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Abstract

Genetic screens mediated via CRISPR-Cas9 combined with high-content readouts1

have emerged as powerful tools for biological discovery. However, computational2

analyses of these screens come with additional challenges beyond those found with3

standard scRNA-seq analyses. For example, perturbation-induced variations of4

interest may be subtle and masked by other dominant source of variation shared with5

controls, and variable guide efficiency results in some cells not undergoing genetic6

perturbation despite expressing a guide RNA. While a number of methods have been7

developed to address the former problem by explicitly disentangling perturbation-8

induced variations from those shared with controls, less attention has been paid9

to the latter problem of noisy perturbation labels. To address this issue, here we10

propose ContrastiveVI+, a generative modeling framework that both disentangles11

perturbation-induced from non-perturbation-related variations while also inferring12

whether cells truly underwent genomic edits. Applied to three large-scale Perturb-13

seq datasets, we find that ContrastiveVI+ better recovers known perturbation-14

induced variations compared to previous methods while successfully identifying15

cells that escaped the functional consequences of guide RNA expression.16

1 Introduction17

Advances in single-cell genomics technologies have enabled the profiling of molecular modalities18

across the central dogma at an unprecedented resolution. Moreover, recently developed genetic19

screening protocols combining CRISPR-Cas9-mediated genome editing with high-content single-cell20

readouts, such as Perturb-seq [1], hold major promise for identifying the genetic bases of functional21

phenotypes. Such screens are often conducted in a pooled fashion [2], in which a CRISPR guide22

RNA (gRNA) library is introduced in bulk to a cell population. Individual cells subsequently receive23

different gRNAs corresponding to different gene perturbations, and the specific perturbation induced24

in a cell can be determined by recovering the barcode sequence corresponding to an individual gRNA.25

Despite the enormous potential of high-content genetic screens, computational analyses of these26

datasets are unfortunately beset by numerous challenges. Beyond confounding technical sources27

of noise present in scRNA-seq data generally, such as differences in sequencing depth and over-28

dispersion in RNA counts, analyses of pooled CRISPR datasets present an additional unique set29

of difficulties. For example, perturbation-induced variations in the data may be relatively subtle30

compared to those due to other biological processes, such as cell-cycle-related variations or those31

due to cellular stress responses [3]. Thus, standard single-cell analysis techniques, such as principal32

component analysis or generative modeling approaches (e.g. scVI [4]) may fail to capture perturbation33

effects, as these methods prioritize capturing factors with the highest variance across an entire dataset.34

To work around this issue, a line of recent work [5, 6, 7, 8] has developed so-called contrastive latent35

variable models (cLVMs) based on the principle of contrastive analysis [9]. Such models explicitly36
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disentangle perturbation-induced variations into a set of salient latent variables while factors of37

variation present in both control and perturbed samples are segregated into a second set of background38

variables. While cLVMs have shown promise for analyzing pooled CRISPR datasets [5, 6], their39

assumed generative processes disagree with the structure of pooled genetic screens in two important40

ways. First, while pooled screens measure the effects of many perturbations in a single experiment,41

standard cLVM models assume a single prior distribution over the salient variables for all perturbed42

samples. Such models thus may fail to discern perturbations with small effect sizes due to shrinkage43

toward the shared prior. Second, variable guide efficiency results in a subset of cells escaping the44

effects of perturbation and acting as control cells despite being labeled with a perturbation [3]. Thus,45

even when restricted to a single perturbation, the assumption of a single unimodal prior leads to46

nontrivial model misspecification.47

To resolve these issues, here we introduce ContrastiveVI+, an extension of ContrastiveVI, a previously48

proposed cLVM for scRNA-seq data, that explicitly accounts for the additional structure in pooled49

genetic screening datasets. The remainder of this work proceeds as follows. In Section 2 we review50

cLVMs and related work. We then proceed to describe our proposed generative process (Section 3)51

and our corresponding inference procedure (Section 4). In Section 5 we apply our method to three52

pooled genetic screening datasets with scRNA-seq readouts, and we find that ContrastiveVI+ learns53

representations that exhibit better agreement with prior biological knowledge compared to baseline54

methods while also successfully identifying cells that escaped perturbation.55

2 Background: Contrastive Latent Variable Models56

Recall that the goal of CA is to disentangle novel perturbation-induced factors of variation from57

those shared with control samples. To formalize this idea, a number of recent works [7, 8, 6, 5]58

have developed contrastive latent variable models (cLVMs) using the following framework. Letting59

xi denote a perturbed sample (e.g. a cell infected with a non-control gRNA), we assume that xi is60

generated from a random process parameterized by θ and conditioned on two sets of latent variables61

zi and ti, i.e.,62

xi ∼ pθ(xi | zi, ti)
Here ti denotes a set of salient latent variables capturing novel perturbation-induced variations,63

while zi denotes a set of background latent variables capturing variations shared across control and64

perturbed samples and which are irrelevant our analysis. Without additional constraints, standard65

latent variable inference procedures are unlikely to naturally disentangle these two sets of latent66

variables. To address this issue, we leverage our control samples to impose an inductive bias on our67

model that implicitly encourages disentanglement. In particular, for a control sample x∅
j we assume68

x∅
j ∼ pθ(x

∅
j | zj , 0).

In words, we assume that control samples are generated from the same process pθ, but with the69

salient variables fixed at 0 to represent their absence. Equipped with this inductive bias, we may then70

apply standard inference techniques with appropriate modifications to learn these disentangled sets71

of variables, and previous works have leveraged this idea to explore high-content pooled CRISPR72

screening data with linear cLVMs [5] and non-linear cLVMs based on deep neural networks [6]. Yet,73

as discussed previously, standard cLVMs may not be ideal for modeling pooled CRISPR screens74

due to the assumption of a single unimodal prior over the salient latent variables shared across all75

perturbations. To resolve this issue, in the next section we propose a new generative model that76

extends the standard cLVM framework with a richer prior over the salient variables to reflect the77

additional structure present in pooled genetic screening datasets.78

3 The ContrastiveVI+ Probabilistic Model79

For a given cell i labelled with a non-control guide RNA ci, let80

zi ∼ N (0, Ip)

denote a low-dimensional set of latent variables capturing factors of variation found in both perturbed81

cells as well as controls. Next, let82

yi ∼ Bern(α)
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Figure 1: Graphical representation of the ContrastiveVI+ generative process for cells with non-control
guides (left) and control guides (right).

denote a binary value indicating whether a cell expressing a gRNA successfully underwent a cor-83

responding genetic perturbation (yi = 1) or failed to do so (yi = 0). For all of the experiments84

presented in this work we placed an uninformative prior on yi with α = 0.5. Conditioned on this85

value and the perturbation label ci, we then draw86

ti | yi, ci ∼ yi · N (µc, Iq) + (1− yi) · N (µ∅, Iq).

That is, if a cell successfully underwent a genetic perturbation, we assume that its salient latent87

representation is drawn from a Gaussian centered at a perturbation-specific mean µc. For all results88

presented in this manuscript, we set our perturbation labels ci as the gene targeted by the guide in cell89

i; however, in principle other labeling schemes to be used (e.g. ci could denote the specific species of90

gRNA when multiple gRNAs targeting the same gene are used in an experiment). On the other hand,91

if the cell was not perturbed, we assume that its salient representation was drawn from a Gaussian92

with mean µ∅ shared across all perturbations.93

Letting fη denote a neural network with a softmax non-linearity as the final layer, we then compute94

ρi = fη(zi, ti).

Analogous to scVI [4], this vector on the probability simplex represents the expected normalized95

expression frequency of each gene g. For a gene g we then assume that the observed gene expression96

xig in cell i is drawn97

xig ∼ ZINB(ℓiρig, θg, fν(zi, ti)),

where ZINB denotes the zero-inflated negative binomial distribution, ℓi is the observed library size98

for cell i, θg is a gene-specific inverse dispersion parameter, and fν is a neural network whose outputs99

are interpreted as dropout probabilities.100

For a cell j infected with a control gRNA, we assume the same generative process but with yj fixed at101

0. Thus, cell j’s salient variables tj are always drawn from a Gaussian centered at µ∅, and the region102

of the salient latent space around µ∅ thus semantically represents the absence of perturbation-induced103

variations. We depict our generative processes for cells with control and non-control gRNAs in104

graphical model form in Fig. 1.105

4 Inference106

Exact posterior inference for our model is intractable, so we instead resort to variational inference107

[10] via auto-encoding variational Bayes [11]. For cells with non-control guides, we assume that our108

variational distribution with parameters ϕ factorizes as follows109

qϕ(zi, ti, yi, | xi, ci) = qϕz
(zi | xi)qϕt

(ti | xi)qϕy
(yi | ti),
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where ϕz , ϕt, and ϕy denote parameters of inference networks for z, t, and y respectively. Here110

q(z | x) and q(t | x) take the form of Gaussian distributions, while q(y | t) is a Bernoulli distribution.111

Our corresponding variational bound is then (derivation in Appendix A):112

L(xi) = Eqϕz (zi|xi)qϕt (ti|xi) [pθ(xi | zi, ti)]−DKL(qϕz
(zi | xi) ∥ p(zi))

− Eqϕt (ti|xi)

[
DKL(qϕy (yi | ti) ∥ p(yi))

]
(1)

+ Eqϕt (ti|xi)

 ∑
y′∈{0,1}

qϕy
(y′ | ti) (log p(ti | y′, ci))

− log qϕt
(ti | xi)

 .

For cells with non-targeting control (NTC) guides, we assume an alternative variational distribution113

incorporating our prior knowledge that factorizes as114

qϕNTC
(zj , tj , yj , | xj) = qϕz

(zj | xj)δ{tj = µ∅}δ{yj = 0},
That is, for control cells we assume that tj and yj are fixed at µ∅ and 0, respectively to reflect the115

fact that cells with NTC guides are known to be unperturbed (yj = 0) and that the salient variables116

tj should not capture variations in the observed data for control cells. We also note that the same117

inference parameters ϕz are used as in the non-NTC case. We then derive a corresponding bound118

LNTC(x
∅
j ) = Eqϕz (zj ,|x

∅
j )

[
pθ(x

∅
j , |zj , tj = µ∅)

]
−DKL(qϕz

(zj | x∅
j ) ∥ p(zj)). (2)

By fixing tj = µ∅ for NTC cells during the inference procedure, we ensure that the salient variables119

tj do not capture any sources of variation for cells with NTC guides. Thus, as the recognition network120

parameters ϕz are shared across NTC and non-NTC guide cells, the background variables z are121

implicitly encouraged to recover sources of variation shared across cells from both groups, while122

the salient variables t are then free to recover the additional variations only present in perturbed123

cells. As all cells are assumed to be generated independently, we may then perform inference by124

maximizing the sums of Equations 1 and 2 across all cells via minibatch gradient ascent similar125

to standard cLVMs [7, 5, 6, 8]. Perturbation-specific means µc along with µ∅ are learned as point126

estimates and optimized along with our model’s other parameters.127

While similar implicit schemes have been successfully employed to encourage disentanglement in128

standard cLVMs, in initial experiments we found that additional regularization was required to ensure129

that our inference procedure respected the intended semantics of our more structured generative130

process. First, as the salient space recognition network qϕt
does not learn from cells with NTC guides131

when optimizing Equation 2, we found that qϕy did not reliably associate nonperturbed cells to the132

region of the salient latent space around µ∅. To remedy this issue, we added an additional KL penalty133

to LNTC encouraging NTC cells to map to the null region of the salient space, yielding134

L∗
NTC(x

∅
j ) = LNTC −DKL(q(tj | x∅

j ) ∥ N (µ∅, Iq)). (3)

Second, for datasets with larger numbers of perturbations, we observed that perturbation-induced135

variations were sometimes undesirably captured in the model’s background latent space. To discour-136

age this behavior, we leveraged the maximum mean discrepancy (MMD) [12], a kernel-based test137

statistic for determining whether two groups of samples were drawn from the same distribution. In138

particular, letting Zb denote a minibatch of posterior background latent space samples for cells with139

non-NTC guides and defining Zb
NTC analogously for cells with control guides, we add the penalty140

−λ · ℓMMD(Z
b, Zb

NTC), (4)

where ℓMMD denotes the empirical estimate of the MMD of Gretton et al. [12] and λ controls the141

regularization strength. For all experiments presented in this work, we tuned λ such that the MMD142

penalty was of similar magnitude to the KL regularization terms in our ELBOs, a strategy successfully143

employed in previous work [6]. With this penalty, ContrastiveVI+ ’s background latent space was144

thus explicitly encouraged to capture variations shared across cells with NTC and non-NTC guides.145

Combined with our more structured generative process, ContrastiveVI+’s inference procedure pro-146

vides two major advantages over that of the original ContrastiveVI model. First, our richer prior on147

the salient latent space with perturbation-specific means may allow ContrastiveVI+ to recover subtle148

perturbation-induced effects in the salient latent space that would be shrunk to the shared unimodal149

prior in the standard cLVM setup. Second, post-training our approximate posterior qϕy
(yi | ti) can150

be used to classify cells that escaped perturbation versus those that were successfully perturbed.151
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Figure 2: a-b, UMAP visualizations of PCA (a) applied to data from Papalexi et al. [3] colored by
cell cycle (a) and replicate (b). c-d UMAP visualizations of ContrastiveVI+’s salient latent space
colored by cell cycle (c) and replicate (d). e-f, Entropy of mixing for ContrastiveVI+ and baseline
methods’ representations with respect to cell cycle phase (e) and replicate identity (f).

5 Experiments152

Overview. To evaluate our method, we applied it to three publicly available pooled genetic screening153

datasets [3, 13, 14]. Based on previous analyses, for each of these datasets we have known con-154

founding sources of variation (e.g. cell cycle) and/or known perturbation-induced variations (e.g.155

common gene programs induced by groups of perturbations) that allowed us to assess the quality156

of ContrastiveVI+ ’s learned representations. Moreover, we also used these datasets to assess the157

quality of ContrastiveVI+ ’s predictions of escaping versus perturbed cells. Details regarding the158

preprocessing of these datasets can be found in Appendix B.159

Baselines. For each dataset we benchmarked ContrastiveVI+ against two previously proposed160

methods for exploring perturbation-induced variations in pooled genetic screens. First, we considered161

the original ContrastiveVI model of Weinberger et al. [6] to assess whether our more structured162

generative process could better recover subtle perturbation-induced variations. Second, we considered163

the Mixscape method proposed in Papalexi et al. [3]. Mixscape provides both a procedure for isolating164

perturbation-induced variations, via a nearest-neighbors-based approach for computing so-called165

“perturbation signatures” for each cell, and a procedure for identifying escaping cells. Finally, as a166

naive baseline we also include results from simply applying principal component analysis (PCA) to167

normalized expression levels. Further details on our implementation of ContrastiveVI+ and baseline168

methods can be found in Appendix C.169

5.1 Initial validation of ContrastiveVI+ on a small-scale ECCITE-seq dataset170

We first applied ContrastiveVI+ to data originally presented in Papalexi et al. [3] collected using171

ECCITE-seq [15], a protocol that combines pooled CRISPR screening with single-cell transcriptomic172

as well as surface protein measurements. This dataset was collected from a human leukemia173

monocytic cell line (THP-1) after stimulation with interferon gamma (IFN-γ), with the goal of174

identifying immune checkpoint regulators. In this dataset a total of 25 genes were targeted for175

CRISPR knockout.176
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Figure 3: a-b, UMAP plots of ContrastiveVI and ContrastiveVI+’s salient latent representations
colored by gene target. c, UMAP plot of ContrastiveVI+’s salient latent representations colored by
inferred probability of perturbation. d, PDL1 protein expression for gene perturbations highlighted in
ContrastiveVI+’s salient latent space compared to control cells. e-f, Subset of transcriptomic changes
for STAT2- and SMAD4-perturbed cells identified by ContrastiveVI+.

Beyond variations due to novel perturbation-induced phenotypes, in their original analyses Papalexi177

et al. [3] identified substantial confounding sources of variation shared with control cells due to cell178

cycle phase and batch effects (Fig. 2a-b). We thus began our experiments by assessing ContrastiveVI+179

’s ability to remove these confounding sources of variation in its salient latent space. Qualitatively,180

we found that ContrastiveVI+ ’s salient latent space was indeed invariant to these confounding181

variations (Fig. 2c-d). To quantify ContrastiveVI+ and baseline methods’ performance on this task,182

we computed the entropy of mixing (Appendix D.1) for each method’s representations with respect183

to cell cycle phase and replicate identity. While all methods resulted in better mixing compared to the184

naive PCA baseline, we found that ContrastiveVI and ContrastiveVI+ achieved stronger performance185

on this task for both confounding sources of variation (Fig. 2e-f) compared to Mixscape’s perturbation186

signatures. This result suggests that the nearest-neighbors based approach employed by Mixscape is187

less effective at isolating perturbation-induced variations compared to deep generative models.188

We next investigated whether ContrastiveVI+ ’s richer model could highlight further trends compared189

to ContrastiveVI. We found that both methods (Fig. 3a-b) highlighted a cluster of cells with gRNA’s190

corresponding to known upstream components of the IFN-γ pathway (IFNGR1, IFNGR2, JAK2 and191

STAT1), a cluster of cells with gRNAs corresponding to the downtream IFN-γ mediator IRF1, and192

a third cluster containing containing cells from all perturbations (including non-targeting gRNAs).193

Beyond these clusters, ContrastiveVI+ additionally highlighted clusters of cells expressing gRNAs194

targeting SMAD4, BRD4, and STAT2. Moreover, when inspecting ContrastiveVI+ ’s inferred values of195

y (Fig. 3c), we found that cells in mixed cluster shared with controls were assigned as non-perturbed196

(y ≈ 0) while cells in the non-control clusters were classified as perturbed (y ≈ 1), suggesting that197

ContrastiveVI+ successfully distinguished perturbed versus escaping cells.198

We verified that these clusterings corresponded to meaningful perturbation effects by first inspecting199

PDL1 surface protein expression levels (Fig. 3d) for cells predicted by ContrastiveVI+ as perturbed.200

For most genes, we found corresponding decreases (IFNGR1, IFNGR2, JAK2, STAT1, and IRF1)201

or increases (BRD4, CUL3) in PDL1 expression compared to control cells. Moreover, while STAT2202

and SMAD4 did not affect PDL1 expression, we nevertheless found clear transcriptomic changes203

in cells predicted by ContrastiveVI+ as perturbed compared to controls (Fig. 3e-f). In particlar,204

STAT2-perturbed cells exhibited strong downregulation of interferon-induced genes (e.g. IFI6, ISG15)205
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Figure 4: a-c, UMAP plots of ContrastiveVI+’s salient latent space for data from Replogle et al. [13]
colored by cell cycle phase (a), pathway annotations (b) and inferred probability of perturbation (c).
d, Quantitative assessments of invariance with respect to cell cycle phase (entropy of cell cycle phase
mixing) and capturing of known perturbation-induced variations (pathway ARI) for ContrastiveVI+
and baseline method’s salient representations. e, Change in MMD between cells labeled with gRNAs
targeting a given gene versus cells with non-targeting control guides after filtering with ContrastiveVI+
(y-axis) or Mixscape (x-axis) compared to the MMD without filtering. f, MMD between cells labeled
as escaping by ContrastiveVI+ (y-axis) or Mixscape (x-axis) versus control cells.

while SMAD4-perturbed cells demonstrated downregulation in inflammatory response genes (e.g.206

APOC1, FN1).207

Taken together, these results illustrate that ContrastiveVI+ indeed may highlight additional structure208

in the model’s salient latent space compared to standard cLVMs. Moreover, these results demonstrate209

that our inference procedure can identify cells exhibiting perturbation effects versus escaping cells.210

5.2 Further validation on a larger-scale CRISPRi screen211

We next applied ContrastiveVI+ to analyze data from a CRISPR interference (CRISPRi) Perturb-seq212

dataset presented in Replogle et al. [13]. Following previous work [16, 17], in our experiments213

we considered a subset of perturbations identified as having nontrivial effect sizes and which were214

labeled by the original authors of Replogle et al. [13] as affecting specific biological pathways. In215

total, we retained data from cells with guides targeting 336 genes as well as cells with NTC guides.216

We began our analysis by assessing the quality of ContrastiveVI+’s salient representations. Previous217

analyses of this data [18] have identified cell cycle as a major confounding source of variation in this218

dataset shared with control cells. Thus, we would expect ContrastiveVI+ ’s salient latent space to219

be invariant with respect to cell cycle phase. Moreover, we would expect cells to cluster based on220

the pathway labels assigned to perturbations by [13]. We found that ContrastiveVI+ ’s salient space221

was indeed invariant to cell cycle (Fig. 4a), with clear clusters separating by pathway label (Fig. 4b).222

Moreover, cells from these distinct pathway clusters were inferred as truly perturbed, while cells in223

the remaining cluster mixed across pathways and control cells were inferred as escaping (Fig. 4c).224

To compare ContrastiveVI+ and baselines’ performance on this task, we employed the entropy of225

mixing to measure invariance with respect to cell cycle and used the adjusted rand index (ARI;226

Appendix D.2) to quantify separation based on pathway labels. When computing pathway ARI, for227

ContrastiveVI+ and Mixscape we restricted our attention to cells labeled by these methods as truly228

perturbed to mitigate the impact of escaping cells; for ContrastiveVI we used all cells as this method229
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does not predict perturbed versus escaping cells. We found that ContrastiveVI+ and ContrastiveVI had230

the strongest performance on cell cycle mixing, while ContrastiveVI+ achieved substantially stronger231

performance on the pathway ARI metric compared to baselines. These results further demonstrate232

ContrastiveVI+ ’s superior ability to isolate perturbation-induced variations.233

Given its large number of distinct perturbations, we further used this dataset to benchmark Con-234

trastiveVI+ and Mixscape’s procedures for identifying perturbed versus escaping cells. Intuitively,235

cells classified as perturbed should have substantially different gene expression profiles compared236

to cells with NTC guides. To capture this idea, we used the MMD to measure the distance between237

populations of cells. Specifically, for each gene perturbation we computed the MMD between238

cells labeled with a gRNA targeting that gene versus cells with NTC guides. We then recalculated239

the MMD after filtering to cells labeled by ContrastiveVI+ or Mixscape as perturbed, and finally240

computed the change in MMD with filtering versus without filtering. We present our results for this241

experiment in Fig. 4e. Here a higher change in MMD indicates that cells classified as perturbed242

exhibit stronger differences from control cells and thus represents better performance. We found that243

for a majority of genes ContrastiveVI+ led to larger changes in MMD compared to Mixscape, with244

statistical significance confirmed with a binomial test assuming a null hypothesis of equal chance of245

either method achieving better performance for each gene (p < 1 · 10−5).246

In isolation, such a metric could be maximized by only retaining cells with the most extreme changes247

compared to controls and erroneously labeling many truly-perturbed cells as escaping. To counteract248

this potential pathology, we thus also assessed whether cells labeled as escaping perturbation by each249

method were indeed similar to cells with NTC guides. To do so, we computed the MMD between250

cells labeled as escaping by each method versus cells with NTC guides, and we present our results in251

Fig. 4f. Here lower MMD values indicate that the cells flagged by a method as escaping are closer to252

true controls and thus represent better performance. We found that cells predicted as escaping by253

ContrastiveVI+ largely had lower MMDs compared to Mixscape (p < 1 · 10−5, binomial test).254

Taken together, these results suggest ContrastiveVI+’s more expressive modeling procedure facilitates255

superior prediction of perturbed versus escaping cells compared to Mixscape.256

5.3 Exploring the diversity in perturbation responses in a CRISPRa screen257

As a final demonstration of ContrastiveVI+ ’s capabilities, we applied it to explore a Perturb-258

seq dataset from Norman et al. [14]. In this dataset the authors assessed the effects of CRISPR259

activation (CRISPRa) perturbations on K562 cells. For our analysis, we focused on a subset of these260

perturbations labeled in Norman et al. [14] as inducing specific gene programs.261

We began by confirming that ContrastiveVI+ successfully isolated perturbation-induced variations in262

its salient latent space. Based on the analysis of Norman et al. [14], we would expect cells to separate263

by gene program labels. Moreover, we would expect cells to mix across cell cycle phase, a known264

confounding source of variation shared with control cells in this dataset [6]. We found that cells265

indeed mixed across cell cycle phase (Fig. 5a), while separating by gene program labels (Fig. 5b),266

with cells in the separated gene program clusters being predicted by ContrastiveVI+ as perturbed (Fig.267

5c). Moreover, ContrastiveVI+ achieved significantly better separation of gene programs compared268

to baseline methods as measured by ARI while also achieving strong performance at removing cell269

cycle effects as measured by entropy of mixing (Fig. 5d).270

In addition to separation between the gene program clusters, in our analysis we also observed271

separation between substructures within these clusters. To highlight ContrastiveVI+’s potential272

to facilitate additional insights, we thus further inspected the cells with perturbations labeled as273

“granulocyte/apoptosis” and which were predicted by ContrastiveVI+ as perturbed (Fig. 5e). Notably,274

in Norman et al. [14], the authors of that work largely analyzed the relationships between perturbations275

at the pseudobulk level (i.e., by considering the mean expression profile for each perturbation). Thus,276

a particular focus of our analysis was to see if our single-cell-level model could uncover further277

relationships between perturbations beyond those discussed in Norman et al. [14].278

First, to understand the genes driving separation in ContrastiveVI+’s latent space, we employed279

Hotspot [19], a tool for identifying informative genes in single-cell data by ranking genes in terms of280

spatial autocorrelation with respect to a given metric of cell–cell similarity (e.g., the latent space of a281

VAE). From the top genes returned by Hotspot, we found that separation in ContrastiveVI+’s salient282

space was strongly correlated with canonical granulocyte marker genes, such as LST1, CSF3R, and283

8



Figure 5: a-c, UMAP visualizations of ContrastiveVI+’s salient latent space for Norman et al. [14]
colored by cell cycle phase (a), gene program labels provided by Norman et al. [14] (b), and inferred
probability of perturbation (c). d, Quantitative assessments of ContrastiveVI+ and baseline method’s
salient representations. e-h, ContrastiveVI+’s salient latent representations for cells with perturbations
labeled as “granulocyte/apoptosis” by Norman et al. [14]. Plots colored by perturbation labels (e),
canonical granulocyte marker genes (f), the pro-apoptotic anti-proliferation factors BTG1 and BTG2
(g), and anti-apoptotic genes BIRC5 (survivin) and YBX1 (h).

ITGAM (Fig. 5f). Moreover, expression of the granulocyte markers was correlated with expression of284

the pro-apoptotic anti-proliferation factors BTG1 and BTG2 (Fig. 5g), and inversely correlated with285

the anti-apoptotic genes BIRC5, also known as survivin, and YBX1 (Fig. 5h).286

Furthermore, we observed clear heterogeneity in the responses induced by individual perturbations.287

For example, while some perturbations induced consistently strong upregulation of granulocyte288

markers (e.g. CEBPA+ctrl), other perturbations (e.g. CEBPE+ctrl) resulted in more variable re-289

sponses. Notably, we often observed strong mixing between cells perturbed solely to activate290

CEBPE (i.e., CEBPE+ctrl) and cells perturbed to activate CEBPE along with a second gene (e.g.291

CEBPE+RUNX1T1, CEBPE+CEBPA, and FOSB+CEBPE). This phenomenon suggests that activa-292

tion of CEBPE is sufficient to achieve a certain cellular state, with other perturbations not having an293

observable impact. Moreover, this behavior is consistent with CEBPE’s known function of strongly294

driving terminal differentiation for granulocytes [20]; in other words, due to CEBPE activation295

inducing cells to differentiate into granulocytes, the effects of additional perturbations may be muted.296

Notably, these phenomena were not discussed in Norman et al. [14], and these results illustrate297

how the higher resolution of our single-cell-level modeling approach may facilitate insights into the298

diversity of perturbation responses beyond those possible from previous workflows.299

6 Conclusion300

Here we introduced ContrastiveVI+, a deep generative modeling framework for exploring301

perturbation-induced variations in pooled genetic screening datasets while explicitly accounting302

for variable guide efficiency and the diversity of responses induced by different perturbations. In303

experiments on three datasets with scRNA-seq readouts, we found that our model’s additional struc-304

ture resulted in substantially better recovery of known biological relationships compared to baseline305

methods while also successfully predicting truly perturbed versus escaping cells. Moreover, we found306

that our more structured modeling approach could reveal further biological insights beyond those307

provided by other analysis workflows. Future work will involve assessing ContrastiveVI+’s abilities308

on larger scale datasets and additional high-content screening modalities beyond scRNA-seq.309
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A Derivation of variational bounds for ContrastiveVI+387

Here we present a full derivation of the variational bound for cells with non-NTC guides presented in388

Section 4. We begin by assuming that our variational distribution factorizes as389

qϕ(zi, ti, yi, | xi, ci) = qϕz (zi | xi)qϕt(ti | xi)qϕy (yi | ti),

where ϕz , ϕt, and ϕy denote parameters of inference networks for z, t, and y respectively. Leveraging390

our variational distribution as well as the generative process proposed in Section 3, we then proceed391

to derive a corresponding ELBO:392

L(xi) = Eqϕ(zi,ti,yi|xi)

[
log

p(zi, ti, yi, xi | ci)
qϕ(zi, ti, yi | xi)

]
= Eqϕz (zi|xi)qϕt (ti|xi)qϕy (yi|ti)

[
log

p(zi)p(ti | yi, ci)p(yi)p(xi | zi, ti)
qϕz

(zi | xi)qϕt
(ti | xi)qϕy

(yi | ti)

]
= Eqϕz (zi|xi)qϕt (ti|xi)qϕy (yi|ti)

[
log

p(zi)

qϕz
(zi | xi)

+ log
p(ti | yi, ci)
qϕt

(ti | xi)
+ log

p(yi)

qϕy
(yi | ti)

+

log p(xi | zi, ti)]

= Eqϕz (zi|xi)qϕt (ti|xi) [p(xi | zi, ti)] + Eqϕz (zi|xi)

[
log

p(zi)

qϕz
(zi | xi)

]
+

Eqϕt (ti|xi)qϕy (yi|ti)

[
log

p(ti | yi, ci)
qϕt(ti | xi)

]
+ Eqϕt (ti|xi)qϕy (yi|ti)

[
log

p(yi)

qϕy (yi | ti)

]
= Eqϕz (zi|xi)qϕt (ti|xi) [p(xi | zi, ti)]−DKL(qϕz

(zi | xi) ∥ p(zi))

− Eqϕt (ti|xi)

[
DKL(qϕy (yi | ti) ∥ p(yi))

]
+ Eqϕt (ti|xi)

 ∑
y′∈{0,1}

qϕy
(y′ | ti) (log p(ti | y′, ci))

− log qϕt
(ti | xi)


For control cells infected with non-targeting control (NTC) guides we assume the following variational393

distribution:394

qϕNTC
(zj , tj , yj , | x∅

j ) = qϕz
(zj | x∅

j )δ{tj = µ∅}δ{yj = 0}.

Our corresponding ELBO is then:395

LNTC(x
∅
j ) = Eq(zj ,|x∅

j )

[
log

p(zj , xj | tj = µ∅, yj = 0)

q(zj | x∅
j )

]

= Eq(zj ,|x∅
j )

[
log

p(x∅
j , |zj , tj = µ∅)p(zj)

q(zj | x∅
j )

]
= Eq(zj ,|x∅

j )

[
p(x∅

j , |zj , tj = µ∅)p(zj)
]
−DKL(q(zj | x∅

j ) ∥ p(zj)).

B Dataset preprocessing396

Here we provide descriptions of any preprocessing steps for the datasets considered in this work.397

Papalexi et al. [3]. The cell by gene count matrix along with corresponding metadata for this398

dataset was obtained from the NIH gene expression omnibus entry GSE153056. For our analysis we399

considered the top 2,000 highly variable genes returned from the Scanpy highly_variable_genes400

function with flavor=seurat_v3. For the analysis presented in Section 5, normalized protein401

counts were computed using the centered log ratio transform as implemented in muon [21] with402

axis=1 to match the original analysis of Papalexi et al. [3]. Based on the original analysis of Papalexi403

et al. [3], cells with perturbations identified as having trivial effects were all labeled as nonperturbed404

and considered as control cells.405
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Norman et al. [14]. The cell by gene count matrix for this dataset along with corresponding metadata406

was obtained from the NIH gene expression omnibus entry GSE133344. As done in the analysis of407

Norman et al. [14], cells with the perturbation label NegCtrl1_NegCtrl0__NegCtrl1_NegCtrl0408

were excluded from our analysis. Cells marked as doublets (i.e., a number_of_cells metadata value409

greater than 1.0) by Norman et al. [14] were also excluded from our analysis. For our experiments410

we retained all cells with control guides along with cells infected with non-control guides that were411

annotated with gene program labels by Norman et al. [14]. For our analysis we considered the412

top 2,000 highly variable genes returned from the Scanpy highly_variable_genes function with413

flavor=seurat_v3.414

Replogle et al. [13]. For the analysis presented in this work we considered a filtered version of the415

original genome-wide data presented in Replogle et al. [13] provided by Bereket and Karaletsos [16]416

that retained data from perturbations with non-trivial effect sizes. Among this set of perturbations,417

for our experiments we considered the perturbations that had corresponding pathway labels provided418

by Replogle et al. [13], and we used the same set of highly variable genes considered in Bereket and419

Karaletsos [16].420

C ContrastiveVI+ and baseline method implementation details421

In the experiments presented in Section 5, we compared our proposed ContrastiveVI+ against two422

baselines: the original ContrastiveVI model of Weinberger et al. [6] and the Mixscape method of423

Papalexi et al. [3]. Here we provide a brief overview of these methods and their corresponding424

implementations used in this work.425

C.1 ContrastiveVI+426

Our implementation of ContrastiveVI+ was performed using the scvi-tools library [22]. Our427

variational distributions qϕz
and qϕt

were implemented as multilayer perceptrons with a single hidden428

layer of 128 units and ReLU activation functions [23]. For all experiments we set the dimensionality429

of both the background and salient latent spaces (i.e., z, and t) to 10. For qϕy
, we found that using430

additional hidden layers led to more consistent performance across random initialization, with good431

stability achieved with three hidden layers. Thus, for all results presented in this manuscript we432

implemented qϕy
as an MLP with three hidden layers with 128 units each. For our decoder network433

we used an MLP with a single hidden layer of 128 units. All ContrastiveVI+ models were optimized434

using Adam [24] with the default parameters in scvi-tools.435

C.2 ContrastiveVI436

The original ContrastiveVI model of Weinberger et al. [6] extends the scVI model of Lopez et al. [4]437

via the contrastive latent variable modeling framework described in Section 2. Specifically, for a cell438

i labelled with a non-control gRNA, ContrastiveVI assumes the following generative process. Let439

zi ∼ N (0, I)

denote a low-dimensional set of background latent variables capturing factors of variation found in440

both perturbed cells as well as controls. Next, let441

ti ∼ N (0, I)

denote a low-dimensional set of salient latent variables capturing novel perturbation-induced varia-442

tions in cells labeled with non-NTC guides.443

Letting fη denote a neural network with a softmax non-linearity as the final layer, we then compute444

ρi = fη(zi, ti).

Analogous to scVI, this vector on the probability simplex represents the expected normalized expres-445

sion frequency of each gene g. For a gene g we then assume that the observed gene expression xig in446

cell i is drawn447

xig ∼ ZINB(ℓiρig, θg, fν(zi, ti)),

where ZINB denotes the zero-inflated negative binomial distribution, ℓi is the observed library size448

for cell i, θg is a gene-specific inverse dispersion parameter, and fη is a neural network whose outputs449
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are interpreted as dropout probabilities. For cells with NTC guides, ContrastiveVI assumes the same450

generative process but with the salient latent variables fixed at a constant zero vector.451

For inference, ContrastiveVI posits a variational distribution with parameters ϕ that factorizes as452

qϕ(zi, ti, | xi) = qϕz
(zi | xi)qϕt

(ti | xi)

for cells with non-NTC guides. For cells with control guides, the above variational distribution is453

modified to account for the assumption that the salient variables do not contribute to the generative454

process, yielding455

qϕ(zi, ti, | xi) = qϕz
(zi | xi)δ{ti = 0}.

In other words, the salient variables tn are simply fixed at 0 during inference for cells with control456

guides. We refer to Weinberger et al. [6] for derivation of corresponding evidence lower bounds.457

In our experiments we used the scverse [25] compatible implementation of ContrastiveVI available458

in the scvi-tools [22] package. For our experiments we used the same model architecture and459

optimization hyperparameters as described in the ContrastiveVI paper [6].460

C.3 Mixscape461

The Mixscape procedure proposed in Papalexi et al. [3] begins by computing a so-called perturbation462

signature for each cell infected with a non-NTC guide. To do so, for a given cell with a non-NTC463

guide, that cell’s nearest neighbors in the control population are identified. The gene expression464

profiles of these nearest control neighbors are then averaged together and substracted from the gene465

expression profile of the original given non-NTC guide cell. The result of this procedure is then466

defined as a cell’s perturbation signature.467

After computing cells’ perturbation signature, Mixscape then classifies cells with non-NTC guides468

as perturbed or escaping perturbation. To do so, for each targeted gene Mixscape fits a mixture469

of Gaussian models with two components on the corresponding cells’ perturbation signatures. As470

escaping cells’ signatures are assumed to be similar to those of control cells, one component of each471

of these mixtures is constrained to be equal to of a unimodal Gaussian fit to control cells.472

For all results presented in this work, we used the R implementation of Mixscape in the Seurat473

package with default parameters. When computing UMAP embeddings and metrics on representation474

quality (e.g. mixing across cell cycle phases), we used the principal components of cells’ perturbation475

signatures as done in Papalexi et al. [3].476

D Metrics477

Here we provide details on the quantitative metrics used in this work to compare ContrastiveVI+478

against baseline methods.479

D.1 Entropy of mixing480

For c groups (e.g. cell cycle phases.) the entropy of mixing [26] is defined as481

c∑
i=1

pi log pi,

where pi denotes the proportion of cells from group i in a given region, such that
∑c

i=1 pi = 1.482

Next, let U denote a uniform random variable over the population of cells. Let BU then denote the483

empirical proportions of cells’ groups in the 50 nearest neighbors of cell U . We report the entropy484

of this variables averaged over 100 random cells U . Higher values of this metric indicate stronger485

mixing of the c groups.486

D.2 Adjusted Rand index487

The adjusted Rand index (ARI) measures agreement between reference clustering labels and labels488

assigned by a clustering algorithm. Given a set of n samples and two sets of clustering labels489
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describing those cells, the overlap between clustering labels can be described using a contingency490

table, where each entry indicates the number of cells in common between the two sets of labels.491

Mathematically, the ARI is calculated as492

ARI =

∑
ij

(
nij

2

)
−

[∑
i

(
ai

2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai

2

)
+

∑
j

(
bj
2

)]
−

[∑
i

(
ai

2

)∑
j

(
bj
2

)]/ (
n
2

) ,
where nij is the number of cells assigned to cluster i based on the reference labels and cluster j based493

on a clustering algorithm, ai is the number of cells assigned to cluster i in the reference set, and bj is494

the number of cells assigned to cluster j by the clustering algorithm. ARI values closer to 1 indicate495

stronger agreement between the reference labels and labels assigned by a clustering algorithm. In our496

experiments we used the k means clustering algorithm to assign cluster labels to cells with k equal to497

the true number of clusters.498
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