PinText: A Multitask Text Embedding System in Pinterest

Jinfeng Zhuang
jzhuang@pinterest.com
Pinterest
Seattle, WA

ABSTRACT

Text embedding is a fundamental component for extracting text fea-
tures in production-level data mining and machine learning systems
given textual information is the most ubiqutious signals. However,
practitioners often face the tradeoff between effectiveness of under-
lying embedding algorithms and cost of training and maintaining
various embedding results in large-scale applications. In this paper,
we propose a multitask text embedding solution called PinText for
three major vertical surfaces including homefeed, related pins, and
search in Pinterest, which consolidates existing text embedding
algorithms into a single solution and produces state-of-the-art per-
formance. Specifically, we learn word level semantic vectors by
enforcing that the similarity between positive engagement pairs is
larger than the similarity between a randomly sampled background
pairs. Based on the learned semantic vectors, we derive embedding
vector of a user, a pin, or a search query by simply averaging its
word level vectors. In this common compact vector space, we are
able to do unified nearest neighbor search with hashing by Hadoop
jobs or dockerized images on Kubernetes cluster. Both offline eval-
uation and online experiments show effectiveness of this PinText
system and save storage cost of multiple open-sourced embeddings
significantly.

CCS CONCEPTS

+ Computing methodologies — Learning latent representa-
tions; Multi-task learning;

KEYWORDS
Text Embedding, Multitask Learning, Nearest Neighbor Search;

ACM Reference Format:

Jinfeng Zhuang and Yu Liu. 2019. PinText: A Multitask Text Embedding
System in Pinterest. In The 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD °19), August 4-8, 2019, Anchorage, AK, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330671

1 INTRODUCTION

With the mission to bring everyone the inspiration to create a life
they love, Pinterest has grown into one of the largest intelligent
recommendation engines, with one of the fastest growth speed ever

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330671

Yu Liu
yliu@pinterest.com
Pinterest
San Francisco, CA

in industry. There are more than 250 million users using Pinterest
to generate, discover, and share pins based on their personal tastes
every month. The core concept of Pinterest app is a pin, which con-
sists of a dominant image accompanied with rich textual metadata
including title, description, comments, etc. Pinterest presents a pin
to users through three surfaces: homefeed, related pin, and search.
The user interface is illustrated in figure 1.

Although visual content plays an important role in the backend
intelligent engine, textual information is still of upmost importance,
given the fact that it can 1) represent visual content in human
readable format and is almost always present together with a pin, 2)
be easily extracted, derived, and stored, and 3) be put into serving
system with mature inverted index solutions to support retrieval.
Therefore, it is a very basic and necessary production requirement
to build a text extraction pipeline and a natural language processing
(NLP) component on top of it.

At Pinterest, we have dedicated knowledge teams that extract
pins’ and users’ text into a set of canonical annotation terms from
pins’ title, description, board names, URLs, and visual content. It
takes significant effort to generate candidate text sources and to
rank them properly. In this paper, assuming proper textual infor-
mation is extracted and ready to be consumed, we focus on the
NLP part of the problem, in particular, the text embedding module,
which abstracts input text into a real vector space, with the design
goal of encoding semantics of text quantitatively, such that similar
texts are close to each other by distance metrics in vector space. As
a direct result, we are able to represent a pin, a user, and a search
query in the same space by averaging their word level embedding
vectors. This compact representation enables us to do classification
and retrieval between different type of objects via nearest neighbor
search in a unified way. Moreover, distance or similarity score can
be used as a discriminative feature in retrieval relevance model or
click prediction model.

Word embeddings have been actively studied and developed by
researchers and practitioners in the machine learning community
since the neural network language model was proposed [3, 4, 19, 22,
28, 33]. Researchers not only proposed principled algorithms and
open sourced code, but also released pretrained embedding models
with public data corpus like Wikipedia, Twitter, or Google news. It
is known that high-quality word representation usually contributes
most to text classification or other general tasks [29]. Moreover,
our textual data is more about concrete annotation terms and short
phrases than long sentences and paragraphs, which makes word
embedding a more fundamental component than complex neural
network architecture for specific tasks.

Although pretrained word embeddings provide a good baseline
in Pinterest, we do observe the existence of a clear gap between
industrial application and academic research, which motivates us

https://doi.org/10.1145/3292500.3330671
https://doi.org/10.1145/3292500.3330671

12:269 wE.

® + o

()

Communities Topics

Q search your Pins

Jinfeng Zhuang

3 followers - 20 following

Boards Pins Tries

(a) USER profile page. We can de-
rive its interest by boards and
search queries etc.

13 Beautiful Train Rides Across America
[Every Family Should Take At Least Once

Article from Country Living

[Bonus: They're all super affordable.

Read it
Photos & Videos Comments
Triod this Pin? Ackl a photo or video to shaw iSRS

how it went

&% Ellen saved to TRAINS 36

More like this
[e IR |
[©) & a @

(b) A PIN about "Alaska train
ride". Highlighted part is textual
description of the pin.

7:089 w T

Q search

Eagles in Homer,Alaska -+

REST PERIODS

eason at the
isneyland® Resort. Ex

& © @

(c) HOMEFEED page of a particu-
lar user. Highlighted part is an ad
ak.a. promoted pin.

Skagway, Alaska. White -+
Pass Yukon Route. T...

Al aboard, the White
Pass Summit Route ex...

Mountain Rail, Yukon,
#hlaska

@ & 0 @

Hame

(d) RELATED PINs of a subject pin
about "Alaska train ride". They are
semantically similar to it.

13 Beautiful Train Rid
Across America Every

A aboard, the White.
Pass Summit Route ex.

Map of the Alaska o
Railroad Route System

White pass train -
Skagway, Alaska

o e

(e) SEARCH page presenting
matched pins given a particular
input query "Alaska train ride".

Figure 1: Illustration of Pinterest app around two core concepts: user (a) and pin (b). Figure (c,d,e) presents an example of homefeed, related pin, and search,
respectively, regarding this particular user and the idea "alaska train ride". When user performs "repin" or "click" actions, we received a positive vote in logging
system. The learning task is to mine the semantic text embeddings behind such operations. We know voting results but we don’t know who voted throughout this

work.

to text embedding at practical system level. We call out the key
points of design philosophy as following:

e storage cost: a single model easily takes up to tens of ter-
abytes to store billions of pins with vector representation of
cardinality 300. It is an even bigger cost of space to maintain
multiple versions of embedding, plus the realtime computa-
tion cost like cosine similarity increases linearly to number
of embeddings. So we hope to have an all-in-one solution to
cover typical scenarios to save storage;

e memory cost: we need to compute embeddings on-the-fly in
realtime application like query embedding, because there are
always unseen queries that churn in everyday. This means
we need to load models into memory. However, the pre-
trained fastText model for top 10 languages takes more than
50 gigabytes. We have to tailor models to Pinterest data to
be of reasonable size at word level instead of character level;

o supervised information: most pretrained models are learnt in
an unsupervised way by essentially predicting neighboring
words in a context window. Supervised data could guide
model learning more efficiently. It takes huge amount of su-
pervised data to derive meaningful embedding vectors given
the number of variables is #word X #dimension. Fortunately,
we have Pinterest user engagement as a natural source of
labeled data;

o throughput and latency: we have to iterate fast when new
data comes and new experiements results are observed. At in-
ference stage, we need infrastructure support for distributed
offline computation. And we have to keep embedding models
simple for latency-critical realtime computation.

Based on the motivations above, we believe it is necessary to
build an in-house text embedding system to model the taste behind
of each pin by mining its textual information. The storage and
memory cost issue is resolved by a unified word level embedding
focusing on Pinterest only data. We sample user repin and click
engagement as positive training data, which is essentially super-
vised data labeled by all Pinners. The throughput and latency issue
is resolved by a distributed cluster and proper caching servers. We
have launched several projects in production depending on Pin-
Text. For the remaining part of this paper, section 2 reviews related
works and highlights necessity of PinText, section 3 introduces sys-
tem architecture, section 4 elaborates algorithm details, section 5
presents empirical results and applications, and section 6 concludes
this work and lists future directions.

2 RELATED WORK

From the machine learning perspective, our work is closely re-
lated to three areas: text embedding in natural language processing,
multitask learning, and transfer learning.

2.1 Text Embedding in NLP

Since the neural network language model was proposed [3], word
embedding techniques have been actively stutied in machine learn-
ing community, with some representative examples including but
not limited to word2vec [19], GloVe [22], tagSpace [32], fastText [4],
starSpace [33], conceptNet [28], and more works focusing on con-
text dependent embedding and efficient distributed learning [12, 17,
20, 30]. Most of them have pretrained models available to download
and are ready to use. Those excellent works enable us to compare
them directly within Pinterest applications. It has been reported

previously that the word embedding itself contributes most to the
success NLP models [1, 10, 29, 33]. It also provides the flexibil-
ity of building both supervised models (for classification, ranking,
click prediction) and unsuperivised models (clustering, retrieval)
on top of embedding results. This is the major reason why we put
embeddings at the core of NLP system.

Recent developments on sequential text data lifted the state of
the art of NLP significantly [5, 11, 14, 31]. However, our textual data
is often about concrete annotation terms rather than long sentences
and paragraphs, which means not easy to make use of context or
word order information. The power of complex neural network
architectures for feature extraction like convolutional neural net-
works [16], recurrent neural networks [11], or transformers [9, 31]
would be limited in our scenario.

Although pretrained models are very helpful for prototyping, it
is not optional to build in-house word embeddings tailored to Pinter-
est data, because 1) internal data distribution is very different from
public corpus; 2) our training objective function is different. Con-
tinious bag of word (CBOW) or skip-gram models are essentially
unsupervised in the sense that they predict word co-occurance in a
context window. Our user engagement data is a kind of supervised
information in nature. In this sense, we are strongly motivated to
use supervised embedding training in the style of starSpace [33].

2.2 Multitask Learning

Our goal is to learn an all-in-one text embedding model capturing
the inherent semantic information of textual data in Pinterest. We
have to make the resulting model suitable for all three tasks: home-
feed (HF), related pins (RP), and search (SR), with illustration in
figure 1 and formal definition in section 4.1. This fits in the regime
of multitask learning (MTL) [6, 26].

MTL aims to improve the learning by using knowledge in all or
some of the given tasks. Successful MTL can produce a better model
than single task learning, probably due to the fact that it augments
training data compared to single task learning. Also by optimizing
multiple models jointly, it potentially digs out information that
generalizes across taks, for example, common representation or
important features for all tasks, which is essentially a type of regu-
larization that helps generalization.

The MTL motivation above exactly applies to our scenario here.
We care about the maintainance cost of the embedding system in
production and we hope to unify the embedding from three tasks. A
user repin or click operation is a vote for the relationship between
a query entity and a candidate entity. Mixing different entities
together in learning will help us mine the underlying semantics
that align to user engagement. The reason that two entities are
presented together to a user in surface is because they have common
words indexed in the backend serving system. So at the bottom
of the retrieval logic chain, different entities are represented in a
shared word universe. This observation leads us in the direction
of shared word embedding [6]. Although MTL is not uncommon
for classfication, there are not many works focusing on MTL word
embedding itself in application [18]. We will discuss algorithm
details in section 4.

2.3 Transfer Learning

The major motivation of PinText project is to have off-the-shelf
text features independent on specific tasks such that downstream
engineers can easily build task dependent models on top of it, for
example, query to interest classification, search relevance model,
etc. This means we train a model based on heuristics capturing
semantic information of text and apply the learning to other tasks.
In this sense, our work is closely related to transfer learning [21].

Since deep neural networks (DNN) refresh the computer vision
benchmark by [15], initializing DNN with pretrained models has
been very successful and has become pretty common practice. The
NLP community typically initializes the beginning layer of DNN
with pretrained word vectors like word2vec [19]. A typical issue
with pretrained word embeddings is that word can have different
semantic meanings in different context. Until recently, the NLP
community has made some breakthrough with the idea of context
dependent embeddings like ELMo, OpenAlI GPT, BERT, etc [7, 9, 23—
25, 27]. In particular the BERT model [9] refreshes many important
NLP benchmarks. Unfortunately, those models cannot apply to
our scenario easily for two major reasons: 1) our data is often
not sequential like sentences or paragraphs; 2) inference efficiency
is very important for Pinterest’s scale where GPU or TPU is not
always available.

Moreover, the first demand of all the three tasks we have in Pin-
terest is retrieval. This means we need realtime matching between
query and candidates. The similarity defined in the embedding
vector space, based on techiniques like latent semantic hashing,
instead of supervised layer like softmax, is the most important
learning objective here. The next sentence prediction task in BERT
pretrained model is not relevant here. Therefore, we focus on the
starSpace [33] style which can naturally handle retrieval task and
does not require sequential text inputs. We are also able to do MTL
optimization easily.

3 SYSTEM DESIGN

We introduce embedding based retrieval and ranking system archi-
tecture for the three HF, RP, and SR tasks.

3.1 System Overview

We can use textual terms to build an inverted index as in traditional
information retrieval [2], in fact, this is how the retrieval system
works at Pinterest. However, textual representation on complex
entities has some clear limitations:

e completeness: Some terms are semantically close to each
other while they have totally different spellings. For long tail
queries, it is often difficult to find the terms in candidates;

e compactness: A user or a pin may have up to hundreds of
annotation terms. It is hard to summarize the theme of such a
complex entity by using concrete text terms. Lengthy textual
representation results in ambiguity;

o continuity: When a partial match happens, we need a quan-
titative continuous way to define whether we should return
candidates for a particular query.

Pinterest specializes in usual search that shows many possible
inspirational ideas, rather than providing a concrete answer to a
factual question. This open-ended nature makes the issues above

Praveen Kolli

L B

Engagement Logging

-
-

Offline Training

Figure 2:

Index Building

=l 55
docker

Online Serving

even more obvious. Using a text embedding model, each entity can
be compressed into a fixed length real vector. This provides compact
semantic representations in a unified universe. Therefore, we can
match a query to candidates by similarity measure in this common
space, instead of relying on exact term match. Thus compactness
and completeness issues are solved to a large extent. The similarity
score can be used as a continious measure to filter candidates in a
natural way, or as a discriminative feature in supervised models.

The motivation of the PinText embedding goes beyond informa-
tion retrieval context. We actually hope to have a bootstrap system
that generates feature vectors for any input text in downstream
tasks. This can help engineers to start to develop their machine
learning models involving text data quickly.

Therefore, we designed PinText as a backbone NLP system in
Pinterest, with its major modules presented in figure 2. At a high
level, it can be separated into three modules: offline model train-
ing, index building and result caching, and online serving. We use
Kafka! to log user engagement data which is in turn converted to
our training data. Considering the scalability issue, for example,
millions of unique search queries come in per day, we rely on a
Kubernetes ? cluster to derive embedding vectors in a distributed
way. After we derived the embedding of candidate entities including
user, pin, and query, we employ locality-sensitive hashing (LSH) [8]
to pre-compute tokens of each entity and build an inverted index
based on them. At the online serving stage, we compute LSH tokens
on-the-fly and use them to query against the index to implement k
nearest neighbor (kNN) search. We also pre-compute kNN results
for previously seen data and cache them to reduce CPU cost at
online stage.

3.2 Embedding Model Training

The core of PinText is a word embedding model together with
an efficient nearest neighbor search mechanism. To train a good
model, high quality training data sampling is critical. It has to rely
on a logging system composed of collection, transportation, and
persistence that captures all user and pin interactions. Pinterest

!https://kafka.apache.org/
Zhttps://kubernetes.io/

has one of the largest Kafka deployments in the cloud for this pur-
pose and more. We use Kafka to transport critical events including
impressions, clicks, hides, and repins to our data warehouse. With
proper cleanup, we convert these events to a standard predefined
data format such that hadoop jobs can query against it directly to
sample training data. The embedding algorithm formulation is de-
scribed in section 4. At this stage, we use a single server with Intel
Xeon 8124M CPU, which has 18 cores working at 3.0 MHz. Training
usually can finish in 48 hours for hundreds of millions of records.
We are actively studying how to use multiple GPU machines for
distributed training for next version.

3.3 Distributed Offline Computation

After we learn a word embedding dictionary, we derive the embed-
ding of an entity by averaging its word-level embeddings. This is a
hard-to-beat baseline method as shown in previous study [1, 10]
and is easy to calculate and debug. Then we do locality sensitive
hashing (LSH) [8] based kNN search for retrieval purpose.

Given our data scale, it is not a surprise that this learnt dictionary
contains millions of tokens, where each token has a 300-dimension
real vector. The total dictionary size goes up to several gigabytes
easily. This model size makes it difficult to use Hadoop jobs di-
rectly, either by flattening entities’ tokens followed by joining the
embedding dictionary, or by broadcasting embedding dictionary
to each map-reduce node. Moreover, we hope to make the Pin-
Text system flexible enough to include open sourced models, like
fastText, for comparison purposes or cold start scenarios. There is
no easy way to encapsulate unknown third party binaries in map-
reduce framework. We use a Kubernetes (K8S) cluster to compute
entity embedding vectors, followed by a hadoop job computing
LSH tokens and kNN search.

Kubernetes Cluster for Embedding. Kubernetes is a system for
automating deployment, scaling, and management of containerized
applications open sourced by Google. In our scenario, a key dif-
ference between K8S and map-reduce system is that we have full
computation power of K8S node such that we can use all scientific
libraries for fast computation (e.g., numpy, scipy). We use docker 3
to wrap all the embedding computation logic into an image, then

3https://www.docker.com/

Praveen Kolli

schedule this image on a K8S cluster to compute text embedding of
large-scale inputs.

Map-Reduce Job for LSH Token. After each entity is mapped to a
real vector on K8S cluster, we are able to do kNN search between
a query set and a candidate set. However, when the candidate set
is large, the search becomes prohibitively slow. Although there is
efficient local kNN solution like faiss [13], it requires to load whole
candidate set to memory. We end up using LSH [8] for large sacle
and using faiss for medium or small scale fast kNN search. It can
retrieve billions of records in hours. We also send LSH tokens to
search backend servers to build an inverted index, where the key is
an LSH token and the value is a list of entities having this token.

Based on the tech stack above, we are able to scale up horizontally
as our business keeps going up.

3.4 Online Serving

In the online stage, we need a mechanism to retrieve candidate pins
in realtime given a query entity, which could be a query for SR, a
user for HF, and a pin for RP. We have both caching and inverted
index lookup working together.

Precomputed Key-value Map. As in last section 3.3, we are able
to perform kNN search offline very efficiently. We cache the results
as (query, list of pins) pairs with an in-house serving system called
Terrapin 4. Logically, it is equivalent to a dedicated cache system
like Memcached or Redis, supporting realtime queries together with
automatic data deployment management. In this way, we delegate
most of the heavy online search to offline batch jobs, which are
much easier to maintain and much cheaper to scale up.

Realtime Embedding and Retrieval. For some unseen text inputs,
offline precomputation is unable to cover them. We deploy the
learned word embedding dictionary to an online service and com-
pute vectors and LSH tokens on-the-fly. Because we have built
an inverted index of candidate entities’ LSH tokens, the retrieval
logic based on embeddings works exactly the same way as raw
textual term based retrieval, which implies no further overhead
development cost incurred.

To summarize, the PinText system includes a text embedding
algorithm wrapped into a docker image which is scheduled on
K8S cluster for deriving embeddings of large-scale inputs, and a
map-reduce workflow to compute LSH tokens and perform kNN
search, followed by inverted index building and persistent result
caching. Because of the encapsulation of the embedding algorithm,
PinText is flexible enough to bring pretrained models into Pinterest
ecosystem. This merit is not negligible in the case of cold start
where not enough training data is available to learn a model from
scratch.

4 MULTITASK TEXT EMBEDDING

We present the multitask embedding algorithm in the PinText sys-
tem inspiried by the starSpace work [33].

4.1 Task Definition

As illustrated in figure 1, we have three surfaces in Pinterest app.
Each surface involes a pair of entities, i.e., (user, pin) in HF, (query,
pin) in SR, and (pin, pin) in RP. Pinners are essentially voting for

“https://github.com/pinterest/terrapin

Multitask
Learning

Entity
Embedding

Word
Embedding

Figure 3: Multitask word embedding model architecture.

(rainedafrommWikipedialoRGOOEIEmews. Let us start from positive

pair definition here.

Definition 4.1. Given a query entity q and a candidate pin p, the
engagement pair (g, p) is a positive pair if and only either of the
two conditions is satisfied:

The two conditions above correspond to repin and long click op-
erations, respectively. We take them as voting for strong relevance
between two entities. For the definition of board, please refer to
figure (1a) which contains two boards "Alaska" and "Workout". A
board is essentially a collection of pins. In this way, we are able to
collect positive training data E* for three learning tasks:

Definition 4.2. Depending on the choice of query entity g, we
have three types of learning tasks:

e homefeed (HF): when q is a user, we learn the matching
between a user’s interests and a pin’s topics;

o search (SR): when q is a search query, we learn the relevance
between the query and pin’s content;

e related pin (RP): when q is a subject pin, we learn the simi-
larity between a subject pin and a candidate pin;

At this stage, if we instantiate g and p with textual representation,
we can proceed to optimization formulation. In the search task, q
usually exists as plain text. However, textual representation of a
user or a pin is still unclear. We formally define them as following:

Definition 4.3. A pin p is a set of words {w} where each word
w; appears in the union of pin’s text metadata:

pi= {wlw € 7,7 e {title, descritpion, boardname, URL}}
Definition 4.4. A user u is a set of words {w} where each word
w; appears in the union of user’s interests:
U= {w|w eT.,T € {interest}},
where interests are provided by users at signup or derived from
users’ historical engagement.

Praveen Kolli

Praveen Kolli

Definitions 4.3 and 4.4 are a logical abstraction, not an implemen-
tation. We have a dedicated Knowledge team and Personalization
team focusing on developing machine learning based solutions to
generate annotation terms of users and pins. It is beyond the scope
of this paper to discuss their model details. Given the words of an
entity, we simply use the mean of word embeddings as the entity
embedding for downstream applications. Now we have every piece
in place to move forward to formulation.

4.2 Multitask Formulation

We focus on learning word embeddings instead of learning user /
pin / query embedding directly. The churn rate of whole collection
of words is much smaller than the churn rate of pins and users. In
this way, we avoid the problem of generalization to unseen entities
at training phase. Also we avoid the unacceptable memory cost by
not learning character n-gram level or sentence level embeddings.

LetD € R™ denote the learnt dictionary, where n is the number
of words, and d is the dimension of embedding vectors. Given a
word w;, we derive its embedding function F(w;) = w; by exactly
taking w; € R as the i-th row of D. We compute the embedding of
a entity g by averaging its word embeddings. Through this section,
we use bold lowercase characters to denote embedding row vectors,
e.g., q := F(q). In order to train a single task embedding model, we
define the objective function J(&) by enforcing the similarity on a
positive pair greater than the similarity on a couple of randomly
sampled background pairs.

Taking the search task as an example, where g is a search query:

le |

where p for negative sampling ratio, y for rank margin loss, and y
for radius of embedding vectors, are hyperparameters that need to
be tuned through experiments. We fix L and S to be hinge loss and
cosine similarity, respectively. In this way, for a particular entity
q, we enforce that its similarity x with a positive entity is greater
than its similarity y with a random negative entity by a margin p.
Otherwise it introduces a loss 1 — (x —y). The heuristics here is that
a good semantic embedding should capture users’ engagement.
The multitask learning objective function would be

J&mtL) = J(EHF) +J(Esr) + J(Erp) (2

It is a simple aggregation of 3 learning tasks, where all tasks share
the same word embedding lookup table, as visualized in figure 3.
With this MTL objective function, we can do gradient decent with
respect to each entry in embedding dictionary D to learn the word
embeddings directly.

4.3 Implementation

We need to pay attention to practical details to make the result
working in real systems.

Importance of each task. In equation 2, we did not put hyperpa-
rameters for each single task to control the tradeoff between their
importance, although doing so may help benchmark performance.
This aligns to our goal at the very beginning to build a fundamen-
tal text embedding system that can work reasonably well for all
downstream applications. Not tuning the tradeoff between each
task implies we hope the objective function captures the natural
engaged traffic of Pinterest. We fine tune the training data sam-
pling within each task. We only have to learn and maintain a single
embedding dictionary.

Tradeoff between coverage and precision. For high precision opti-
mization, we would enforce strong sample filtering logic on each
task such that a positive training pair actually implies close seman-
tic relationship between query entity g and candidate entity p. A
smaller training set means shorter training time, which is important
for fast model iteration. However, this also means we are losing
coverage of words. To solve this dilemma, we first train a base
model with high coverage, which is corresponding to loser training
data sampling, then continue training it on a fine sampled dataset.
We use the high coverage model to initialize embedding dictionary
for all future model iterations. In this way, the embedding training
still covers low frequency words but puts more efforts on more
important words.

Parallel optimization. The objective equation 2 is additive in
nature. This means we can calculate the loss on different examples
independently. Accordingly, the gradient decent with respect to
words can be done in parallel. The overhead of thread scheduling
is small compared to computation cost. This gives the opportunity
to fully use all threads. Due to the fact that computation is shallow,
we did not use GPUs at this stage. We will revisit this in future.

5 APPLICATIONS AND EXPERIMENTS

We present some empirical results of the PinText project and discuss
its outcome in this section.

5.1 Interest Classification and MTL Config

@sky where the input is a pin and the class is all possible interests
(e.g., chicken recipe is a low level interest with high level parent
interest food and drink). Each pin has 22 positive interest labels on
average. The interests are manually labeled by human beings. We
use them as ground truth set to evaluate classification precision.
The interest taxonomy is built from Pinterest data and accessible
to all advertising customers.
The baselines we evaluated in Q2I task including:

o fastText: pretrained EN model with wikipedia [4];

e GloVe: 6B version pretrained by Standford university [22];
e word2vec: model pretrained with Google news data [19];
o conceptNet: pretrained model by [28];

Praveen Kolli

Praveen Kolli

Ratio of #Training Instance Ratio of #DictionarySize

® Search @ Related Pins Homefeeds @ Multitask ©® search @ Related Pins Homefeeds @ Multitask

(a) The ratio of #training instances in the
mixed multitask training.

(b) The ratio of #learnt dictionary size in
the mixed multitask training.

Figure 4: Contribution of single task in the mixed multitask training.

e PinText-HF: single homefeed task PinText model;

o PinText-SR: single search task PinText model;

o PinText-RP: single related pin task PinText model;

e PinText-MTL: multitask PinText model trained by mixing
HF, SR, and RP data together;

Table 1 shows query classification results. Our own PinText-
MTL model produces significantly better precision than pretrained
models. We draw some important conjecture and conclusion:

Multitask learning is indeed better than single task learning. Al-
though Q2I classification is more related to SR task than RP / HF
task, combining them together still helps to produce a better embed-
ding model. This means word semantic information is carried by RP
/ HF, and that can be complementary to SR. This conclusion aligns
to our MTL intuition. You may want to re-check the illustration in
figure 1 to understand why semantics exist in all 3 tasks.

We conject other two possible reasons why our PinText model
is better. First is supervised training data could be better than unsu-
pervised data. Our in-house Pinterest engagement data is from user
"voting" between a potential query and a candidate. The pretrained
models are usually trained in an unsupervised way by CBOW or
skip-gram mechanism which essentially predicts adjacent words
in a context window. Second, in-house data could be better than
outside data, even if both are supervised or unsupervised. The rea-
son is people use Pinterest for clearly different purpose than using
Wikipedia or news sites. For example, a typical case we deep dived
is "allbirds", which is more related to birds and animals in pretrained
models. However, in Pinterest it is strongly related to a shoe brand.

We further probed the merits of multktask versus single task
training on multilabel P2I classification, as shown in table 2. Simi-
lar conclusion holds: MTL is consistently better than single task.
However, RP has better performance on P2I task, while SR is better
on Q21 task. This is strong evidence that single task is not enough
to learn a complete embedding, due to either missing words or
missing part of words’ semantics. Using MTL solves this severe
problem to a large extent.

We did further breakdown analysis on the contribution of each
task in figure 4. When we manually check semantic affinity between
query and candidate, we found HR data is essentially noisy. We
have to set high bar for HF pair to be selected as positive. When user
comes to homepage, she is mostly browsing without a clear target
in her mind. Additionally, users map to many interests while SR /
RP scenarios are more focused. SR and RP have about 1:1 sampling
ratio, and contribute about 98% of MTL training data together. If

A TrainingError @ TrainingTime (Hours)

0.11 40h
0.1 30h
0.09 20h
0.08 10h
0.07 Oh

1 2 3 4 5 6 7 8 9 10

X: #Epoch. Left-Y: Training Error Rate. Right-Y: Training Hours
Figure 5: The training error and training time curve with 10 epoch.

we compare the learnt dictionary size, the RP to SR ratio is about
2.3 with 1:1 instance sampling ratio. This aligns to the fact that pins
have more words than search queries. It also shows clearly that
MTL has better coverage than single task training due to augmented
training data.

We tracked the training error change and time cost increase with
10 epoches in figure 5. The classification accuracy is similar after
10 epoches. Once nice property of this MTL formulation is that
training time is linear. This is very helpful for fast model iteration.

5.2 Search Retrieval and Query Broadmatch

In this section, we present a pin retrieval application based on the
proposed PinText embedding system with the high-level architec-
ture described in figure 2. We have multiple term based retrieval
candidate source in serving backend as in a general information
retrieval system [2]. The embedding based retrieval would be an
additional candidate source to the existing sources, and has to pass
all relevance based trimmers. Because the majority of results are
computed offline and cached, the online infrastructure cost is neg-
ligible. Moreover, aftering converting embedding vectors to LSH
tokens, token based retrieval is essentially the same as textual term
based retrieval. This is important for agile online experimentation.

We first evaluated the embedding based retrieval performance
offline with a labeled dataset for search task. The labeled candidates
are the top retrieval candidates based on the current ranking system.
This might be biased toward the existing system in terms of recall,
and might contain more positive examples than negative examples.
But it is fair to all PinText tasks and is valid to verify if MTL schema
is good. We label each pin into {relevant, neutral, not relevant} by
its relevance to the query and employ multiple person to label each
pair. Then a pin is categorized into {positive, negative} by whether
its average labeling score is above or below 0.70. We compute
average normalized discounted cumulative gain (NDCG@K) on
this dataset. Table 3 shows the results of PinText models with
K € {3, 4, 5}, which means offline NDCG results align to Q2I and P21
classification. This gives us high confidence to move forward with
online applications. In an online A/B experment, we use current
production as controlled group A and embedding based retrieval as
an additional candidate source as enabled group B. We observe clear
gains in enabled group in terms of revenue, click rate, and repin
rate. We also aboserve clear drop in hide rate of pins. This means

Table 1: Query2Interest classification by 1-nearest-neighbor embedding cosine similarity.

Model

fastText GloVe word2vec conceptNet PinText-HF PinText-RP PinText-SR PinText-MTL

Precision(%)

46.36% 49.36% 56.40% 65.84% 51.88% 72.72%

79.76% 81.68%

(a) Queries

Themed weddings

Room DIY decorations

(b) Top retrieved promoted pins by cosine similarity

Kl
orom

ESH

i s -

0.4473

(c) Top expanded keywords
by cosine similarity

wedding themed: 0.9216

themed wedding: 0.9216

love themed wedding ideas: 0.8963
Hatteras weddings: 0.8504
whalehead weddings: 0.8504

decor room diy: 0.9062

room decor ideas diy: 0.8969

diy room decor ideas: 0.8969
kids room decorations diy: 0.8791
room decorations: 0.8762

Easy chicken recipes

Paris trip

THE ULTIMATE
PARIS ITINERARY

0.6705 0.6391

recipes chicken: 0.9746

rotisserie chicken recipes 0.9746
21day chicken recipes: 0.9746
quick easy chicken recipes: 0.9634
easy chicken dinner recipes: 0.9611

trip to paris: 0.9981

paris trip tips: 0.9938
paris trip winter: 0.9863
paris trip planning: 0.9770
travel to paris: 0.8978

Figure 6: Examples of PinText based retrieval and search keyword broadmatch in Pinterest. These top 4 queries exhibit diversity advantage of embedding based
retrieval when query is not specific or exact term match is not good. The cosine similarity between queries and pins can also serve as a ranking feature.

Table 2: Multilabel Pin2Interest classification precision@Top-K ranked by
embedding cosine similarity.

K PinText-HF PinText-SR PinText-RP PinText-MTL

K=5 91.55% 97.29% 97.85% 97.93%
K=10 91.35% 96.75% 97.28% 97.39%
K=15 90.86% 94.96% 95.49% 95.61%
K=20 89.90% 89.21% 89.74% 89.89%

Table 3: Offline Top-K NDCG of PinText Embedding based Retrieval.
K PinText-HF PinText-SR PinText-RP PinText-MTL

K=3 0.8426 0.8539 0.8527 0.8587
K=4 0.8479 0.8616 0.8584 0.8618
K=5 0.8508 0.8642 0.8612 0.8644

embedding based retrieval can be complementary to other term
based retrieval sources with very good (if not better) quality. The
column (b) in Figure 6 on some representative top queries shows
the cosine similarity scores between queries and pins.

We introduce another production application query broadmatch
of the PinText system. Among our 250 million monthly active users,
a large portion of them are outside of United States. One challenge
we are facing in new markets is the cold start problem, either be-
cause of less engagement or because we have no existing models
built. This gives unique opportunity for a semantic embedding

based service. Thanks to the merit of separating models from in-
frastructure in the system design in section 3, we are able to plug in
any pretrained models with prior domain knowledge when we face
the cold start problem. This allows us to scale up business logics
in US to international markets quickly before we finish develop-
ing in-house models, which easily takes months to years to build
bacause we either need long time to accumulate training data or
the international market itself is too small to train a model from
scratch. This saving in time can be very important for business
expansion. Specifically, when a user inputs a query, we retrieve the
expanded query first by PinText system then use it to query against
inverted ads index. In this way, some of the previously unmatched
queries would have more semantically meaningful results. By this
broadmatch logic, we observe gains in click rate and gains in repin
rate in an online A/B experiment.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we presented a multitask embedding system used
in Pinterest, which has shown promising results on both offline
scientific metrics and online business metrics. This system is generic
enough to plug in any word embedding models and flexible enough
to work with real production pipelines.

We will continue investing in this direction. For the next mile-
stone of PinText, we are actively working on three projects. The
first one is distributed training infrastructure on multiple machines.

As our growth continues, more and more engagement data is being
generated everyday. To fully mine the power of our new data, we
must be able to train an embedding model reasonably quickly with
it. The second project is embeddings as a service. We mainly use
our Kubernetes cluster and map-reduce workflow for large-scale
input. This works very well offline. However, when it comes to real-
time embeddings, we see the difficulty of holding a big embedding
dictionary in memory on task-dependent servers. It is necessary to
have a standalone embedding service so all downstream applica-
tions can depend on it. The third one is a unified master embedding
solution for users, pins and text, such that different objects can
be compared in the same vector space directly. This will bring the
scope of possible application scenarios to next level.

To summarize, PinText is proven system in production at Pinter-
est. We will deploy and launch more ads and organic applications
of PinText in the future.

ACKNOWLEDGMENTS

We thank teammates from Pinterest Infra team and Ads team
for seamless collaboration. We thank Stephanie deWet, Mukund
Narasimhan, Jiafan Ou, and Nick Liu for the fruitful discussion.

REFERENCES

[1] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-
beat baseline for sentence embeddings. In International Conference on Learning
Representations, April 24 - 26, 2017, Palais des Congrés Neptune, Toulon, France.
Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. 2011. Modern Information
Retrieval - the concepts and technology behind search, Second edition. Pearson
Education Ltd., Harlow, England.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.

A Neural Probabilistic Language Model. . Mach. Learn. Res. 3 (March 2003),

1137-1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.

Enriching Word Vectors with Subword Information. TACL 5 (2017), 135-146.

[5] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 Workshop on Deep Learning, December 2014.

[6] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural
language processing: deep neural networks with multitask learning. In Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008. 160-167.

[7] Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised Sequence Learning.
In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada. 3079-3087.

[8] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
20th ACM Symposium on Computational Geometry, Brooklyn, New York, USA, June
8-11, 2004. 253-262.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805

[10] Ricardo Henao, Chunyuan Li, Lawrence Carin, Qinliang Su, Dinghan Shen,
Guoyin Wang, Wenlin Wang, Martin Renqiang Min, and Yizhe Zhang. 2018.
Baseline Needs More Love: On Simple Word-Embedding-Based Models and As-
sociated Pooling Mechanisms. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. 440-450.

[11] Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735-1780.

[12] Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng.
2012. Improving Word Representations via Global Context and Multiple Word
Prototypes. In The 50th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea -
Volume 1: Long Papers. 873-882.

[13] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[14] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

2

=

Processing. 1746-1751.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States. 1106-1114.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. 1999. Object
Recognition with Gradient-Based Learning. In Shape, Contour and Grouping in
Computer Vision. 319. https://doi.org/10.1007/3-540-46805-6_19

Jiwei Li and Dan Jurafsky. 2015. Do Multi-Sense Embeddings Improve Natural
Language Understanding?. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September
17-21, 2015. 1722-1732.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.
2015. Representation Learning Using Multi-Task Deep Neural Networks for
Semantic Classification and Information Retrieval. In NAACL HLT 2015, The 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June
5, 2015. 912-921.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Trans. Knowl. Data Eng. 22, 10 (2010), 1345-1359.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar. 1532-1543.

Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power.
2017. Semi-supervised sequence tagging with bidirectional language models.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers. 1756-1765.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long
Papers). 2227-22317.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. 2018.
Dissecting Contextual Word Embeddings: Architecture and Representation. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November 4, 2018. 1499-1509.
Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. CoRR abs/1706.05098 (2017). arXiv:1706.05098

Sebastian Ruder and Jeremy Howard. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. 328-339.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA. 4444-4451.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word Representa-
tions: A Simple and General Method for Semi-Supervised Learning.. In ACL, Jan
Hajic, Sandra Carberry, and Stephen Clark (Eds.). The Association for Computer
Linguistics, 384-394.

Shyam Upadhyay, Kai-Wei Chang, Matt Taddy, Adam Kalai, and James Y. Zou.
2017. Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Con-
text. In Proceedings of the 2nd Workshop on Representation Learning for NLP,
Rep4NLP@ACL 2017, Vancouver, Canada, August 3, 2017. 101-110.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA. 6000-6010.

Jason Weston, Sumit Chopra, and Keith Adams. 2014. #TagSpace: Semantic
Embeddings from Hashtags. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL. 1822-1827.
Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and
Jason Weston. 2018. StarSpace: Embed All The Things!. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018. 5569-5577.

http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/3-540-46805-6_19
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1706.05098

	Abstract
	1 Introduction
	2 Related Work
	2.1 Text Embedding in NLP
	2.2 Multitask Learning
	2.3 Transfer Learning

	3 System Design
	3.1 System Overview
	3.2 Embedding Model Training
	3.3 Distributed Offline Computation
	3.4 Online Serving

	4 Multitask Text Embedding
	4.1 Task Definition
	4.2 Multitask Formulation
	4.3 Implementation

	5 Applications and Experiments
	5.1 Interest Classification and MTL Config
	5.2 Search Retrieval and Query Broadmatch

	6 Conclusions and Future Directions
	Acknowledgments
	References

