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ABSTRACT

Preclinical cancer models such as cancer cell lines (CL) are central to cancer re-
search but can poorly represent tumor samples due to fundamental differences
like stromal cell contamination or in-vitro adaptation. This hinders the transla-
tion of new biomarkers or therapeutics into the clinical setting, leading to false
leads, failed clinical trials, and the need for expensive multiomics pipelines to rec-
oncile data sets. In this work, we build on conditional variational auto-encoders
(CVAE) to enable the direct comparison or selection of the most representative
CL for cancer research. We introduce RNAlign (pronounced RNA-align), a CVAE
framework with novel regularization techniques, to enable pan-cancer alignment
of tumor and CL gene expression profiles. The resulting learned transformation
achieves state-of-the-art removal of the most significant differences between the
model types, while preserving biologically important subtype information. This
framework is extendable to other tumor models such as organoids and can be di-
rectly integrated into existing workflows to guide clinical precision medicine.

1 INTRODUCTION

Tumor models such as cell lines (CL) play a key role in understanding how tumors develop and
respond to various perturbations. The genomic, transcriptomic, and epigenetic features of CLs have
been extensively cataloged, establishing them as a platform for systematic discovery and subsequent
testing of genetic and chemical vulnerabilities (Ghandi et al., 2019). Promising biomarkers identified
through these studies are then advanced to animal or human models. However, few biomarkers
successfully make this transition due to the challenges of imperfect translation to clinical settings
(Butler, 2008; Seyhan, 2019; Lieu et al., 2013).

Direct comparison of tumors to CLs would enable matching patient profiles with appropriate vul-
nerabilities for precision medicine (Luebker et al., 2017; Najgebauer et al., 2018). Large-scale
efforts such as the Cancer Genome Atlas Program (TCGA) and the Cancer Cell Line Encyclopedia
(CCLE) have allowed these comparisons, though many of these efforts have been limited to single
cancer types (Barretina et al., 2012; Weinstein et al., 2013; Virtanen et al., 2002; Kao et al., 2009;
Marie Vincent & Postovit, 2017). The use of genomic data is often hampered by a lack of matched
normal samples, so a framework to perform transcriptomic mapping of tumors to CLs would be
beneficial to the use of existing data sets and downstream analyses. Tumor transcriptomics has been
successful in distinguishing cancer types, subtype discovery, and identification of potential anti-
cancer agents (Sørlie et al., 2001; Wigle et al., 2002; Aran et al., 2015; Yu et al., 2019). However,
combining tumor and CL data poses several significant challenges. Firstly, cancer CL libraries repre-
sent an incomplete sampling of real-world cancer diversity and may be wrongly annotated (Sharifnia
et al., 2017). Furthermore, cell culture conditions and ongoing genomic instability contribute to the
discrepancy between CLs and tumors (Aran et al., 2015). Secondly, a major problem faced in tumor
transcriptomics is the presence of contaminating stromal and immune cells at variable proportions
(Buess et al., 2007). These non-cancer cells do not merely contribute additively to the expression
counts – they are shown to participate in cross-talk with cancer cells (Elenbaas & Weinberg, 2001).

The disparity between tumors and CLs generates inefficiencies at each stage of drug development.
Biomarkers discovered in models may ignore the variability in tumors and lead to clinical failures.
To mitigate such costly failures in the drug research and development (R&D) pipeline, emerging al-
ternatives are being explored, such as the use of advanced models (e.g. organoids) that better mimic
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Figure 1: RNAlign, a CVAE (Sohn et al., 2015) with additional regularization, is trained on RNA-seq
data from both tumor and CL, along with their associated class labels. Light gray boxes demarcate
the concatenated inputs into the encoder and decoder. To align the tumor and CL data, during
inference, model and purity labels to the trained decoder are homogenized.

the tumor micro-environment, along with consortium-led initiatives aimed at standardizing data gen-
eration processes across models (Koc et al., 2022). However, neither of these approaches leverage
existing datasets that have already been extensively characterized, thereby precluding potentially
significant clinical findings.

We hypothesize that a conditional variational auto-encoders (CVAE) framework can learn common
biological patterns across different model types, and use conditional generation to align tumor and
CL data (Sohn et al., 2015). In this work, we introduce RNAlign, a CVAE enhanced with novel reg-
ularization techniques for latent space disentanglement and conditional generation. We demonstrate
that it outperforms existing methods in aligning a pan-cancer dataset, while preserving biological
variability between cancer subtypes.

2 RELATED WORKS

Several works have been proposed to address the misalignment between existing tumor and CL data.
CELLector features a multi-omics approach to evaluate and guide the selection of the appropriate
in-vitro cancer model (Najgebauer et al., 2018). Newman et al. (2015) directly adjust expression
values to remove the disparity between models, requiring the expression profiles of the contributing
cell types. Zhang et al. (2020a) carry out batch correction using provided class annotations. Aran
et al. (2015) address tumor heterogeneity in downstream analyses by using purity as a co-variate
during differential expression analysis. Yu et al. (2019) use linear projection to remove stromal con-
tamination and estimate cancer expression. Finally, to enable direct comparisons between tumor and
CL data, Celligner is an unsupervised alignment method that performs a two-step statistical trans-
formation to remove systematic differences between CL and tumor profiles (Warren et al., 2020).

3 THE RNALIGN FRAMEWORK

3.1 MODELING GENE EXPRESSION AND CLASS LABELS USING REGULARIZED CVAES

The RNAlign framework uses the probabilistic generative model CVAE to approximate the log-
likelihood of the data x which is generated by the distribution pθ(x|z, y) conditioned on the latent
variable z and fully observed class labels y, using variational inference to maximize the Evidence
Lower Bound (ELBO) (Kingma, 2013; Sohn et al., 2015; Esmaeili et al., 2018; Debbagh, 2023).
The training loss for the CVAE decomposes into a reconstruction term and a KL divergence term:

LCVAE = −Eq(z|x,y)[log p(x|z, y)] + βDKL(q(z|x, y)||p(z))

2
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The hyper-parameter β on the KL divergence term allows fine-tuning of the trade-off between the
two terms (Burgess et al., 2018). Additionally, the generative processes for class labels p(y) (e.g.
tumor or CL) and latent variables p(z) are assumed to be independent. This encourages disentan-
gling class information from the latent variable z, enabling conditional generation of new samples.
Figure 1 depicts the CVAE comprising of an encoder q(z|x, y) and a decoder p(x|z, y). The en-
coder takes as input gene expression values x and class values y and outputs a latent variable z.
p(z) is parameterized as an isotropic Gaussian distribution with mean µ and standard deviation δ.
During training, the latent variable is sampled as z ∼ N (µ, δ) and concatenated with y as input to
the decoder, to output gene expression values. CVAEs are suitable for the alignment task as they
are able disentangle class labels from latent space (Zhang et al., 2020b). This architecture allows
one to transform the class of a given sample by explicitly modifying the class label y (e.g. ”CL” →
”tumor” or ”tumor” → ”CL”) and concatenating it to zµ at the decoder.

We enhance class learning by proposing two novel regularization terms which control the relation-
ship between the latent variables z and the class labels y. These regularization terms encourage
disentanglement of y from the latent space and improve conditional generation from z (Appendix
Table 5). First, to discourage encoding class information in the latent space z, we penalize the dis-
tance correlation between the latent variables z and the class variables y (Székely et al., 2007). In
contrast to Pearson correlation, distance correlation (R ∈ [0, 1]) captures non-linear dependencies,
and equals zero if and only if the variables are independent. The distance correlation loss between
the input class variables and the latent variables is defined as: Lcor = R(y, z). This encourages the
latent variable z to be independent of the class label y.

Furthermore, given the tendency of CVAEs to ignore class labels, we increase sensitivity of the
decoder to changes in the class label by imposing a loss based on the L2 norm of the gradient of
the ELBO with respect to y, which requires an additional back-propagation step to compute. The
loss is defined as: Lgrad = −∥∇yLELBO∥2. The total loss to be minimized during training is:
LTOTAL = LCVAE + λ1Lcor + λ2Lgrad.

3.2 EXPERIMENTAL SETTINGS

We implement the CVAE in Pyro (Bingham et al., 2018) with a symmetric encoder and decoder
structure, comprising fully connected layers. ReLU activation and dropout layers are used be-
tween each of the hidden layers. The model was trained for 1000 epochs using the Adam optimizer
(Kingma, 2014), along with a scheduler that reduces the learning rate by a factor of 10 at epochs
500 and 750. The number of hidden layers, latent dimensionality, dropout percentage, and learning
rate are treated as hyper-parameters. An annealing schedule is used during training for the KL diver-
gence loss term β to prevent posterior collapse (Fu et al., 2019). Random hyper-parameter sampling
(n=20) was carried out to determine good values for the aforementioned hyper-parameters, includ-
ing the parameters β and λ in the total loss function (Bergstra & Bengio, 2012). The model with the
lowest total loss on the test set was chosen. The search ranges used to sample each hyper-parameter
are recorded in Appendix Table 2.

The input to the encoder, x, is normalized log transcripts per million (log TPM) expression values
for the 3000 genes with highest median absolute deviation (Appendix A.2). The input is further
normalized to have zero mean and unit variance. y comprises one-hot encoded cancer type, sample
type (CL vs tumor), and purity values for each sample estimated by PUREE (Revkov et al., 2023).
Purity, the proportion of cancer cells in a sample, can be reliably and consistently estimated from
gene expression data using computational methods (Aran et al., 2015). Cancer type (e.g. Breast
Cancer) and sample type (e.g. CL) labels were used as input class labels for training and were
treated as fully observed variables as this information is available for all samples.

4 RESULTS

4.1 RNALIGN IMPROVES GLOBAL ALIGNMENT OF PAN-CANCER CL AND TUMOR DATA

We trained RNAlign on 12,236 tumor samples from the TCGA, TREEHOUSE and TARGET
datasets, along with 1,249 CL samples from CCLE (Goldman et al., 2018). Despite consistent
processing of the input data, the marked differences between the raw expression values for tumors
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Figure 2: UMAP projections of (a) raw input data and (b) RNAlign-transformed data for 12,236
tumors and 1,249 CLs reflect major differences in input expression values from CLs and tumors, and
few CLs cluster with their relevant cancer types. Transformation of the dataset results in clustering
of tumors and CLs in their respective cancer types. Out of 26 cancer types, the clusters for the
largest 8 are labeled. (c) Aligned data increases the median percentage of CLs matched to their
appropriate tumor cancer-type. (d) Adenocarcinoma (ntumor= 516; ncl= 79) and Squamous cell
carcinoma (ntumor= 498; ncl= 30) NSCLC samples, after transformation with the same pan-cancer
model, show alignment of tumors and CLs to their respective disease types. (e) Transformed BRCA
tumors and CLs cluster together in their respective subtypes. Basal (ntumor= 190; ncl= 27), HER2-
enriched (ntumor= 81; ncl= 15), and Luminal (ntumor= 770; ncl= 14) subtypes are shown. The
NSCLC and BRCA data are subsets of the pan-cancer aligned data.

and CLs of the same cancer types are shown in Figure 2A. Fundamental differences such as the pres-
ence of contaminant cells in tumor samples and CL in-vitro adaptations impede direct comparisons.
To demonstrate this, we compared the cancer type of each CL sample to the majority cancer type
of the 25 nearest tumor samples (Appendix A.10). Only 36.5% of CL samples were predominantly
surrounded by tumor samples of the same cancer type (Figure 2C), highlighting inherent disparities
between sample types. Per-cancer type percentages are displayed in Appendix Figure 4.

RNAlign transformation enhances global alignment, resulting in more CL samples clustering with
tumors of the sample cancer type (Figure 2B). This improvement is reflected in the increase in per-
centage (55.1%) of CLs that align with their corresponding tumor cluster by cancer type in Figure
2C. This demonstrates that RNAlign enhances alignment between CLs and tumors. By incorporat-
ing class labels (e.g. sample purity, model type, disease class) into the CVAE, the latent variable z
captures underlying gene expression variations shared across all samples, independent of class la-
bels. To account for fundamental differences between tumors and CLs during inference, each tumor
sample is decoded using a modified y variable by setting model = CL and purity = 1.
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Method ∆D PVCA ∆kBET
Input 22.56 0.27 0.90

Linear Projection 10.57 0.16 0.91
Celligner 8.59 0.10 0.86
RNAlign 4.75 0.13 0.65

Table 1: RNAlign performs best in metrics that test batch effect removal performance between
tumors and CLs. The scores are calculated as the median across cancer types.

4.2 RNALIGN TRANSFORMATION PRESERVES BIOLOGICAL SUBTYPE VARIABILITY

The presence of disease-specific subtypes is a confounder that complicates pan-cancer alignment.
During global alignment, there is no guarantee that subtype-specific variation will be preserved. This
variation could instead be erroneously removed, resulting in crude alignment of innately distinct
subtypes. However, RNAlign is able to retain subtype variability while aligning sample types. For
example, transformation using RNAlign preserves distinct subtype clusters of non-small cell lung
cancer (NSCLC) and breast cancer (BRCA) (Figure 2D and 2E, respectively). This highlights the
ability of the model to preserve biological variability or local subtype structures. This subtype
information is not provided during training, demonstrating that RNAlign is able to model intra-
disease variability in an unsupervised manner.

4.3 BENCHMARKING AND ABLATION ANALYSIS SHOW RNALIGN’S EFFECTIVENESS IN
REMOVING SAMPLE TYPE DISPARITY

Next, we show that RNAlign outperforms similar methods in pan-cancer alignment of tumor (xt)
and CL (xcl) expression data. To measure the relative performance of each method for a sample
type j, we compute three complementary metrics to evaluate batch effect correction (Appendix
A.4). First, to measure the compactness and separation of the transformed data per cancer type, we
summarize the difference in Euclidean distance between intra-batch pairs (e.g. xt–xt, xcl–xcl) and
inter-batch pairs (e.g. xt–xcl). All possible within- and between-sample type pairs are considered
for each cancer type. We then compute ∆D(xt, xcl) = Dintra(x)−Dinter(xt, xcl) (see Appendix
A.3 for details). We also calculate ∆kBET (Büttner et al., 2019) to measure the local consistency
of batch mixing. Higher ∆kBET values indicate small regions where batch effects persist. Lastly,
PVCA (Boedigheimer et al., 2008) quantifies the residual variance attributable to batch effects. We
calculate the metrics for each cancer type and take the median value. A well-adjusted correction
should minimize all three metrics relative to the baseline unadjusted input data. RNAlign tops two
out of three metrics (Table 1).

To investigate the effects of the regularization terms or input feature selection on the model per-
formance, we carry out ablation by removing each of the following – Lgrad, Lcor, or purity la-
bels, We then train the model without the regularization or feature in question. Without any of
the aforementioned terms, the model exhibits degraded performances of ∆Ds of 6.12, 10.70, and
17.34 respectively (Appendix Table 5). RNAlign’s performance benefits from both regularization
terms; removing either term impairs its ability to remove batch effects. Lgrad makes the model
more sensitive to changes in the input sample type, while Lcor encourages the model to encode
batch-independent biological information into the latent space. Purity is consistently highlighted
as a confounding factor in tumor data (Aran et al., 2015) and its inclusion aids the performance of
RNAlign.

The nature of CVAEs means that the generation of output data can be conditioned several ways
(Sohn et al., 2015). Changing the model and purity labels give the best performance in alignment.
We briefly summarize the performance of alternative transformations in Appendix Table 4.

4.4 FAILURES TO ALIGN REFLECT KNOWN CANCER BIOLOGY

Established cell lines are known to poorly recapitulate tumor biology due to limited representation
of subtypes or transcriptional states; some cancer types may also have highly unique tumor micro-
environments in-vio. As such, a biologically relevant alignment should not indiscriminately align
cancer types where cell lines are known to be poor proxies of tumors. To evaluate the performance
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of RNAlign in this regard, we use the re-annotated cancer type labels for CL as outlined in Section
4.1 to summarize levels of concordance or discordance between aligned CLs and tumors.

High levels of discordance in known tumor biology between CL and tumor samples indeed lead
to poor alignment in some cancer types. Though further analyses is needed to assess biological
pathways that may contribute to misalignment in these cases, we highlight three cancer types for
which the aligned data have low percentages of CL-tumor matching and show that literature review
corroborates these results; the poor alignment mirrors known biological discrepancies between CLs
and tumors (Appendix Figure 3, Appendix Figure 4).

First, brain CLs (12% of CLs cluster with tumors) exhibit a unique tumor micro-environment ab-
sent in CLs, which underlies the weak correlation of brain CLs to tumor samples (Marx, 2024).
Numerous brain CLs are also often derived from metastatic or highly aggressive tumors, leading
to lineage misrepresentation and poor fidelity to tumor samples (Ghandi et al., 2019). Next, thy-
roid CLs (8% CL-tumor match) also show poor fidelity to tumor samples. CL mRNA profiles have
higher correlation to rare, de-differentiated anaplastic thyroid carcinoma samples, instead of the
more common differentiated papillary thyroid carcinoma subtype (Saiselet et al., 2012). Lastly,
liver cancer CLs (33% CL-tumor match) group into either hepatocyte-like, which aligns with most
HCC tumors, or fibroblast-like clusters that show strong stromal contamination (Fukuyama et al.,
2021). Fibroblast-like tumors comprise a heterogeneous population of cancer-associated fibroblasts,
(Peng et al., 2022). This split is seen in Figure 3 (liver panel), with fibroblast-like samples clustering
in the sparser and more diffuse cluster in the bottom right of the panel. We further summarize the
literature for several other cancer types in Appendix A.10. RNAlign does not force arbitrary mixing
between model types, and retains biologically salient disparities in these cases; failures of alignment
post-transformation are concordant with known literature.

5 DISCUSSION

The disparity between cancer models is a major challenge in translational oncology. RNAlign ad-
dresses this issue by globally aligning tumor and CL expression data. We show that the transformed
data preserves subtype information without indiscriminately aligning biologically divergent sam-
ples. Our novel framework uses regularization terms and informative input features to disentangle
known class information from the latent space, producing a more generalized encoding of cancer bi-
ology. Inclusion of cancer type labels is key to separating cancer-type-specific information from the
latent space, enabling the CVAE to encode broad and consistent patterns of cancer gene expression.
Tumor purity, a known confounder, is another important input feature (Aran et al., 2015).

RNAlign enables robust cross-model analyses, allowing preclinical models to be directly used for
downstream translational applications. By comparing aligned data, precise CL selection for drug
screening is possible, guided by its similarity to patient tumors. This ensures model fidelity, which
could improve predictions of clinical responses based on in-vitro data.

A natural extension of RNAlign for translational oncology would be to use the disentangled latent
space for survival prediction or drug response tasks. Existing methods use vanilla VAEs to pre-
dict patient survival (Apellániz et al., 2024; Rollo et al., 2025). An area for further improvement
in RNAlign could be reducing its over-reliance on RNA-seq data and integrating epigenetic, pro-
teomic, or mutational drivers of variation. Similar multi-modal approaches have been demonstrated
in ovarian cancer (Hira et al., 2021).

6 CONCLUSION

We demonstrate that RNAlign, a CVAE framework with novel regularization strategies, disentangles
biologically relevant latent features from model-specific variation. RNAlign learns a generalized
mapping of cancer biology to successfully harmonize the fundamental differences between tumor
and CL transcriptomes, while preserving important subtype-specific variation and known biological
incompatibilities. RNAlign enables direct model comparisons to generate robust clinical findings
that otherwise require expensive and rigorous R&D pipelines, and its flexibility supports future
multi-omics integration and extension to prognostic predictions.
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SOFTWARE AND DATA

We will publish the code to run RNAlign on GitHub.
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A APPENDIX

A.1 TRAINING HYPER-PARAMETERS

Table 2 reflects the ranges used for random hyper-parameter searches.

Table 2: Hyperparameters search space for training RNAlign.

Parameter Random distribution

Learning rate 10Uniform(−5,−2)

Number of dense layers to finetune RandomChoice([1, 2, 3])
Adam Weight decay 10Uniform(−6,−3)

Dropout layer p RandomChoice([0.2, 0.4, 0.6])
Batch size RandomChoice([32, 64, 128, 256])
Multiplier on purity estimate Uniform(0, 100)
σ prior (reconstruction step) Uniform(0.2, 1)
ϵ prior (reparametrization step) Uniform(0.2, 1)
Purity estimate multiplier Uniform(0, 100)

Beta (KL divergence) 10Uniform(−1.5,−1)

λ1Lcor 10Uniform(−2,−0.5)

λ2Lgrad 10Uniform(−2,−0.5)

A.2 EXPRESSION DATA

Expression data for 12,236 tumor samples were downloaded from the UCSC Treehouse Public
Data using the Xena browser (https://xenabrowser.net), specifically the Tumor Com-
pendium V10 Public PolyA data set (Goldman et al., 2018). Samples are derived from the
UCSC Treehouse Childhood Cancer Initiative, the Therapeutically Applicable Research to Gen-
erate Effective Treatments (TARGET) program, and The Cancer Genome Atlas (TCGA) (Wein-
stein et al., 2013). Data for 1,249 CL samples were taken from the DepMap Public 19Q4 file:
CCLE_expression_full.csv. All expression data were processed using the STAR-RSEM
pipeline and are TPM log2-transformed (with a pseudocount of 1 added). We subset expression data
to the most variable 3000 genes, using median absolute deviation.

A.3 CALCULATION OF ∆D

The ∆D metric is calculated as follows: For each batch, we compute the pairwise Euclidean dis-
tances between all samples of the same type (e.g. xt–xt, xcl–xcl). These distances reflect the
compactness of the data within each batch. The median of these distances is taken as Dintra(x),
representing the typical distance between samples of the same type within a batch. We also compute
the pairwise Euclidean distances between samples of different types (e.g. xt–xcl). These distances
reflect the separation between batches. The median of these distances is taken as Dinter(xt, xcl),
representing the typical distance between samples of different types across batches. The use of me-
dians across pairwise Euclidean distances is motivated by the fact that datasets often contain CLs
that are mis-annotated, poorly representative of tumors, or exhibit extreme molecular profiles due to
long-term culturing artifacts.

For each batch, we calculate the difference between its intra-batch median distance and its inter-
batch median distance:

∆D(xt, xcl) = Dintra(x)−Dinter(xt, xcl)

To ensure robustness, we compute ∆D for all cancer types in the study and take the median of
these values. This aggregation provides a summary measure of batch correction performance across
diverse biological contexts, reducing the influence of cancer-specific artifacts.
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A.4 ADDRESSING DIFFERENT ASPECTS OF BATCH EFFECT CORRECTION

Our choice of metrics each target a different aspect of batch effect removal:

• ∆D (Euclidean distance difference): Focuses on geometric structure in the data. By com-
paring intra-batch compactness (e.g. tumor-tumor) to inter-batch separation (e.g. tumor-
CL), it directly measures whether corrected data preserves biologically meaningful clusters
while minimizing batch-driven distances. This ensures sample-type distinctions (CL vs.
tumor) are not over-smoothed.

• ∆kBET (difference between observed and expected values of kBEt): Evaluates local sta-
tistical consistency of batch mixing. It tests whether neighborhoods of cells/samples reflect
the expected distribution under ideal correction (e.g. no batch dominance in local regions).
This guards against ”patchy” overcorrection, where global metrics like ∆D might suggest
success, but local biases persist.

• Principal Variance Components Analysis (PVCA): Quantifies the proportion of variance
explained by batch after correction. Unlike distance-based metrics, PVCA directly iden-
tifies residual technical variability, ensuring batch effects are not just visually reduced but
statistically insignificant.

Appendix A.10 discusses the prevalence of cancer types for which CLs which are biologically ex-
pected to poorly correlate to tumors and show 0% CL-tumor matches (Appendix Figure 4). For
this reason, we take the median of each metric for all cancer types in the study. This way aggrega-
tion provides a robust summary measure of batch correction performance across diverse biological
contexts, reducing the influence of cancer-specific artifacts.

RNAlign’s performance ranking best on ∆D and ∆kBET suggests it is excellent for mitigating local
batch effects and ensuring proper integration at the level of pairwise distances and mixing metrics.
However, performing 2nd best in PVCA, suggests that it might be somewhat more aggressive in its
correction relative to Celligner, potentially dampening some of the true biological variance. This is
a common trade-off in batch correction: achieving strong local integration sometimes risks losing
some global biological structure.

A.5 ASSESSING CLUSTERING OF CLS AND TUMORS BY CANCER TYPE

Appendix Figure 3 shows the UMAP representations of individual cancer type annotations in the
globally aligned data.

A.6 DISEASE-SPECIFIC ANALYSIS

To measure the extent of CLs clustering to their appropriate tumors by cancer type, we follow the
procedure set out by Warren et al. (2020). Briefly, we re-classify each CL by the most frequently
occurring cancer type in its 25 tumor neighbors (defined as those with the highest Pearson correla-
tion).

Appendix Figure 4 highlights the generally poor fidelity of CLs as tumor models; the majority of
cancer types has less than 50% of CL cancer type annotations matching those of its neighboring
tumor samples.

Better performing cancer types with regards to CL-tumor clustering in the aligned space have more
robust cell line representation, and are often derived from samples that have consistent genomic
drivers and stable transcriptional states (Ghandi et al., 2019; Warren et al., 2020).

We conducted a literature review to look into cancer types with poor CL matches to tumor samples,
collating biological evidence for poor CL representation or availability of tumors.

• Esophageal cancer (0% match in aligned) exhibits significant metabolic reprogramming of
glucose, amino acid, and lipid metabolism (e.g. upregulation of HK2, PKM2, and glu-
taminase), that is lost in CLs during in-vitro adaptation. Tumors retain microenvironment-
driven metabolic demands like hypoxia-induced glycolysis, while CLs adopt simplified
metabolic states optimized for proliferation (Dong et al., 2025). EC includes squamous cell
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Figure 3: UMAP projections of RNAlign transformed data shows that clustering of CLs and tumors
by cancer types improves, but extent of alignment varies across cancer types. Only cancer types
with more than 10 samples of each model are displayed.

carcinoma (ESCC) and adenocarcinoma (EAC), which differ in molecular drivers. Some
widely-used CLs (e.g. OE33, TE-1) show lower similarity due to subtype misrepresenta-
tion (Uhlén et al., 2015).

• Multiple myeloma (0% CL-tumor match) CLs often lack bone marrow stromal interactions
like IL-6 signaling, which are critical for tumor survival and gene expression. Additionally,
key genomic features are inconsistently represented in CLs, and long-term cultured lines
acquire resistance mechanisms (Sarin et al., 2020).

• Subclonal diversity in Cholangiocarcinoma tumors leads to CLs capturing distinct sub-
populations For example, EH-CA1a and EH-CA1b are derived from the same tumor but
exhibit divergent EMT, MMP, and chemoradiation resistance profiles (Wang et al., 2013).
This results in poor fidelity of CLs to in-vivo samples (0% CL-tumor match).

• Eye cancer (0% CL-tumor match) is a rare cancer type with limited availability of well-
characterized CLs; the few available are susceptible to genomic drift over long periods of
culture (Jager et al., 2016; Souto et al., 2020). Unique micro-environmental factors such as
hypoxia, which has been shown to drive metabolic reprogramming in-vivo, are also difficult
to recreate in-vitro (Sun et al., 2024).
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Figure 4: Percentage of cell lines clustering to the equivalent tumors broken down by cancer
type. Three datasets are shown, input unaligned data (blue), RNAlign-transformed data (red), and
Celligner-transformed (Warren et al., 2020) (green) data. Input- and RNAlign-transformed data are
shaded to highlight changes in cancer type-specific classification performance.

The above information highlights that the differences between tumors and CLs is sometimes unique
to certain cancer types. Though we show that RNAlign successfully models and removes variation
between the model types, it may fail to fully capture disease-specific patterns of variation that can
be subtle in pan-cancer analyses. These subtle but crucial signals could be missed due to various
reasons, such as insufficient representation across subtypes of the cancer type compared to others,
or distinctive characteristics of the tumor micro-environment.

A.7 UNSUPERVISED SUBTYPE CLUSTERING PERFORMANCE

Table 3 summarizes batch correction scores for the unsupervised/unseen cancer subtypes using dif-
ferent batch correction methods for breast cancer (for annotations basal, HER2-enriched, luminal)
and lung cancer (for annotations SCLC, LUAD, LUSC, LCC, Other).

Method ∆D PVCA ∆kBET

Breast Cancer
Input 9.87 0.22 0.01
Linear 8.72 0.22 0.02
Celligner 10.67 0.27 0.04
RNAlign 0.00 0.03 0.01

Lung Cancer
Input 11.68 0.42 0.02
Linear 9.28 0.34 0.03
Celligner 11.49 0.37 0.06
RNAlign 0.00 0.14 0.03

Table 3: Comparison of ∆D, PVCA, and ∆kBET scores using different transformation methods for
BRCA and NSCLC subtypes.

RNAlign demonstrates superior performance in unsupervised subtype batch correction (Table 3).
Its near-zero ∆D values in both breast and lung cancer indicate that the method effectively aligns
intra-subtype samples. This is further supported by the low PVCA values, which show a significant
reduction in variance attributable to batch effects. Additionally, while RNAlign exhibits excellent
local mixing in the breast cancer data as indicated by the low kBET, there is a slight trade-off in local
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structure preservation in the lung cancer data. Overall, RNAlign achieves a strong balance between
global alignment and variance reduction, with only a minor compromise in local neighborhood
mixing in some cases.

A.8 ALTERNATIVE CONDITIONAL GENERATION COMPARISONS

The conditional generation strategy used in this study was to transform the input class labels
(model=CL, purity=1), while cancer type labels were kept consistent to the sample annotation.
Categorical labels model and cancer type are one-hot encoded. Alternative conditional generation
strategies were tested, and the ∆Ds of the transformed matrices were measured to assay the addi-
tive effect of each label change. Table 4 highlights the conditional generation operations possible
through the CVAE framework and their performance using ∆D. All transformation operations result
in improved clustering relative to the input data, while both model and purity transformations result
in significantly better performance.

Class label transformation ∆D
Input data 22.56

Model & Tumor (Model = ’CL’, Purity = 1) 4.75
Purity only (Purity = 1) 9.43

Model only (Model = ’CL’) 17.35

Table 4: ∆D for input data, RNAlign transformed data, and similar methods. that test batch effect
removal performance between tumors and CLs. The scores are calculated as the median across
cancer types.

A.9 ABLATION ANALYSIS

Table 5 summarizes the ∆Ds of all methods analyzed in the study, along with equivalent models
that each have one aspect of the model ablated – one of Lgrad, Lcor , or purity labels is omitted
from each model. All other hyper-parameters are kept the same, and both model & purity labels are
transformed for all ablation models. All of the novel features of RNAlign improves alignment of CL
and tumor data relative to input data with respect to ∆D. However, any ablation of the model results
in significantly worse performance compared to the full model, with the omission of purity labels in
the input classes leading to the worst performance.

Method ∆D
Input data 22.56
RNAlign 4.75

RNAlign (no Lgrad) 6.12
RNAlign (no Lcor) 10.70

RNAlign (no purity labels) 17.34

Table 5: ∆D for input data, RNAlign transformed data, and similar methods. that test batch effect
removal performance between tumors and CLs. The scores are calculated as the median across
cancer types.

A.10 RNALIGN POTENTIAL DOWNSTREAM APPLICATIONS

A straightforward approach is to use similarity based methods in the transformed space. By iden-
tifying the nearest cell line neighbors to a tumor sample, drug response can be inferred based on
the behavior of those neighbors with known sensitivity profiles. Another approach could be to build
regression or classification models using cell line drug response data on the aligned feature space,
which can be applied to patient tumors to estimate treatment efficacy.

Transfer learning or domain adaptation techniques can further refine the predictive performance by
adapting insights gleaned from cell line experiments to the nuances of patient data. One transfer

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review at the AI4NA workshop at ICLR 2025

learning strategy would be to pre-train a deep learning model on just the cell line data – using com-
prehensive drug response labels with the transformed data – to learn robust feature representations.
Subsequently, the model could then be fine-tuned using tumor samples, incorporating domain adap-
tation techniques such as the use of maximum mean discrepancy (Zhao et al., 2018) on the outputs
of the latent space to efficiently minimize distribution discrepancies between cell line and tumor
features and enhance the model’s ability to accurately predict patient drug responses.

A.11 CHOICE OF RNALIGN ARCHITECTURE

The use of probabilistic framework over a GANs or GRNs allows uncertainty quantification in the
model, which is valuable in biomedical applications where the confidence of the model predictions
needs to be taken into account. VAEs also naturally enforce a latent space that is not possible in
GANs or GRNs; furthermore, the CVAE architecture has been shown to effectively disentangle
factors from this latent space. This regularized latent space then enables identification of shared
biological patterns between tumors and CLs, smooth interpolation between latent representations of
input samples, and generation of counterfactual or synthetic data based on conditions of interest.

A.12 FUTURE WORK

Further analyses on RNAlign’s performance is required at the local level (i.e intra-cancer type), fo-
cusing on two key areas to further validate and refine our transformation method. First, we will eval-
uate the fidelity of salient biomarker reconstruction in transformed samples to determine whether the
relative expression of key biomarkers is preserved across cancer types and subtypes. For example,
assessing if the expression patterns of PAM50 gene markers in BRCA samples remain intact after
transformation. Secondly, beyond corroboration by literature, a deeper look into the poorly aligned
cancer types is also needed, including differential expression and pathway enrichment to identify
pathways that contribute to these misalignments.
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