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Abstract

Generative models have emerged as an essential building block for many image synthesis
and editing tasks. Recent advances in this field have also enabled high-quality 3D or video
content to be generated that exhibits either multi-view or temporal consistency. With
our work, we explore 4D generative adversarial networks (GANs) that learn unconditional
generation of 3D-aware videos. By combining neural implicit representations with time-aware
discriminator, we develop a GAN framework that synthesizes 3D video supervised only with
monocular videos. We show that our method learns a rich embedding of decomposable 3D
structures and motions that enables new visual effects of spatio-temporal renderings while
producing imagery with quality comparable to that of existing 3D or video GANs.

Figure 1: 3D-Aware video generation. We show multiple frames and viewpoints of two 3D videos,
generated using our model trained on the FaceForensics dataset (Rössler et al., 2019). Our 4D GAN generates
3D content of high quality while permitting control of time and camera extrinsics. Video results can be
viewed on our website: https://sherwinbahmani.github.io/3dvidgen

1 Introduction

Recent advances in generative adversarial networks (GANs) (Goodfellow et al., 2014) have led to artificial
synthesis of photorealistic images (Karras et al., 2019; 2020; 2021). These methods have been extended to
enable unconditional generation of high-quality videos (Chen et al., 2021a; Yu et al., 2022) and multi-view-
consistent 3D scenes (Gu et al., 2022; Chan et al., 2022; Or-El et al., 2022a). However, despite important
applications in visual effects, computer vision, and other fields, no generative model has been demonstrated
that is successful in synthesizing 3D videos to date.

We propose the first 4D GAN that learns to generate multi-view-consistent video data from single-view
videos. For this purpose, we develop a 3D-aware video generator to synthesize 3D content that is animated
with learned motion priors, and permits viewpoint manipulations. Two key elements of our framework are a
time-conditioned 4D generator that leverages emerging neural implicit scene representations (Park et al.,
2019; Mescheder et al., 2019; Mildenhall et al., 2020) and a time-aware video discriminator. Our generator
takes as input two latent code vectors for 3D identity and motion, respectively, and it outputs a 4D neural
fields that can be queried continuously at any spatio-temporal xyzt coordinate. The generated 4D fields can
be used to render realistic video frames from arbitrary camera viewpoints. To train the 4D GAN, we use a
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discriminator that takes two randomly sampled video frames from the generator (or from real videos) along
with their time differences to score the realism of the motions. Our model is trained with an adversarial loss
where the generator is encouraged, by the discriminator, to render realistic videos across all sampled camera
viewpoints.

Our contributions are following: i) We introduce the first 4D GAN which generates 3D-aware videos
supervised only from single-view 2D videos. ii) We develop a framework combining implicit fields with
a time-aware discriminator, that can be continuously rendered for any xyzt coordinate. iii) We evaluate
the effectiveness of our approach on various video datasets. We show that the trained 4D GAN is able to
synthesize plausible videos that allows viewpoint changes, whose visual and motion qualities are competitive
against the state-of-the-art 2D video GANs’ outputs.

2 Related Work

In this section, we discuss the most relevant literature on image and video synthesis as well as neural implicit
representations in the context of 2D and 3D content generation. See appendix for a more complete list of
references.

GAN-based Image Synthesis Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have
demonstrated impressive results on multiple synthesis tasks such as image generation (Brock et al., 2019;
Karras et al., 2019; 2020), image editing (Wang et al., 2018; Shen et al., 2020; Ling et al., 2021) and
image-to-image translation (Isola et al., 2017; Zhu et al., 2017; Choi et al., 2018). To allow for increased
controllability, during the image synthesis process, several recent works have proposed to disentangle the
underlying factors of variation (Reed et al., 2014; Chen et al., 2016; Lee et al., 2020; Shoshan et al., 2021)
or rely on pre-defined templates (Tewari et al., 2020a;b). However, since most of these methods operate on
2D images, they often lack physically-sound control in terms of viewpoint manipulation. In this work, we
advocate modelling both the image and the video generation process in 3D in order to ensure controllable
generations.

Neural Implicit Representations Neural Implicit Representation (NIR) (Mescheder et al., 2019; Park
et al., 2019; Chen & Zhang, 2019) have been extensively employed in various generation tasks due to their
continuous, efficient, and differentiable nature. These tasks include 3D reconstruction of objects and scenes,
novel-view synthesis of static and dynamic scenes, inverse graphics, and video representations (Jiang et al.,
2020; Chibane et al., 2020; Sitzmann et al., 2020; Barron et al., 2021; Sajjadi et al., 2022; Park et al., 2021a;
Li et al., 2021; Niemeyer et al., 2020; Chen et al., 2021a). Among the most widely used NIRs are Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2020) that combine NIRs with volumetric rendering to enforce
3D consistency while performing novel view synthesis. In this work, we employ a generative variant of NeRF
(Gu et al., 2022) and combine it with a time-aware discriminator to learn a generative model of videos from
unstructured videos.

Closely related to our work are recent approaches that try to control the motion and the pose of scenes (Lin
et al., 2022; Liu et al., 2021a; Zhang et al., 2021; Ren et al., 2021). In particular, they focus on transferring
or controlling the motion of their target objects instead of automatically generating plausible motions. They
often use networks overfitted to a single reconstructed scene (Chen et al., 2021b; Zhang et al., 2021) or rely
on pre-defined templates of human faces or bodies (Liu et al., 2021a; Ren et al., 2021). In our work, we build
a 4D generative model that can automatically generate diverse 3D content along with its plausible motion
without using any pre-defined templates.

3D-Aware Image Generations Another line of research investigates how 3D representations can be
incorporated in generative settings for improving the image quality (Park et al., 2017; Nguyen-Phuoc et al.,
2018) and increasing the control over various aspects of the image formation process (Gadelha et al., 2017;
Chan et al., 2021; Henderson & Ferrari, 2019). Towards this goal, several works (Henzler et al., 2019;
Nguyen-Phuoc et al., 2019; 2020) proposed to train 3D-aware GANs from a set of unstructured images using
voxel-based representations. However, due to the low voxel resolution and the inconsistent view-controls
stemming from the use of pseudo-3D structures that rely on non-physically-based 2D-3D conversions, these
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methods tend to generate images with artifacts and struggle to generalize in real-world scenarios. More recent
approaches rely on volume rendering to generate 3D objects (Schwarz et al., 2020; Chan et al., 2021; Niemeyer
& Geiger, 2021a). Similarly, Zhou et al. (2021), Chan et al. (2021), and DeVries et al. (2021) explored
the idea of combining NeRF with GANs for designing 3D-aware image generators. Likewise, StyleSDF
(Or-El et al., 2022a) and StyleNeRF (Gu et al., 2022) proposed to combine an MLP-based volume renderer
with a style-based generator (Karras et al., 2020) to produce high-resolution 3D-aware images. Deng et al.
(2022) explored learning a generative radiance field on 2D manifolds and Chan et al. (2022) introduced a
3D-aware architecture that exploits both implicit and explicit representations. To improve view-consistency,
EpiGRAF (Skorokhodov et al., 2022b) proposes patch-based training to discard the 2D upsampling network,
while VoxGRAF (Schwarz et al., 2022) uses sparse voxel grids for efficient rendering without a superresolution
module. AniFaceGAN (Wu et al., 2022) proposes an animatable 3D-aware GAN for face animation generation
supervised by image collections.. In contrast to this line of research that focuses primarily on 3D-aware image
generation, we are interested in 3D-aware video generation. In particular, we build on top of StyleNeRF (Gu
et al., 2022) to allow control on the 3D camera pose during the video synthesis. To the best of our knowledge,
this is the first work towards 3D-aware video generation trained from unstructured 2D data.

GAN-based Video Synthesis Inspired by the success of GANs and adversarial training on photorealistic
image generation, researchers shifted their attention to various video synthesis tasks (Tulyakov et al., 2018;
Holynski et al., 2021; Tian et al., 2021). Several works pose the video synthesis as an autoregressive video
prediction task and seek to generate future frames conditioned on the previous using either recurrent (Kalch-
brenner et al., 2017; Walker et al., 2021) or attention-based (Rakhimov et al., 2020; Weissenborn et al.,
2020; Yan et al., 2021) models. Other approaches (Saito et al., 2017; Tulyakov et al., 2018; Aich et al.,
2020) tried to disentangle the motion from the image generation during the video synthesis process. To
facilitate generating high-quality frames, Tian et al. (2021) and Fox et al. (2021) employed a pre-trained
image generator of Karras et al. (2020). Recently, LongVideoGAN (Brooks et al., 2022) has investigated
synthesizing longer videos of more complex datasets. Closely related to our method are the recent work of
DIGAN (Yu et al., 2022) and StlyeGAN-V (Skorokhodov et al., 2022a) that generate videos at continuous
time steps, without conditioning on previous frames. DIGAN (Yu et al., 2022) employs an NIR-based image
generator (Skorokhodov et al., 2021) for learning continuous videos and introduces two discriminators: the
first discriminates the realism of each frame and the second operates on image pairs and seeks to determine
the realism of the motion. Similarly, StyleGAN-V (Skorokhodov et al., 2022a) employs a style-based GAN
(Karras et al., 2020) and a single discriminator that operates on sparsely sampled frames. In contrast to
Yu et al. (2022) and Skorokhodov et al. (2022a), we focus on 3D-aware video generation. In particular, we
build on top of StyleNeRF (Gu et al., 2022) and DIGAN (Yu et al., 2022) and demonstrate the ability of our
model to render high quality videos from diverse viewpoint angles. Note that this task is not possible for
prior works that do not explicitly model the image formation process in 3D.

3 Method

The two main components of our 4D GAN framework are a time-conditioned neural scene generator and a
time-aware discriminator. Our generator networks take as input two independent noise vectors, m and z,
that respectively modulate the motion and the content of the 4D fields. To render an image at a specific time
step t, we sample the camera extrinsics according to dataset-dependent distribution and conduct volume
rendering through the time-conditioned radiance and density fields. Our time-aware discriminator measures
the realism of a pair of frames, given their time difference, to promote plausible 3D video generation. The
overview of our pipeline can be found in Fig. 2.

3.1 Time-Conditioned Implicit Fields

We build on top of existing coordinate-based neural generators (Gu et al., 2022; Or-El et al., 2022a) to model
continuous implicit fields using a Multi-layer Perceptron (MLP) that outputs a density σ(x, t; z,m) and
appearance feature f(x, t,d; z,m) for a given spatio-temporal query (x, t), and view direction d. Here, z
and m are 3D content and motion latent vectors, respectively.
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Figure 2: Model architecture. The generator (left) takes 3D content and motion codes and the query
camera view to render an RGB image. Given a camera pose, we construct a ray image, from which we sample
xyz positions along the rays to be passed to the fourier feature layer. The content code is transformed into
w and modulate the intermediate features of MLP layers. The motion code, along with the time query t,
is processed with the motion generator and added to the generator branch. The video discriminator takes
two random frames from a video and their time difference and outputs real/fake prediction. The image
discriminator takes individual frames and outputs real/fake label.

We process a motion latent vector m sampled from a unit sphere with an MLP conditioned on time step
t ∈ [0, 1], to obtain a final motion vector n(m, t) via multiplicative conditioning:

n(m, t) = ψ3 ◦ ψ2 ◦ (t · (ψ1(m))), (1)

where ψi is a fully connected layer. Leaky ReLU activation is applied between the layers. Note that our use
of continuous time variable t allows rendering the video at an arbitrary frame rate, unlike autoregressive
models that can only sample discrete time steps.

The resulting motion vector n(m, t) is then used to control the output of the generator MLP gw(x,n) along
with the modulation parameters w(z) computed from the 3D content vector z:

gw(x,n) = ϕk
w ◦ ϕk−1

w ◦ . . . ϕ2
w ◦ (n(m, t) + ϕ1

w ◦ γ(x)), (2)

where ϕi
w is a fully connected layer (with Leaky ReLU activations between the layers) whose weights are

modulated by the style vector w, following the style-based generation techniques of Gu et al. (2022) and
Karras et al. (2020). The style vector is produced with a mapping MLP network ζ: w = ζ(z), where z is
sampled from the surface of unit sphere. γ(x) is a positional encoding vector of a spatial query x that induces
sharper appearances, following Mildenhall et al. (2020). We omit positional encoding on the time step t, as
the empirical results did not improve (see Sec. 4.3). Note that the additive conditioning allows us to easily
disable the influence of motion by setting n to be 0, which promotes training on both image and video data
when necessary.

The density value at x is then computed by passing the feature gw(x,n) to a two layer MLP φσ:

σ(x, t; z,m) = φσ(gw(z)(x,n(t,m))) (3)

Image Rendering To render an image from a virtual camera with pose p, we compute an appearance
feature for a ray r(l) = o + ld going through each pixel that emanates from the camera focus o towards the
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direction d. Specifically, we approximate the volume rendering process with discrete point sampling along the
rays and process the aggregated ray features with an MLP, denoted hw, conditioned on the view direction d :

f(r, t,d; z,m) = hw ◦
∫ lf

li

T (l)σ(r(l), t)gw(r(l), γ(d),n)dl, (4)

where T (l) = exp(−
∫ l

li
σ(r(s), t)ds). The volume rendering of Eq. 4 involves millions of MLP queries and

thus becomes quickly intractable with high resolution images. To reduce the computational overhead, we
adopt the 2D upsampling CNN of StyleNeRF (Gu et al., 2022) to convert the low-resolution volume rendering
results of f into a high-resolution RGB image I:

Ip(t; z,m) = CNNup(f(Rp, t,d; z,m)), (5)

where Rp denotes an image composed of rays from camera pose p, with slight abuse of notation.

Background and Foreground Networks Videos consist of static background and moving foreground,
hence it would be ineffective to model both foreground and background using one network and motion code.
We follow the inverse sphere parameterization of Zhang et al. (2020) to model the background with a second
MLP network of gw that is modulated only with the content vector.

3.2 Training

We train our 4D generator via adversarial loss, leveraging time-aware discriminators from the video GAN
literature. The key idea of our training is to encourage the generator to render realistic video frames for all
sampled viewpoints and time steps, by scoring their realism with the discriminators.

Time-Aware Discriminator Unlike autoregressive generators, our continuous 4D generator can render
frames at an arbitrary time step without knowing the ’past’ frames. This feature allows using efficient
time-aware discriminators (Skorokhodov et al., 2022a; Yu et al., 2022) that only look at sparsely sampled
frames as opposed to the entire video that would require expensive 3D convolutions to process. We adopt the
2D CNN discriminator Dtime of DIGAN (Yu et al., 2022) to score the realism of the generated motion from
two sampled frames. Specifically, we render a pair of frames Ip(t1; z,m) and Ip(t2; z,m) from the same
3D scene and camera pose. The input to the discriminator Dtime is a concatenation of the two RGB frames
along with the time difference between the frames expanded to the image resolution Irepeat(t2 − t1):

Dtime : [Ip(t1; z,m), Ip(t2; z,m), Irepeat(t2 − t1)] → R, where t2 > t1. (6)

For real videos, we similarly pass a random pair of frames along with their time difference to Dtime.

Single Image Discriminator In theory, the time-aware discriminator Dtime should be able to simultane-
ously measure the realism of the motion of the input pair and that of the individual frames. However, we
empirically observe that training a separate discriminator that specializes on single frame discrimination
improves quality (see Sec. 4.3). We therefore adopt another discriminator Dimage that scores realism of indi-
vidual images: Dtime : Ip(t; z,m) → R. Following 3D GAN approaches (Gu et al., 2022; Or-El et al., 2022a;
Chan et al., 2022), we use StyleGAN2 (Karras et al., 2020) discriminator architecture without modifications.

Loss Functions Our training objectives include the adversarial losses from the two discriminators along
with the R1 (Mescheder et al., 2018) and NeRF-Path regularizations (Gu et al., 2022):

L(D,G) = Ladv(Dtime, G) + Ladv(Dimage, G) + λ1LR1 (Dtime, Dimage) + λ2LNeRF-path (G), (7)

where G denotes the entire image generator machinery in Eq. 5, and λ’s are balancing parameters. To
compute the adversarial losses we use the non-saturating objective. Note that our networks are trained
end-to-end without the progressive growing strategy. More details are provided in the supplementary.
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Figure 3: Qualitative results on TaiChi Dataset. We visualize the spatio-temporal renderings of
two scenes sampled from our 4D GAN, where the horizontal axis indicates change of view angles while the
vertical axis indicates progress of time. The rightmost column shows two videos sampled from DIGAN (Yu
et al., 2022) that can only be viewed from a fixed camera angle. Our method extends DIGAN in the spatial
dimension while producing frames of comparable quality.

Training on Image and Video Datasets The 3D structure of our generator emerges without 3D
supervision by enforcing adversarial loss from sampled camera views. Thus, it is crucial that our video dataset
features a diverse set of view angles. However, we notice that many of the popular video GAN datasets
feature narrow range of viewpoints (e.g., FaceForensics). To address this issue, we seek to leverage existing
2D image datasets that are typically greater in quantity and diversity.

We explore two options: (1) We pre-train our generator model G on an image dataset and fine-tune it on
a video dataset. During pre-training, we ignore the temporal components and sample the 3D content only.
Such training can be done seamlessly by simply setting the motion vector n(m, t) of Eq. 2 to be zero. After
pre-training, we unfreeze the temporal components and minimize the whole objective (Eq. 7) on a video
dataset. (2) We train our generator on image and video datasets simultaneously. We refer the reader to Sec.
E in our supplementary for more details.
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Type Method FVD (↓) FID (↓) ACD (↓) CPBD (↑) ID (↑)
2D Image StyleGAN2 - 8.4 - - -

2D Video

VideoGPT 185.9 22.7 - - -
MoCoGAN 124.7 24.0 - - -
MoCoGAN-HD 111.8 7.1 - - -
DIGAN 62.5 19.1 1.09 0.171 -
StyleGAN-V 47.4 9.4 1.11 0.155 -

3D Static StyleNeRF - 15.3 - 0.181 0.812
3D Video Ours 68.7 13.7 0.965 0.196 0.861

Table 1: Quantitative Results on FaceForensics. We report metrics for all methods at 2562 pixel
resolution. For FVD and FID of 2D image and video methods, we use the numbers reported in StyleGAN-V.
We omit ACD and CPBD metrics for methods whose checkpoints are not publicly available. View-consistent
identity (ID) is only computed for 3D-aware methods.

4 Experiments
We conduct experiments to demonstrate the effectiveness of our approach in generating 3D-aware videos,
focusing on the new visual effects it enables and the quality of generated imagery. Moreover, we conduct
extensive ablation studies on the design components of our model.

4.1 Experimental Setup

Datasets We evaluate our approach on three publicly available, unstructured video datasets: the Face-
Forensics (Rössler et al., 2019), the MEAD (Wang et al., 2020a), and the TaiChi (Siarohin et al., 2019)
dataset. FaceForensics contains 704 training videos of human faces sourced from YouTube. While this dataset
containing in-the-wild videos makes it a great testbed for synthesis tasks, many of its videos are captured
from frontal views with limited view diversity. On the other hand, the MEAD dataset contains shorter videos
capturing faces from discrete 7 angles, from which we randomly subsample 10,000. Note that we ignore
the identity correspondences of the videos and treat them as independent unstructured videos. The TaiChi
dataset contains 2942 in-the-wild videos of highly diverse TaiChi performances sourced from the internet.
Following DIGAN (Yu et al., 2022), we use every fourth frame to make the motion more dynamic. Finally,
we provide additional experiments on the SkyTimelapse dataset (Xiong et al., 2018) in the supplementary.
Metrics Following existing video GAN methods, we use Frechet Video Distance (FVD) (Unterthiner et al.,
2018) as our main metric for measuring realism of the generated motion sequences. In particular, we use
the FVD protocol of Skorokhodov et al. (2022a) that alleviates the inconsistency issues of the original FVD
implementation (Unterthiner et al., 2018). Moreover, we consider the following additional metrics: Average
Content Distance (ACD) (Tulyakov et al., 2018), which measures temporal consistency of a video and CPBD
(Narvekar & Karam, 2011), which measures the sharpness of an image. We also measure the face identity
consistency (ID) across viewpoints by computing ArcFace (Deng et al., 2019) cosine similarity, following
Chan et al. (2022) (computed only for 3D-aware methods). To provide a common metric to 2D and 3D-aware
image generation methods that cannot synthesize videos, we use the Frechet Image Distance (FID) (Heusel
et al., 2017). The individual frames for FID scores are randomly selected from all generated video frames.
Note that the checkpoints used for the results of StyleGAN2, VideoGPT, MoCoGAN, and MoCoGAN-HD on
FaceForensics were not released by the StyleGAN-V authors. Hence, we are not able to compute the ACD
and CPBD metrics for these methods. We can not compute ACD for StyleNeRF, as it is a static method.

4.2 Main Results

In this section, we provide experimental evidence that our model is able to learn a distribution of 3D-aware
videos that permit spatio-temporal control. In particular, in Figures 1, 3, 4, and 5, we visualize snapshots of
sampled 4D scenes rendered from various time steps and camera angles across various datasets. Moreover,
we conduct both qualitative and quantitative comparisons against the strongest video GAN baselines on
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Our Spatio-Temporal Renderings Existing Video-GANs

Figure 4: Qualitative results on FaceForensics Dataset. The first 6 columns visualize two 4D fields
sampled from of our model trained on FaceForensics rendered from various spatio-temporal snapshots. Note
the high quality visuals and motions across diverse viewpoints. The last three columns show the video
samples of MoCoGAN-HD (Tian et al., 2021), DIGAN (Yu et al., 2022), and StyleGAN-V (Skorokhodov
et al., 2022a), in that order.

Our Results StyleGAN-VOur Results StyleGAN-V

Figure 5: Results on the MEAD Dataset. The first six columns show the spatio-temporal renderings
of our 4D GAN, where the vertical axis indicates the progress in time. The two right-most columns show
generated videos from StyleGAN-V (Skorokhodov et al., 2022a). Zoom-in to inspect details.

Method FVD (↓) ACD(↓) CBPD(↑)
StyleGAN-V 109.3 0.136 0.509
Ours 55.4 0.060 0.469

Table 2: Results on MEAD Dataset.

Method FVD(↓) ACD(↓) CBPD(↑)
DIGAN 151.7 0.537 0.672
Ours 158.3 0.552 0.632

Table 3: Results on TaiChi Dataset.

the all datasets. For each method, we use video length of 16 frames and use image resolution of 2562 for
FaceForensics and MEAD, and 1282 for TaiChi dataset.
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Figure 6: Motion and content decomposition. The two rows show respective video sequences that share
the same 3D content latent vector applied to different motion vectors. Here we show motions with four time
steps for two different identities. Note the difference in motions while the identities of the person appear
unchanged.

FaceForensics is one of the most widely used dataset in the video generation literature, and thus we measure
the scores across a wide range of methods, including: 2D image (Karras et al., 2020) and video generation
works (Yu et al., 2022; Skorokhodov et al., 2022a; Tulyakov et al., 2018; Tian et al., 2021; Yan et al., 2021),

Method FVD
Ours 158.3
w/o Background NeRF 203.7
w/ Static and Dynamic Separation 207.6
w/o Motion Generator 166.3
w/ Positional Time Encoding 175.4
w/o Image Discriminator 234.3

Table 4: Ablation studies on TaiChi Dataset.

and a 3D generation method (Gu et al., 2022). The
qualitative results in Fig. 4 show our model’s ability to
generate 4D visual effects, displaying the spatiotempo-
ral renderings and the physically-based zoom-in effects.
The quantitative results in Table 1 confirm that our
generated imagery are of competitive quality against
the strongest 2D and 3D baselines. Note that the met-
rics for the 2D image and video methods are copied
from the reports of Skorokhodov et al. (2022a). We
train StyleNeRF (Gu et al., 2022) on FaceForensics
from scratch.

Fig. 3 presents sampled scenes from our TaiChi-trained
model with varying time and viewpoints, showcasing our 4D learning on a challenging setup with complex
motions and backgrounds. When compared with one of the latest 2D video generation methods, DIGAN (Yu
et al., 2022), our method synthesizes frames with competitive visual fidelity while introducing another degree
of freedom. Note that we used the provided pre-trained model to recompute their score following the FVD
protocol used by Skorokhodov et al. (2022a).

The MEAD dataset contains videos of faces taken from a wide range of viewpoints. We hypothesize that, for
the 2D-based methods, a significant amount of expressive power will be wasted for redundantly modeling
the diverse views in 2D, while the 3D approach would only need to learn a shared representation across
views. The results, shown in Fig. 5, indeed suggest higher visual quality for our 4D approach, while allowing
rendering from 7 different viewpoints. Our quantitative analysis in Tab. 4.1 supports our observations – our
FVD is noticeably better than that of StyleGAN-V (Skorokhodov et al., 2022a). Note that the pre-trained
model provided by Skorokhodov et al. (2022a) was trained only on frontal views, so we included non-frontal
faces and re-trained. We omit comparing against other video methods on MEAD that are already compared
in Skorokhodov et al. (2022a). Finally, we demonstrate that the use of two independently sampled latent
vectors to modulate motion and content makes these two components separable. Fig. 6 showcases such
decomposition by applying two different motion codes to the same content code. We refer the reader to our
supplementary for additional results and videos to fully appreciate 4D renderings.
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4.3 Ablation

We conduct ablation studies to gauge how the design choices of our algorithm affect the quality of 4D scene
generations. We use TaiChi dataset, as its diverse scenes and motions help us identify the effects of each
component. Table 4 summarizes the numerical results, for further details see Sec. F in the appendix.

Background NeRF We analyze the importance of the background NeRF based on the inverse sphere
parametrization of NeRF++ (Zhang et al., 2020) used for capturing unbounbed scenes. We observe that
using the additional background NeRF is critical for the model to disentangle the dynamic and static parts
in the video, leading to less motion artifacts and more static backgrounds.

Static and Dynamic Separation We forgo the use of the inverse sphere background NeRF of Zhang
et al. (2020) and instead decompose the scene with static and dynamic NeRFs, following Gao et al. (2021a).
We observe that this setup hurts the generation quality, suggesting that the background parameterization of
NeRF++ (Zhang et al., 2020) is critical for training a 4D generative model.

Motion Generator Here we omit the use of motion vector and its mapping network, and instead pass the
time value directly to the foreground NeRF. The use of motion network improves the output quality and
induces useful decomposition of motion and 3D content.

Positional Time Encoding Our current motion mapping MLP is conditioned on the raw time value. We
observe that applying positional encoding on the Fourier features leads to repetitive and unnatural motions
even when tuning the frequencies of the Fourier features. We leave applying more complicated positional
encoding of time as future work.

Image Discriminator Moreover, we demonstrate that adding a discriminator that specializes on single-
frame discrimination improves quality compared to using only a time-aware discriminator.

5 Limitations & Discussions

Our approach models the entire dynamic foreground with a single latent vector, which limits the expressive
capacity of our generative model. Learning with more number of independent latent vectors, as tried in
(Niemeyer & Geiger, 2021a; Hudson & Zitnick, 2021), could promote handling of multi-objected scenes with
more complex motions. Furthermore, our training scheme assumes static camera and dynamic scenes, so it
cannot handle videos taken from a moving camera. Modeling plausible camera paths is an interesting but less
explored problem. Being the first 4D GAN approach, our method can only generate short video sequences
(16 time steps, following Yan et al. (2021), Tian et al. (2021), and Yu et al. (2022)). We leave applying recent
progress (Skorokhodov et al., 2022a) in generating longer videos as future work. Moreover, our model uses 2D
upsampling layers to efficiently render higher resolution images, which breaks multi-view consistency. One
possible solution is patch-based video training as recently investigated in the 3D-aware image generation
works EpiGRAF (Skorokhodov et al., 2022b), SinGRAF (Son et al., 2023), and 3DGP (Skorokhodov et al.,
2023). Finally, we model the scene motion as a purely statistical phenomenon, without explicitly considering
physics, causality, semantics, and entity-to-entity interactions. These topics remain important challenges,
which we continue to explore.

6 Conclusions

In this work, we introduced the first 4D generative model that synthesizes realistic 3D-aware videos, supervised
only from a set of unstructured 2D videos. Our proposed model combines the benefits of video and 3D
generative models to enable new visual effects that involve spatio-temporal renderings, while at the same
time maintaining the visual fidelity. The resulting latent space of rich, decomposable motion and 3D content
sets up the foundation to exciting new avenue of research towards interactive content generation and editing
that requires knowledge of underlying 3D structures and motion priors.
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7 Ethics Statement

7.1 Potential Misuse

We condemn the use of neural rendering technologies towards generating realistic fake content to harm
specific entities or to spread misinformation, and we support future research on preventing such unintended
applications.

While our method can plausibly synthesize moving human heads and bodies, the technology in the current
form does not pose significant threat in enabling the spread of misinformation. We highlight that our 4D
GAN is an unconditional generative model. This means that the current method can only generate random
identities and motions and thus cannot be used for targeting specific individuals for misinformation (e.g.,
creating a video of a particular politician). Similarly, being an unconditional model, we cannot control a
person with an user-desired motion, e.g., following a text prompt.

However, we acknowledge the possible development of future 4D GAN research that trains conditional models
that are able to synthesize videos of given individuals. We note that there are various existing technologies
to spot neural network-generated imagery with surprising level of accuracy (Cozzolino et al., 2021; Yang
et al., 2021; de Lima et al., 2020; Güera & Delp, 2018; Kumar et al., 2020; Wang et al., 2020b). Among
them, Wang et al. (2020b) suggests that the key of training such a detector is a realistic generator, which
can provide ample amount of training data for fake content detection. In this context, we believe that our
unconditional 4D GAN can be effectively used to fight against the potential misuse of AI-generated videos by
generating such training data, because it can sample realistic videos from diverse identities, motions, and
camera viewpoints.

7.2 Privacy Issues

We note readers that our experiments only used publicly available datasets that contain videos that belong
to public domains. Moreover, we emphasize that all of our figures and videos across the main paper and the
supplementary materials contain synthetic content. Therefore, all of the human faces or bodies shown in this
work do not involve any privacy concerns.

7.3 Diversity and Potential Discrimination

We have shown in our main paper and the supplementary that our trained model on the FaceForensics and
MEAD datasets are able to generate diverse human faces across gender and ethnicity. We acknowledge that
our generation results might not cover diversity of some human traits, e.g., weights, disabilities, etc. Note the
TaiChi dataset primarily contains videos of certain ethnicity due to the skewed popularity of the activity.

8 Reproducibility Statement

We provide detailed implementation-related information of our algorithms in Sec. C of the supplementary
document. We will release the source code for training and testing our algorithms upon acceptance. For
experiments. we describe our datasets (along with how we processed them) and metrics in Sec. 4.1 and
provide in-depth details of our experiments in Sec. D of the supplementary document to further improve the
reproducibility.
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A Video Results

We urge readers to view our video results by opening https://sherwinbahmani.github.io/3dvidgen. We
provide video results on the FaceForensics (Rössler et al., 2019), MEAD (Wang et al., 2020a), TaiChi (Siarohin
et al., 2019), and SkyTimelapse (Xiong et al., 2018). In particular, we show the generated videos for all
datasets from various camera viewpoints in order to showcase the ability of our model to learn a distribution
of 3D-aware videos, which we highly encourage readers to view.

Specifically, for the case of FaceForensics, we show generated videos with a forward-facing camera (see Ours
with Forward-facing Camera), with a camera that rotates along the yaw-axis (see Ours with Rotating Camera)
and with a forward-facing camera that moves away from the depicted individual, thus creating a zoom-out
effect, (see Ours with Forward-facing Camera and Zoom Effect). Moreover, we also provide generated videos
using a variant of our model that uses a pre-trained generator on FFHQ (Karras et al., 2019), as discussed in
the main submission. This variant of our model allows a wider range of viewpoint control than our original
model. Particularly, for this variant of our model, we also show examples of generated videos, while we
rotate the camera along both yaw and pitch axes, where the fine-tuned model generates realistically looking
videos. In addition, we show "Motion and Content Decomposition" examples, where we show the ability
of our approach to control shape and motion separately; i.e., we can create videos illustrating the same
human performing different motions, and vice versa. We also provide example videos of prior work including
MoCoGAN-HD (Tian et al., 2021), DIGAN (Yu et al., 2022) and StyleGAN-V (Skorokhodov et al., 2022a).
We note that our generated videos are of comparable quality against those of the state-of-the-art video
generation methods (Yu et al., 2022; Skorokhodov et al., 2022a), while at the same time permitting control
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Figure 7: Interpolation in the content latent space. We visualize, for each row, examples of linearly
interpolating between two sampled latents in the content space with fixed motion vectors and camera
viewpoints. Note the smooth and plausible transition of face appearances.

on the camera viewpoint, e.g., zoom-out to reveal new content or rotate the camera around, which is not
possible for the latest 2D video methods.

Similarly, we also showcase examples of our generated videos on the MEAD (Wang et al., 2020a) dataset using
a similar setup. We observe that in comparison to StyleGAN-V (Skorokhodov et al., 2022a) our generations
have significantly fewer visual artifacts (the faces of Skorokhodov et al. (2022a) appear uncanny), while at the
same time our generated videos from different camera viewpoints (see Ours with Different Camera Positions)
are consistently plausible.

We also show examples of generated videos on the TaiChi (Siarohin et al., 2019) dataset using a similar setup.
In addition, we also consider two more setups, where we rotate the camera along the yaw-axis while having
a static human (see Ours with Rotating Camera and Static Motion) and a moving human (see Ours with
Rotating Camera and Dynamic Motion). Also for these scenarios, the quality of our generated videos are
comparable to that of DIGAN (Yu et al., 2022) that does not allow viewpoint control.

Finally, we show samples for the SkyTimelapse (Xiong et al., 2018) dataset. The dataset is in contrast with
the other three datasets, as its videos often contain multiple objects or entities. We provide videos rendered
from a fixed camera, and a rotating camera along the yaw-axis with and without scene dynamics (Ours with
Rotating Camera along First Axis and Static Motion, and Ours with Rotating Camera along First Axis and
Dynamic Motion). Similarly, we rotate the camera along the pitch-axis with and without scene motions
(Ours with Rotating Camera along Second Axis and Static Motion, and Ours with Rotating Camera along
Second Axis and Dynamic Motion). Note that we only model rotation of a camera located at the origin. A
careful modeling of camera distribution for such a large-scale scene dataset is out of scope of this work, and
thus we omit an in-depth analysis.

B Visualizing Latent Interpolations and Depth Maps

Our 4D GAN with decomposed content and motion latent spaces allow interpolation of content with fixed
motion and vice versa. Moreover, our sampled neural fields can be used to obtain depth maps given the 3D
nature of our representation.

As shown in Fig. 7, linearly interpolating between two sampled content vectors maps to smooth, plausible
interpolation of content appearance in the 4D fields. Similarly, we fix the content vector and apply interpolated
motion vectors. Such visualization is best viewed as videos, so we refer readers to the supplementary website
supp.html (see Ours with Motion Interpolation). The video results show that the interpolation in the motion
latent space leads to smooth transition of motions. Finally, in Fig. 8 and Fig. 9, we visualize example depth
maps obtained via volume rendering our sampled neural fields.
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Figure 8: Depth visualizations (FaceForensics). We show depth maps (second row) obtained by volume
rendering the sampled 4D fields at a given time step. The first row shows the corresponding RGB rendering
of the same 4D fields. Here the depth is defined as the expected ray termination distance.

Figure 9: Depth visualizations (TaiChi). We show depth maps (second row) obtained by volume rendering
the sampled 4D fields at a given time step. The first row shows the corresponding RGB rendering of the
same 4D fields. Here the depth is defined as the expected ray termination distance.

C Implementation Details

C.1 Architecture and Training Details

The 3D content code, motion code and style vector dimensions are all set to 512. Our motion generator (see
Fig. 2) is implemented as an MLP with three fully connected (FC) layers and Leaky ReLU activations. The
time step is repeated across the channel dimension and multiplied with the output of the first fully connected
layer of the motion generator. We set the motion code and hidden dimension of the motion generator to
512, while the output dimension is 128. The output of the motion generator is then added to the output of
the first FG NeRF Block, which also is a 128-dimensional representation. Besides the virtual camera setup
and the motion generator dimensions, we adopt all hyperparameters determined in StyleNeRF (Gu et al.,
2022). We set the motion generator hyperparameters empirically following previous GAN works. We believe
that hyperparameter grid search and increasing the model dimensions could further boost the quality of our
results, this, however, requires more computational resources. We analyze the virtual camera setup in the
subsequent section.

Our foreground and background NeRF are modeled as MLPs (with Leaky ReLU activations) with 8 and
4 FC layers that each contain 128 and 64 hidden units, respectively. We use 10 frequency bands to map
the positional input of the foreground background NeRF to the fourier features (Mildenhall et al., 2020).
We do not apply positional encoding to the time input. We follow the implementation of StyleNeRF (Gu
et al., 2022) for the the 2D ray aggregation and upsampling block (see Fig. 2) and the volume rendering
process. Both the image and video discriminator follow the architecture of StyleGAN2 (Karras et al.,
2020) with hidden dimensions of 512, and the input channels being 3 and 7, respectively. We apply the
Differentiable Augmentation technique (Zhao et al., 2020) with all augmentations except CutOut, to prevent
the discriminators from overfitting to the relatively small video datasets. In contrast to StyleNeRF (Gu et al.,
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2022), we do not use progressive-growing training (Karras et al., 2018) but directly train on the final image
resolution, as we did not observe any change in visual quality.

For both the generator and discriminator, we use the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.0025, β1 = 0, β2 = 0.99 and ϵ = 10−8. We follow the setup of StyleGAN2 (Karras et al., 2020) to
use 8 fully connected layer content mapping network and apply 100× lower learning rate compared to that
of the main generator layers. For our objective function (Eq. 7), we set λ1 = 0.5 and λ2 = 0.2. We use 16
samples for the NeRF path regularization (Gu et al., 2022).

C.2 Virtual Camera Setup

For the three main datasets we empirically set the virtual camera on the surface of unit sphere and parameterize
the camera viewpoint distribution with pitch and yaw angles. The standard deviation for pitch sampling is
0.15 for all three datasets. For yaw sampling the standard deviation is 0.3, 0.3, and 0.8 for FaceForensics,
MEAD, TaiChi. The field-of-view of the camera is set to be 18 degrees.

For the SkyTimelapse dataset we do not sample on a sphere, but place the camera at the origin and make the
camera look outwards. We uniformly sample a point on a hemisphere and set the camera to look towards the
direction. The field-of-view is set to be 80 degrees. Note that this setup only models rotation of the camera.
We leave a more complicated camera sampling method as future work.

C.3 Motion and Content Disentanglement

The motion and content are mainly disentangled because of our two-frame discrimination in combination with
the different sampled latent codes. While the content code is fixed across the two frames, the intermediate
motion code computed from the sampled motion code and variable timesteps are not constant across the two
frames. Hence, the FG network receives two different motion features for the same content during training.
This inductive bias allows the model to disentangle content from motion. Note that we mainly follow the
2D video generator MoCoGAN (Tulyakov et al., 2018), which disentangles motion and content in a similar
fashion and sets a default approach for motion and content decomposition in video generation for most of
the follow-up works. In early experiments, we observed slightly more content inconsistencies when injecting
the content at deeper layers, hence we inject the motion directly after the first layer. We also choose the
output of the first layer and not the input of the first layer as this allows us to use the addition operation by
first mapping the number of channels to a common channel number for motion generator output and FG
MLP. Otherwise we have to use, e.g., concatenation which does not allow the easy pre-training technique by
disabling motion in the sum as discussed in Sec. 3.2.

D Experiment Details

D.1 Evaluations

We used the code and evaluation protocol of StyleGAN-V (Skorokhodov et al., 2022a) for computing FVD
(Unterthiner et al., 2018) and FID (Heusel et al., 2017). The FVD protocol requires 2048 16-frame videos,
while the FID score uses 50K images. For MEAD dataset (Wang et al., 2020a), we re-trained StyleGAN-V
(Skorokhodov et al., 2022a) using their official code as the authors only provided results on the front view
videos of MEAD at 10242 resolution. We randomly choose 10,000 videos across all viewpoints, including
non-frontal views and follow the identical training setup provided by Skorokhodov et al. (2022a) to process
25,000K images with batch size 64. For TaiChi dataset, we use the officially provided checkpoint of DIGAN
(Yu et al., 2022) to evaluate their model with the new FVD protocol (Skorokhodov et al., 2022a). For
FaceForensics dataset, we use the reported numbers provided by the StyleGAN-V (Skorokhodov et al., 2022a)
authors for all models in Table 1, except for StyleNeRF (Gu et al., 2022) and our model, which we train from
scratch. We provide sampled 3D models of StyleNeRF trained on FaceForensics, rendered from a horizontally
moving camera, as shown in Fig. 10.

We train our model and StyleNeRF using 4 NVIDIA V100 GPUs. For our approach we train for a maximum
of 3,000K images, which takes two days at 2562 resolution. For StyleNeRF we abort the training after 15,000K
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Figure 10: StyleNeRF results. We show qualitative results of StyleNeRF model trained on FaceForensics,
rendered from five different cameras (columns) for three identities (rows).

Dataset FVD Relative Standard Deviation
FaceForensics 2.62%
TaiChi 1.65%
MEAD 2.17%

Table 5: Relative standard deviation for the FVD metric on FaceForensics, TaiChi, and MEAD datasets,
computed as percentage of standard deviation with respect to the mean.

images due to the FID diverging after 11,400K images. It is generally true that 2D models like StyleGAN-V
(Skorokhodov et al., 2022a) have a significantly faster throughput, as there is no costly volume rendering.
However, we observe that our 4D model converges at much lower iterations, already converging after 2,500K
processed images, while some of the 2D video models such as VideoGPT (Yan et al., 2021) does not converge
even at 25,000K processed images. We hypothesize that the extraordinary fast convergence of our model is
due to the explicit disentanglement of 3D content, camera viewpoints, and motions.

D.2 Statistical Reproducibility

For computing the FVD, we follow the protocol of StyleGAN-V (Skorokhodov et al., 2022a), which aims
to reduce the score variations significantly compared to the original protocol (Unterthiner et al., 2018).
Nevertheless, in Table 5 we report the relative standard deviations after evaluating our three main dataset
results for 10 rounds with the FVD protocol (Skorokhodov et al., 2022a). We observe that the standard
deviation is rather small across all three datasets, as reported in the extensive analysis of Skorokhodov et al.
(2022a).

D.3 3D Consistency Evaluation

In Table 6 we further report an evaluation of the underlying 3D model using the chamfer distance (CD)
metric. Specifically, we follow the protocol of Or-El et al. (2022b) and evaluate chamfer distance between the
front pose and a randomly sampled side pose on 1000 generated FaceForensics samples. We compare our
results to StyleNeRF, as it is the only 3D-aware baseline. We observe a lower chamfer distance, which aligns
with our previous results that we can extend a 3D-aware image generator in the temporal domain to generate
3D videos without sacrificing any visual quality or geometric consistency.
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Method CD (↓)
StyleNeRF 1.27
Ours 1.03

Table 6: Chamfer distance evaluation on FaceForensics between StyleNeRF and our approach, following the
protocol of Or-El et al. (2022b).

Pitch Angles

Figure 11: Comparing the range of pitch control. We show that our 4D model trained solely on
the FaceForensics (Rössler et al., 2019) dataset (top row) has a narrow range of pitch where high quality
renderings can be produced, likely due to the lack of diverse training views. Note that the upper and bottom
parts of the head becomes unnaturally large at both extremes. Fine-tuning a model pre-trained on FFHQ
(Karras et al., 2019) image dataset (bottom row), which features more diverse view angles, results in a wider
range of views that generate plausible images.

E Training on Image and Video Datasets

E.1 Training Setup

In this section we discuss the use of an auxiliary 2D image dataset for training our 4D GANs, as described in
Sec. 3.2 in the main paper. As motivated in the main paper, the lack of diversity of the provided videos could
diminish the 3D accuracy of 4D GANs. In fact, we observe that the model trained only on the FaceForensics
dataset (Rössler et al., 2019) exhibits narrow range of camera angles that generates view-consistent renderings.

As described in the main paper, we explored two options to leverage an image dataset to complement the
video dataset: (i) pre-training on the image dataset, and (ii) simultaneously training both on image and video
datasets. For both options, we follow the training setup of StyleNeRF (Gu et al., 2022) on computing and
backpropagating the image losses.

In early experiments we also explored pre-training and simultaneous training for MEAD to better interpolate
between the discrete poses in the data distribution. However, combining MEAD with FFHQ does not lead to
any improvement in neither quality nor 3D behavior. We hypothesize that training on the image dataset
mainly leads to improvements when the camera poses of the video dataset are already diverse but narrow
as in FaceForensics. MEAD provides a wide but extremely sparse range of camera poses, which can not
be interpolated by the image dataset distribution. We did not leverage image datasets for TaiChi as the
viewpoint distribution is already diverse. For a fair comparison to previous works, we only used our vanilla
approach for both qualitative and quantitative comparisons in our main paper.

E.2 Qualitative Results
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Figure 12: Qualitative results for pre-training on FFHQ before training on FaceForensics. We
show qualitative results of our model pre-trained on FFHQ and then trained on FaceForensics, rendered
from five different cameras (columns) for three identities (rows). We observe high view-consistency and high
quality results.

Figure 13: FFHQ and FaceForensics simultaneous training results. We show qualitative results of our
model simultaneously trained on FFHQ and FaceForensics, rendered from five different cameras (columns) for
three identities (rows). We observe lower view-consistency compared to our model only pre-trained on FFHQ.

The model pre-trained on the FFHQ image dataset and fine-tuned on the video dataset generates high quality,
3D-aware renderings, as can be seen on the supplementary videos. We generally observe sharper and higher
quality renderings compared to our default model. Moreover, we notice that the range of allowed view angles
increases, which is most obvious for the pitch (or elevation) angles, as described in Fig. 11. We note, however,
that the colors seem less vivid compared to the pure-video model.

We further provide qualitative results for pre-training and simultaneous training in Fig. 12 and Fig. 13,
respectively. For the case of simultaneous image and video training, the resulting model fails to output
view-consistent videos. We hypothesize that training the generators to fit two different data distributions does
not lead to consistent 4D models. However, only pre-training on FFHQ leads to view-consistent renderings
while maintaining high quality.

E.3 Quantitative Results

In Table 7 we provide a quantitative comparison between i) pre-training on FFHQ before training on
FaceForensics, ii) simultaneously training on FFHQ and FaceForensics, and iii) only training on FaceForensics
as a vanilla approach. Generally, it is difficult to interpret FVD and FID when using two training datasets
as these scores compare real and fake data distributions. Due to the usage of the FFHQ dataset the latent
space of the model is manipulated with a dataset that is not used as part of the evaluation process. We
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Method FVD (↓) FID (↓) ACD (↓) CPBD (↑) ID (↑)
Pre-trained 127.2 17.2 0.819 0.2084 0.982
Simultaneously 62.1 18.2 0.945 0.2077 0.893
Vanilla 68.7 13.7 0.965 0.196 0.861

Table 7: Quantitative Results on FaceForensics in combination with FFHQ. We report metrics for
pre-training on FFHQ before training on FaceForensics, simultaneously training on FFHQ and FaceForensics,
and only training on FaceForensics (vanilla).

Method FVD (↓)
w/ Positional Time Encoding 175.4
w/ Concatenation 164.7
w/ Multiplication 158.3

Table 8: Ablation of time incorporation in motion generator on TaiChi Dataset. We choose simple
multiplication for our default model due to its low FVD score in comparison to positional time encoding and
and concatenation.

still provide these two scores for completeness. For our pre-trained model, we observe that the FVD gap is
significantly higher than the FID gap in comparison to our vanilla approach. We hypothesize that due to the
model converging to a static dataset in the first training phase, namely FFHQ, the model has difficulties
in learning motion in the second training phase with FaceForensics. However, we observe a significantly
improved ID, which confirms the better multi-view consistency in our videos. Simultaneous training results
in similar scores as our vanilla approach, however the multi-view consistency is significantly worse than using
pre-training, which aligns with the lower ID score.

F Ablations

We provide further details for the ablations conducted in Sec. 4.3.

F.1 Motion Vector

Generally, there are different ways to incorporate time into the motion generator. We use a simple multiplica-
tion due to our empirical results on TaiChi showing the best FVD score of 158.3 for this setup, as shown in
Table 8. As explained in Sec. 4.3, using positional encoding leads to a worse FVD with 175.4. Furthermore,
we experimented with concatenation of time, which also results in a slightly worse FVD with 164.7. We leave
more complex incorporation of time, like acyclic positional encoding (Skorokhodov et al., 2022a), for future
work.

F.2 Image Discriminator

Theoretically, our video discriminator should suffice for the model to learn from videos. However, we observe
that using a separate image discriminator significantly boosts the quality of our results, as shown in Table 9.
Removing the image discriminator leads to a FVD score of 234.3. Another option is to use a deterioration
of our video discriminator as an image discriminator. For this, we repeat every image along the channel
dimension to form a 6 channel tensor and set the time difference to zero, which we further concatenate
to obtain a 7 channel tensor for our video discriminator. This leads to a FVD score of 190.9, which is
substantially better than just removing the image discriminator, however worse than using a separate image
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Method FVD (↓)
w/o Image Discriminator 234.3
w/ Deterioration of Video Discriminator 190.9
w/ Separate Image Discriminator 158.3

Table 9: Ablation of image discriminator on TaiChi Dataset.

discriminator (158.3). Consequently, we observe that using two discriminators with disentangled weights
significantly boosts the quality.

G Related Works with Complete References

In this section, we discuss, in more detail, relevant prior works that was omitted in our main paper due to
space constraints.

Neural Implicit Representations Neural Implicit Representation (NIR) (Mescheder et al., 2019; Park
et al., 2019; Chen & Zhang, 2019; Michalkiewicz et al., 2019) have demonstrated impressive results on various
tasks due to their continuous, efficient, and differentiable representation. Among the most widely utilized
coordinate-based representations are Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) that combine
an implicit neural network with volumetric rendering to enforce 3D consistency, while performing the novel
view synthesis task. Implicit-based representations have been proven beneficial for other tasks including but
not limited to 3D reconstruction of objects (Mescheder et al., 2019; Park et al., 2019; Chen & Zhang, 2019;
Michalkiewicz et al., 2019; Oechsle et al., 2021; Gropp et al., 2020; Saito et al., 2019; Atzmon et al., 2019;
Sitzmann et al., 2019) and scenes (Jiang et al., 2020; Chibane et al., 2020; Peng et al., 2020; Chabra et al.,
2020; Sitzmann et al., 2020), novel-view synthesis of static (Barron et al., 2021; Bergman et al., 2021; Gao
et al., 2020; Jiang et al., 2020; Liu et al., 2020; Lindell et al., 2022; Srinivasan et al., 2021; Piala & Clark,
2021; Martin-Brualla et al., 2021; Oechsle et al., 2021; Sajjadi et al., 2022) and dynamic (Lombardi et al.,
2019a; Li et al., 2021; Pumarola et al., 2021a; Park et al., 2021a; Xian et al., 2021; Yuan et al., 2021a; Park
et al., 2021c; Tretschk et al., 2021a; Tewari et al., 2021) environments, inverse graphics (Niemeyer et al., 2020;
Yariv et al., 2020; Lin et al., 2020) as well as for representing videos (Chen et al., 2021a; Yu et al., 2022).

3D-Aware Image Generations Many recent models investigate how 3D representations can be incorpo-
rated in generative settings for improving the image quality (Park et al., 2017; Nguyen-Phuoc et al., 2018)
and increasing the controllability over various aspects of the image formation process (Gadelha et al., 2017;
Chan et al., 2021; Henderson & Ferrari, 2019; Henzler et al., 2019; Henderson & Lampert, 2020; Liao et al.,
2020; Lunz et al., 2020; Nguyen-Phuoc et al., 2019; 2020; Schwarz et al., 2020; Gu et al., 2022; DeVries et al.,
2021; Hao et al., 2021; Meng et al., 2021; Niemeyer & Geiger, 2021b; Zhou et al., 2021). Towards this goal,
Henzler et al. (2019) proposed a GAN-based architecture that combines voxel-based representations with
differentiable rendering. However, due to the low voxel resolution, their generated images suffered from various
artifacts. Concurrently, HoloGAN (Nguyen-Phuoc et al., 2019) demonstrated that adding inductive biases
about the 3D structure of the world allows control over the pose of the generated objects. Nguyen-Phuoc
et al. (2020) extend this by also considering the compositional structure of the world into objects. While
both Nguyen-Phuoc et al. (2019; 2020) demonstrated impressive results, their performance was less consistent
in higher resolutions. Another line of work Liao et al. (2020) propose to combine a 3D generator with a
differentiable renderer and a 2D image generator to enable 3D controllability. Despite their promising results
in synthetically generated environments, their model struggles to generalize in real-world scenarios. More
recent approaches propose generative models using MLP-based radiance fields. These methods use volume
rendering to obtain images from the 3D fields to model single (Schwarz et al., 2020; Chan et al., 2021) or
multiple (Niemeyer & Geiger, 2021a) objects. Similarly, Zhou et al. (2021), Chan et al. (2021), and DeVries
et al. (2021) explored the idea of combining NeRF with GANs for designing 3D-aware image generators.
Xu et al. (2021) propose a transition from cumulative rendering to rendering with only the surface points.
ShadeGAN (Pan et al., 2021) introduces a multi-lighting constraint to improve the 3D representation. More
recently, StyleSDF (Or-El et al., 2022a) and StyleNeRF (Gu et al., 2022) proposed to combine an MLP-based
volume renderer with a style-based generator (Karras et al., 2020) to produce high-resolution 3D-aware
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images. Moreover, VolumeGAN (Xu et al., 2022) characterizes the underlying 3D structure with a feature
volume. Deng et al. (2022) explored learning a generative radiance field on 2D manifolds and Chan et al.
(2022) introduced a 3D-aware architecture that exploits both implicit and explicit representations. To improve
view-consistency, EpiGRAF (Skorokhodov et al., 2022b) proposes patch-based training to discard the 2D
upsampling network, while VoxGRAF (Schwarz et al., 2022) uses sparse voxel grids for efficient rendering
without a superresolution module.

GAN-based Video Synthesis Inspired by the success of GANs and adversarial training on photorealistic
image generation, researchers shifted their attention to various video synthesis tasks (Saito et al., 2017;
Tulyakov et al., 2018; Acharya et al., 2018; Clark et al., 2019; Yushchenko et al., 2019; Kahembwe &
Ramamoorthy, 2019; Aich et al., 2020; Saito et al., 2020; Gordon & Parde, 2020; Holynski et al., 2021; Muñoz
et al., 2021; Tian et al., 2021; Fox et al., 2021; Yan et al., 2021; Hyun et al., 2021; Yu et al., 2022; Skorokhodov
et al., 2022a). Several recent works pose the video synthesis as an autoregressive video prediction task and
seek to generate discrete future frames conditioned on the previous using either recurrent (Kalchbrenner
et al., 2017; Walker et al., 2021) or attention-based (Rakhimov et al., 2020; Weissenborn et al., 2020; Yan
et al., 2021) models. Other works on video generation (Saito et al., 2017; Tulyakov et al., 2018; Aich et al.,
2020; Saito et al., 2020) tried to disentangle the motion from the image generation during the video synthesis
process. While this paradigm has been widely adopted, these approaches typically struggle to generate
realistic videos. To facilitate generating high-quality frames, Tian et al. (2021) and Fox et al. (2021) employed
a pre-trained image generator of Karras et al. (2020). Recently, LongVideoGAN (Brooks et al., 2022) has
investigated synthesizing longer videos of more complex datasets. Closely related to our method are the
recent and concurrent work of DIGAN (Yu et al., 2022) and StlyeGAN-V (Skorokhodov et al., 2022a) that
generate videos at continuous time step, without conditioning on previous frames. DIGAN (Yu et al., 2022)
employs an NIR-based image generator (Skorokhodov et al., 2021) for learning continuous video synthesis
and introduces two discriminators: the first discriminates the realism of each frame and the second operates
on image pairs and seeks to determine the realism of the motion. Similarly, StyleGAN-V (Skorokhodov et al.,
2022a) employs a style-based GAN (Karras et al., 2020) and a single discriminator that operates on sparsely
sampled frames.

Dynamic View Synthesis Given a video of a dynamic scene, dynamic view synthesis methods create
novel views at arbitrary viewpoints and time steps. Neural Volumes (Lombardi et al., 2019b) uses an
encoder-decoder network with ray marching to render dynamic objects with a multi-view capture system.
STaR (Yuan et al., 2021b) trains on multi-view videos to reconstruct rigid object motion by complementing
a static NeRF with a dynamic NeRF. Similarly, Gao et al. (2021b) introduce a dynamic network, which
predicts scene flow to create a warped radiance field from monocular videos. Inspired by level set methods,
HyperNeRF (Park et al., 2021d) models each frame as a nonplanar slice through a hyperdimensional NeRF.
Another line of works (Gafni et al., 2021; Liu et al., 2021b; Noguchi et al., 2021; Peng et al., 2021) model
dynamic humans from videos based on radiance fields. Other approaches (Tretschk et al., 2021b; Pumarola
et al., 2021b; Park et al., 2021b) encode the scene into a canonical space to then deform the canonical radiance
field. Recently, DyNeRF (Li et al., 2022) uses multi-view videos and proposes a novel hierarchical training
scheme in combination with ray importance sampling. In contrast to our method, the aforementioned works
require videos with different viewpoints to train a single network per scene, hence are not able to generate
novel scenes. Instead, we learn a generative model from unstructured single-view video collections.

H Limitations & Discussions (continued)

As mentioned in the main paper, we inherit the features of existing 3D-aware GANs that typically work
the best when there is a single target object at the center of the scenes, e.g., human faces. A possible
way of modeling multi-object scenes is to add in compositionality to scene distribution modeling (as in
Niemeyer & Geiger (2021a) and Hudson & Zitnick (2021)). Another factor that limits the modeling of
larger and more complex scene is sampling of virtual cameras. Training of GANs involves approximating the
input data distribution with the generators. For the case of 3D GANs, image generation requires sampling
virtual viewpoints from a plausible viewpoint distribution, which could be designed manually for single-object
scenes with outside-inward looking cameras. However, for larger scenes, obtaining or designing the plausible
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viewpoint distribution becomes challenging, due to lack of correspondences across scenes and high structural
variability. An interesting future direction would be to model the camera viewpoint distribution using neural
networks.

While our 4D GAN compares competitively in terms of training time until convergence, we note that the
volume rendering process or our approach leaves huge memory footprints. In fact, training of our model
consumes “2.4 GB / batch size," while the 2D video method of StyleGAN-V (Skorokhodov et al., 2022a)
only consumes “0.8 GB / batch size." This relatively high memory consumption prevents us from using
larger models with the highest generation qualities and limits the resolution of output renderings. We leave
exploration of more efficient implicit representations, such as tri-plane representations (Chan et al., 2022), as
future work to improve the efficiency and quality 4D GANs.
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