© ® N O o A~ W N =

AI Agents for Web Testing: A Case Study in the Wild

Anonymous Author(s)
Affiliation
Address

email

Abstract

Automated web testing plays a critical role in ensuring high-quality user experi-
ences and delivering business value. Traditional approaches primarily focus on
code coverage and load testing, but often fall short of capturing complex user behav-
iors, leaving many usability issues undetected. The emergence of large language
models (LLM) and AI agents opens new possibilities for web testing by enabling
human-like interaction with websites and a general awareness of common usability
problems. In this work, we present WebProber, a prototype Al agent-based web
testing framework. Given a URL, WebProber autonomously explores the website,
simulating real user interactions, identifying bugs and usability issues, and pro-
ducing a human-readable report. We evaluate WebProber through a case study of
120 academic personal websites, where it uncovered 29 usability issues—many of
which were missed by traditional tools. Our findings highlight agent-based testing
as a promising direction while outlining directions for developing next-generation,
user-centered testing frameworks.

The modern web hosts billions of websites (Chakarov, 2023), offering rich services and content that
span nearly every aspect of daily life. Common web applications include e-commerce websites such
as Amazon, social media platforms like Facebook, information portals like Wikipedia along with a
vast number of personal websites.

To ensure the quality and reliability of these web applications, automated web testing has become a
critical component of modern web development cycles. Traditional web testing approaches, such as
static and dynamic analysis (Ricca & Tonella, 2001), have been crucial in mitigating common issues
and vulnerabilities such as layout and functional bugs. These traditional approaches mainly rely on
verifying code paths, automating scripted Ul interactions, and measuring load performance using
established tools like Cypress, Puppeteer, and JMeter (Cypress.io, 2025; Google Chrome Developers,
2025; Apache Software Foundation, 2025). Despite these efforts, such approaches face significant
challenges in detecting real-world, user-facing issues. Since real users’ actions are highly diverse
and context-dependent, software-based methods often fail to cover test-cases that capture the full
spectrum of user behavior. This results in many undetected bugs and missing features that degrade
user experience (see Figure 1 for real-world examples).

We introduce WebProber, a highly extensible web testing framework that leverages Al agents to
simulate complex human behaviors on the web. Unlike existing approaches (Le et al., 2025; Wang
et al., 2025; Lu et al., 2025) that use large language models to generate test cases or interact with
post-processed HTML files, WebProber employs powerful visual language models (VLMs) (Bordes
et al., 2024) to interact directly with visual webpages like human testers. Given a URL, WebProber
explores the webpage for common user-side bugs by performing actions such as clicking, typing,
and scrolling. It generates a comprehensive report of unexpected website behaviors based on its
interaction history. We illustrate this workflow in Figure 2, which consists of three stages. (1) a
proposal module that suggests error-prone features to investigate, guided by a bug database, (2)
an interaction module that simulates user experience guided by VLLMs, and (3) a report generation

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

40
41

42
43
44
45
46
47
48

49

50

51

52
53

54

55

56
57
58

Verify your address Inroduction

There Is problem with the address provided - we have marked our suggestions in s page explainshow I i vt rom s to 1502 st thenulsven from 4 Nov 2024,
red below. Please choose or edit which version of the address you want to use These ratings are calculated by the ratings processor which goes throigh 4 pasx/erlhe match results data for a

tournament. The following values are produced at the end of each of the 4 passe: the ratings processor for|
for this league event.
) Original address:

Carrer Jardins| w . Initial Rating Pass 1 Pass 2 P:
Cugat Del Valles, Barcelona, 081| \ @& J Invalid address
N nja nfa 1495 4]

™" suggestion

\a, Null event
& display

Below you can view a table of all the resultant values from each
® Suggested address: processor for all of the 15 players in this tournament. Sections below for further details on the initial rating and the 4

Lloc Jardi Penya Regalessia Sant Cugat Del PESSES oliihe Eaiings processok

Valles, Barcelona, 08173, Spain

Note: W use mathematical notation to express the exact operations carried out in each pass of the ratings processor
Edit this address below. Whenever you see a variable/symbol, such as, for example, X7, we are following the convention that the
superscript part of the variable (in this case "3") indicates an index (such as in a series), and it should not be
misconstrued to be an exponent (which is how it is used in some contexts).

Save address.

(a) Amazon (b) USA Table Tennis (USATT) Official Website

Add people Add teams Install Python 3.1 or later. Guide.

Add people Add teams

Clone the project and navigate to the directory:

Add people to Digital-Twin- x
Simulation Add people to Digital-Twin- x
[Q Naimeng] N
¥ NaiMeng [Q Al b] 3. Set up API keys by exp| /\
I —— i \a; Unrecognizable code snippet
No matching GitHub account found) SR~)
Ctln [\g) under light mode
Naimeng Ye export
«Invite outside collaborator
4. Install dependencies and start the server:
\a ; Space-separated
" query failure
(¢) GitHub (d) README Code Snippet

Figure 1: Website usability bugs that are not easily detected by traditional web testing techniques. (a)
On the Amazon Spain website, during a purchase, the system suggests a non-existent and unclickable
address. (b) The USATT website displays null event text for a league event. (c) In a GitHub
organization repository, the user search function does not support queries with spaces when adding
users. (d) On certain MCP server pages, code snippets in the README file are illegible in light
mode due to poor color contrast.

module that examines the full interaction history to identify user-side bugs and suggest potential
UI/UX improvements.

As a case study, we deployed our framework on 120 personal websites in the wild and found that
our framework is able to identify 29 usability issues that impact user experience. Many of these
issues—such as textual errors and misdirected links—were not detected by traditional automated
testing tools, highlighting the unique strengths of agent-based testing in uncovering subtle, human-
centric problems. Our empirical study on personal websites presents a first step towards building
a scalable web testing framework based on Al agents, and we hope that this work can serve as a
foundation for future research in this direction.

In summary, our contributions are:
1. We introduce WebProber, a highly extensible web testing framework that leverages Al
agents to simulate human behavior on the web.

2. We present a case study on 120 personal websites in the wild, on which WebProber found
29 usability issues.

3. We release our code and our human-annotated bug database for future research.

1 Related Work

Browser-Use Agents With the advent of visual language models (VLMs), many works have
explored the use of powerful models like GPT-40 and Claude-3.7 for web navigation tasks (Liu
et al., 2023a; Zhou et al., 2024; Koh et al., 2024a). Earlier efforts used the accessibility tree or a

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75

76
77
78
79
80
81
82

83

84
85
86
87

Prompt generation: Explore the
site, look for misleading links...

(’ User Input: [https://mahube.org/]

° VLM Interaction
/ ° ° L\., / ° \
Step 1 r@ Step2 {) Step3 (=) ‘¥stepa &P Step s0 ré}l

I'm on the main -k\ I'm on the €R | see an “add S I clicked on “add |

R
page, | want to Vg «donate” page, |), feedback” link D—» feedl_:ack" and was
check the — | wanttoexplore | | Which should take | —> redirectedtothe | — w u =

«donate” page... this page... me to a feedback same “donate”
page... page...

e Bug report generation

Figure 2: Workflow of WebProber. Given a user-provided URL, the agent generates a comprehensive
bug report through three stages: (1) testing prompt generation, (2) VLM-guided interaction, and (3)
bug report generation. For more details, refer to section 2.

| finished
exploring the
website!

[# Bug Analysis Report for MAHUBE-OTWA Website |
| ## Summary of Issues

OUtpl‘It | ### Issue 1: Broken “add feedback” link. |
Bug Report |
|

Recommendations for Fixing Issues

screenshot of the webpage as input to the VLM, and prompted it to generate actions such as clicking
and typing (Yang et al., 2023; Koh et al., 2024a). Recent works have explored various strategies
to further improve an agent’s decision-making process, such as iteratively prompting the model to
improve its own output (Madaan et al., 2023; Shinn et al., 2023), or augmenting the agent’s decision
process using search algorithms such as breadth- or depth-first search (Yao et al., 2023), best-first
search (Koh et al., 2024b), and Monte Carlo tree search (Yu et al., 2023, 2025). However, these works
typically focus on solving pre-defined tasks such as finding a specific item on a shopping website, or
navigating to a specific webpage. Our work aims to use agents to discover bugs missed by existing
automated testing tools on real-world websites.

Automated Web Testing Automated web testing emphasizes systematically testing web applica-
tions with minimal human intervention. Traditional approaches aim to generate action trajectories
and can be broadly categorized into three classes: (1) randomized testing, where action sequences
are generated stochastically Android Developers (2022); (2) model-based methods, which construct
a state graph of the application and use graph traversal algorithms such as depth-first search to
explore it Mesbah et al. (2012); Stocco et al. (2023); Liu et al. (2025b); and (3) techniques based on
reinforcement learning, which generate action sequences while maximizing a reward signal Zheng
et al. (2021); Sherin et al. (2023).

More recently, the field has begun to incorporate LLMs in automated web testing. They are used to
expand the test action space Liu et al. (2023b, 2024b); Wang et al. (2024), and to guide navigation and
interaction Alian et al. (2025); Shahbandeh et al. (2024); Liu et al. (2025a). In parallel, similar trends
have emerged in mobile app testing Liu et al. (2024a); Yoon et al. (2023); Lee et al. (2024); Wen et al.
(2024); Chen et al. (2025). Our work differs from prior literature by emphasizing the simulation of
realistic user behaviors powered by VLMs, and by targeting contextual bugs often overlooked by
traditional techniques, such as critical typographical errors or misdirected links.

2 WebProber

We present WebProber, a web testing system based on Al agents. Given a website URL, WebProber
returns a detailed report enumerating user-side bugs and UI/UX issues found during its interaction
with the website. WebProber operates through a three-stage pipeline: (1) generating testing prompts
that target common vulnerabilities for the particular class of website given, (2) simulating human-like

88
89

90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105

107
108

109
110
111
112

113
114
115

116

117
118
119
120
121

122
123
124
125
126

127

128
129
130
131
132
133

134
135
136

web interactions, and (3) analyzing the interaction trajectory to generate comprehensive bug reports.
We present an overview of this process in Figure 2, and describe this process in detail below.

Prompt generation Prompts guide an Al agent to look for common usability issues for different
classes of web pages, enabling more targeted and efficient exploration by focusing on typical usability
issue patterns. In this work, we created our testing prompts through an iterative refinement process
and release the final high-quality prompt template in our repository. For each website type (e.g.,
personal websites), we begin with a preliminary prompt instructing the VLM on which features to
test and what issues to detect. We then refine both the prompt and bug set through iterative cycles:
applying WebProber to discover new bugs, manually verifying their reproducibility, and using a VLM
to generate improved prompts based on the expanded bug set. This process continuously develops
our prompt instructions while building a diverse collection of web usability bugs valuable for future
evaluation. An example of prompt refinement is provided in appendix B.1. While we demonstrate
one effective approach to prompt generation, any method that produces high-quality, targeted prompts
for usability testing would be compatible with our framework.

Interaction simulation Using the generated testing prompts from the previous stage, WebProber
employs VLM-based agents to systematically interact with the website. Building on the Browser-Use
Python package (Miiller & Zuni¢, 2024), our system iteratively (1) prompts a VLM for an action
based on a website screenshot (e.g., clicking a button or entering text), (2) executes the action on
the website, and (3) repeats until either the maximum step limit is reached or the target feature has
been tested. Throughout this process, we preserve the complete interaction trajectory, including
screenshots, reasoning traces, and actions.

Bug report generation Finally, we generate detailed bug and usability reports by analyzing the
full interaction trajectory with a VLM. Since usability issues typically emerge during interactive use,
the complete interaction history is important for an accurate diagnosis. Detailed prompts for report
generation are provided in appendix B.2.

In our implementation, we used Claude-3.7 Sonnet (Anthropic (2025)) as the VLM for each stage of
WebProber’s pipeline. Each stage can be independently configured to use a different VLM, though
exploring that is left as future work.

3 Experiments

To demonstrate the effectiveness of WebProber, we conducted a case study on real-world academic
personal websites crawled from OpenReview author profiles. We collected 120 personal websites
and applied WebProber on this dataset to detect usability issues. We then manually inspected the
generated reports to analyze the detected bugs, specifically evaluating whether they represented
genuine usability issues or false positives. The results are presented in Section 3.1.

In addition to measuring the capabilities of WebProber, we also investigated the coverage of bugs
detectable by our framework. Since the total set of bugs on a website is unknown a priori, we
manually inspected a representative subset of 80 websites to identify all potential bugs as a proxy for
ground truth. We then ran WebProber on the same subset of websites to investigate both detected and
undetected issues. The results and analysis are presented in the following sections.

3.1 Results

Our approach effectively identifies usability issues that impact user experience Across our
dataset of 120 academic personal websites, WebProber successfully identified 29 usability issues
(verified by the authors). In addition to bugs detectable by traditional techniques, e.g. rendering
issues with images, our agent is also able to identify contextual bugs that are often overlooked by
these methods. These issues span several categories, including link mistakes, rendering issues etc.
We give a couple of representative examples of these usability issues as follows.

* Broken or misdirected links The most common class of bugs detected is broken or
misdirected links. We present an example in Figure 3a: the agent identified that a project
description was inconsistent with the paper linked through the "Read more here" button.

137
138
139
140
141

142
143

144

145
146

147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165

166

167
168

* Logical inconsistencies Finally, we find our WebProber is also able to detect logical
inconsistencies in website contents, typically resulting from typographical errors. These
errors sometimes lead to factual inaccuracies or user confusion. For example, in Figure 3b,
the agent identified a spring course syllabus (determined by calendar dates) that incorrectly
scheduled a "Fall break" week.

These results illustrate the capabilities of VLM-based web testing and provide insights into what
types of issue can be automatically detected.

3.2 Discussion

While WebProber is able to identify real bugs and UI/UX issues in the wild, we also find numerous
cases where human oversight is still needed for bug discovery. We present our findings below.

False positives While WebProber successfully discovered 29 usability issues, we found that 85%
of all reported bugs across the 120 websites were false positives. The majority of these problems
stemmed from technical limitations of the browser automation framework (the framework through
which the agent applies actions on the webpage) rather than actual website issues. One common
example is PDF access problems, which is often caused by the automation framework’s security
settings. However, the agent often incorrectly attributes these failures to website defects rather than
automation constraints. Additionally, a small portion of false positives resulted from reasonable but
incorrect assumptions of the agent, particularly when the agent lacked sufficient temporal or domain
context to properly interpret website content. Figure 4 illustrates one such example.

Undetected bugs On our representative subset of 80 websites, we manually identified 32 bugs,
of which WebProber successfully detected 19, achieving a coverage of 59.4%'. The undetected
bugs fell in two primary failure modes. First, and most frequently, bugs were often located deep
within the website hierarchy, requiring navigation through multiple pages. Since we executed our
pipeline only once per website, the agent often terminated exploration before encountering these
deeply embedded issues. Second, certain pages containing bugs were inaccessible due to dynamic
content rendering issues that our current implementation cannot handle effectively. These results
suggest that effective bug detection requires improved exploration strategies capable of performing
systematic, long-horizon traversals of website hierarchies and handling dynamic content. We defer
these enhancements to future work.

introduce a method to torecast potentlal risks across orders ot magnitt Calculus

test during evaluation. We make forecasts by studying each query's eli¢

ty, Sequence of Functions; Pointwise ar
ure notes scribe notes

wwAgent:
Spring semester
should not have
“Fall break”

probability the query produ~ and demonstrate th £ 19

elicitation probabilitj er of queries.

undamental Theorem of Calculus
ribe notes

wAgent: Link
directs to the
wrong paper!

can predict the e

chemical synthesi

rm Exam
query volume. Ou

before they manife:
Mon No Class (fall break)
Mar 03
: Wed No Class (fall break)
Mar 05
(a) Misdirected link (b) Typographical error

Figure 3: Examples of WebProber bug detection results. (a) A "Read more here" link for one research
project incorrectly leads to a different paper. (b) A spring course syllabus mistakenly lists "fall break."

4 Conclusion and Future Work

We introduced WebProber, an agent-based web testing framework. Applied to 120 aca-
demic personal websites, WebProber uncovered 29 usability issues—many missed by traditional

'Since the authors may not have found all possible bugs, the actual coverage may be lower.

169
170

171
172
173

174
175
176

177
178

179
180
181
182
183

184

185
186
187

188
189

190
191

192
193

194
195
196

197
198

Recent News

Actually true!

7A i i
® 7 B2 mind Foundy ooy plans well in

TVG's undergraduate project wo roject in Information Engineering. Check out the paper CLIP as RNN .
advance

g all for Evidence
@Agent: Given
the typical 2-year cycle

of ICCV, the year should
likely be 2023 or 2025, not
2029.

@® 310ct @ Our response to

Check it out at here and the consensus paper

®| soct B2 iccv 2029
Prof. Torr will serve as the general chair for ICCV 2029

@ 5luly m Distinguished Research Fellow in the In

Congratulations to Prof. Torr for becoming a Distinguished Research Fells

Figure 4: Example of false positive: an announcement referencing a “2029” conference is flagged as
a typo, but in reality, conferences such as ICCV do plan leadership roles and organizational details
several years in advance.

tools—demonstrating the potential of agent-driven testing. This case study also revealed several
challenges and future directions:

Agent-Browser Interaction. Agent interactions remain unreliable—misclicks, erratic navigation,
and poor performance on complex sites contribute to false positives. Enhancing browser control
fidelity is a key priority.

Bug Coverage and Training. Current agents are not optimized for bug discovery. Reinforcement
learning and hybrid approaches incorporating traditional automated web testing tools may improve
coverage and effectiveness.

Lack of Benchmarks. Progress is hindered by the absence of a standardized benchmark for web
usability issues. Curating datasets like SWEBench would support training and evaluation.

Web Testing in Other Domains. Vibe-coded websites, startup landing pages, and non-profit websites
often involve quick prototyping with limited budgets for thorough quality assurance. Al-generated
sites, in particular, may contain bugs that their creators—often without professional development
expertise—are unable to detect. While we believe Al agent-based web testing could significantly
benefit these cases, we leave a rigorous field study for future work.

References

Parsa Alian, Noor Nashid, Mobina Shahbandeh, Taha Shabani, and Ali Mesbah. Feature-driven end-
to-end test generation. In 2025 IEEE/ACM 47th International Conference on Software Engineering
(ICSE), pp. 678-678. IEEE Computer Society, 2025.

Android Developers. Monkey. https://developer.android. com, 2022. Accessed: 2025-
06-25.

Al Anthropic. Claude 3.7 and claude code, 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Apache Software Foundation. Apache jmeter: Load testing for web applications. https://
jmeter.apache.org/, 2025. Accessed: 2025-06-26.

Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C Li, Adrien Bardes, Suzanne
Petryk, Oscar Maiias, Zhiqiu Lin, Anas Mahmoud, Bargav Jayaraman, et al. An introduction to
vision-language modeling. arXiv preprint arXiv:2405.17247, 2024.

Radoslave Chakarov. How many websites are there? how many are active in 2023? https:
//webtribunal.net/blog/how-many-websites, 2023.

199
200
201

202

204
205

207
208
209

210
211

212
213
214
215

216
217
218
219

220
221

222
223
224

225
226
227
228
229

230
231
232

233
234
235
236

237
238
239
240

241
242
243
244

245
246
247
248

Mengzhuo Chen, Zhe Liu, Chunyang Chen, Junjie Wang, Boyu Wu, Jun Hu, and Qing Wang.
Standing on the shoulders of giants: Bug-aware automated gui testing via retrieval augmentation.
Proceedings of the ACM on Software Engineering, 2(FSE):825-846, 2025.

Cypress.io. Cypress: Testing frameworks for javascript. https://www.cypress.io/, 2025.
Accessed: 2025-06-26.

Google Chrome Developers. Puppeteer: Headless chrome node.js api. https://pptr.dev/,
2025. Accessed: 2025-06-26.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024a. URL https://arxiv.org/abs/
2401.136409.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents, 2024b. URL https://arxiv.org/abs/2407.01476.

Nguyen-Khang Le, Quan Minh Bui, Minh Ngoc Nguyen, Hiep Nguyen, Trung Vo, Son T. Luu,
Shoshin Nomura, and Minh Le Nguyen. Automated web application testing: End-to-end test
case generation with large language models and screen transition graphs, 2025. URL https:
//arxiv.org/abs/2506.02529.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steve Ko, Sangeun
Oh, and Insik Shin. Mobilegpt: Augmenting llm with human-like app memory for mobile task
automation. In Proceedings of the 30th Annual International Conference on Mobile Computing
and Networking, pp. 1119-1133, 2024.

Chenxu Liu, Zhiyu Gu, Guoquan Wu, Ying Zhang, Jun Wei, and Tao Xie. Temac: Multi-agent
collaboration for automated web gui testing. arXiv preprint arXiv:2506.00520, 2025a.

Chenxu Liu, Junheng Wang, Wei Yang, Ying Zhang, and Tao Xie. Judge: Effective state abstrac-
tion for guiding automated web gui testing. ACM Transactions on Software Engineering and
Methodology, 2025b.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023a. URL https://arxiv.org/abs/
2308.03688.

Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and Qing Wang. Fill in the
blank: Context-aware automated text input generation for mobile gui testing. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), pp. 1355-1367. IEEE, 2023b.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che, Dandan Wang, and
Qing Wang. Make Ilm a testing expert: Bringing human-like interaction to mobile gui testing via
functionality-aware decisions. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, pp. 1-13, 2024a.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Zhilin Tian, Yuekai Huang,
Jun Hu, and Qing Wang. Testing the limits: Unusual text inputs generation for mobile app
crash detection with large language model. In Proceedings of the IEEE/ACM 46th international
conference on software engineering, pp. 1-12, 2024b.

Yuxuan Lu, Bingsheng Yao, Hansu Gu, Jing Huang, Zheshen Jessie Wang, Yang Li, Jiri Gesi, Qi He,
Toby Jia-Jun Li, and Dakuo Wang. Uxagent: An llm agent-based usability testing framework for
web design. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors
in Computing Systems, pp. 1-12, 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

249
250
251

252
253

254
255

257
258

259
260
261

262
263
264

265

267
268
269
270

271
272
273

274
275
276

277
278
279

280
281
282

283
284

286

287
288
289

290
291
292

293
294
295
296

Ali Mesbah, Arie Van Deursen, and Stefan Lenselink. Crawling ajax-based web applications through
dynamic analysis of user interface state changes. ACM Transactions on the Web (TWEB), 6(1):
1-30, 2012.

Magnus Miiller and Gregor Zuni¢. Browser use: Enable ai to control your browser, 2024. URL
https://github.com/browser—use/browser-use.

F. Ricca and P. Tonella. Analysis and testing of web applications. In Proceedings of the 23rd
International Conference on Software Engineering. ICSE 2001, pp. 25-34, 2001. doi: 10.1109/
ICSE.2001.919078.

Mobina Shahbandeh, Parsa Alian, Noor Nashid, and Ali Mesbah. Naviqate: Functionality-guided
web application navigation. arXiv preprint arXiv:2409.10741, 2024.

Salman Sherin, Asmar Mugeet, Muhammad Uzair Khan, and Muhammad Zohaib Igbal. Qexplore:
An exploration strategy for dynamic web applications using guided search. Journal of Systems and
Software, 195:111512, 2023.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Andrea Stocco, Alexandra Willi, Luigi Libero Lucio Starace, Matteo Biagiola, and Paolo Tonella.
Neural embeddings for web testing. arXiv preprint arXiv:2306.07400, 2023.

Dakuo Wang, Ting-Yao Hsu, Yuxuan Lu, Hansu Gu, Limeng Cui, Yaochen Xie, William Headean,
Bingsheng Yao, Akash Veeragouni, Jiapeng Liu, Sreyashi Nag, and Jessie Wang. Agenta/b:
Automated and scalable web a/btesting with interactive llm agents, 2025. URL https://
arxiv.org/abs/2504.09723.

Siyi Wang, Sinan Wang, Yujia Fan, Xiaolei Li, and Yepang Liu. Leveraging large vision-language
model for better automatic web gui testing. In 2024 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 125-137. IEEE, 2024.

Hao Wen, Shizuo Tian, Borislav Pavlov, Wenjie Du, Yixuan Li, Ge Chang, Shanhui Zhao, Jiacheng
Liu, Yunxin Liu, Ya-Qin Zhang, et al. Autodroid-v2: Boosting sim-based gui agents via code
generation. arXiv preprint arXiv:2412.18116, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023. URL https://arxiv.
org/abs/2310.11441.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Juyeon Yoon, Robert Feldt, and Shin Yoo. Autonomous large language model agents enabling
intent-driven mobile gui testing. arXiv preprint arXiv:2311.08649, 2023.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning, 2023. URL https://arxiv.org/abs/2305.13660.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu.
Exact: Teaching ai agents to explore with reflective-mcts and exploratory learning, 2025. URL
https://arxiv.org/abs/2410.02052.

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. Automatic web
testing using curiosity-driven reinforcement learning. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 423-435. 1EEE, 2021.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/
2307.13854.

