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Abstract

Automated web testing plays a critical role in ensuring high-quality user experi-1

ences and delivering business value. Traditional approaches primarily focus on2

code coverage and load testing, but often fall short of capturing complex user behav-3

iors, leaving many usability issues undetected. The emergence of large language4

models (LLM) and AI agents opens new possibilities for web testing by enabling5

human-like interaction with websites and a general awareness of common usability6

problems. In this work, we present WebProber, a prototype AI agent-based web7

testing framework. Given a URL, WebProber autonomously explores the website,8

simulating real user interactions, identifying bugs and usability issues, and pro-9

ducing a human-readable report. We evaluate WebProber through a case study of10

120 academic personal websites, where it uncovered 29 usability issues—many of11

which were missed by traditional tools. Our findings highlight agent-based testing12

as a promising direction while outlining directions for developing next-generation,13

user-centered testing frameworks.14

The modern web hosts billions of websites (Chakarov, 2023), offering rich services and content that15

span nearly every aspect of daily life. Common web applications include e-commerce websites such16

as Amazon, social media platforms like Facebook, information portals like Wikipedia along with a17

vast number of personal websites.18

To ensure the quality and reliability of these web applications, automated web testing has become a19

critical component of modern web development cycles. Traditional web testing approaches, such as20

static and dynamic analysis (Ricca & Tonella, 2001), have been crucial in mitigating common issues21

and vulnerabilities such as layout and functional bugs. These traditional approaches mainly rely on22

verifying code paths, automating scripted UI interactions, and measuring load performance using23

established tools like Cypress, Puppeteer, and JMeter (Cypress.io, 2025; Google Chrome Developers,24

2025; Apache Software Foundation, 2025). Despite these efforts, such approaches face significant25

challenges in detecting real-world, user-facing issues. Since real users’ actions are highly diverse26

and context-dependent, software-based methods often fail to cover test-cases that capture the full27

spectrum of user behavior. This results in many undetected bugs and missing features that degrade28

user experience (see Figure 1 for real-world examples).29

We introduce WebProber, a highly extensible web testing framework that leverages AI agents to30

simulate complex human behaviors on the web. Unlike existing approaches (Le et al., 2025; Wang31

et al., 2025; Lu et al., 2025) that use large language models to generate test cases or interact with32

post-processed HTML files, WebProber employs powerful visual language models (VLMs) (Bordes33

et al., 2024) to interact directly with visual webpages like human testers. Given a URL, WebProber34

explores the webpage for common user-side bugs by performing actions such as clicking, typing,35

and scrolling. It generates a comprehensive report of unexpected website behaviors based on its36

interaction history. We illustrate this workflow in Figure 2, which consists of three stages. (1) a37

proposal module that suggests error-prone features to investigate, guided by a bug database, (2)38

an interaction module that simulates user experience guided by VLMs, and (3) a report generation39
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(a) Amazon (b) USA Table Tennis (USATT) Official Website

(c) GitHub (d) README Code Snippet

Figure 1: Website usability bugs that are not easily detected by traditional web testing techniques. (a)
On the Amazon Spain website, during a purchase, the system suggests a non-existent and unclickable
address. (b) The USATT website displays null event text for a league event. (c) In a GitHub
organization repository, the user search function does not support queries with spaces when adding
users. (d) On certain MCP server pages, code snippets in the README file are illegible in light
mode due to poor color contrast.

module that examines the full interaction history to identify user-side bugs and suggest potential40

UI/UX improvements.41

As a case study, we deployed our framework on 120 personal websites in the wild and found that42

our framework is able to identify 29 usability issues that impact user experience. Many of these43

issues—such as textual errors and misdirected links—were not detected by traditional automated44

testing tools, highlighting the unique strengths of agent-based testing in uncovering subtle, human-45

centric problems. Our empirical study on personal websites presents a first step towards building46

a scalable web testing framework based on AI agents, and we hope that this work can serve as a47

foundation for future research in this direction.48

In summary, our contributions are:49

1. We introduce WebProber, a highly extensible web testing framework that leverages AI50

agents to simulate human behavior on the web.51

2. We present a case study on 120 personal websites in the wild, on which WebProber found52

29 usability issues.53

3. We release our code and our human-annotated bug database for future research.54

1 Related Work55

Browser-Use Agents With the advent of visual language models (VLMs), many works have56

explored the use of powerful models like GPT-4o and Claude-3.7 for web navigation tasks (Liu57

et al., 2023a; Zhou et al., 2024; Koh et al., 2024a). Earlier efforts used the accessibility tree or a58
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Figure 2: Workflow of WebProber. Given a user-provided URL, the agent generates a comprehensive
bug report through three stages: (1) testing prompt generation, (2) VLM-guided interaction, and (3)
bug report generation. For more details, refer to section 2.

screenshot of the webpage as input to the VLM, and prompted it to generate actions such as clicking59

and typing (Yang et al., 2023; Koh et al., 2024a). Recent works have explored various strategies60

to further improve an agent’s decision-making process, such as iteratively prompting the model to61

improve its own output (Madaan et al., 2023; Shinn et al., 2023), or augmenting the agent’s decision62

process using search algorithms such as breadth- or depth-first search (Yao et al., 2023), best-first63

search (Koh et al., 2024b), and Monte Carlo tree search (Yu et al., 2023, 2025). However, these works64

typically focus on solving pre-defined tasks such as finding a specific item on a shopping website, or65

navigating to a specific webpage. Our work aims to use agents to discover bugs missed by existing66

automated testing tools on real-world websites.67

Automated Web Testing Automated web testing emphasizes systematically testing web applica-68

tions with minimal human intervention. Traditional approaches aim to generate action trajectories69

and can be broadly categorized into three classes: (1) randomized testing, where action sequences70

are generated stochastically Android Developers (2022); (2) model-based methods, which construct71

a state graph of the application and use graph traversal algorithms such as depth-first search to72

explore it Mesbah et al. (2012); Stocco et al. (2023); Liu et al. (2025b); and (3) techniques based on73

reinforcement learning, which generate action sequences while maximizing a reward signal Zheng74

et al. (2021); Sherin et al. (2023).75

More recently, the field has begun to incorporate LLMs in automated web testing. They are used to76

expand the test action space Liu et al. (2023b, 2024b); Wang et al. (2024), and to guide navigation and77

interaction Alian et al. (2025); Shahbandeh et al. (2024); Liu et al. (2025a). In parallel, similar trends78

have emerged in mobile app testing Liu et al. (2024a); Yoon et al. (2023); Lee et al. (2024); Wen et al.79

(2024); Chen et al. (2025). Our work differs from prior literature by emphasizing the simulation of80

realistic user behaviors powered by VLMs, and by targeting contextual bugs often overlooked by81

traditional techniques, such as critical typographical errors or misdirected links.82

2 WebProber83

We present WebProber, a web testing system based on AI agents. Given a website URL, WebProber84

returns a detailed report enumerating user-side bugs and UI/UX issues found during its interaction85

with the website. WebProber operates through a three-stage pipeline: (1) generating testing prompts86

that target common vulnerabilities for the particular class of website given, (2) simulating human-like87
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web interactions, and (3) analyzing the interaction trajectory to generate comprehensive bug reports.88

We present an overview of this process in Figure 2, and describe this process in detail below.89

Prompt generation Prompts guide an AI agent to look for common usability issues for different90

classes of web pages, enabling more targeted and efficient exploration by focusing on typical usability91

issue patterns. In this work, we created our testing prompts through an iterative refinement process92

and release the final high-quality prompt template in our repository. For each website type (e.g.,93

personal websites), we begin with a preliminary prompt instructing the VLM on which features to94

test and what issues to detect. We then refine both the prompt and bug set through iterative cycles:95

applying WebProber to discover new bugs, manually verifying their reproducibility, and using a VLM96

to generate improved prompts based on the expanded bug set. This process continuously develops97

our prompt instructions while building a diverse collection of web usability bugs valuable for future98

evaluation. An example of prompt refinement is provided in appendix B.1. While we demonstrate99

one effective approach to prompt generation, any method that produces high-quality, targeted prompts100

for usability testing would be compatible with our framework.101

Interaction simulation Using the generated testing prompts from the previous stage, WebProber102

employs VLM-based agents to systematically interact with the website. Building on the Browser-Use103

Python package (Müller & Žunič, 2024), our system iteratively (1) prompts a VLM for an action104

based on a website screenshot (e.g., clicking a button or entering text), (2) executes the action on105

the website, and (3) repeats until either the maximum step limit is reached or the target feature has106

been tested. Throughout this process, we preserve the complete interaction trajectory, including107

screenshots, reasoning traces, and actions.108

Bug report generation Finally, we generate detailed bug and usability reports by analyzing the109

full interaction trajectory with a VLM. Since usability issues typically emerge during interactive use,110

the complete interaction history is important for an accurate diagnosis. Detailed prompts for report111

generation are provided in appendix B.2.112

In our implementation, we used Claude-3.7 Sonnet (Anthropic (2025)) as the VLM for each stage of113

WebProber’s pipeline. Each stage can be independently configured to use a different VLM, though114

exploring that is left as future work.115

3 Experiments116

To demonstrate the effectiveness of WebProber, we conducted a case study on real-world academic117

personal websites crawled from OpenReview author profiles. We collected 120 personal websites118

and applied WebProber on this dataset to detect usability issues. We then manually inspected the119

generated reports to analyze the detected bugs, specifically evaluating whether they represented120

genuine usability issues or false positives. The results are presented in Section 3.1.121

In addition to measuring the capabilities of WebProber, we also investigated the coverage of bugs122

detectable by our framework. Since the total set of bugs on a website is unknown a priori, we123

manually inspected a representative subset of 80 websites to identify all potential bugs as a proxy for124

ground truth. We then ran WebProber on the same subset of websites to investigate both detected and125

undetected issues. The results and analysis are presented in the following sections.126

3.1 Results127

Our approach effectively identifies usability issues that impact user experience Across our128

dataset of 120 academic personal websites, WebProber successfully identified 29 usability issues129

(verified by the authors). In addition to bugs detectable by traditional techniques, e.g. rendering130

issues with images, our agent is also able to identify contextual bugs that are often overlooked by131

these methods. These issues span several categories, including link mistakes, rendering issues etc.132

We give a couple of representative examples of these usability issues as follows.133

• Broken or misdirected links The most common class of bugs detected is broken or134

misdirected links. We present an example in Figure 3a: the agent identified that a project135

description was inconsistent with the paper linked through the "Read more here" button.136
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• Logical inconsistencies Finally, we find our WebProber is also able to detect logical137

inconsistencies in website contents, typically resulting from typographical errors. These138

errors sometimes lead to factual inaccuracies or user confusion. For example, in Figure 3b,139

the agent identified a spring course syllabus (determined by calendar dates) that incorrectly140

scheduled a "Fall break" week.141

These results illustrate the capabilities of VLM-based web testing and provide insights into what142

types of issue can be automatically detected.143

3.2 Discussion144

While WebProber is able to identify real bugs and UI/UX issues in the wild, we also find numerous145

cases where human oversight is still needed for bug discovery. We present our findings below.146

False positives While WebProber successfully discovered 29 usability issues, we found that 85%147

of all reported bugs across the 120 websites were false positives. The majority of these problems148

stemmed from technical limitations of the browser automation framework (the framework through149

which the agent applies actions on the webpage) rather than actual website issues. One common150

example is PDF access problems, which is often caused by the automation framework’s security151

settings. However, the agent often incorrectly attributes these failures to website defects rather than152

automation constraints. Additionally, a small portion of false positives resulted from reasonable but153

incorrect assumptions of the agent, particularly when the agent lacked sufficient temporal or domain154

context to properly interpret website content. Figure 4 illustrates one such example.155

Undetected bugs On our representative subset of 80 websites, we manually identified 32 bugs,156

of which WebProber successfully detected 19, achieving a coverage of 59.4%1. The undetected157

bugs fell in two primary failure modes. First, and most frequently, bugs were often located deep158

within the website hierarchy, requiring navigation through multiple pages. Since we executed our159

pipeline only once per website, the agent often terminated exploration before encountering these160

deeply embedded issues. Second, certain pages containing bugs were inaccessible due to dynamic161

content rendering issues that our current implementation cannot handle effectively. These results162

suggest that effective bug detection requires improved exploration strategies capable of performing163

systematic, long-horizon traversals of website hierarchies and handling dynamic content. We defer164

these enhancements to future work.165

(a) Misdirected link (b) Typographical error

Figure 3: Examples of WebProber bug detection results. (a) A "Read more here" link for one research
project incorrectly leads to a different paper. (b) A spring course syllabus mistakenly lists "fall break."

4 Conclusion and Future Work166

We introduced WebProber, an agent-based web testing framework. Applied to 120 aca-167

demic personal websites, WebProber uncovered 29 usability issues—many missed by traditional168

1Since the authors may not have found all possible bugs, the actual coverage may be lower.
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Figure 4: Example of false positive: an announcement referencing a “2029” conference is flagged as
a typo, but in reality, conferences such as ICCV do plan leadership roles and organizational details
several years in advance.

tools—demonstrating the potential of agent-driven testing. This case study also revealed several169

challenges and future directions:170

Agent-Browser Interaction. Agent interactions remain unreliable—misclicks, erratic navigation,171

and poor performance on complex sites contribute to false positives. Enhancing browser control172

fidelity is a key priority.173

Bug Coverage and Training. Current agents are not optimized for bug discovery. Reinforcement174

learning and hybrid approaches incorporating traditional automated web testing tools may improve175

coverage and effectiveness.176

Lack of Benchmarks. Progress is hindered by the absence of a standardized benchmark for web177

usability issues. Curating datasets like SWEBench would support training and evaluation.178

Web Testing in Other Domains. Vibe-coded websites, startup landing pages, and non-profit websites179

often involve quick prototyping with limited budgets for thorough quality assurance. AI-generated180

sites, in particular, may contain bugs that their creators—often without professional development181

expertise—are unable to detect. While we believe AI agent-based web testing could significantly182

benefit these cases, we leave a rigorous field study for future work.183
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