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ABSTRACT

Deep neural networks often perform poorly when training datasets are heavily class-
imbalanced. Recently, two-stage methods greatly improve the performances by
decoupling representation learning and classifier learning. In this paper, we discover
that networks trained on long-tailed datasets are more prone to miscalibrated and
over-confident. The two-stage models suffer the same issue as well. We design
two novel methods to improve calibration and performance in such scenarios.
Motivated by the predicted probability distributions of classes are highly related to
the numbers of class instances, we propose a label-aware smoothing to deal with
the different degrees of over-confidence for different classes and improve classifier
learning. Noting that there is a dataset bias between these two stages because of
different samplers, we further propose a shifted batch normalization to solve the
dataset bias in the decoupling framework. Through extensive experiments, we
also observe that mixup can remedy over-confidence and improve representation
learning but has a negative or negligible effect on classifier learning. Our proposed
methods set new records on multiple popular long-tailed recognition benchmarks
including LT CIFAR 10/100, ImageNet-LT, Places-LT, and iNaturalist 2018.

1 INTRODUCTION

With numerous available large-scale and high-quality datasets such as ImageNet (Russakovsky
et al., 2015), COCO (Lin et al., 2014), and Places (Zhou et al., 2017), deep convolutional neural
networks (CNNs) have made notable breakthroughs in various computer vision tasks such as image
recognition (Krizhevsky et al., 2012; He et al., 2016), object detection (Ren et al., 2015) and semantic
segmentation (Cordts et al., 2016). These delicate datasets are usually artificially balanced with
respect to the number of instances for each object/class. However, in real-world applications, data
often follows an unexpected long-tailed distribution, where the numbers of instances for different
classes are seriously imbalanced. When training CNNs on such long-tailed datasets, the performances
extremely degrade. Motivated by this phenomenon, a number of works have recently emerged that
try to explore long-tailed recognition.

Recently, many two-stage approaches have achieved significant improvement comparing with one-
stage methods. Concretely, DRS and DRW (Cao et al., 2019) first train CNNs in a normal way in
Stage-1. DRS finetunes CNNs on datasets with class-balanced resampling while DRW finetunes
CNNs by assigning different weights to different classes in Stage-2. Zhou et al. (2020) proposed
BBN with one-stage to simulate the process of DRS by dynamically combining the instance-balanced
sampler and the reverse-balanced sampler. Kang et al. (2020) proposed two-stage decoupling models,
cRT and LWS, to further boost the performance: Decoupling models freeze the backbone and just
finetune the classifier with class-balanced resampling in Stage-2.

Confidence calibration (Niculescu-Mizil & Caruana, 2005; Guo et al., 2017) – the problem of
predicting probability estimates representative of the true correctness likelihood – is important for
recognition models in many applications (Bojarski et al., 2016; Jiang et al., 2012). In this study, we
discover that networks trained on long-tailed datasets are more miscalibrated and over-confident: We
draw the reliability diagrams with 15 bins in Fig. 1, which compares the plain model trained on the
original CIFAR-100 dataset, the plain model, cRT, and LWS trained on long-tailed CIFAR-100 with
imbalanced factor (IF) 100. We observe that networks trained on long-tailed datasets have higher
expected calibration errors (ECEs). The two-stage models, cRT and LWS, suffer over-confidence as
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Figure 1: Reliability diagrams of ResNet-32. From left to right: the plain model trained on the original
CIFAR-100 dataset, the plain model, cRT, and LWS trained on long-tailed CIFAR-100 with IF=100.

well. Moreover, Fig. 7 and Fig. 8 (the first two plots) in Appendix B depict that this phenomenon
also commonly exists on other long-tailed datasets such as LT CIFAR-10 and ImageNet-LT.

Another issue is that two-stage decoupling methods ignore the dataset bias or domain shift (Quionero-
Candela et al., 2009) between these two stages. Concretely, two-stage models are first trained on the
instanced-balanced dataset DI in Stage-1. Then, models are trained on the class-balanced dataset
DC in Stage-2. Obviously, PDI(x, y) 6= PDC(x, y), the distributions of the dataset with different
sampling manners are inconsistent. Motivated by the transfer learning methods (Li et al., 2018; Wang
et al., 2019), we focus on the batch normalization (Ioffe & Szegedy, 2015) layer to deal with the
dataset bias problem.

In this work, we propose a Mixup Shifted Label-Aware Smoothing model (MiSLAS) to effectively
solve the above issues. Our key contributions are as follows: (i) We discover that models trained on
long-tailed datasets are much more miscalibrated and over-confident than them trained on balanced
datasets. The two-stage models suffer the same problem as well. (ii) We find that mixup can remedy
over-confidence and have a positive effect on representation learning but a negative or negligible
effect on classifier learning. To further enhance classifier learning and calibration, we propose a
label-aware smoothing to handle the different degrees of over-confidence for different classes. (iii) We
are the first to note the dataset bias or domain shift in two-stage resampling methods for long-tailed
recognition. To deal with the dataset bias in the decoupling framework, we propose shift learning on
the batch normalization layer, which can greatly improve the performance.

We extensively validate our MiSLAS on multiple long-tailed recognition benchmark datasets, i.e.,
LT CIFAR-10, LT CIFAR-100, ImageNet-LT, Places-LT, and iNaturalist 2018. Experimental results
manifest that the effectiveness and our method yields new state-of-the-art.

2 RELATED WORKS

Re-sampling and re-weighting. There are two groups of re-sampling strategies: over-sampling
the tail-class images (Shen et al., 2016; Buda et al., 2018; Byrd & Lipton, 2019) and under-sampling
the head-class images (Japkowicz & Stephen, 2002; Buda et al., 2018). Over-sampling is regularly
useful on large datasets and often suffers from heavy over-fitting to tail classes especially on small
datasets. For under-sampling, it discards a large portion of data, which inevitably causes degradation
of the generalization ability of deep models. Re-weighting (Huang et al., 2016; Wang et al., 2017) is
another prominent strategy. It assigns different weights for classes and even instances. The vanilla
re-weighting method gives class weights in reverse proportion to the number of samples of classes.
However, with large-scale data, re-weighting makes the deep models difficult to optimize during
training. Cui et al. (2019) relieved the problem using the effective numbers to calculate the class
weights. Another line of work is to adaptively re-weight each instance, e.g., Focal loss (Lin et al.,
2017) assigned smaller weights for well-classified samples.

Network calibration and regularization. Calibrated confidence is significant for classification
models in many applications. The calibration of modern neural networks is first discussed in Guo
et al. (2017). The authors discovered that model capacity, normalization, and regularization have
strong effects on network calibration. mixup (Zhang et al., 2018) is a regularization technique that
is proposed to train with interpolations of inputs and labels. mixup inspires several follow-ups like
manifold mixup (Verma et al., 2019), CutMix (Yun et al., 2019), and Remix (Chou et al., 2020) that
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Table 1: Top-1 accuracy of the decoupling models (cRT and LWS) for ResNet families trained on the ImageNet-
LT dataset. We vary the augmentation strategies (with or without mixup α = 0.2) on both two stages.

Training setup for two stages
ResNet-10 ResNet-50 ResNet-101 ResNet-152

cRT LWS cRT LWS cRT LWS cRT LWS

Stage-1 (no mixup) 36.8 36.8 45.8 45.8 47.3 47.3 48.7 48.7
Stage-1 (mixup) 35.7 35.7 45.6 45.6 47.7 47.7 48.4 48.4

Stage-1 (no mixup) + Stage-2 (no mixup) 43.3 43.5 50.3 51.2 51.4 52.3 52.7 53.8
Stage-1 (no mixup) + Stage-2 (mixup) 43.0 43.3 50.2 51.1 51.4 52.2 52.8 53.6

Stage-1 (mixup) + Stage-2 (no mixup) 43.4 42.9 51.7 52.0 53.1 53.5 54.2 54.6
Stage-1 (mixup) + Stage-2 (mixup) 43.3 42.8 51.6 51.9 53.0 53.5 54.1 54.5
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Figure 2: Classifier weight norms for the ImageNet-LT validation set when classes are sorted by descending
values of Nj . Left: weight norms of cRT with or without mixup. Right: weight norms of LWS with or without
mixup. (light shade: true norm, dark lines: smooth version)

have shown significant improvement over mixup. Thulasidasan et al. (2019) found that CNNs trained
with mixup are significantly better calibrated. Label smoothing (Szegedy et al., 2016) is another
regularization technique that encourages the model to be less over-confident. Unlike cross-entropy
computes loss upon the ground truth labels, label smoothing computes loss upon a soft version of the
label, which can relieve the over-fitting and increase calibration and reliability (Müller et al., 2019).

Two-stage methods. Cao et al. (2019) first proposed deferred re-weighting (DRW) and deferred
re-sampling (DRS) that are superior to conventional one-stage methods: Stage-2, starting from better
features, adjusts the decision boundary and locally fine-tunes the features. Recently, Kang et al. (2020)
and Zhou et al. (2020) concluded that although class re-balance strategies matter when jointly training
representation and classifier, instance-balanced sampling gives more general representations. Based
on this observation, Kang et al. (2020) achieved state-of-the-art results by decomposing representation
and classifier learning, i.e., first train the deep models with instance-balanced sampling, then fine-tune
the classifier with class-balanced sampling while keeping parameters of representation learning fixed.
Similarly, Zhou et al. (2020) integrated mixup training into the proposed cumulative learning strategy
with which they bridged the representation learning and classifier re-balancing. The cumulative
learning strategy requires dual samplers: instance-balanced and reversed instance-balanced sampler.

3 MAIN APPROACH

3.1 IMPROVING CALIBRATION AND REPRESENTATION LEARNING BY MIXUP

For the two-stage learning framework, Kang et al. (2020) and Zhou et al. (2020) found that instance-
balanced sampling gives the most generalizable representations among other sampling methods.
Thulasidasan et al. (2019) found that networks trained with mixup are better calibrated. When
using instance-balanced sampling, to further improve the representation generalization and relieve
over-confidence, we explore the effect of mixup in the two-stage decoupling framework.

Here, we train two two-stage models, i.e. cRT and LWS, on ImageNet-LT for 180 epochs in Stage-1
and finetune for 10 epochs in Stage-2, respectively. We vary the training setup (with/without mixup
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Figure 3: Violin plot of predicted probability distributions for different parts of classes, head (more than 100
images), medium (20 to 100 images), and tail (less than 20 images) on LT CIFAR-100, IF=100. The upper half
part in light blue: LWS (cross-entropy). The bottom half part in deep blue: LWS (label-aware smoothing).

α = 0.2) for both two stages. Top-1 accuracy results of these variants are listed in Table 1. From it,
we conclude that: (i) When applying mixup, the performance improvements of Stage-1 are ignorable
but the performances of Stage-2 are greatly enhanced for both cRT and LWS. (ii) Applying additional
mixup in Stage-2 has no obvious improvement or even damages the performance, which means that
mixup encourages representation learning but has a negative or negligible effect on classifier learning.

We also draw the final classifier weight norms of these variants in Fig. 2. We show the L2 norms
of the weight vectors for all classes, as well as the training data distribution sorted in a descending
manner concerning the number of instances. We observe that when applying mixup (orange line), the
weight norms of the tail classes uniformly tend to become larger and the weight norms of the head
classes are decreased, which means mixup may be more friendly to the tail classes.

The analysis of calibration for networks whether adding mixup will be discussed in our experiment
part (Sec. 4.2). Due to the poor and unsatisfied enhancement of mixup for classifier learning, we
further propose a label-aware smoothing to improve both the calibration and classifier learning.

3.2 IMPROVING CALIBRATION AND CLASSIFIER LEARNING BY LABEL-AWARE SMOOTHING

As discussed in the introduction part and Sec. 3.1, two-stage models suffer serious over-confidence
and there is no significant improvement for classifier learning when adding additional mixup. In this
subsection, we try to analyze and deal with these two issues. Suppose that the weight of the classifier is
W ∈ RM×K , where M is the number of features and K is the number of classes. The cross-entropy
encourages the whole network to be over-confident on the head classes: Concretely, the cross-entropy
loss after the softmax activation is l(y,p) = − log(py) = −w>y x + log(

∑
exp(w>i x)), where

y ∈ {1, 2, ...,K} is the label, x ∈ RM is the feature vector send to classifier and wi is the i-th
column vector ofW . The optimal solution is w∗y

>x = inf while keeping others w>i x, i 6= y, small
enough. Because the head classes contain much more training examples, the network makes the
weight norm ‖w‖ of the head classes become larger to near the optimal solution as much as possible,
which results that their predicted probabilities mainly concentrate near 1.0 (see Fig. 3, the upper half
part showing in light blue). Another fact we can get from Fig. 3 is that the distributions of predicted
probability are severely related to the instance numbers. Unlike balanced recognition, we claim that
applying different strategies for different classes is extremely necessary for the long-tailed problem.

Here, we propose a label-aware smoothing to solve the over-confidence in cross-entropy and the
different distributions of predicted probability issue. The mathematical computation of label-aware
smoothing is:

l(q,p) = −
K∑
i=1

qi log pi, qi =

{
1− εy = 1− f(Ny), i = y,
εy
K−1 =

f(Ny)
K−1 , otherwise, (1)

where εy is a small label smoothing factor for Class-y and relates to its class number Ny. Now the
optimal solution becomes:

w∗i
>x =

{
log
(

(K−1)(1−εy)
εy

)
+ c, i = y,

c, otherwise,
(2)
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where c can be an arbitrary real number. Comparing with the infinite optimal solution in cross-entropy,
the label-aware smoothing encourages a finite output, which can get more generalized results and
remedy over-fitting. We suppose the labels of the long-tailed dataset are assigned in a descending
manner concerning the number of instances, i.e., N1 ≥ N2 ≥ ... ≥ NK . Because the head classes
contain more various and diverse examples, the predicted probabilities are more promising than them
of tail classes. Thus, we suggest classes with larger instance numbers should be penalized larger
label smoothing factors, that is, the related function f(Ny) should be negatively correlated to Ny.
We define three types of related function f(Ny):

εy = f(Ny) =



(Concave) εK + (ε1 − εK) sin
[
π(Ny−NK)
2(N1−NK)

]
, y = 1, 2, ...,K,

(Linear) εK + (ε1 − εK)
Ny−NK

N1−NK
, y = 1, 2, ...,K,

(Convex) ε1 + (ε1 − εK) sin
[
3π
2 +

π(Ny−NK)
2(N1−NK)

]
, y = 1, 2, ...,K,

(3)

where ε1 and εK are two hyperparameters. If we set ε1 ≥ εK , then we can get ε1 ≥ ε2 ≥ ... ≥ εK .
It means that if the instance number Ny for Class-y is larger, label-aware smoothing will allocate a
larger smoothing factor and lower the fitting probability to relieve the over-confidence because the
head and medium classes are more likely to be over-confident than the tail classes (see Fig. 3).

As the form of label-aware smoothing is more complicated than cross-entropy, we propose a more
generalized classifier learning framework to fit it. Here we give a quick review about cRT and
LWS: cRT tries to learn a new classifier weight, which contains KM learnable parameters. LWS is
restricted to learn the weight scaling vector s ∈ RK , which contains only K learnable parameters.
By contrast, cRT has more learnable parameters. It means cRT has a more powerful representation
ability. LWS tends to obtain better validation losses and performances on large-scale datasets (refer
to the experiment part in Kang et al. (2020)). It means LWS has a better generalization property. To
combine the advantages of both cRT and LWS, we redesign the classifier framework in Stage-2:

z = diag(s) (aW + ∆W )
>
x. (4)

In Eqn. (3), we fix the original classifier weight W in Stage-2. If we make the learnable scaling
vector s fixed, set s = 1, a = 0, and just learn the new classifier weight ∆W ∈ RM×K , Eqn. (4)
will degrade to cRT. Because LWS fixes the original classifier weightsW and only learns the scaling
s, Eqn. (4) will degrade to LWS if we set a = 1 and ∆W = 0. In most cases, LWS generally
achieves better results than cRT on large scale datasets. Thus, we let s learnable and set a = 1. We
also make ∆W learnable to improve the representation ability but optimize ∆W by a different
learning rate. ∆W can be viewed as doing a shift transformation on W . This transformation can
change the direction of the original weight vector w inW , which is what LWS cannot do.

3.3 SHIFT LEARNING ON BATCH NORMALIZATION

In the two-stage training framework, models are first trained with instance-balanced sampling in
Stage-1 and then trained with class-balanced sampling in Stage-2. Since the framework involves two
samplers, or two datasets: the instance-balanced dataset DI and the class-balanced dataset DC, we
can regard this two-stage training framework as a derivative of transfer learning approaches. However,
if we view the two-stage decoupling training framework from the transfer learning perspective, fixing
the backbone part and just fine-tuning the classifier in Stage-2 will be clearly unreasonable, especially
for the batch normalization (BN) layers.

Concretely, we suppose that the input of the network is xi, the input feature of some BN layer is
g(xi), and the mini-batch size is m. The running mean and the running variance of Channel-j for
these two stages are:

µ
(j)
I =

1

m

m∑
i=1

g(xi)
(j)
, σ2

I
(j)

=
1

m

m∑
i=1

[
g(xi)

(j) − µ(j)
I

]2
, xi ∼ PDI(x, y), (5)

µ
(j)
C =

1

m

m∑
i=1

g(xi)
(j)
, σ2

C
(j)

=
1

m

m∑
i=1

[
g(xi)

(j) − µ(j)
C

]2
, xi ∼ PDC

(x, y). (6)
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Figure 4: Reliability diagrams of ResNet-32 trained on LT CIFAR-100, IF=100. From left to right: cRT with
mixup, LWS with mixup, LWS with mixup and shifted BN, and MiSLAS. It is better to look together with Fig. 1.

Due to the different sampling strategies, the composition ratios of the head, medium, and tail classes
are also totally different, which leads to PDI

(x, y) 6= PDC
(x, y). Calculated by Eqn. (5) and (6),

there exist some biases in µ and σ under two sampling strategies, i.e., µI 6= µC, and σ2
I 6= σ2

C.
Thus, it is clearly infeasible for the decoupling framework that BN shares mean and variance across
datasets with two sampling strategies. Motivated by AdaBN (Li et al., 2018) and TransNorm (Wang
et al., 2019), we unfreeze the update procedures of the running mean µ and running variance σ but
fix the learnable linear transformation parameters α and β for a better normalization in Stage-2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experimental setup including the implementation details and evaluation protocol mainly follows
Cao et al. (2019) for LT CIFAR-10 and LT CIFAR-100, and Kang et al. (2020) for ImageNet-LT,
Places-LT, and iNuturalist 2018. Please see Appendix A for further details.

4.2 ABLATION STUDY

Improving calibration. Here we show the reliability diagrams with 15 bins of our methods in
Fig. 4. Comparing with Fig. 1 in the introduction part, both the mixup and label-aware smoothing can
not only largely enhance the network calibration (even lower ECEs than them on balanced datasets)
but also greatly improve the performance for long-tailed recognition. The similar trends can also
be found on LT CIFAR-10, ImageNet-LT, and Places-LT (please see the figures in Appendix B for
detail), which proves the powerful effects of the proposed method on calibration. According to all
experiment results, training networks on imbalanced datasets leads to more severe over-confidence.
Since the conventional mixup and label-smoothing both contain the operation of softening the ground
truth labels, which may suggest that training with hard labels is likely to be another contributing
factor leading to network over-confidence.

Further analysis of label-aware smoothing. In our label-aware smoothing, there are two hyper-
parameters in Eqn. (3), ε1 and εK , which control the penalties of classes. In recognition system, if
the predicted probability of some Class-y is larger than 0.5, the classifier will classify the input to
Class-y. Thus, to ensure reasonability, we limit 0 ≤ εK ≤ ε1 ≤ 0.5. Here we conduct a comparing
experiment for varying ε1 and εK both from 0.0 to 0.5 on LT CIFAR-100 with imbalanced factor
100. We plot the performance matrix upon ε1 and εk in Fig. 5 for all possible variants. From
it, the classification accuracy can be further improved by 0.9% comparing with the conventional
cross-entropy (ε1 = 0, εK = 0, green square) when we pick ε1 = 0.4, εK = 0.1 (orange square)
for label-aware smoothing. A more surprising improvement (growing by 3.3%) can be found on
LT CIFAR-10 (see Appendix D.1 for detail). We also find that the concave related function f(·) in
Eqn. (3) achieves the best performance but the gain is quite limited (refer Appendix D.2 for detail).

To visualize the change in predicted probability distributions, we train two LWS models, one with
cross-entropy and the other with label-aware smoothing on long-tailed CIFAR-100 with imbalanced
factor 100. The cross-entropy-based distributions of the head, medium, and tail classes are showing in
the upper half part of Fig. 3 in light blue. The label-aware smoothing-based distributions are showing
in the bottom half part in deep blue. We observe that the over-confidence of head and medium classes
relieve greatly, and the whole distribution of the tail classes slightly moves right (a larger mean) when
using label-aware smoothing. This empirical visualization is consistent with our analysis mentioned
in Sec. 3.2.
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Table 2: Ablation study for all proposed modules
on long-tailed CIFAR-100, IF=100. MU: applying
mixup just in Stage-1. SL: shift learning on batch
normalization. LAS: label-aware smoothing.

Module LT CIFAR-100

MU SL LAS 100 50 10
8� 8� 8� 41.2 46.0 58.5
4� 8� 8� 44.2 50.6 62.2
4� 4� 8� 45.3 51.4 62.8
4� 4� 4� 47.0 52.3 63.0
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Figure 5: Ablation study of two hyperparameters
ε1 and εK in label-aware smoothing.
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Figure 6: Visualization of the changes in the running mean µ and variance σ2. The ResNet-32 based model
is trained on LT CIFAR-100 with imbalanced factor 100. Left: µ and σ2 in the first BN of ResNet-32, which
contains 16 channels. Right: µ and σ2 in the last BN of ResNet-32, which contains 64 channels.

Further analysis of shift learning. In this part, we conduct an empirical experiment to show the
effectiveness and reasonability of shift learning on BN. We train the LWS model on long-tailed
CIFAR-100 with imbalanced factor 100. After 10 epochs finetuning in Stage-2, the model trained
with BN shifting achieves accuracy at 45.3%, which is 1.1% higher than it without BN shifting. We
also draw a visualization of the change in BN. As shown in Fig. 6, we see that there indeed exist
biases in µ and σ2 between the dataset using different sampling strategies. Due to the composition
ratios of the head classes, medium classes and tail classes are different in terms of different sampling
strategies, the statistic running mean µ and running variance σ2 are certainly different. We also find
some interesting phenomenons need for future exploration: (i) The changes in the running variance
σ2 are larger than the changes in the running mean µ. (ii) The changes of µ and σ2 in deep BN
layers are quite smaller than them in shallow BN layers.

Overall, Table 2 shows the ablation investigation on the effects of mixup (adding mixup in Stage-
1, MU), shift learning on batch normalization (SL), and label-aware smoothing (LAS). From it,
each proposed module can further improve the performances on long-tailed CIFAR-100 for all
commonly-used imbalanced factors, which firmly demonstrates the effectiveness.

4.3 COMPARISON WITH THE STATE-OF-THE-ART

In this subsection, we compare the proposed method against previous one-stage methods, such as
Range Loss (Zhang et al., 2017), LDAM Loss (Cao et al., 2019), FSLwF (Gidaris & Komodakis,
2018), and OLTR (Liu et al., 2019), and against previous two-stage methods, such as DRS-like,
DRW-like (Cao et al., 2019), LFME (Xiang & Ding, 2020), cRT, and LWS (Kang et al., 2020). For
fair comparisons, we also add mixup on the LWS and cRT models. Remix (Chou et al., 2020) is a
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Table 3: Top-1 accuracy (%) for ResNet-32 models trained on long tailed CIFAR-10 and CIFAR-100.

Method
Long-tailed CIFAR-10 Long-tailed CIFAR-100

100 50 10 100 50 10

CE 70.4 74.8 86.4 38.4 43.9 55.8
mixup 73.1 77.8 87.1 39.6 45.0 58.2
LDAM+DRW 77.1 81.1 88.4 42.1 46.7 58.8

BBN(include mixup) 79.9 82.2 88.4 42.6 47.1 59.2
Remix+DRW(300 epochs) 79.8 - 89.1 46.8 - 61.3
cRT+mixup 79.1 84.2 89.8 45.1 50.9 62.1
LWS+mixup 76.3 82.6 89.6 44.2 50.6 62.2
MiSLAS 82.1 85.8 89.9 47.0 52.3 63.0

Table 4: Top-1 accuracy (%) on ImageNet-LT (left), iNaturalist 2018 (center) and Place-LT (right).

Method ResNet-50

CE 44.6
CE+DRW 48.5
Focal+DRW 47.9
LDAM+DRW 48.8

CRT+mixup 51.7
LWS+mixup 52.0
MiSLAS 52.7

(a) ImageNet-LT

Method ResNet-50

CB-Focal 61.1
LDAM+DRW 68.0

BBN(include mixup) 69.6
Remix+DRW 70.5
cRT+mixup 70.2
LWS+mixup 70.9
MiSLAS 71.6

(b) iNaturalist 2018

Method ResNet-152

Range Loss 35.1
FSLwF 34.9
OLTR 35.9
OLTR+LFME 36.2

cRT+mixup 38.3
LWS+mixup 39.7
MiSLAS 40.4

(c) Place-LT

recently proposed augmentation method for long-tail recognition. Because BBN (Zhou et al., 2020)
has double samplers and is trained in a mixup-like manner, we directly compare our method with it.

Experimental results on CIFAR-LT. We conduct extensive experiments on long-tailed CIFAR-10
and CIFAR-100 with imbalanced factors of 10, 50, and 100, which is the same as the previous
setting (Cao et al., 2019; Zhou et al., 2020). The experimental results are summarized in Table 3.
Compared with previous methods (+mixup, one/two-stage), our MiSLAS outperforms all previous
methods by a large margin. Moreover, this superiority of the proposed method holds for all imbalanced
factors on both long-tailed CIFAR-10 and CIFAR-100.

Experimental results on ImageNet-LT, iNaturalist 2018, and Place-LT. We further verify the
effectiveness of our method on three large-scale imbalanced datasets, i.e., ImageNet-LT, iNaturalist
2018, and Place-LT. Table 4 lists experimental results on ImageNet-LT (left), iNaturalist 2018 (center),
and Places-LT (right). Notably, our MiSLAS still outperforms all competing approaches and sets new
state-of-the-art records for all three large-scale long-tailed benchmarks. More detailed results about
the split class accuracies and different backbones on these three datasets are listed in Appendix C.

5 CONCLUSION

In this paper, we discover that models trained on long-tailed datasets are more miscalibrated and
over-confident than them trained on balanced datasets. The two-stage models suffer the same issue
as well. To relieve over-confidence, we propose two solutions: (i) We find that mixup can remedy
over-confidence and have a positive effect on representation learning but a negative or negligible
effect on classifier learning. (ii) To further improve classifier learning and calibration, we propose
label-aware smoothing to handle the different degrees of over-confidence for different classes. We
are the first to note the dataset bias or domain shift in two-stage resampling methods for long-tailed
recognition. To solve the dataset bias producing by different re-sampling in the decoupling framework,
we propose shift learning on the batch normalization layer and this novel model can greatly improve
the performance. Extensive quantitative and qualitative experiments on multiple benchmark datasets
show that our MiSLAS achieves superior performances over the state-of-the-art methods.
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A EXPERIMENT SETUP

A.1 DATASETS EXPLANATION

CIFAR-10-LT and CIFAR-100-LT. CIFAR-10 and CIFAR-100 both have 60,000 images 50,000
for training and 10,000 for validation with 10 categories and 100 categories, respectively. For a
fair comparison, we use the long-tailed versions of CIFAR datasets with the same setting as those
used in Cao et al. (2019). They control the degrees of data imbalance with an imbalanced factor
β. β = Nmax

Nmin
, where Nmax and Nmin are the numbers of training samples for the most frequent

class and the least frequent class. Following Cao et al. (2019) and Zhou et al. (2020), we conduct
experiments with imbalanced factors 100, 50, and 10.

ImageNet-LT and Places-LT. ImageNet-LT and Places-LT were proposed by Liu et al. (2019).
ImageNet-LT is a long-tailed version of the large-scale object classification dataset ImageNet (Rus-
sakovsky et al., 2015) by sampling a subset following the Pareto distribution with power value α = 6.
It contains 115.8K images from 1,000 categories, with class cardinality ranging from 5 to 1,280.
Places-LT is a long-tailed version of the large-scale scene classification dataset Places (Zhou et al.,
2017). It consists of 184.5K images from 365 categories with class cardinality ranging from 5 to
4,980.

iNaturalist 2018. iNaturalist 2018 (Van Horn et al., 2018) is one species classification dataset,
which is on a large scale and suffers from extremely imbalanced label distributions. It is composed of
437.5K images from 8,142 categories. In addition to the extreme imbalance, the iNaturalist 2018
dataset also confronts the fine-grained problem.

A.2 EVALUATION PROTOCOL

Following Liu et al. (2019) and Kang et al. (2020), we report the commonly used top-1 accuracy
over all classes on the balanced test/validation datasets, denoted as All. In more detail, further report
accuracy on three splits of the set of classes: Head-Many (more than 100 images), Med.-Medium (20
to 100 images) and Tail-Few (less than 20 images).

A.3 IMPLEMENTATION DETAILS

For all experiments, we use the SGD optimizer with momentum 0.9 to optimize networks.

For long-tailed CIFAR, we mainly follow Cao et al. (2019). We train all MiSLAS models with the
ResNet-32 backbone on one GPU and use the multistep learning rate schedule, which decreases the
learning rate by 0.1 at the 160th epoch and the 180th epochs in Stage-1.

For ImageNet-LT, Place-LT, and iNaturalist 2018, We mainly follow Kang et al. (2020) and use the
cosine learning rate schedule (Loshchilov & Hutter, 2017) to train all MiSLAS models with the
ResNet-10/50/101/152 backbones on 4 GPUs.

Table 5: Detailed experiment settings on five benchmark datasets. LR: learning rate, BS: batch size,
WD: weight decay, and LRS: learning rate schedule, ∆W : learning rate ratio of ∆W .

Dataset
Common Stage-1 Stage-2

LR BS WD Epochs LRS Epochs LRS ε1 εK ∆W

LT CIFAR-10 0.1 128 2e-4 200 multi. 10 cosine 0.3 0.0 0.5x
LT CIFAR-100 0.1 128 2e-4 200 multi. 10 cosine 0.4 0.1 0.2x

ImageNet-LT 0.1 256 5e-4 180 cosine 10 cosine 0.4 0.1 0.05x
Places-LT 0.1 256 5e-4 90 cosine 10 cosine 0.4 0.1 0.05x
iNaturalist’18 0.1 256 1e-4 200 cosine 30 cosine 0.4 0.1 0.05x
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B CALIBRATION
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Figure 7: Reliability diagrams on CIFAR10 with 15 bins. From left to right: plain ResNet-32 model
trained on the original CIFAR-10 dataset, plain model, cRT, LWS, and MiSLAS trained on long-tailed
CIFAR-10 with imbalanced factor 100.
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Figure 8: Reliability diagrams on ImageNet with 15 bins. From left to right: plain ResNet-50
model trained on the original ImageNet dataset, plain model, cRT, LWS, and MiSLAS trained on
ImageNet-LT.
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Figure 9: Reliability diagrams of ResNet-152 trained on Places-LT with 15 bins. From left to right:
cRT, LWS, cRT with mixup, LWS with mixup, and MiSLAS.
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C MORE DETAILED RESULTS ON IMAGENET-LT, PLACES-LT AND
INATURALIST 2018

Table 6: Comprehensive accuracy results on ImageNet-LT with different backbone networks (ResNet-
50, ResNet-101 & ResNet-152) and training 180 epochs.

Backbone Method Many Medium Few All

ResNet-50

cRT 62.5 47.4 29.5 50.3
LWS 61.8 48.6 33.5 51.2
cRT+mixup 63.9 49.1 30.2 51.7
LWS+mixup 62.9 49.8 31.6 52.0
MiSLAS 61.7 51.3 35.8 52.7

ResNet-101

cRT 63.8 48.5 30.0 51.4
LWS 63.1 49.9 33.8 52.3
cRT+mixup 65.2 50.6 31.6 53.1
LWS+mixup 64.5 51.2 34.1 53.5
MiSLAS 64.3 52.1 35.8 54.1

ResNet-152

cRT 64.9 50.4 30.6 52.7
LWS 64.1 51.8 35.5 53.8
cRT+mixup 66.5 51.6 32.8 54.2
LWS+mixup 66.1 52.2 34.5 54.6
MiSLAS 65.4 53.2 37.1 55.2

Table 7: Comprehensive accuracy results on iNaturalist 2018 with ResNet-50 and training 200 epochs.

Backbone Method Many Medium Few All

ResNet-50

cRT 73.2 68.8 66.1 68.2
τ -normalized 71.1 68.9 69.3 69.3
LWS 71.0 69.8 68.8 69.5

cRT+mixup 74.2 71.1 68.2 70.2
LWS+mixup 72.8 71.6 69.8 70.9
MiSLAS 73.2 72.4 70.4 71.6

Table 8: Detailed accuracy results on Places-LT, starting from an ImageNet pre-trained ResNet-152.

Backbone Method Many Medium Few All

ResNet-152

Lifted Loss 41.1 35.4 24.0 35.2
Focal Loss 41.1 34.8 22.4 34.6
Range Loss 41.1 35.4 23.2 35.1
FSLwF 43.9 29.9 29.5 34.9
OLTR 44.7 37.0 25.3 35.9

OLTR+LFME 39.3 39.6 24.2 36.2
cRT 42.0 37.6 24.9 36.7
τ -normalized 37.8 40.7 31.8 37.9
LWS 40.6 39.1 28.6 37.6

cRT+mixup 44.1 38.5 27.1 38.1
LWS+mixup 41.7 41.3 33.1 39.7
MiSLAS 39.6 43.3 36.1 40.4
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D ABLATION STUDY OF LABEL-AWARE SMOOTHING

D.1 MORE RESULTS ABOUT THE HYPERPARAMETERS ε1 AND εK
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Figure 10: Ablation study of two hyperparameters ε1 and εK in label-aware smoothing. Our label-
aware smoothing (orange square) outperforms cross-entropy (green square) by a large margin on both
long-tailed CIFAR-10 (left) and long-tailed CIFAR-100 (right).

D.2 FORM OF THE RELATED FUNCTION f(·)

As discussed in Sec. 3.2 and Sec. 4.2, the form of the related function f(·) may play a significant
role for the final model performance. We draw the visualization of Eqn. (3) at the left part of Fig. 11.
For the LT CIFAR-100 dataset with balanced factor 100, N1 = 500 and N100 = 5. Based on the
ablation study results of ε1 and εK mentioned in Sec. 4.2 and above, we set ε1 = 0.4 and ε100 = 0.1
here. After fintuning for 10 epochs in Stage-2, the accuracy of the concave model is the best. We also
design a power-like related function, which can be written as:

εy = f(Ny) = εK + (ε1 − εK)

(
Ny −NK
N1 −NK

)p
, y = 1, 2, ...,K, (7)

where p is a hyperparameter to control the shape of the related function. For example, we will
get concave related function if we set p < 1 and we will get convex related function if we set
p > 1. The visualization of Eqn. (7) is shown at the right part of Fig. 11. However, comparing
the accuracies of all variants, the influence of the related function form is quite limited for the final
performance (just growing by 0.3%). Because the concave related function in Eqn. (3) achieves the
best performance among all variants, we choose it as the default setting of the related function f(·)
for other experiments.
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Figure 11: Function visualization and accuracy of Eqn. (3) (left) and Eqn. (7) (right).
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