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Abstract

Predicting the bioactivity of candidate ligands remains a central challenge in drug
discovery. Ligands and endogenous substrates often compete for the same binding
sites on target proteins, and the extent to which a ligand can modulate protein
function depends not only on its binding but also on how effectively it occupies
the relevant pocket. However, most existing methods focus narrowly on local
interactions within protein-ligand complexes and neglect spatial emptiness—the
unoccupied regions within the binding site that may permit endogenous molecules
to engage or interfere. Such unfilled space can diminish the ligand’s functional
impact, regardless of binding affinity. To overcome this key limitation in pro-
tein—ligand modeling, we propose LigoSpace, a novel method integrating three
core components. LigoSpace introduces GeoREC (Geometric Representation of
Spatial Emptiness in Complexes) to quantify atomic-level empty space and Union-
Pocket to unify multiple protein pockets, providing a global view of binding sites.
Additionally, LigoSpace employs a pairwise loss instead of commonly used MSE
loss, to better capture relative relationships critical for drug discovery. Extensive
experiments on multiple datasets with diverse bioactivity types demonstrate that
LigoSpace significantly improves performance when integrated into state-of-the-art
models, highlighting the effectiveness of its novel components.
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1 Introduction

Bioactivity is the measurable effect a compound exerts on a biological system, usually by modulating
the functional activity of a specific molecular target (e.g., a protein or nucleic acid). It can be quantified
experimentally through enzymatic kinetics (Vipax, Km, kcat/Km) or functional and binding assays
that yield parameters such as ECsg, ICsg, Fax and Kj) [MarEchal, 2011, Mendez et al., [2019].
Accurate measurement—and increasingly, in-silico prediction—of these effects allows researchers
in drug discovery, chemical biology, and pharmacology to identify the most promising compounds
early, reducing the cost and duration of large-scale experimental screens [Kapetanovic, 2008]]. With
the growing size of chemical libraries and biological data, there is an increasing demand for efficient
and accurate computational methods to predict bioactivity. Developing robust bioactivity prediction
methods has therefore become a key focus in both academic research and industrial applications
[Ramsundar et al.,|[2019]].

Recently, machine learning approaches have shown great potential in modeling biological molecules
and their interactions, dramatically accelerating the drug discovery process [Rifaioglu et al., 2019}
Chen et al.| [2018]]. There have also been some machine learning methods for bioactivity prediction,
aiming at early-stage screening of the potential active molecules [Prajapati et al., 2025/ |Ishfaq et al.,
2022 |Caceres et al., [2020, [Lee et al.,2019]]. Conventional approaches rely on the intrinsic properties
of small molecules as features to model ligands, aiming to uncover the relationship between molecular
structure and bioactivity. A traditional strategy is to use quantitative structure—activity relationship
(QSAR) models [[Cherkasov et al., [2014, [Tropsha et al., 2024, which primarily utilize molecular
descriptors derived from the physicochemical and structural properties of small molecules. While this
approach is reasonable and widely adopted, it may overlook the fact that bioactivity fundamentally
arises from specific biological interactions, which are critical for thoroughly modeling and under-
standing bioactivity. A compound cannot function biologically without its target and environment.
Furthermore, unlike other single-target prediction tasks, bioactivity is often evaluated using multiple
measurement types, such as ICsg, ECs0, K4, and Kj;, making the task more challenging. In response
to these challenges, recent studies have shifted toward developing models based on curated pocket-
ligand interaction datasets that provide more comprehensive information, including abundant bound
conformations with proteins and multiple bioactivity measurements [Yin et al., [2024, [Huang et al.,
2025]]. Among these methods designed for protein-ligand interaction, graph neural networks (GNNs)
have become particularly prevalent, as graph-based representations offer a natural and powerful
way to capture molecular properties and relational structures [Zhang et al., 2023, |Wang et al., 2024,
Mastropietro et al., 2023} [Li et al.| [2021].

While recent studies increasingly focus on bioactivity prediction using protein information and
constructing protein-ligand interaction graphs, they often concentrate on local binding region but
overlook the global geometric context of the entire pocket, missing crucial information for accurate
bioactivity modeling. Geometric features are known to be important for representing binding status
and have shown effectiveness in modeling molecular interactions [Wei et al., 2024, |[Han et al., [2024]
Song et al.|, [2024} Zhang et al.,2022]]. For instance, geometric representations in E(3)-equivariant
GNNs have demonstrated strong performance in capturing local spatial relationships on protein
surfaces, significantly improving binding site prediction [Wei et al.l|2024]]. However, most existing
approaches emphasize detailed descriptions of local binding region and structural complementarity
between interacting molecules. None of the previous work considers pocket-ligand interactions from
the perspective of spatial emptiness within the docked conformation. This aspect, which remains
underexplored, holds practical importance and corresponds closely with the principle of competitive
inhibition [Eun, {1996, Baici, 2015]], where drug molecules bind to the active site of a protein and block
access for endogenous substrates (illustrated in Figure[T). For example, protein kinase inhibitors bind
to the enzyme’s ATP-binding pocket, blocking ATP access and thereby suppressing kinase activity.
Previous methods tend to focus on how well the ligand fits the pocket, but often overlook the inverse
questions: once binding occurs, how much empty space remains, and to what extent does the ligand
occupy the pocket?

Furthermore, current methods for bioactivity prediction typically focus on the local binding pocket in
complex with a ligand, which limits access to global pocket information that is biologically significant.
Additionally, in many prior works, each pocket-ligand pair is treated as an independent data point
[Lee et al., 2019} |Caceres et al.,[2020]], overlooking the realistic scenario in which multiple potential
drug compounds may interact with different pockets of the same protein. Recent findings underscore



' Endogenous
%~ substrate

,f} g - Example
Lr” Vacant space in Geo edge
- J‘v\‘a the pocket is small
LRy
3
i 1
A 7 \ Endogenous X
,'.\ £ \1 (. S £ substrate is =)~
\ s %@ A | Tl o \ blocked Successful inhibition
X _I_ Interaction 1 )
Y . /v’ Endogenous
A O g

‘o~ substrate

. -7 ~— :1
Target Drug ligands By MS/L /// l\ \/ \A
" % | N

Vacant space in

P v % the pocket is large
T 1 e
«LX&?\\ a ‘,/' Endogenous LACTS v
g ’\\~;‘ substrate = L -
\ "1\;‘.,; easily outcompetes Unsuccessful inhibition
the drug
Interaction 2

Drug out

Figure 1: An example of competitive inhibition.

the importance of evaluating bioactivity across different ligands acting on a common protein, enabling
more meaningful and fair comparisons. In response, new methods and datasets [Yin et al.| 2024,
Huang et al.|[2025] have been developed to incorporate multiple ligands per protein and to perform
evaluation at the protein level, allowing for more robust and context-aware assessments. However,
even with a fixed protein, these approaches often involve distinct binding sites within the same protein,
introducing variability that may compromise the consistency of bioactivity predictions.

Additionally, a major distinction between drug discovery and other regression tasks lies in the
importance of prediction order. The most common training loss, mean-square error (MSE), is
symmetric and treats each data point independently. For example, given two ground-truth bioactivities,
y1 = 2 and y2 = 1, it gives the same loss value for the predictions (§; = 1.5,9> = 1.5) and
(41 = 1.5,92 = 0.5). The order of the former is wrong, but the order of the latter aligns with the
ground truths.

To address these issues, we propose LigoSpace, which integrates three key modules for enhanced
bioactivity prediction. We make the following key contributions:

* We propose Geometric Representation of spatial Emptiness in protein-ligand Complex
(GeoREC) to describe the surroundings of each node in the protein-ligand graph represen-
tation. This surrounding space quantifies the emptiness within the docking conformation,
incorporating a broader global perspective into the overall interaction graph representation.
Furthermore, this concept of emptiness holds practical significance, as it plays a pivotal role
in assessing whether the pocket space is sufficiently tight to hinder the entry of other small
molecules into the binding site area, thereby contributing to a more accurate prediction of
the compound’s bioactivity.

* We introduce the concept of the Union-Pocket (Figure [3) into the bioactivity prediction task
to ensure that the entire pocket space can be accessible, facilitating GeoREC to measure
the empty space inside. Moreover, it provides a broader structural context during the GNN
processing, contributing to more effective global information integration. Additionally, when
evaluating different ligands binding to the same protein, keeping the protein information
consistent encourages the model to focus on the ligand, the only changing part, enhancing
the ability of the model to capture subtle conformational differences within a consistent
protein context.

* We also incorporate a pairwise loss alongside the conventional mean squared error (MSE)
loss as the final training objective for bioactivity prediction. This combined loss encourages
the model to preserve the relative order among samples by emphasizing pairwise differences
in their bioactivity labels.

» Experimental results demonstrate that LigoSpace leads to substantial improvements in
bioactivity prediction across multiple datasets, label types, and GNN architectures. In



particular, the addition of GeoREC results in significant performance gains, highlighting the
critical role of geometric information in accurately modeling protein-ligand interactions.

2 Related work and preliminaries

2.1 Bioactivity prediction

Predicting bioactivities is a crucial step in drug discovery, as it plays a central role in enabling efficient
and accurate drug screening [Ishfaq et al., 2022, |Yin et al.|[2024]. Early empirical approaches [|Gohlke
et al.| [2000, [Wang et al.||2002]| rely on manually designed scoring functions tailored for specific tasks,
requiring substantial expert knowledge to encode underlying biochemical interactions. Subsequently,
statistical and traditional machine learning methods [Ballester and Mitchell, 2010, |Kinnings et al.}
2011]] are developed to model bioactivity in a data-driven manner by extracting protein and ligand
features and applying classical regression algorithms. However, these methods heavily depend on the
quality of handcrafted features and often suffer from limited generalizability when applied to larger
or more diverse datasets. With the rising popularity of deep learning in recent years, sequence-based
bioactivity prediction methods have emerged, which directly extract features from the SMILES
(Simplified Molecular Input Line Entry System) strings of ligands and the amino acid sequences of
proteins, bypassing the need for manual feature engineering. For example, DeepDTA [[Oztiirk et al.,
2018|] employs two independent convolutional neural networks to capture latent representations from
ligand SMILES and protein sequences. Building upon this, MT-DTI [Shin et al.| |2019] incorporates
attention mechanisms to enhance the model’s interpretability and capture long-range dependencies.

Inspired by the effectiveness of graph neural networks (GNNs) in handling structured data, recent
efforts [[Vefghi et al., [2025]] have extended bioactivity prediction to incorporate molecular graph
representations. These approaches consider 3D structural information of protein-ligand complexes
to varying degrees. GIGN [Yang et al., [2023]] introduces a heterogeneous interaction layer that
integrates both covalent and non-covalent interactions into the message-passing framework, thereby
facilitating more effective node representation learning. DTIGN [[Yin et al., |2024]] enhances upon this
by incorporating intra-molecular bond features and explicitly modeling non-covalent interactions,
including Coulomb and London dispersion forces, and further combining molecular docking with
self-attention mechanisms to capture information from diverse binding poses. However, existing
models represent protein-ligand complexes as purely topological graphs, thereby underutilizing rich
biomolecular structural information and neglecting the spatial interactions between proteins and
ligands. To address these limitations, we propose incorporating comprehensive spatial information to
better capture the geometric nature of molecular interactions.

2.2 Task definition

We consider the task of predicting continuous-valued bioactivity based on a set of possible binding
poses of a ligand across multiple available protein pockets. Let £ denote the set of ligands and P the
set of protein pockets. Each ligand [ € L is associated with a set of NV; possible binding poses:

1
X ={xi1,210,..., 218}, ®; €RY (D

where x; ; represents the i-th pose of the ligand [ associated with one of the available protein pockets,
and d is the dimensionality of the input representation (e.g., 3D coordinates, graph embeddings, or
voxel grids). Let P, C P be the subset of candidate pockets associated with ligand [. Let y; € R
denote the experimentally measured bioactivity value of ligand [ (e.g., ECsg, IC5(), which may not
be pocket-specific. The objective is to learn a predictive model f such that:

o = f(X,P), ()

which aggregates information from the poses across all candidate pockets to estimate ;. In practice,
pose-level representations can be computed and then aggregated using a permutation-invariant
function:

it = Age (Ul 1) o

where p;; € P; denotes the pocket corresponding to pose Z;;, fpose is @ shared neural network
applied to each pose-pocket pair, and Agg is a permutation-invariant aggregation function such as
mean, sum, or attention-based pooling.
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Figure 2: An example of the geometric edges defined in this paper.

3 Methods

3.1 Geometric representation of spatial emptiness in protein-ligand complex

To characterize the spatial configuration inside the pocket within a docked protein-ligand complex,
we design Geometric Representation of spatial Emptiness in protein-ligand Complex (GeoREC) for
each node that captures global information about the spatial emptiness of the structure. Let V), and V;
denote the sets of nodes representing the pocket and the ligand, respectively, within a pocket-ligand
complex. The complex graph is defined as G. = (V,, E..), where V, = V,, UV}, and E. denotes
the set of all types of the connection within the complex, usually corresponding to physicochemical
interactions such as covalent bonds, hydrogen bonds, van der Waals contacts and so on.

For each node v; € V,, we define a local spherical coordinate system centered at v;, and uniformly
partition the surrounding space into .S cones. This spatial decomposition enables the extraction of
relative positional features. For each cone s € {1,2,..., S}, we collect a set of pocket-ligand nodes

located within it and denote it by VZ(OSH)e Next, for each cone s whose corresponding node set VZE);L is

non-empty, we identify the node closest to v;, and include it in the surrounding node set V“(JQ This
set provides a compact yet informative representation of the spatial emptiness around v;. In this

study, GeoREC is incorporated by introducing geometric edges: for each v; € VSEQ, we add an edge
(vs,v;), forming a set of geometric edges denoted as Eye,. An example of the geometric edges is
shown in Figure |2} The enhanced graph is then defined as: G, = (V., E., Eq,), which incorporates
both the original interaction edges and the newly introduced geometric edges. These geometric edges
enhance the graph’s capacity to perceive spatial emptiness, particularly within the pocket cavity, and
also provide alternative pathways for global and local information flow beyond conventional chemical
bonds.

3.2 Global interaction model with Union-Pocket

The structure-based bioactivity prediction task can be generally formulated as

o = f'(x1,p), 4)

where p € P is a candidate binding pocket, x; denotes the representation of the ligand I, f’ is a
generic bioactivity prediction model, and g; is the predicted bioactivity. In this setting, each data
point corresponds to a local pocket-ligand pair, e.g., "Data point 1" or "Data point 2" in Figure BA.
Conventional approaches [Wallach et al.,[2015, |Tanebe and Ishidal 2021} |Yang et al., [2023]] predict
bioactivity on a single local pocket-ligand pair for a single ligand. However, a given ligand may
engage multiple local pockets on the protein, each potentially contributing differently to the overall
bioactivity.



To better reflect the biological context, recent work [Yin et al.|[2024] has shifted toward aggregating
multiple local pocket-ligand pairs for the same ligand. The prediction task then becomes:

gl:f(XlaPl/)7 (5)

where P; C P is the subset of local pockets associated with the ligand poses A; within the same
protein. This setting reflects the biological scenario more closely, as a single protein may engage the
same ligand through distinct local pockets. Furthermore, a set of distinct ligands, denoted as £, may
generate numerous fragmented local pockets, introducing variability that hinders the model from
capturing a global view of how all ligand poses—regardless of whether they come from the same or
different ligands—relate on the same protein.

To mitigate this issue, we propose the concept of the Union-Pocket, defined as the union of all atoms
from the candidate pockets associated with a given protein. Let P] = {p},p5, ..., p} } be the set of
pockets associated with ligand I. For each p’ € P/, let A(p’) denote the set of atoms comprising
pocket p’. The Union-Pocket is then defined as:

A(puninn) = U U A(p/); (6)

leLp'eP]

where L is the set of ligands docked to the given protein. The resulting pynion aggregates all atoms
from all relevant pockets across ligands and thereby encompasses the full binding region probed by
the ligand set £. An example of the formation and data representation of the proposed Union-Pocket
are shown in Figure[3]B and[3[C, respectively. Accordingly, the bioactivity prediction task for each
protein can now be reformulated as:

gl = funion(-)(l ) punion)a (7)
where finion 18 the prediction model utilizing the Union-Pocket.

By replacing many local pocket representations with the Union-Pocket, a model can capture richer
global interaction information while maintaining spatial consistency across ligands binding to the
same protein. When integrated with GeoREC, this strategy improves the geometric representation’s
expressiveness and allows the model to more effectively distinguish fine-grained differences in ligand
poses and spatial emptiness. The shared spatial context provided by the Union-Pocket is crucial for
accurate and robust bioactivity prediction.

3.3 The pairwise loss

To better preserve relative order information during optimization, we introduce a pairwise loss [Zhu
et al., [2024, Tynes et al.| [2021]] into the bioactivity prediction task. Although recent studies have
explored diverse metrics such as Kendall Tau [Ferndndez-Llaneza et al., [2021]], Top-K precision [Yin
et al.| |2021]], and enrichment factors [Yin et al., |2022]] for evaluation, few have improved the loss
function directly into model training. Most existing Al-based methods for bioactivity prediction and
other biological regression tasks still rely on MSE loss to train their models. However, it is ineffective
for drug discovery because it considers each prediction independently, neglecting the relative orders
of the samples.

Consider the conventional MSE loss, which is also called L loss, used for training the bioactivity
prediction model:

1 N
~ 2
£2=N;Hyl—yz|\27 ®)

where [V is the total number of training samples (protein-ligand pairs) in a batch, g; is the predicted
bioactivity score for the [-th ligand, y; is the ground truth bioactivity label for the [-th ligand and
II Hg denotes the squared Ly norm. Standard loss functions such as Ly (MSE) and L; (MAE) simply
measure the absolute numerical differences between predicted and true values, ignoring relative order.
This limitation poses challenges when capturing correlations among samples. We exploit the pairwise
loss as follows:

Cpiie = 2 305 - ) — s~ ) ©)
pairwise N(N — 1) Yi Yj Yi Yi)llo -

i=1 j=i+1
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Figure 3: Union-Pocket. The protein is shown in wheat color. The stick models in green and magenta
represent the same ligand, which binds to different regions of the protein. The green and magenta
surfaces correspond to the surfaces of the ligand molecules in their respective binding conformations.
(A) Current methods incorporate pocket-ligand interactions but focus on local regions, treating a
small ligand-containing pocket as a single data point, thus losing global pocket information. (B) By
taking the union of all the local binding regions within the protein, we get the Union-Pocket, indicated
by the red dashed line. (C) New data points with our Union-Pocket, which keeps the complete global
geometry of the binding region.

Here, N is the number of protein-ligand pairs in a batch. y; and y; are the ground truth bioactivity
values for ligand /; and [}, respectively. §; = funion (X1, ; Punion) and 95 = funion(X1;, Punion) are
the predicted bioactivity scores obtained from the model fynion. The pairwise difference (y; — y;)
reflects the relative bioactivity difference in ground truth, while (§; — ¢;) is the corresponding
prediction difference. The pairwise loss function employs an Ly norm to penalize discrepancies in
predicted relative differences (§j; — §;) compared to the true differences (y; — ;). The normalization
factor m computes the mean over all unique sample pairs, making the loss invariant to batch
size. Ultimately, we adopt a hybrid loss function Lyyiriq that combines both pointwise and pairwise
losses:

Liybria = A1 - L2 + A2 - Loairwise- (10)

Here, £, measures the pointwise error between predicted and true bioactivity values, and Lpairwise
emphasizes the preservation of the correct difference between the predications. The coefficients A\;
and )\, are hyperparameters that control the relative contribution of the two components in the overall
objective.

4 Experiments

4.1 Datasets and testing settings

DTIGN dataset. We first adopt the dataset constructed in DTIGN [[Yin et al.,2024]. This dataset is
derived from ChEMBL [Gaulton et al., 2012], a widely used database in drug discovery that contains
extensive information on chemical compounds, their biological activities, and related properties. The
DTIGN dataset comprises 8§ protein targets (I1, 12, I3, 14, IS, E1, E2, and E3), each considered as an
individual subset containing several binding pockets. Within each subset, hundreds to thousands of
ligands are associated with the protein, labeled by ICs, or ECs, and each ligand is represented by
multiple docking poses.



SIU dataset. We also validate our method on a large-scale docking dataset proposed in [Huang
et al., |2025]]. This dataset contains 201,458 and 56,485 small molecule—pocket pairs with K; and
K4 bioactivity labels, respectively, which complement the bioactivity categories in the DTIGN
dataset. The K subset was generated by docking 34,881 unique small molecules to 4,317 protein
conformations derived from 764 proteins, whereas the Ky subset was generated by docking 5,201
unique small molecules to 3,682 protein conformations derived from 584 proteins.

The dataset includes two variants, STU-0.9 and SIU-0.6, sharing the same test set. The numeric suffix
denotes the sequence similarity threshold between the training and test data. In this study, we use
four subsets of the SIU dataset: SIU-0.9/K4, SIU-0.9/K;, SIU-0.6/K 4, and SIU-0.6/K;.

Evaluation metrics. To ensure fair comparison with previous works, we adopt widely used evaluation
metrics in bioactivity prediction, including root mean square error (RMSE), Pearson correlation
coefficient (r), and Kendall’s tau correlation coefficient (7) for DTIGN dataset. We also compare
mean absolute error (MAE) and Spearman correlation coefficient for SIU dataset. The details of the
definition can be found in Appendix A.6.

Baseline models. To evaluate the effectiveness of the proposed representations and loss function,
we adopt DTIGN [Yin et al.| [2024], GIGN [Yang et al.| [2023]], and Graph Attention Network (GAT)
[VelickoviC et al., 2017] as the baselines. DTIGN is one of the latest GNN-based methods designed for
bioactivity prediction. It uses multiple local pocket-ligand complexes as input. GIGN is also a GNN-
based method that incorporates 3D structures and physical interactions for predicting protein-ligand
binding affinities. GAT is a foundational GNN model that uses attention to focus on relevant nodes.
Additional baseline models and more details are demonstrated in Appendix A.2.

4.2 Results

We first compare the baselines with LigoSpace, which integrates GeoREC, Union-Pocket within
the GNN, and the hybrid loss function on the DTIGN dataset. As shown in Table[T} our proposed
method consistently enhances the DTIGN baseline across all subsets and metrics, demonstrating
robust improvements on diverse protein targets. On average, our proposed method reduces RMSE
by 9.93%, increases r by 18.39%, and improves 7 by 19.09%. On the GIGN and GAT baselines,
our method also achieves noticeable gains on 7 out of 8 and 6 out of 8 datasets, respectively. These
results highlight the consistent effectiveness of our proposed method. Table [I]also shows that the
proposed method achieves more improvement on stronger baselines.

Furthermore, we evaluate the performance of our proposed method on the SIU dataset, which includes
a broader set of protein targets and ligands. The results are presented in Table|2] with the Uni-Mol
[Zhou et al.l [2023]] benchmark taken from [Huang et al., [2025]]. The results demonstrate that our
LigoSpace-enhanced models outperform their respective baselines in 43 out of 48 dataset-metric com-
binations and achieve state-of-the-art performance. Notably, our method achieves substantial gains in
some subsets. For example, in SIU-0.9/K;, DTIGN+LigoSpace achieves = 0.3213 and Spearman
correlation of 0.3259. In contrast, the baseline methods struggle to learn meaningful relationships, as
reflected by near-zero correlation scores. These results demonstrate the superior capability of our
method on more complex datasets, further illustrating its robustness and generalizability. Additional
experimental results and comparisons with more baseline models are provided in Appendix A.4.

4.3 Ablation study

To assess the contribution of each individual component in our proposed method, we perform an
ablation study by systematically removing one module at a time from the complete configuration on
the DTIGN model. The setups are as follows: 1) DTIGN-GUL includes GeoREC (G), Union-Pocket
(U), and hybrid loss (L); 2) DTIGN-GU(L) includes GeoREC (G) and Union-Pocket (U), excluding
the hybrid loss (L); 3) DTIGN-(G)UL includes the Union-Pocket (U) and hybrid loss (L), excluding
GeoREC (G), and 4) DTIGN-G(U)L includes GeoREC (G) and hybrid loss (L), excluding the
Union-Pocket (U). The results of the ablation study are shown in Table [3] By comparing these
ablation settings with the full enhanced method (DTIGN-GUL), we draw the following conclusions:

The proposed geometric feature GeoREC (G) makes a substantial contribution to performance. When
comparing DTIGN-(G)UL to DTIGN-GUL, we observe a reduction in RMSE by 9.3%, an increase
in r by 14.4%, and an elevation in 7 by 19%.



Table 1: Comparison of model performance on baselines and their LigoSpace-enhanced versions
with the proposed methods across multiple datasets

Model Metric Dataset
11 12 13 14 15 El E2 E3 Avg  Avg Imp%
RMSE | 1.1977 0.7952 1.1443 0.9396 0.9518 0.9086 0.7765 1.0869 0.9751
DTIGN baseline rt 0.3547 0.7128 0.7839 0.6177 0.6227 0.3363 0.6946 0.4825 0.5757
71 0.2445 0.4922 0.5991 0.4574 0.4691 02139 0.4917 03786 0.4183
RMSE | 1.0364 0.6507 1.0245 0.8124 0.8966 0.8645 0.7262 1.0150 0.8783 9.93%
DTIGN+LigoSpace r 1 0.5895 0.7888 0.8251 0.7334 0.6986 0.4969 0.7275 0.5924 0.6815 18.39%
7T 0.4239 0.5454 0.6360 0.5205 0.5083 0.3705 0.5243 0.4563 0.4982 19.09%
RMSE | 1.2365 0.7487 1.0677 0.8560 0.8700 0.9563 0.7545 0.9704 0.9325
GIGN baseline rt 0.4357 0.7234 0.8080 0.6888 0.7302 0.4435 0.7246 0.6285 0.6478
T 0.3216 0.5083 0.6310 0.4920 0.5439 0.3443 0.5043 0.4664 0.4765
RMSE | 09515 0.6880 0.9403 0.8111 0.8302 0.8733 0.8737 0.9161 0.8605 7.72%
GIGN+LigoSpace rt 0.6861 0.7735 0.8539 0.7450 0.7513 0.4912 0.6637 0.6860 0.7063 9.03%
7T 0.4899 0.5378 0.6673 0.5439 0.5591 0.3786 0.5511 0.5228 0.5313 11.51%
RMSE | 1.1801 0.9270 1.3433 1.0200 1.0547 0.8962 0.8579 1.1716 1.0564
GAT baseline rt 0.4147 04771 0.6663 0.5091 0.5035 0.3771 0.5836 0.3468 0.4848
71 0.2267 0.3115 04618 0.3685 0.3428 0.2451 0.3917 0.2938 0.3302
RMSE | 1.1767 0.8906 1.3352 1.0037 1.0342 0.9252 0.8587 1.1476 1.0465 0.93%
GAT+LigoSpace rt 04511 0.5437 0.6813 0.5570 0.5302 0.3604 0.5838 0.4060 0.5142 6.07%
TT 0.2922  0.3593 0.4823 0.4075 0.3690 0.2497 0.3819 0.3330 0.3594 8.82%

Table 2: Comparison of model performance on SIU dataset

Dataset / label ~ Method RMSE] MAE| rt Spearmant
Unimol 1.364 1.141  -0.033 -0.082
DTIGN 1.839 1.490  -0.001 -0.042
DTIGN+LigoSpace 1.304 1.060  0.321 0.326
SIU-09/ K4  GIGN 1.708 1.367  0.070 0.038
GIGN+LigoSpace 1.455 1.139  0.296 0.261
GAT 1.545 1.240  0.092 0.082
GAT+LigoSpace 1.473 1.166  0.261 0.254
Unimol 1.235 1.017  0.485 0.452
DTIGN 1.607 1.276  0.360 0.329
DTIGN+LigoSpace 1.296 1.054  0.485 0.441
SIU-0.9/ K; GIGN 1.597 1.337  0.223 0.167
GIGN+LigoSpace 1.487 1.240 0.371 0.338
GAT 1.706 1.386  0.301 0.262
GAT+LigoSpace 1.625 1.339  0.316 0.294
Unimol 1.389 1.192  -0.149 -0.206
GIGN 1.371 1.115  0.265 0.281
GIGN+LigoSpace 1.326 1.078  0.280 0.227
S1U-0.6/ K4  DTIGN 1.349 1.079  0.329 0.329
DTIGN+LigoSpace 1.332 1.069  0.327 0.248
GAT 1.521 1.285 0.233 0.157
GAT+LigoSpace 1.424 1.182  0.107 0.133
Unimol 1.255 1.034  0.472 0.452
GIGN 1.789 1.503  0.225 0.230
GIGN+LigoSpace 1.404 1.165  0.498 0.463
SIU-0.6 / K; DTIGN 1.993 1.653  0.123 0.091
DTIGN+LigoSpace 1.321 1.079 0472 0.452
GAT 1.976 1.690  -0.060 -0.096
GAT+LigoSpace 1.694 1.381  0.303 0.263

The Union-Pocket also confers consistent advantages in the majority of cases. Compared to DTIGN-
G(U)L, which excludes the Union-Pocket (U), it reduces the RMSE by 5.8%, increases r by 7%, and
improves 7 by 9% on average. Notably, GeoREC and Union-Pocket sometimes exhibit a mutually
reinforcing relationship; when utilized in isolation, their influence may be restricted. For instance, on



dataset E1, DTIGN-(G)UL and DTIGN-G(U)L yield r of approximately 0.31 and 0.32, whereas the
DTIGN-GUL boosts 7 to 0.5, marking a nearly 60% improvement. This demonstrates that excluding
either GeoREC (G) or Union-Pocket (U) results in substantial performance degradation, whereas
their integration leads to a reinforced effect.

Integrating the hybrid loss (L) enhances the training process, particularly in terms of order consistency.
This is evidenced by comparing DTIGN-GUL with DTIGN-GU(L); across 8 datasets, 7 improves
in 7 cases. On average, compared to DTIGN-GU(L), it reduces the RMSE by 3.1%, increases r by
4%, and improves 7 by 4.6%. This validates the effectiveness of incorporating the pairwise loss in
bioactivity prediction.

Table 3: Ablation study on DTIGN baseline (each variant excludes one component)

Dataset DTIGN-GUL DTIGN-GU(L) DTIGN-(G)UL DTIGN-G(U)L
RMSE] T 71 RMSE| rt T RMSE] T Tt RMSE] T 71

11 1.0364 0.5895 0.4239 1.1163 0.5259 0.3494 1.1341 04721 03249 1.0739 0.5941 0.4128
12 0.6507 0.7888 0.5454 0.7292 0.7284 0.5081 0.7724 0.7077 0.4665 0.7395 0.7331 0.5265
I3 1.0245 0.8251 0.6360 1.0557 0.8153 0.6175 1.1170 0.8196 0.6348 1.2061  0.7486 0.5446
14 0.8124 0.7334 0.5205 0.8550 0.7072 0.5023 09149 0.6666 0.4725 0.8364 0.7149 0.5067
15 0.8966  0.6986 0.5083 0.8625 0.7127 0.5225 0.9591 0.6343 0.4561 0.9017 0.6928 0.4994
El 0.8645 0.4969 0.3705 0.8586 0.4513 03498 0.9513 0.3064 0.1727 0.9243 03176 0.1983
E2 0.7262 0.7275 0.5243  0.7600 0.7083 0.5066 0.8263  0.6384 0.4300 0.7323 0.7314 0.5332
E3 1.0150 0.5924 0.4563 1.0119 0.5955 0.4524 1.0679 05198 0.3917 1.0438 0.5656 0.4332

Avg 0.8783  0.6815 0.4982 09062 0.6556 0.4761 0.9679 0.5956 0.4187 0.9323 0.6373 0.4568

5 Conclusion

Bioactivity prediction is a crucial task in computational drug discovery. In this work, we introduced
GeoREC, a geometric representation of spatial emptiness in protein-ligand complexes, and the Union-
Pocket, a unified structural context for multiple pockets, to enhance bioactivity prediction in drug
discovery. By measuring unoccupied space and integrating global pocket information, our approach
captures critical aspects of competitive binding that were previously overlooked. Additionally, we
exploited a pairwise loss function to better preserve the relative order among samples. Extensive
experiments across diverse datasets and bioactivity measurements demonstrate that LigoSpace
significantly improves prediction accuracy. Specifically, the substantial performance gains achieved
by GeoREC highlight the critical importance of the proposed geometric feature in protein-ligand
interactions modeling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarized the key contributions at the end of the introduction. They can
accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Due to space constraints in the main text, we discuss the limitations of this
work in the "Limitations" section of the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed instructions for reproducing our experimental results are provided in
the "Implementation” section of the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: At this time, we are not able to share the code publicly, as a patent application
is in progress and there may be future commercial considerations.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Necessary experimental settings are described in Section 4.1 of the main
text. Additional details are provided in the "Detailed experimental settings" section of the
Appendix due to space constraints.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the computer resources needed to reproduce the experiments in
the "Computational environment" section of the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and made sure to adhere to
them.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our method improves bioactivity prediction, which can help accelerate drug
discovery, as outlined in the Introduction and Related Work sections. We are not aware of
any potential negative societal impacts at this time.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly respect and credit for existing assets. We cite relevant papers and
comply with the licenses.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18



13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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