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Abstract

In many web applications, deep learning-based CTR prediction models (deep CTR
models for short) are widely adopted. Traditional deep CTR models learn patterns
in a static manner, i.e., the network parameters are the same across all the instances.
However, such a manner can hardly characterize each of the instances which may
have different underlying distributions. It actually limits the representation power
of deep CTR models, leading to sub-optimal results. In this paper, we propose an
efficient, effective, and universal module, named as Adaptive Parameter Generation
network (APG), which can dynamically generate parameters for deep CTR models
on-the-fly based on different instances. Extensive experimental evaluation results
show that APG can be applied to a variety of deep CTR models and significantly
improve their performance. Meanwhile, APG can reduce the time cost by 38.7%
and memory usage by 96.6% compared to a regular deep CTR model. We have
deployed APG in the industrial sponsored search system and achieved 3% CTR

gain and 1% RPM gain respectively.

1 Introduction

Recently, deep CTR models have achieved great
success in various web applications such as rec-
ommender systems, web search, and online ad-
vertising [4} 9} 31} [14]. Formally, a regular deep
CTR model can be expressed as y; = Fo(x;)
where x;, y; are the input features and the pre-
dicted CTR of the instance ¢ respectively, O is
the parameter, and F is usually implemented as
a neural network.

Improving the performance of deep CTR models
has been a very hot topic in the research and
industrial areas. Existing works can be broadly
divided into two categories: (1) Focusing on
x;, more and more elaborated information (e.g.,
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Figure 1: An example of feature distribution from
different users (i.e., active vs. cold users). Left:
the CTR distributions are varied from different user
groups and a custom pattern should be considered.
Right: A common pattern is welcomed to model
the similar age distributions from different groups.

user behavior features [37, 22]], multimodal information [3} [1 1], knowledge graph [36, 30], etc) is
introduced to enrich feature space (i.e., x;); (2) Focusing on F, advanced architectures (including
feature interaction modeling [4} |9} |31]], automated architecture search [[14}26] and so on) are designed

to improve the model performance.
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However, few works focus on the improvement of the model parameters O, especially for the weight
matrix W € RV>*M ysed in hidden layers of deep CTR models [’} It is another orthogonal aspect for
the performance improvement. Actually, most of the existing works simply adopt a static manner,
i.e., all the instances share the same parameters W. We argue that such a manner is sub-optimal
for pattern learning and limits the representation power of deep CTR models. On the one hand,
although the common patterns among instances can be captured by the shared parameters W, it is
not friendly to custom pattern modeling. Specifically, taking the industrial sponsored search system
as an example, the feature distribution can be varied from different users (e.g., active vs. cold users),
different categories (e.g., clothing vs. medicine), and so on (see Figure|l|(a) as an example). Simply
applying the same parameters across all the instances can hardly capture the characteristic of each
instance from different distributions. On the other hand, the learned common pattern may not be
suitable for each of the instances. For example, the shared parameters tend to be dominated by
high-frequency features and may give a misleading decision for the long-tailed instances. This leads
us to the following question: Do we really need the same and shared parameters for all instances?

Ideally, besides modeling the common pattern, the parameters should be more adaptive and can be
dynamically changed for different instances to capture custom patterns at the same time. Then, the
representation power (or model capacity) can be enhanced by the dynamically changed parameter
space. To achieve this goal, we design a new paradigm for CTR prediction. The key insight is
to propose an Adaptive Parameter Generation network (APG) to dynamically generate parameters
depending on different instances. Firstly, we propose a basic version (Section [3.1) of APG which
can be expressed as y; = Fg(z,)(x;) where G refers a neural network (e.g., MLP) and generates the

adaptive parameters W; € RV *M by the input-aware condition z; € R”. However, the basic model
suffers from two problems: (1) inefficient in time and memory. Directly generating the weight matrix
W, of a deep CTR model needs O(NMD) cost in computation and memory storage, which is D
times the cost in a regular deep CTR model and is costly especially for a web-scale application where
N, M are usually set as a large value (e.g., N=M=1,000). The empirical results (Section4.4) also
show the basic model needs an extra 111X training time and 31 x memory usage. (2) sub-effective in
pattern learning. The parameter generation process is totally dependent on the condition z;, which
may only capture the custom patterns and ignore the common patterns which contribute to understand
users’ behaviors (see Figure[I] (b)), leading to sub-effective pattern learning.

Then, we extend the above basic model to an efficient and effective version of APG: (1) For the
efficiency, motivated by the low-rank methods [[16} [1]] which show that the weight matrix resides on
a low intrinsic dimension, we parameterize the target weight matrix W; as the production of three
low-rank matrices U;S;V; where U; € RVXK 'V, ¢ REXM |G, ¢ REXE and K < min(M, N).
In addition, the decomposed feed-forwarding is proposed to avoid the heavy computation of the
weight matrix W, reconstruction. Then we further take the center matrix S; as the specific parameters
which are dynamically generated to capture the custom patterns and the rest two matrices U, V
as the shared parameters which are randomly initialized and shared across instances to capture
common patterns. In this way, the complexity of generating the specific parameters can be easily
controlled by setting a small K. As a result, APG achieves O(KKD+NK+MK+KK) time complexity
and O(KKD+NK+MK) memory complexity compared to that both have O(NM) in a regular deep
CTR model. We empirically find APG can speed up the training time by 38.7% and reduce memory
usage by 96.6% relative to a regular deep CTR model (Section|4.4). (2) For the effectiveness, apart
from the natural effectiveness of APG in custom pattern learning, to model the common pattern,
the shared weights U and V are considered in the adaptive parameter generation. Then we further
extend U and V to an over parameterization version which enriches the model capacity without
any additional memory and time cost during inference. Besides, we also find there exists inherent
similarity between different generated .S; which implicitly model the common information (Section

4.6).

In summary, the contributions of this paper are presented as follows: (1) We propose a new learning
paradigm in deep CTR models where the model parameters are input-aware and dynamically gen-
erated to boost the representation power. It is orthogonal to many prior methods and is a universal
module that can be easily applied in most existing deep CTR models. (2) We present APG which
generates the adaptive parameters in an efficient and effective way, and theoretically analyze the

3For simplicity, in this paper, we mainly discuss the weight matrix 1. Our method can also be easily applied
to the parameters of other modules (e.g., transformer, attention network, etc) in deep CTR models since most of
them can be regarded as a variety of MLP with a set of weight matrices [35].



computation and memory complexity. (3) Extensive experimental evaluation results demonstrate that
the proposed method is a universal module and can improve the performance of most of the existing
deep CTR models. we also provide a systematic evaluation of APG in terms of training time and
memory consumption. Finally, we have developed APG in the industrial sponsored search system
and achieved 3% CTR gain and 1% RPM gain respectively.

2 Related Work

Deep CTR Models. A traditional CTR prediction method usually adopts a deep neural network
to capture the complex relations between users and items. Most of them focus on (1) introducing
abundant useful informations [37, 22, 13} |11} 136, 130] to improve the model understanding, (2) de-
signing advanced architecture [4,9, 31} 114} 26] to achieve better performance. All of them adopt a
static parameters manner which limits the model capacity of these methods, leading to sub-optimal
performance

Coarse-grained Parameter Allocating. There are some research areas that bring a coarse-grained
parameter allocating strategy that may be related to our goals, including multi-domain learning
[25} [15]] and multi-task learning [[19, 21]. Both of them maintain and allocate different parameters
to different domains or tasks manually. However, such a coarse-grained parameter allocating can
hardly be extended to a fine-grained (e.g., user, item, or instances sensitive) manner. It not only
costs too much memory to maintain and store a large number of parameters when considering the
fine-grained modeling but also lacks flexibility and generalization since the parameter allocation is
manually pre-defined. We also conduct experiments to compare this kind of methods (Section|4.5).

Dynamic Deep Neural Networks. Our method is related to recent works of dynamic neural networks
used in computer vision and natural language processing, in which the model parameters [13} 32,
7,123, 110} 20, 29]] and architecture [[17, 34] can be dynamically changed. In our paper, we take the
first step to bring the idea about dynamic networks into deep CTR models and develop it in real
applications where the efficiency in computation and memory is extremely needed and the common
and custom pattern learning are also required.

3 Method

In this paper, we denote scalars, vectors and tensors with lower-case (or upper-case), bold lower-case,
and bold upper-case letters, e.g., n (or V), x, X, respectively.

3.1 Basic Model

In this section, we introduce the basic version of APG. Generally speaking, the basic idea of APG is
to dynamically generate parameters W; by different condition z;, i.e., W; = G(z;) where G refers to
the adaptive parameter generation network. Then the generated parameters are applied to the deep
CTR models, i.e., y; = Fg(z,) (z;). Next, we present (1) how to design the condition z; for different
instance 4 and (2) how to implement G.

3.1.1 Condition Design

In this paper, we propose three kinds of strategies (including group-wise, mix-wise, and self-wise) to
design different kinds of z;.

Group-wise. The group-wise strategy tries to generate different parameters depending on different
instance groups. The purpose is that, sometimes, the instances can be divided into different groups [2]
and instances in the same group may have similar patterns. Thus z; is the representation identifying
different groups. An example can be found in Appendix

Mix-wise. To further enrich the expression power and flexibility of the adaptive parameters, a
mix-wise strategy is designed to take multiple conditions into consideration. Specifically, given k
condition embeddings {z] € R%|j € {0,1,..,k — 1}} of the instance i, we propose two aggregation
policies to consider different conditions at the same time: (1) Input Aggregation. This policy firstly
aggregates different condition embeddings and then feeds the aggregated embeddings into APG to
obtain the mix-wise based parameters. The aggregation functions can be (but are not limited to):



K<P

K <min(N, M)
i pxi| KK x
| NxP

: ; KxK KxM KxK KxM Y;
NxM NxM PNk | ONxK
(a) Regular ==>(b) Basic Model (c) Low-rank (d) Adding shared (e) Adding over parameterization.
parameterization. parameters
| Specific parameter | Shared parameter

Figure 2: The comparison of different versions of APG.

Concatenation, Mean, and Attention. (2) Output Aggregation This policy firstly feeds different zf into
different APG and obtains the corresponding parameters W respectively. Then the aggregation is

applied to these adaptive parameters W . Similarly, the aggregation function includes Concatenation,
Mean, and Attention. Examples can be found in Appendix [A.2]

Self-wise. The above two strategies need additional prior knowledge to generate parameters. Self-
wise strategy tries to use a simple and easily obtained knowledge (i.e., self-knowledge) to guide
parameters generation, i.e., the network parameters are generated by their own input. For example,
for the 0-th hidden layer of a deep CTR model, we can set z; = ;. For [-th hidden layer, z; = ht—1
where h!~1 is the input of the [-th hidden layer.

3.1.2 Parameters Generation

After obtaining the conditions, we adopt a multilayer perceptrorﬂ to generate parameters depending
on these conditions (see Figure (b)), i.e.,

W, = reshape(M LP(z;)) (1)

where W; € RVXM 2, ¢ RP | and the operation reshape refers to reshaping the vectors produced
by the MLP into a matrix form. Then a deep CTR model with APG can be expressed as:

yi = o(Wix;) 2

where o is the activation function. Here we take a deep CTR model with an MLP layer as an example,
and other deep CTR models can also be easily extended since most of them can be regarded as a
variety of MLP with a set of weight matrices [35]].

3.2 Effective and Efficient Adaptive Parameter Generation Network

As introduced in Section [1] the above basic model has
two problems: (1) inefficient in time and memory and (2)
sub-effective in pattern learning. To address the above two : i
problems, we propose some extensions including low-rank L) (o] S (V- [v
parameterization, decomposed feed-forwarding, parameter ~ '"Stfnce i Tt
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cess of the low-rank methods [16} |1]] which have demon-

strated that strong performance can be achieved by op- Figure 3: The framework of APG. For
timizing a task in a low-rank subspace, we hypothesize simplicity, the process of decomposed
that the adaptive parameters also have a low “intrinsic feed-forwarding is omitted in this figure.
rank”. To this end, we propose to parameterize the

weight matrix W; € RY*M a5 a low-rank matrix, which is the product of three sub-matrices
U, € RVXEK G, ¢ REXK v, ¢ REXM and the rank K < min(N, M) (see Figure |Z ©)).
Formally, the weight generation process can be expressed as:

U;, Si, Vi = reshape(MLP(z:)) 3)

“In this paper, we take MLP as an example, and other implementations of G can also be considered.
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Figure 4: An example of the decomposed feed- Figure 5: An example of over parameterization.
forwarding.

Intuitively, we can set a small value of K to control the time and memory cost. Meanwhile,
ignoring the substantial storage and computation cost, K can also be set to a higher value to
enlarge the adaptive parameter space (see detailed discussion in Appendix [E). Overall, through the
low-rank parameterization, we can significantly reduce dimensionality in the parameter space, i.e.,
K < min(N, M), to enable a more compact model. As a result, the computation complexity of
the specific parameter generation process can be reduced to O((NK+MK+KK)D) (see Table[T). The
memory cost is also reduced to O((NK+MK+KK)D) (see Table|T).

Decomposed Feed-forwarding. After low-rank parameterization, the Eq[2|can be written as
yi = o(Wix;) = o(U;S; Vi)z,) = o(U;(S;(Viz,))) “)

Here instead of directly reconstructing the weight matrix W, by the sub-matrix production, we design
a decomposed feed-forwarding and apply @; to each sub-matrix sequentially (see Figure[d). Such a de-
sign helps us avoid the heavy computation of the sub-matrix production which costs O(NKK+NMK).
Actually, this design benefits from the low-rank parameterization which naturally supports the decom-
posed feed-forwarding. Since the computation complexity in Eq[d]is O(NK+KK+MK), the total time
cost of a deep CTR model with APG per layer is reduced to O((NK+MK+KK)(D+1)) (see Table E])

Parameter sharing. In this section, we present our common pattern modeling strategy. Thanks to
decomposing the weight matrix into U, S;, and V, it allows us to be more flexible. Consequently,
we divide these three matrices into (1) specific parameters that capture custom patterns from different
instances; (2) shared parameters that are shared across instances to characterize the common patterns.
Specifically, we define S; as the specific parameters since the matrix scale is totally controlled by K
and is more efficient for the generation process. U and V' are regarded as the shared parameters (see
Figure[2](d)). Then we can rewrite Eq [3|and 4] as:

S; = reshape(MLP(z;)) ®)
yi = o(U(Si(Vi))) (6)

Furthermore, such a design also contributes the efficiency. Since the size of the generated specific
parameter is reduced to K x K, the computation complexity of the specific parameter generation
can be further reduced to O(KKD) in Eq[5, and the total time cost of a deep CTR model with
APG is reduced to O(KKD+NK+MK+KK) (see Table[I). Meanwhile the memory cost is reduced
to O(KKD+NK+MK) where NK and MK refers to the storage of the shared parameters U and V
respectively (see Table|[T).

Over Parameterization Compared with the shared weight matrix W € RN*M in a regular deep

CTR model, U and V' in APG can be hardly scaled to large matrices due to the efficiency constraint
with K < min(N, M), leading to a possible performance drop. To address this problem and further
enlarge the model capacity, we follow the idea about the over parameterization [1} 5] to enrich the
number of the shared parameters (see Figure[2](e)). Specifically, we replace shared parameters in Eq
6 with two large matrices, i.e.,

U=UU", v=vivr @)
where U' € RV*P U™ ¢ RPXE Vi ¢ REXP yr ¢ RPXM and P > K. Although U (or V) is
exactly equal to U'U" (or V!V™) at the mathematical perspective, replacing V' with V!V" can
contribute into two folds: (1) Since P > K, more shared parameters are introduced to enlarge

the model capacity [5}6]; (2) The form as the multiple matrix production can result in an implicit
regularization and thus enhance generalization [[1]].

No Additional Inference Latency and Memory Cost. During the training phase, we can set P to a large
value to enlarge the model representation power. Remarkably, when P > max (N, M), the shared



Table 1: The computation and memory complexity per layer of different versions of APG. SPG refers
to the time or memory cost in the process of specific parameter generation. R-Wi is the time cost
to reconstruct W;. FF refers to the time cost in the feed-forwarding process of a regular deep CTR
model. SPS refers to the memory cost to store the shared parameters. The total computation cost
is the sum of SPG, R-Wi, and FF. The total memory cost is the sum of SPG and SPS. Since over
parameterization dose not introduce any additional time cost, it is not depicted here.

Computation complexity per layer Memory complexity per layer

Versions ‘

\
| SPG R-Wi FF Total Cost | SPG SPS Total Cost
Wa, | - - O(NM) O(NM) | - O(NM) O(NM)
Wi, | O(NMD) - O(NM) O(NMD+NM) | O(NMD) - O(NMD)
(UiS;Vi)x: | O(NK+MK+KK)D) ~ O(NKK+NMK) O(NM) O((NK+MK+KK)D+NKK+NMK+NM) | O(NK+MK+KK)D) - O((NK+MK+KK)D)
U,(Si(Viz,)) | O((NK+MK+KK)D) - O(NK+MK+KK) O((NK+MK+KK)(D+1)) | O(NK+MK+KK)D) - O((NK+MK+KK)D)
U(Si(Va:)) | O(KKD) - O(NK+MK+KK) O(KKD+NK+MK+KK) | O(KKD) O(NK+MK) ~ O(KKD+NK+MK)

parameter space can be larger than that in a regular deep CTR model. During the inference phase,
we explicitly pre-compute and store V', U, and use these two matrices for inference (see Figure[5).
Critically, this guarantees that we can introduce abundantly shared parameters without any additional
latency and memory cost during the inference phase.

3.3 Complexity

In this section, we detailedly analyze the proposed model complexity including the memory and
computation complexity during the inference phase. For analysis, the parameters generation network
is implemented as a single perceptron layer, and the per layer costs in a regular deep CTR model and
an adaptive deep CTR model are compared. Summarization can be found in Table[T}

Memory Complexity. For a regular deep CTR model, the memory cost is O(NM) per layer, i.e.,
storing the shared weight matrix. For APG, the memory cost comes from two parts: (1) The memory
cost of generating S; in Eq[5)is O(KKD); (2) The shared parameters U, V' cost O((N + M)K) during
the inference phase. Then the total memory complexity of APG is O(KKD+NK+MK) per layer.

Computation Complexity. A regular deep CTR model needs O(NM) per layer for the feed-forward
computation. APG needs O(KKD) in Eq[5 to calculate the specific parameters. Meanwhile, the
feed-forwarding computation of a deep CTR model is O(NK+KK+MK) by the decomposed feed-
forwarding in Eq 8. In total, the computation complexity is O(KKD+NK+KK+MK).

In summary, APG has O(KKD+NK+MK) in memory cost and O(KKD+NK+KK+MK) in compu-
tation cost. Since K < min(N, M) and D is usually set smaller than N, M, the memory and
computation cost of APG can even be much smaller than that (i.e., O(NM)) in a regular deep CTR
model. The experimental results in Section4.4]also show the efficiency of APG.

4 Experiments
4.1 Experimental Settings

The detailed settings including datasets, baselines, and training details are presented in Appendix

Datasets. Four real-world datasets are used including Amazon, MovieLens, IAAC, and IndusData.
The first three are public datasets and the last is an industrial dataset.

Baselines. Here, we compare our method with two kinds of methods (1) Existing CTR predic-
tion methods include WDL[4]], PNN[24], FIBINET[12]], DIFM[18], DeepFM[9], DCN|[31]], and
Autolnt[27]; (2) Coarse-grained parameter allocating methods. multi-task learning: MMOoE [19] and
multi-domain learning: Star [25]].

Training Details. See Appendix [B.3 for the detailed introduction.

4.2 Performance Evaluation with Existing Deep CTR Models

Results on public datasets. We first apply APG on CTR prediction tasks on public datasets. APG is
a universal module and can be applied to most of the existing deep CTR models. Hence, to evaluate
the performance of APG, we apply APG to various existing deep CTR models, and report the results
of the original model (denoted as Base) and the model with APG. Here, AUC (%) [8]] score is reported
as the metric P} The results are shown in Table |Z We can find that with the help of APG, all of

>Note 0.1% absolute AUC gain is regarded as significant for the CTR task [37} 28] |4].



Table 2: The AUC (%) results of Click-Through Rate (CTR) prediction on different datasets. Note
Base refers to the original results of the corresponding methods and Base+APG refers to the results
with the help of APG. Ave is the average results across all cases. A refers the improvement of
Base+APG compared to Base.

Data | Method | WDL | PNN | FIBINET | DIFM | DeepFM | DCN | Autolnt | Ave
Base 7921 | 795 79.78 79.84 793 7929 | 7936 | 79.46
MovieLens | Base+APG | 7973 | 79.67 79.82 79.94 79.60 7962 | 79.64 | 79.70
A +039 | +0.17 +0.04 +0.10 +030 | 4033 | 4028 | +0.24
Base 69.15 | 69.16 68.88 69.17 69.1 6898 | 6896 | 69.06
Amazon Base+APG | 69.43 | 69.37 69.19 69.23 69.43 6942 | 6938 | 69.34
A +022 | 4021 +0.31 +0.06 +033 | 4044 | +042 0.28
Base 65.17 | 653 65.15 65.76 65.64 6478 | 6499 | 6526
IAAC Base+APG | 6594 | 6587 66.15 66.42 66.17 6639 | 6621 | 6615
A +0.77 | +0.57 +1.0 +0.66 +0.53 | 4161 | +1.22 | +091

Table 3: The settings of different APG versions. ~ Table 4: The AUC results of the evaluation
of different versions of APG. A refers the

| Version | Annotation difference relative to Base.

Base | wa, | WDL [4] as the baseline and the backbone

MovieL A TAAC | Ave(A Ave(A
vl \ Wz, ‘ Basic model (Section | MovieLens | Amazon | C | Ave(AUC) | Ave(d)

= Base | 7921 | 6915 | 65.17 | 7L18 | —

V2 | (WUisVia | + Low-rank parameterization V| sl | ®933 | 652 | 7145 | %027
V3| s | +Decomposed feed-forwarding V2| 1949 | 6924 | 6561 | 7145 | +027
vd | Usi(va) | + Parameter sharing vd | 7961 | 6936 | 6578 | 7158 | +0.40
V5 | @Ur)Si((v'V)e) | + Over parameterization VS| 7973 | 6943 | 6594 | 7170 | +0.52

the methods achieve a significant improvement on all datasets. For example, the gains of DCN is
0.33% ~ 1.61% (other methods also can obtain similar improvement). It demonstrates that (1) giving
adaptive parameters for models can enrich the parameter space and learn more useful patterns for
different instances; (2) the proposed APG is a universal framework that can boost the performance
of many other methods. Such nice property encourages APG to be applied to various scenarios and
various methods.

Results on industrial application. We also develop APG in the industrial sponsored search system,
and achieve 0.2% AUC gain on the industrial dataset, 3% CTR gain and 1% RPM (Revenue Per Mile)
gain during online A/B test. Detailed analysis are presented in Appendix [F|

4.3 Effectiveness Evaluation

In this section, we implement various versions of APG (see Table [3) and conduct experiments to
detailedly evaluate the effectiveness of APG. The AUC results are reported in Table ] Note since the
design of decomposed feed-forwarding does not influence the AUC performance of APG, we do not
compare version v3 in this section.

The impact of the basic model. Compared with the base, v1 achieves significant improvements on
AUC results overall datasets. It demonstrates the effectiveness to introduce specific parameters to
give a custom understanding of different instances.

The impact of the low-rank parameterization. Since the parameter matrix resides on a low intrinsic
dimension [[16} 1], it encourages a low-performance drop when adopting a low-rank based method to
reduce the computation and memory cost. Considering the effectiveness, v1 and v2 do not provide
much performance difference. Both of them achieve high performance and perform much better than
Base. More importantly, by low-rank parameterization, we can generate adaptive parameters in a
more efficient way (see Section @] for details).

The impact of the parameter sharing. In APG, we introduce the shared parameters to characterize
common patterns. Comparing the performance of versions v2, and v4 can further improve the
performance by introducing the shared parameters, demonstrating the effectiveness of APG in
common pattern modeling. Furthermore, sharing parameter also contributes to the efficiency, due to
fewer specific parameters generated (see Section [4.4).



Table 5: The inference time and memory cost for different versions of APG. A is the relative
difference with respect to Base.

Metho d‘ [393,64,32,16] | [393,128,64,32] | [393,256,128,64] | [393,512,256,128]  [393,1024,512,256]

| Cost A | Cost A | Cost A | Cost A | Cost A
Time (s)
Base | 452  — | 527 — | 58 — | 712 — | 1304 —
vl ‘ 16.52  265.5% ‘ 5031  854.6% ‘ 126.27 2043.8% ‘ 420.33  5803.5% ‘ 1462.78 11117.6%
v2 ‘ 13.83  206.0% ‘ 39.53  682.8% ‘ 90.43  1435.3% ‘ 363.07 4999.3% ‘ 1065.35  8069.9%
v3 ‘ 6.31 39.6% ‘ 5.42 7.3% ‘ 5.71 -3.1% ‘ 6.31 -11.4% ‘ 11.23 -13.9%
v4 ‘ 4.49 -0.7% ‘ 4.78 -5.3% ‘ 5.46 -7.3% ‘ 5.89 -17.3% ‘ 7.99 -38.7%
Memory (M)

Base | 050 — [ 08  — | 193 — | 46l — | 1201 —
vl ‘ 11.21  2160.1% ‘ 2420 2613.0% ‘ 56.32  2818.1% ‘ 144.84 3041.9% ‘ 419.11 3146.4%
v2 ‘ 0.74 50.0% ‘ 091 1.7% ‘ 1.21 -37.3% ‘ 1.98 -57.0% ‘ 3.22 -75.1%
v4 ‘ 0.27 -45.0% ‘ 0.29 -68.0% ‘ 0.31 -84.1% ‘ 0.35 -92.4% ‘ 0.44 -96.6%

The impact of the over parameterization. Comparing the performance with or without over
parameterization (i.e., v4 vs. v5), it shows that v5 performs better than v4 in all cases, which indicates
adding more shared parameters can enrich the model capacity and lead to better performance.

In addition, we also give a detailed analysis about the impact of the condition design in Appendix [D
and|[C] and the impact of the hyper-parameters in Appendix [E} Furthermore, the influence to different
frequency instances are also discussed in Appendix [F]

4.4 Efficiency Evaluation

In this section, we evaluate the time and memory efficiency of our proposed method. To this end,
we train different versions (see Table E) of APG on the dataset IAAC and analyze the influence of
each extension introduced in Section[3.2] Since over parameterization does not introduce any cost,
it is not considered here. The decomposed feed-forwarding does not bring extra memory cost, it is
not discussed in the memory usage. For all versions, we set K = 4 and the backbone (also the base)
is WDL with 3 hidden layers. We gradually increase the number of hidden units from [64,32,16]
to [1024,512,256] with a fixed input_shape=393 to evaluate the memory and time cost in different
model scales. In Table we report the inference time per epoch, memory usageﬁ of each version.

For the basic model (v1), although it achieves high performance (see Table[d), it is time expensive
(265.5% ~ 11117.6% relative to Base) and memory costly (2160.1% ~ 3146.6% relative to Base).
Such an inefficient model can hardly be accepted in web-scale applications.

When introducing the low-rank parameterization (see v2 in Table[5), compared to the basic model,
the inefficiency problem in v2 is addressed across all cases. Moreover, compared with Base, v1 can
reduce memory usage (e.g., -75.1% in the large scale model). Note when we set N, M to a small
value (e.g., [64,32,16] or [128,64,32]), the memory cost, theoretically in O((NK+MK)D), is more
sensitive with K and D, leading to a little increasement. For the time efficiency, the contribution
of the low-rank parameterization can be summarized as follows: (1) Although v2 still needs a high
time requirement due to the weight matrix W, reconstruction, compared with v1, the overall time
cost of v2 is decreased. (2) The low-rank parameterization naturally contributes to the decomposed
feed-forwarding which plays a key role in efficient learning.

For version v3 which adopts decomposed feed-forwarding, it is free from the high computation of
reconstructing the weight matrix W; and achieves great improvement by -13.9% in time cost when
considering a large scale model. In addition, since v3 does not introduce any extra memory cost, it
has the same memory usage as v2. Note in the small model, the computation is far from the GPU
bottleneck and time cost is insensitive with GFlops, leading to less improvement.

8Since in this paper we mainly focus on the improvement of the hidden layers, we only count the memory
cost of these hidden layers and the other parts (e.g., embedding layers) are not included here.



Table 6: The comparison with coarse-grained parameter allocating methods. Mem refers to the
memory cost (M) of the hidden layers.

| MovieLens | Amazon | TIAAC

| Setting | AUC | Mem | Setting | AUC | Mem | Setting | AUC | Mem
Base | — | 7921 | 1.29 | - | 69.15 | 1.51 | — | 65.17 | 1.93
Base+MMOoE;, | movie 79.31 | 12342 item 69.17 | 31593 item 65.22 | 33297
Base+MMOoE., | movie gender | 79.28 | 32.91 item category | 69.14 | 5.78 item brand | 65.20 | 70.53
Base+Stary, movie 79.28 | 3784.23 | item 69.20 | 11034.02 | item 65.36 | 13753.71
Base+Star., movie gender | 79.25 | 311.56 item category | 69.20 | 42.84 item brand | 65.28 | 2866.88
Base+APGy, movie 79.58 | 0.24 item 69.35 | 0.26 item 65.76 | 0.38
Base+APG., movie gender | 79.46 | 0.24 item category | 69.30 | 0.26 item brand | 65.59 | 0.38

When introducing the sharing parameters, v4 only needs to generate a small weight matrix, where
time and memory cost (i.e., O(KKD)) in the generation process are free from the scales of a model.
Thus, the memory requirement of v4 is best among all cases, reducing memory by -45% to -96.6%
relative to Base. v4 also speeds up inference time substantially, by -0.7% to -38.7% relative to Base.
It also supports the theoretical complexity analysis in Section [3.3]

Overall, such nice properties in terms of high performance, efficient memory usage, and low time
requirement of our proposed model are welcomed for web-scale applications.

4.5 Comparison with coarse-grained parameter allocating methods

In this section, we compare the performance with coarse-grained parameter allocating methods
(CGPMs), including Star and MMOoE. Specifically, we conduct two settings (see Table E]), i.e., coarse-
grained (cg) and fine-grained (fg), for each method. For the former, methods adopt coarse-grained
parameter modeling strategies, e.g., developing different parameters for different movie genders in
MovieLens. For the latter, methods adopt fine-grained parameter modeling strategies, e.g., developing
different parameters for different movies in MovieLens. The results are presented in Table[6] We can
find, compared with Star and MMoE, APG shows superiority in efficiency and effectiveness. The
reasons are that (1) the specific parameters of APG are dynamically generated on-the-fly, without any
need to store these specific parameters, and the architecture of APG is also designed efficiently to
further save memory. For Star and MMOoE, they have to store these specific parameters due to the
manually allocating strategies used in CGPMs. Even worse, when comes to a fine-grained setting,
more parameters are maintained. (2) APG has better generalization than Star and MMOoE, leading to
better performance. Actually, APG adopts parameter generation manner which provides a potential
opportunity for generalization, and it has the ability to imply the inherent similarity between different
specific parameters (see Section for additional experiments). Especially for the fine-grained
setting where there may be a lack of enough instances to train the specific parameters, the inherent
connections among different specific parameters are helpful for parameter learning.

4.6 Visualization

In this section, we visualize the generated specific pa-
rameters. Specifically, we take the group-wise strategy on oo
Amazon as an example. The item category is set as the con- ~ *
dition, and there is a total of 10 different categories. Then
we plot the generated specific parameters (i.e., S;) intoa  owo
2-D space by PCA [33]. The visualization is presented in =~ -
Figure[6] Each point refers to the specific parameters gen- "}
erated for one specific category. Interestingly, the observed i o o o W o a0
groupings (i.e, in the same dashed circle) correspond to o
similar categories. This shows that the learned specific Figure 6: The visualization of the gener-
parameters by APG are meaningful and can capture the ated specific parameters.

relations among different specific parameters implicitly.
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5 Conclusion

In this paper, we propose an efficient, effective, and universal module to adaptively generate parame-
ters for different instances. In this way, the model can carefully characterize the patterns for different
instances by adopting different parameters. Experimental results show that with the help of APG,
all of the existing deep CTR models can make great improvements, which also encourages a wide
application for APG. Furthermore, the effectiveness and efficiency of APG are also analyzed in detail.
Currently, APG requires users to set some hyper-parameters, e.g., condition strategies, K, P, and etc.
In the future, we will attempt to automatically implement APG with different settings for different
situations.
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