈ L1(Sd), we define:

Rα
T f : T −! R (63)

(t, rxyi) 7−!

∫
Sd
f(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy. (64)

The function Rα
T f is in L1(T ).

8. The operator:

Rα : L1(Sd) −!
∏

T ∈Td
k

L1(T )

f 7−! (Rα
T f)T ∈Td

k
.

is called the Spherical Radon Transform on Spherical Trees.
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9. When the splitting map α is O(d + 1)-invariant (this O(d + 1)-invariance will be described in the next part), the
Spherical Radon Transform on Spherical Trees is injective (see (Tran et al., 2025a)).

10. The Spherical Tree-Sliced Wasserstein Distance (Tran et al., 2025a) between µ, ν in P(Sd) is defined by:

STSW(µ, ν) =

∫
Td
k

WdT ,1(Rα
T fµ,Rα

T fν) dσ(T ). (65)

11. The STSW distance is a metric on P(Sd).

12. It is worth noting that, on tree systems, optimal transport problems admits closed-form expression, since it is a metric
space with tree metric (see (Le et al., 2019)). Leveraging this closed-form expression and the Monte Carlo method, the
distance in Eq. (65) can be efficiently approximated by a closed-form expression.

The group O(d+ 1) and its actions. The orthogonal group O(d+ 1) is the group of linear transformations of Rd+1 that
preserves the Euclidean norm ∥ · ∥2. The group O(d+1) acts on Sd naturally as follows: For x ∈ Sd and g = Q ∈ O(d+1),
we have:

(g, x) 7−! gx = Q · x. (66)

It naturally induces a group action on the set of all spherical lines in Sd, as well as spherical trees. The tree structure of a
spherical tree is preserved under the action of O(d+ 1) (see (Tran et al., 2025c;a)). In other words, if T ∈ T is a spherical
tree, then gT is also a spherical tree.

Definition C.1. A splitting map α in C(Sd × Tdk,∆k−1) is said to be O(d+ 1)-invariant, if we have

α(gy, gT ) = α(y, T ) (67)

for all (y, T ) ∈ Sd × Tdk and g ∈ O(d+ 1).

A candidate for O(d+ 1)-invariant splitting maps is presented as follows: Consider the map β : Sd × Tdk ! Rk:

β(y, T x
y1,...,yk

)i =


0, if y = x or y = −x,

arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2, if y ̸= ±x.

(68)

The map β is continuous and O(d+ 1)-invariant. Take α : Sd × Tdk ! ∆k−1 to be:

α(y, T ) = softmax
(
{β(y, T )i}i=1,...,k

)
. (69)

C.2. Spatial Spherical Radon Transform on Spherical Trees

Consider a positive integer dθ, and an injective continuous map h : Sd ! Sdθ , and a splitting map α ∈ C(Rdθ ×Ldθk ,∆k−1)

defining the splitting mechanism. Let T be a spherical tree of k edges in Tdθk . For a function f ∈ L1(Sd), define the function
Hα

T f ∈ L1(T ) as follows:

Rα
T f : T −! R (70)

(t, rxyi) 7−!

∫
Sd
f(y) · α(h(y), T )i · δ(t− arccos ⟨x, h(y)⟩) dy, (71)

The Spatial Spherical Radon Transform on Spherical Trees is defined as the operator:

Hα : L1(Rd) −!
∏

T ∈Tdθ
k

L1(T )

f 7−! (Hα
T f)T ∈Tdθ

k

. (72)
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C.3. Proof for Theorem 4.4

We present the proof for Theorem 4.4 about the injectivity of the Spatial Spherical Radon Transform on Spherical Trees.

Proof. Recall the Radon Transform on Spherical Tres Rα (Tran et al., 2025a) as follows:

Rα : L1(Sd) −!
∏

T ∈Td
k

L1(T )

f 7−! (Rα
T f)T ∈Td

k
, (73)

where

Rα
T f : T −! R

(t, rxyi) 7−!

∫
Sd
f(y) · α(y,L)1 · δ (t− arccos ⟨x, y⟩) dy, (74)

It is proved in (Tran et al., 2025a) that Rα is injective for O(d+ 1)-invariant splitting map α. We use this result to prove the
Spatial Radon Transform on Spherical Trees is injective. First, by the injective continuous map h : Sd ! Sdθ , we show
that the push-forward of f ∈ Rd via h, defined as:

h♯f(y) =

{
f(h−1(y)) , for all y ∈ Sdθ such that y ∈ h(Sd),
0 , for all y ∈ Sdθ such that y /∈ h(Sd).

(75)

has its Spherical Radon Transform on Spherical Trees, i.e. {Rα
T (h♯f)}T ∈Tdθ

k

, equal to the Spatial Radon Transform on

Spherical Trees of f , i.e. {Hα
T f}T ∈Tdθ

k

. In other words, for all T ∈ Tdθk , we have:

Hα
T f = Rα

T (h♯f). (76)

Indeed, we have:

Rα
T (h♯f)(t, r

x
yi) =

∫
Sdθ

h♯f(y) · α(y,L)l · δ (t− arccos ⟨x, y⟩) dy

=

∫
h(Sd)

h♯f(y) · α(y,L)l · δ (t− arccos ⟨x, y⟩) dy

=

∫
Sd
f(h−1(h(y)) · α(h(y),L)l · δ (t− arccos ⟨x, h(y)⟩) dy

=

∫
Sd
f(y) · α(h(y),L)l · δ (t− arccos ⟨x, h(y)⟩) dy

= Hα
T f(t, r

x
yi). (77)

It is clear that Hα is a linear operator. To prove Hα is injective, consider f ∈ Ker(Hα). Since Hα
T f = Rα

T (h♯f), it implies
that h♯f ∈ Ker(Rα). Since Rα is injective, it implies that h♯f is the function 0. By the definition of the push-forward h♯f
as in Eq. (75), we conclude that f is the function 0. In conclusion, Hα is injective.

C.4. Spatial Spherical Tree-Sliced Wasserstein Distance

For two probability measures µ and ν with density function fµ and fν . Given a positive integer dθ and a choice of the
continuous injective map h : Sd ! Sdθ , the Spatial Spherical Tree-Sliced Wasserstein Distance between µ and ν is defined
as the average Wasserstein distance on the tree-metric space L between the Spatial Spherical Radon Transform on Spherical
Trees of fµ and fν . Following (Tran et al., 2025a), this averaging is taken over the space of trees Tdθk , according to a
distribution σ on Tdθk which arises from the tree sampling process.

Definition C.2. The Spatial Spherical Tree-Sliced Wasserstein Distance between µ and ν in P(Sd) is defined by:

SpatialSTSW(µ, ν) :=

∫
Tdθ
k

W(Hα
T fµ,Hα

T fν) dσ(T ). (78)
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SpatialSTSW is a metric on the space P(Sd) of measures on Sd.

Theorem C.3. SpatialSTSW is a metric on the space P(Sd).

Proof. We will show that:

SpatialSTSW(µ, ν) =

∫
Tdθ
k

W(Hα
T fµ,Hα

T fν) dσ(T ), (79)

is a metric on P(Sd), by verifying its positive definiteness, symmetry and triangle inequality.

Positive definiteness. For µ, ν ∈ P(Sd), it is clear that

SpatialSTSW(µ, µ) = 0, (80)

and

SpatialSTSW(µ, ν) ⩾ 0. (81)

If SpatialSTSW(µ, ν) = 0, then W(Hα
T fµ,Hα

T fν) = 0 for almost every T ∈ Tdk. Since W is a metric on P(T ), we have
Hα

T fµ = Hα
T fν for almost every L ∈ T. By the injectivity of the Spatial Spherical Radon Transform on Spherical Trees, it

implies that µ = ν.

Symmetry. For µ, ν ∈ P(Sd), we have:

SpatialSTSW(µ, ν) =

∫
Tdθ
k

W(Hα
Lfµ,Hα

Lfν) dσ(T )

=

∫
Tdθ
k

W(Hα
Lfν ,Hα

Lfµ) dσ(T )

= SpatialSTSW(ν, µ) (82)

So SpatialSTSW(µ, ν) = SpatialSTSW(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Sd), we have:

SpatialSTSW(µ1, µ2) + SpatialSTSW(µ2, µ3)

=

∫
Tdθ
k

W(Hα
T fµ1 ,Hα

T fµ2
) dσ(T ) +

∫
Tdθ
k

W(Hα
T fµ2

,Hα
T fµ3

) dσ(T )

=

∫
Tdθ
k

(W(Hα
T fµ1 ,Hα

T fµ2) + W(Hα
T fµ1 ,Hα

T fµ2)) dσ(T )

⩾
∫
Tdθ
k

W(Hα
T fµ1

,Hα
T fµ3

) dσ(T )

= CircularTSW(µ1, µ3). (83)

The triangle inequality holds for SpatialSTSW.

In conclusion, SpatialSTSW is a metric on the space P(Sd).

The choice of the injective map h. Note that, the map h : Sd ! Sdθ has to satisfy the injective condition. We
construct h as follows. We construct h as follows. First, consider dθ = d + 1. We define a continuous function:
k(y) = π

2(1+ϵ)

(
1
d+1

∑d
i=0 yi + 1 + ϵ

)
, which maps y ∈ Sd to the range (0, π). We set ϵ = 10−6. Using this, we define

the mapping h(y) = (cos(k(y)), sin(k(y)) · y) , which is injective.
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D. Experimental Details
D.1. Algorithm of proposed Tree-Sliced Distances

We describe the pseudo-codes for ̂CircularTSW, ̂SpatialTSW, ̂SpatialSTSW in Algorithms 1, 2, 3 respectively.

Algorithm 1 Circular Tree-Sliced Wasserstein distance.

Input: Probability measures µ and ν in P(Rd), number of tree systems L, number of lines in tree system k, space of tree
systems T, splitting maps α, and parameter r ∈ R⩾0.
for i = 1 to L do

Sampling x ∈ Rd and θ1, . . . , θk
i.i.d∼ U(Sd−1).

Contruct tree system Li = {(x, θ1), . . . , (x, θk)}.
Projecting µ and ν onto Li to get CRα

Li,rµ and CRα
Li,rν.

Compute ̂CircularTSW(µ, ν) = (1/L) · W(CRα
Li,rµ, CR

α
Li,rν).

end for
Return: ̂CircularTSW(µ, ν).

Algorithm 2 Spatial Tree-Sliced Wasserstein distance.

Input: Probability measures µ and ν in P(Rdθ ), number of tree systems L, number of lines in tree system k, space of
tree systems T, splitting maps α, and injective continuous map h : Rd ! Rdθ .
for i = 1 to L do

Sampling x ∈ Rd and θ1, . . . , θk
i.i.d∼ U(Sdθ−1).

Contruct tree system Li = {(x, θ1), . . . , (x, θk)}.
Projecting µ and ν onto Ti to get Hα

Li
µ and Hα

Li
ν.

Compute ̂SpatialTSW(µ, ν) = (1/L) · W(Rα
Li
µ,Rα

Li
ν).

end for
Return: ̂SpatialTSW(µ, ν).

Algorithm 3 Spatial Spherical Tree-Sliced Wasserstein distance.

Input: Probability measures µ and ν in P(Sd), number of tree systems L, number of lines in tree system k, space of tree
systems T, splitting maps α, and injective continuous map h : Sd ! Sdθ .
for i = 1 to L do

Sampling x ∈ Sdθ and y1, . . . , yk
i.i.d∼ U(Sdθ−1).

Contruct tree system Ti = {(x, y1), . . . , (x, yk)}.
Projecting µ and ν onto Li to get Hα

Ti
µ and Hα

Ti
ν.

Compute ̂SpatialSTSW(µ, ν) = (1/L) · W(Hα
Ti
µ,Hα

Ti
ν).

end for
Return: ̂SpatialSTSW(µ, ν).

D.2. Computational and Memory Complexity

We provide complexity and memory analysis of our proposed distance. Since memory on GPU can be optimized for parallel
processing capabilities, we provide the empirical memory usage on GPU, with expectation that our distance would be used
in a GPU setting which is standard in machine learning.

Computation and Memory Complexity. Assuming n ⩾ m, the computational complexity of SpatialTSW and CircularTSW
is O(Lkndθ + Lkn log n), while CircularTSWr=0 and SpatialSTSW have a more efficient complexity of O(Lkndθ +
Ln log n). All distances share an empirical memory cost of O(Lkn+Lkdθ + ndθ). We analyze the main operations of our
proposed distances in Table 6.
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Table 6: Computational and Memory Complexity Analysis of proposed Tree-Sliced distances

Distance Operation Description Computation Memory

SpatialTSW

Mapping Map points onto new space O(ndθ) O(ndθ)
Projection Matrix multiplication of points and lines O(Lkndθ) O(Lkdθ + ndθ)
Distance-based weight
splitting

Distance calculation and softmax O(Lkndθ) O(Lkn+ Lkdθ + ndθ)

Sorting Sorting projected coordinates O(Lkn logn) O(Lkn)
Total O(Lkndθ + Lkn logn) O(Lkn+ Lkdθ + ndθ)

CircularTSW
Circular projection Subtraction and Norm calculation O(Lkndθ) O(Lkdθ + ndθ)
Distance-based weight
splitting

Distance calculation and softmax O(Lkndθ) O(Lkn+ Lkdθ + ndθ)

Sorting Sorting projected coordinates O(Lkn logn) O(Lkn)
Total O(Lkndθ + Lkn logn) O(Lkn+ Lkdθ + ndθ)

CircularTSWr=0

Circular projection Subtraction and Norm calculation O(Lndθ) O(Ldθ + ndθ)
Distance-based weight
splitting

Distance calculation and softmax O(Lkndθ) O(Lkn+ Lkdθ + ndθ)

Sorting Sorting projected coordinates O(Ln logn) O(Ln)
Total O(Lkndθ + Ln logn) O(Lkn+ Lkdθ + ndθ)

SpatialSTSW

Mapping Map points onto new space O(ndθ) O(ndθ)
Projection Matrix multiplication of points and source O(Lndθ) O(Ldθ + ndθ)
Distance-based weight
splitting

Distance calculation and softmax O(Lkndθ) O(Lkn+ Lkdθ + ndθ)

Sorting Sorting projected coordinates O(Ln logn) O(Ln)
Total O(Lkndθ + Ln logn) O(Lkn+ Lkdθ + ndθ)

Projection and Sorting. In CircularTSWr=0 and SpatialSTSW, the projected coordinates within a tree is the same for all
lines. As a result, the computational complexity of these two steps in CircularTSWr=0 and SpatialSTSW is reduced by a
factor of the number of lines in a tree, k, compared to SpatialTSW and CircularTSW. This reduction is the primary reason
for the computational advantage of CircularTSWr=0 and SpatialSTSW.

Memory Cost of Distance-Based Splitting. As previously noted in prior work (Tran et al., 2025b), the empirical GPU-
optimized memory cost of distance-based splitting is lower than its theoretical estimate due to kernel fusion optimizations.
This operation consists of: (1) computing distance vectors from points to lines (O(Lkndθ) computation and memory),
(2) calculating their norms (O(Lkndθ) computation and O(Lkndθ) memory), and (3) applying softmax over all lines in
each tree (O(Lkn) computation and memory). While the theoretical cost is O(Lkndθ) for both computation and memory,
we leverage PyTorch’s automatic kernel fusion (via ‘torch.compile‘) to merge these steps into a single operation. This
enables the distance vectors (Lkn× dθ) to be stored in shared GPU memory rather than global memory. As a result, only
three matrices need to be stored: a line matrix (O(Lkdθ)), a support matrix (O(ndθ)), and a split weight matrix (O(Lkn)),
reducing overall GPU memory usage to O(Lkn+ Lkdθ + ndθ).

D.3. Runtime and memory analysis
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Figure 3: Runtime and memory evolution of SpatialTSW.

In this section, we conduct a runtime and memory analysis of SpatialTSW, CircularTSW, and CircularTSWr=0 with
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Figure 4: Runtime and memory analysis of CircularTSW.
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Figure 5: Runtime and memory analysis of CircularTSWr=0.

respect to the number of supports and the support’s dimension on a single NVIDIA A100 GPU. We fix L = 2500
and k = 4 (following the practical setting from our diffusion model experiments) for all configurations and vary N ∈
{500, 1000, 5000, 10000, 50000} and d ∈ {10, 50, 100, 500, 1000}.

Runtime scaling. Figures 3 and 4 demonstrate a linear relationship between the runtime of SpatialTSW and CircularTSW
and the number of supports n. Regarding scaling with the data dimension, we observe that d = 10000 takes approximately
twice the runtime of d = 5000, suggesting a linear relationship between dimension and computational time. This linear
trend aligns with our theoretical complexity analysis in Appendix D.2. It is also worth noting that CircularTSW runs faster
than SpatialTSW, as it relies on vector norms instead of vector multiplications. Regarding CircularTSWr=0, Figure 5 also
demonstrates an almost linear relationship with the number of supports n. Interestingly, the runtime of CircularTSWr=0

scales very efficiently with d. We suspect this is due to the reduced amount of vector normalization required compared to
CircularTSW (by a factor of k). Ultimately, CircularTSWr=0 is significantly faster than other Tree-Sliced methods, by
two orders of magnitude when d and n are sufficiently large, which aligns with our theoretical complexity analysis. The
significant reduction in computational cost when using the Circular Sliced Wasserstein variants arises from the efficiency of
computing L2 norms compared to inner products. This advantage is illustrated in Figure 6.

Memory scaling. Figures 3 , 4, and 5 presents the memory consumption analysis of SpatialTSW, CircularTSW, and
CircularTSWr=0, revealing a linear scaling relationship with d and n. This aligns with the theoretical complexity analysis
and suggests a predictable scaling behavior. Notably, the peak memory usage of CircularTSW and CircularTSWr=0 is
significantly lower than that of SpatialTSW.
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Figure 6: Rebuttal result comparing inner product and L2 norm performance, benchmarked on an A100 GPU with a fixed
vector dimension of d = 3000. The L2 norm demonstrates significantly faster computation times as the number of vectors
increases.

D.4. Splitting map for CircularTSW

We recall that the splitting map α is defined as:

α(y,L)l = softmax
(
{d(y,L)i}ki=1

)
, (84)

where d(y,L)i represents the distance between y and the ith line in L.

In the context of the Radon Transform on a system of lines, this involves computing the inner product between the support
and the projection directions. However, in the Circular Radon Transform on a system of lines, the projection coordinate
calculation involves the Euclidean norm ∥ · ∥2.

Therefore, we define a more computationally efficient distance function as:

d(y,L)i = ∥y − xi − ∥y − xi − rθi∥2 θi∥2 , (85)

where xi is the source, θi is the direction of the ith line in L, and r is a fixed radius.

Notably, this distance function still results in an E(d)-invariant splitting map.

D.5. Analysis on number of lines k in CircularTSWr=0

In this section, we demonstrate that CircularTSW-DDr=0 is effective only in a tree-based setting. To illustrate this, we
conduct an experiment using the Denoising Diffusion Generative Adversarial Network (DDGAN), following the setup
described in Appendix D.6. Figure 7 presents the FID scores over 300 training epochs for models using CircularTSWr=0

with k = 1 and k = 4. The results clearly show that only the model with k = 4 trains stably, with its FID score gradually
improving over time. In contrast, for k = 1, the FID score suddenly spikes to 500 after epoch 125, indicating that the model
collapses and starts generating meaningless images (all black pixels). This confirms that CircularTSWr=0 is specifically
designed for tree-like structures, relying on a distance-based splitting map to function effectively.

D.6. Denoising Diffusion Generative Adversarial Network

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have gained popularity as powerful gen-
erative models capable of producing high-quality data. In this experiment, we introduce their mechanisms and demonstrate
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Figure 7: FID scores over the training process for CircularTSW-DDr=0 with k = 1 and k = 4.

the improvements introduced by our approach. The diffusion process begins with an initial sample from the distribution
q(x0) and progressively corrupts it by adding Gaussian noise over T steps. This process is formally defined as:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1),

where each transition follows a Gaussian distribution:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

with a predefined variance schedule βt.

The objective of denoising diffusion models is to learn the reverse diffusion process, which reconstructs the original data
from noisy samples. This requires estimating the parameters θ of the reverse process, formulated as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

where each step follows a Gaussian transition:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I).

Training these models is typically done by maximizing the evidence lower bound (ELBO), which minimizes the Kullback-
Leibler (KL) divergence between the true posterior and the model’s approximation of the reverse diffusion process. This is
expressed as:

L = −
T∑
t=1

Eq(xt) [KL(q(xt−1|xt)||pθ(xt−1|xt))] + C,

where KL(·||·) represents the Kullback-Leibler divergence, and C is a constant term.
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Denoising Diffusion GANs. While diffusion models generate high-quality and diverse samples, their slow sampling
process limits real-world applicability. Denoising Diffusion GANs (DDGANs) (Xiao et al., 2021) address this issue by
modeling each denoising step using a multimodal conditional GAN, allowing for larger denoising steps. This significantly
reduces the number of steps to just 4, leading to sampling speeds up to 2000 times faster than traditional diffusion models
while maintaining competitive sample quality and diversity. The implicit denoising model in DDGANs is formulated as:

pθ(xt−1|xt) =
∫
pθ(xt−1|xt, ϵ)Gθ(xt, ϵ)dϵ, ϵ ∼ N (0, I).

Xiao et al. (2021) optimize the model parameters θ using adversarial training, with the objective:

min
ϕ

T∑
t=1

Eq(xt)[Dadv(q(xt−1|xt)||pϕ(xt−1|xt))],

where Dadv represents the adversarial loss. Instead, Nguyen et al. (2024b) replace the adversarial loss with the Augmented
Generalized Mini-batch Energy (AGME) distance. For two distributions µ and ν, given a mini-batch size n ⩾ 1, AGME
using a Sliced Wasserstein (SW) kernel is defined as:

AGME2
b(µ, ν; g) = GME2

b(µ̃, ν̃),

where µ̃ = f♯µ and ν̃ = f♯ν, with f(x) = (x, g(x)) for a nonlinear function g : Rd ! R. The Generalized Mini-batch
Energy (GME) distance (Salimans et al., 2018) is defined as:

GME2
b(µ, ν) = 2E[D(PX , PY )]− E[D(PX , P

′
X)]− E[D(PY , P

′
Y )],

where X,X ′ i.i.d.∼ µ⊗m and Y, Y ′ i.i.d.∼ ν⊗m, with

PX =
1

m

m∑
i=1

δxi
, X = (x1, . . . , xm).

Here, D represents any valid distance metric. In our work, we replace D with Tree-Sliced Wasserstein (TSW) variants (our
methods) and Sliced Wasserstein (SW) variants.

Setting. We adopt the same architecture and hyperparameters as Nguyen et al. (2024b) and Tran et al. (2025b). Our
models are trained for 1800 epochs. For Tree-Sliced methods, including our own, we set L = 2500 and k = 4. For vanilla
SW and SW variants, we follow Nguyen et al. (2024b) and use L = 10000. The learning rate is also set according to Nguyen
et al. (2024b), where lrd = 1.25e−4 and lrg = 1.6e−4. For SpatialTSW, we define h(y) = y + y3, and for CircularTSW,
we set r = 0.01. The standard deviation in tree sampling follows Tran et al. (2025b) and is set to 0.1. To evaluate runtime,
we use a batch size of 64 and measure time on a single NVIDIA A100 GPU.

Qualitative Results. Figure 8 presents the qualitative results of SpatialTSW-DD, CircularTSW-DD, and Circularr=0TSW-
DD.

D.7. Gradient Flow

Detailed results on the 25 Gaussians dataset. Table 7 presents the detailed results of our proposed methods and baselines.
The low standard deviation of SpatialTSW indicates that our method consistently achieves faster convergence compared to
other methods.

Ablation on h : Rd ! Rdθ in SpatialTSW. We ablate several injective continuous functions h in SpatialTSW on the
25-Gaussian dataset. The results in Table 8 show that, in general, h(y) = y + γy3 outperforms h(y) = y + γy5, although
the latter tends to converge faster during the first 1500 iterations. The best result is achieved with h(y) = y+0.5y3, yielding
a final W2 value of 9.59e−8.
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SpatialTSW-DD CircularTSW-DD Circularr=0TSW-DD

Figure 8: Example images generated by our proposed DDGAN. The images correspond to (Left) SpatialTSW-DD, (Middle)
CircularTSW-DD, and (Right) Circularr=0TSW-DD.

Table 7: Detailed results on the 25 Gaussians dataset. The table reports the average Wasserstein distance between source and
target distributions over 5 runs.

Methods Iteration Time/Iter(s)
500 1000 1500 2000 2500

SW 4.21e-1 ± 5.39e-3 1.54e-1 ± 2.43e-3 7.72e-2 ± 3.88e-3 4.97e-2 ± 3.30e-3 3.59e-2 ± 3.43e-3 0.0018
MaxSW 5.23e-1 ± 8.31e-3 2.36e-1 ± 4.63e-3 1.23e-1 ± 3.17e-3 8.04e-2 ± 3.70e-3 6.76e-2 ± 3.07e-3 0.1020
SWGG 6.59e-1 ± 1.93e-2 3.62e-1 ± 2.70e-2 1.92e-1 ± 1.99e-2 9.07e-2 ± 1.31e-2 4.42e-2 ± 1.90e-2 0.0019
LCVSW 3.46e-1 ± 4.63e-3 6.96e-2 ± 3.11e-3 2.26e-2 ± 1.39e-3 1.31e-2 ± 2.07e-3 9.28e-3 ± 9.25e-4 0.0019

TSW-SL 3.49e-1 ± 4.61e-3 8.10e-2 ± 2.34e-3 1.06e-2 ± 1.00e-3 2.68e-3 ± 3.24e-4 3.16e-6 ± 1.99e-6 0.0019
Db-TSW 3.50e-1 ± 5.10e-3 8.12e-2 ± 2.34e-3 1.09e-2 ± 1.41e-3 1.77e-3 ± 6.69e-4 1.30e-7 ± 9.28e-9 0.0020
Db-TSW⊥ 3.52e-1 ± 5.17e-3 7.69e-2 ± 3.37e-3 2.73e-2 ± 4.87e-4 2.56e-3 ± 7.72e-4 2.03e-6 ± 3.70e-6 0.0021

SpatialTSW 3.20e-1 ± 4.73e-3 3.44e-2 ± 2.42e-3 2.95e-3 ± 1.46e-4 3.97e-4 ± 8.13e-5 1.17e-7 ± 2.24e-8 0.0021
CircularTSW 4.28e-1 ± 4.33e-3 1.20e-1 ± 2.37e-3 3.48e-2 ± 5.10e-4 1.41e-2 ± 7.50e-4 7.86e-3 ± 3.94e-4 0.0017
CircularTSWr=0 4.32e-1 ± 4.01e-3 1.22e-1 ± 1.50e-3 3.41e-2 ± 2.22e-3 1.45e-2 ± 1.03e-3 8.94e-3 ± 9.42e-4 0.0015

Hyperparameters. For Tree-Sliced methods, we set L = 25 and k = 4. For the SW and SW-variant baselines, we use
L = 100. The global learning rate is set to 0.001. Each distribution in both datasets is sampled 500 supports.

D.8. A Guide to Selecting Projection Variants

Our motivation for proposing the non-linear projection framework is inspired by Generalized Sliced-Wasserstein (GSW)
(Kolouri et al., 2019), which also includes both Circular and Spatial variants. It is underexplored in prior studies that among
the three versions—original SW, SpatialSW, and CircularSW, which variant is most suitable for a given task.

This suggests that among the corresponding TSW variants, such as Db-TSW (Tran et al., 2025b), CircularTSW, and Spatial
TSW, there is no guarantee that the versions with non-linear projections will consistently outperform the linear-projection
TSW. However, the two new distance variants each offer distinct advantages over standard TSW, as outlined below:

• The definition of SpatialTSW subsumes Db-TSW as a special case when the function is the identity map. This implies
that models leveraging SpatialTSW have, in theory, greater representational capacity than those using Db-TSW. A
similar relationship holds between the corresponding SW variants.

• The definition of CircularTSW is theoretically non-comparable to Db-TSW due to their fundamentally different
constructions. However, CircularTSWr=0 offers improved runtime efficiency. This benefit does not hold in the SW
context, where CircularSWr=0 performs poorly. One reason is that CircularSWr=0 defines only a pseudo-metric, while
CircularTSWr=0 is a true metric.
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Table 8: Ablation study on the choice of h in SpatialTSW for Gradient Flow. Results show the average Wasserstein distance
between source and target distributions over 5 runs on the 25 Gaussians dataset.

h(y) γ
Iteration

500 1000 1500 2000 2500

y + γy3

0.1 3.49e-1 7.12e-2 7.77e-3 6.49e-4 1.15e-7
0.5 3.33e-1 4.68e-2 3.74e-3 1.58e-7 9.59e-8
1 3.20e-1 3.44e-2 2.95e-3 3.97e-4 1.17e-7
5 2.88e-1 3.26e-2 3.57e-3 3.39e-4 2.24e-7
10 2.73e-1 3.35e-2 5.11e-3 1.54e-4 5.59e-7

y + γy5

0.1 3.57e-1 7.29e-2 7.72e-3 1.71e-3 1.32e-7
0.5 3.36e-1 4.24e-2 4.57e-3 1.06e-3 1.50e-7
1 2.99e-1 2.37e-2 2.95e-3 3.50e-5 1.63e-7
5 1.75e-1 8.54e-3 2.60e-3 2.03e-3 1.85e-3
10 1.34e-1 6.30e-3 3.14e-4 6.40e-6 1.55e-6

Our framework offers greater flexibility by enabling a broader selection of distance functions. However, in Machine
Learning, predicting the best variant for a task often requires empirical experimentation. Table 9 shows that both Db-TSW
and SpatialTSW perform well, but the non-linearity in SpatialTSW makes it hard to determine in advance which variant is
better suited for a given task.

We offer intuition for selecting CircularTSW and CircularTSWr=0. Since these distances rely on the L2 norm for the
projection step, they are likely to perform well when the L2 norms of the data are diversely distributed. We validate this
advantage over Db-TSW and SpatialTSW in the Table 10, where the distribution of L2 norms is uniform. We speculate that
this property explains why CircularTSW performs effectively for the Diffusion experiment (Table 1).

To the best of our knowledge, Db-TSW (Tran et al., 2025b) is the only tree-sliced distance effectively suited for large-scale
generative tasks involving transport from a training measure to a target measure in Euclidean space. Previously, (Tran et al.,
2025c) presents a basic and limited version of (Tran et al., 2025b), primarily emphasizing the constructive aspects of the
tree-sliced approach, which serve as foundational groundwork. Meanwhile, (Tran et al., 2025a) explores the method in a
spherical setting. Other works on Tree-Sliced Wasserstein (TSW), such as (Le et al., 2019), (Yamada et al., 2022), and others,
are mainly designed for classification tasks and are not applicable to generative settings. This limitation arises because these
methods rely on a clustering-based framework for computing slices, which is theoretically unsuitable (as the clustering must
be recomputed each time the training measure is updated, rendering previous clustering results irrelevant) and empirically
inefficient (since clustering is significantly more computationally expensive than linear or non-linear projection methods).

Table 9: Results for Tree-Sliced variants (Linear, Spatial, Circular) in a Gradient Flow task across datasets, showing
the average Wasserstein distance between source and target distributions over 5 runs. Each method uses 100 projecting
directions, trained for 500 iterations, with the best result reported over lr ∈ {1, 5×10−1, 1×10−1, 1×10−2, 5×10−2, 1×
10−3, 3× 10−3, 5× 10−3}. SpatialTSW performs best on Half Moons, Swiss Roll, 25 Gaussians, and 8 Gaussians datasets,
while Db-TSW excels on the Circle dataset.

Methods Circle Half Moons Swiss Roll 25 Gaussians 8 Gaussians

SW 6.463e-4 ± 3.112e-5 1.648e-4 ± 3.754e-5 9.795e-4 ± 1.328e-4 4.007e-2 ± 1.940e-3 3.786e-2 ± 7.090e-3
Db-TSW 1.331e-6 ± 1.123e-7 1.659e-6 ± 1.471e-7 1.659e-6 ± 1.471e-7 2.103e-3 ± 6.378e-4 3.475e-3 ± 1.151e-3

SpatialSW 2.098e-4 ± 1.919e-5 2.146e-4 ± 5.308e-5 9.329e-4 ± 1.113e-4 5.206e-2 ± 2.456e-3 3.593e-2 ± 2.619e-3
SpatialTSW 1.366e-6 ± 9.439e-8 1.267e-6 ± 6.638e-8 1.615e-6 ± 1.751e-7 1.969e-3 ± 6.314e-4 2.652e-3 ± 6.996e-4

CircularSW 6.044e-4 ± 1.670e-5 8.147e-5 ± 4.858e-6 7.950e-4 ± 1.065e-4 1.150e-1 ± 4.502e-3 2.137e-1 ± 1.276e-2
CircularTSW 1.922e-4 ± 1.493e-5 6.982e-5 ± 4.253e-6 2.053e-4 ± 3.739e-5 1.172e-2 ± 8.564e-4 1.307e-2 ± 1.531e-3
CircularTSWr=0 7.924e-4 ± 5.153e-5 9.201e-5 ± 9.562e-6 4.030e-4 ± 5.877e-5 2.009e-2 ± 1.612e-3 3.044e-2 ± 9.105e-4

Hyperparameter r. Selecting the optimal hyperparameter, such as r for CircularTSW, is challenging and often requires
empirical tuning. Intuitively, r should be large enough to ensure diverse projections onto the lines but should not exceed the
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Table 10: Results on the advantage of the Circular Tree-Sliced variant in a Gradient Flow task when the L2 norm of the
data is uniformly distributed. Data is sampled such that the L2 norm follows Uniform(0, 1). The table reports the average
Wasserstein distance between source and target distributions over 5 runs. Each method uses 100 projecting directions
and is trained for 500 iterations, with the best result reported over lr ∈ {1, 5× 10−1, 1× 10−1, 1× 10−2, 5× 10−2, 1×
10−3, 3 × 10−3, 5 × 10−3}. CircularTSW consistently achieves a lower Wasserstein distance, while Linear and Spatial
variants struggle as the dimension d increases.

Methods d = 2000 d = 5000 d = 10000

SW 0.535 ± 0.006 9.795 ± 0.025 70.06 ± 0.100
Db-TSW 4.871 ± 0.049 87.49 ± 0.137 308.97 ± 0.367

SpatialSW 1.510 ± 0.006 18.66 ± 0.043 95.55 ± 0.170
SpatialTSW 6.394 ± 0.066 93.08 ± 0.131 314.44 ± 0.269

CircularSW 0.357 ± 0.005 0.404 ± 0.007 0.428 ± 0.004
CircularTSW 0.304 ± 0.009 0.347 ± 0.010 0.369 ± 0.015
CircularTSWr=0 0.332 ± 0.010 0.517 ± 0.015 0.873 ± 0.022

data’s magnitude. For normalized data, we suggest starting with r = 1√
d

and tuning from there.

D.9. Spherical Gradient Flow

Data. Given the probability density function of the von Mises-Fisher distribution f(x;µ, κ) = Cd(κ) exp(κµ
Tx), where

µ ∈ Sd is mean direction and κ > 0 is concentration parameter and the normalization constant Cd(κ) =
κd/2−1

(2π)p/2Ip/2−1(κ)
,

we use 12 vMFs as the target distribution with κ = 50 and mean directions as follows:

µ1 = (−1, ϕ, 0), µ2 = (1, ϕ, 0), µ3 = (−1,−ϕ, 0), µ4 = (1,−ϕ, 0)
µ5 = (0,−1, ϕ), µ6 = (0, 1, ϕ), µ6 = (0,−1,−ϕ), µ8 = (0, 1,−ϕ)
µ9 = (ϕ, 0,−1), µ10 = (ϕ, 0, 1), µ11 = (−ϕ, 0,−1), µ12 = (−ϕ, 0, 1),

where ϕ =
1 +

√
5

2
.

Similar to Tran et al. (2024a; 2025a), we pick 200 samples from each vMF.

Setting. We set L = 200 trees and k = 5 lines for STSW and SpatialSTSW, and L = 1000 projections for other sliced
methods. ARI-S3W (30) employs 30 rotations with a pool size of 1000, whereas RI-S3W (1) and RI-S3W (5) use 1 and
5 rotations, respectively. Training is conducted using Adam (Kinga et al., 2015) optimizer with learning rate lr = 0.01,
following update rules (Bonet et al., 2022):{

x(k+1) = x(k) − γ∇x(k)SpatialSTSW(µ̂k, ν),

x(k+1) = x(k+1)

∥x(k+1)∥2
.

D.10. Self-Supervised Learning

Encoder. Following the approach outlined in Bonet et al. (2022); Tran et al. (2024a; 2025a), we use ResNet18 (He
et al., 2016) as the encoder. We train it on CIFAR-10 data for 200 epochs with a batch size of 512 and the SGD optimizer
with initial lr = 0.05, momentum 0.9, and weight decay 10−3. To generate positive pairs, we employ commonly used
augmentation techniques, consistent with previous studies (Wang & Isola, 2020; Bonet et al., 2022; Tran et al., 2024a; 2025a).
These transformations include resizing, cropping, horizontal flipping, color jittering, and random grayscale conversion.

For STSW and SpatialSTSW, we configure L = 200 trees and k = 20. For other distances, we use L = 200 projections and
NR = 5 with a pool size of 100 for RI-S3W and ARI-S3W. The regularization coefficients are chosen as follows: λ = 10
for STSW and SpatialSTSW, λ = 1 for SW, λ = 20 for SSW, and λ = 0.5 for S3W variants.
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Linear Classifier. To evaluate the quality of the feature representations learned by the pre-trained encoder, a linear
classifier is trained on top of these features. Following the approach of Bonet et al. (2022), the classifier is trained for 100
epochs using the Adam (Kinga et al., 2015) optimizer. We set the initial learning rate to 10−3 together with a weight decay
of 0.2 at epochs 60 and 80.

D.11. Sliced-Wasserstein Autoencoder (SWAE)

Setup. For our model training, we use Adam (Kinga et al., 2015) optimize, setting learning rate to lr = 10−3. The model
undergoes training over 100 epochs with a batch size of 500, where the binary cross-entropy (BCE) loss function serves as
the reconstruction loss. For STSW and SpatialSTSW, we fix L = 200 trees and k = 10 lines. Other sliced methods use
L = 100 projections. RI-S3W ad ARI-S3W use NR = 5 rotation and pool size of 100. We use prior 10 vMFs, while setting
the regularization parameter λ = 1 for STSW, SpatialSTSW, λ = 10 for SSW, and λ = 10−3 for SW and S3W variants.

CIFAR-10 Model Architecture. (Tran et al., 2024a; 2025a)

Encoder:

x ∈ R3×32×32 ! Conv2d32 ! ReLU ! Conv2d32 ! ReLU
! Conv2d64 ! ReLU ! Conv2d64 ! ReLU
! Conv2d128 ! ReLU ! Conv2d128 ! Flatten
! FC512 ! ReLU ! FC3

! ℓ2 normalization ! z ∈ S2

Decoder:

z ∈ S2 ! FC512 ! FC2048 ! ReLU
! Reshape(128× 4× 4) ! Conv2dT128 ! ReLU
! Conv2dT64 ! ReLU ! Conv2dT64 ! ReLU
! Conv2dT32 ! ReLU ! Conv2dT32 ! ReLU
! Conv2dT3 ! Sigmoid

D.12. Hardware settings

The gradient flow experiments were conducted on a single NVIDIA A100 GPU, with each experiment taking approximately
0.5 hours. The denoising diffusion experiments were executed in parallel on two NVIDIA A100 GPUs, with each run lasting
around 50 hours. All spherical experiments were conducted on a single NVIDIA A100 GPU.

33


