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Abstract

Fine-tuning Large Language Models (LLMs) with Reinforcement Learning (RL)
effectively enhances their capabilities but typically relies on costly external reward
signals. While recent self-rewarding methods offer an alternative, they often use
heuristic rewards with unclear learning objectives. We posit that many advanced
skills, such as reasoning and creativity, are already latent within the base model
and can be activated by sampling from its power distribution, pp,s(z)%. However,
existing sampling methods like MCMC are inefficient at inference time. We pro-
pose a novel unsupervised fine-tuning framework using Generative Flow Networks
(GFlowNets) to directly train a policy that samples from this target a-power tra-
jectory distribution. We define an intrinsic reward signal based on the trajectory
density of the base model, calculated using the frozen base model itself. This
principled approach provides a unified mechanism to controllably unlock latent
abilities: setting o > 1 enhances reasoning by "sharpening" the distribution, while
a < 1 unlocks creative diversity by "flattening" it. We plan to demonstrate the
effectiveness of our method on reasoning and creative generation benchmarks.

1 Introduction

Reinforcement Learning (RL) has proven to be a highly effective technique in the post-training of
Large Language Models (LLMs). This paradigm has been pivotal for aligning models with human
preferences [1]], ensuring safety [2], and incentivizing reasoning capabilities [3]].

However, acquiring high-quality, unbiased external reward signals for RL is notoriously difficult
and expensive [4} 5]]. Furthermore, a growing body of research argues that RL fine-tuning primarily
activates latent pathways already present in the base model, rather than instilling entirely new skills
[6]]. Therefore, significant research efforts have begun to explore how to activate these latent abilities
without relying on external reward signals.

While promising, these current unsupervised methods mostly rely on heuristics or statistical measures
derived from intuition [[7H9]], leaving their precise learning objectives unclear. Recently, work has
shown that sampling from a "sharpened" distribution via MCMC can enhance LLM reasoning
capability [10]. Concurrently, other work claims that model creativity is "locked" in low-probability
regions due to human bias towards typical answers during alignment [[11]].

Motivated by these findings, we propose a principled framework to directly fine-tune the LLM to
sample from its a-power distribution, pyase (). Our approach provides a clear and unified mechanism
to controllably enhance these latent abilities, without incurring the substantial computational overhead
of MCMC methods at inference time. To achieve this distributional matching goal, we employ
Generative Flow Networks (GFlowNets) [12,|[13]] during fine-tuning, using the hyperparameter « to
modulate the preference for specific model capabilities. We will test the effectiveness of our method
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on reasoning and creativity tasks, comparing it against both externally-rewarded RL methods and
unsupervised fine-tuning or activation approaches.

2 Related Work

2.1 Unsupervised and Self-Rewarding Fine-Tuning

A growing body of work aims to fine-tune LLMs without external reward signals, often by defining
heuristic-based intrinsic rewards. For example, [14] proposed using an LL.M-as-a-Judge prompt
structure to generate its own rewards during training. Similarly, TTRL [15]] constructs a consistency
reward via majority voting over model-generated outputs for RL fine-tuning, and Self-Rewarding
PPO [9] uses a "coherence reward" defined as the log-policy ratio between the SFT and base models.

In particular, many of these approaches focus on the statistical property of entropy, albeit with
conflicting goals. On one hand, ETPO [7] augments the RL objective with an entropy bonus to
promote exploration and diversity. Conversely, a contrary line of work argues for minimizing entropy
to improve reasoning and consistency. For instance, RENT [16] demonstrates that optimizing for
model confidence, which is framed as minimizing token-level entropy, can enhance reasoning. Along
this line, EMPO [8] also aims to reduce semantic entropy to incentivize coherent reasoning.

While effective, these methods often optimize for proxy objectives, whereas our work aims to learn a
well-defined target distribution.

2.2 Inference-Time Capability Activation

Another line of research directly motivates our target distribution: the activation of latent capabilities
during inference. For instance, [[10] provided key evidence that high-quality reasoning is latent
within base models and can be surfaced by using MCMC to sample from a sharpened distribution.
However, their specialized sampling approach incurred an excessive 8.84-fold increase in inference
cost, severely limiting its practical applicability. Complementary work by [[11] demonstrated that
creativity—often suppressed in aligned models due to human preference for typical, low-reward
answers—could be unlocked merely by adjusting the prompt. This hints at the possibility of efficiently
releasing the model’s creative potential from low-density regions of its base distribution. Building on
these insights, we propose to fine-tune the model to directly sample from an a-power distribution,
leveraging the hyperparameter « to effectively activate different, latent capabilities of the base model.

3 Proposed Method

Our goal is to fine-tune an LLM policy, 7, to sample from the c-power distribution of a base model,
Doase (2)*. We employ Generative Flow Networks to achieve this distributional matching.

3.1 Preliminaries: Generative Flow Networks

Generative Flow Networks (GFlowNets) [12} [13]] are a family of generative models designed to
learn a policy Pr g(x) that samples objects x with a probability proportional to a given non-negative
reward function R(z), such that Ppg(z) o« R(x).

A common objective used to train GFlowNets is Trajectory Balance (TB) [[17]. The TB objective
enforces a flow consistency constraint over a complete generation trajectory 7 (which terminates in
x) and is typically formulated in log-space, optimizing a set of parameters 6:

Lrp(;0) = (log Zg + log Prg(1) — log R(x) — log Pp ¢(7))?

Here, Zj is a learnable parameter estimating the partition function, Pr (7) is the probability of the
forward trajectory (sampling x), and Pg ¢(7) is the probability of the backward trajectory (decon-
structing x). Minimizing this loss drives Prg(x) to converge to the target distribution R(x)/Zy.

3.2 GFlowNet Objective for LLM Fine-tuning

We model autoregressive text generation as a sequential decision making process in a directed acyclic
graph (DAG). Given an initial prompt g, which serves as the root state sg, a state s; corresponds to a



partial token sequence y<; = (y1,...,yt—1). An action is the selection of the next token y; from the
vocabulary ). The process continues until a terminal token (e.g., [E0S]) is sampled, resulting in a
complete trajectory 7 and a terminal sequence y = (y1, ..., yr)-

Our goal is to learn a policy 7y that samples from the a-power distribution pu,ge(y|g)®. Inspired
by FlowRL [18]], which adapts the TB loss for LLMs, we propose a modified objective for our
unsupervised setting. We replace the external reward term in the original FlowRL objective with
our target log-density, 10g pyase(y|q)®, normalized by sequence length. This yields our final loss
function

2
1 «
L=w (mg Z0(a) + 1 g ma(yle) ~ 1 1ogpbase<yq>)

where 7y (y|q) is the policy we are fine-tuning (Prg), Dpase (y|q) is the frozen base model, Zy(z) is a
learnable, context-dependent partition function, and w is a PPO-style clipped importance weight used
in [18]. This objective directly optimizes 7y to match the target c-power distribution, pyase (y|q)®.

4 Experimental Setup

4.1 Models and Baselines

We will fine-tune open-source models, including Qwen2.5-Math-7B [19] and Llama-3.1-8B-
Instruct (to ensure a convenient comparison with our baselines), on unlabeled mathematical and
general prompts. We will compare our method against:

* Base Model: The original, unfine-tuned model.

GRPO (Supervised): A leading RL method using golden answer rewards [20]].

EMPO (Unsupervised): The state-of-the-art unsupervised reasoning method [8].
¢ MCMC Sampling (Inference-Time): The method from [10].
Verbalized Sampling (Inference-Time): The prompting method for diversity [[11]].

4.2 Task 1: Reasoning Enhancement (o > 1)

Benchmarks: We will evaluate on standard reasoning benchmarks used by our baselines, including
MATH (MATHS500 subset) [21], GPQA [22], and MMLU-Pro [23]].

Metrics: We will measure Pass@1 Accuracy (greedy decoding) against all baselines. We will also
plot Pass@k curves to test if our fine-tuning "sharpens"” the base model’s latent knowledge.

4.3 Task 2: Diversity and Creativity (« < 1)

Benchmarks: Following [L1], we will use Creative Writing [24] and Open-Ended QA [25].

Metrics: We will measure Semantic/Lexical Diversity and Quality (using LLM-as-a-judge). For
QA, we will also compute KL Divergence against the pre-training corpus distribution to measure
mode collapse mitigation.
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