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Abstract

We consider gradient-based optimisation of wide, shallow neural networks, where the output
of each hidden node is scaled by a positive parameter. The scaling parameters are non-
identical, differing from the classical Neural Tangent Kernel (NTK) parameterisation. We
prove that for large such neural networks, with high probability, gradient flow and gradient
descent converge to a global minimum and can learn features in some sense, unlike in the
NTK parameterisation. We perform experiments illustrating our theoretical results and
discuss the benefits of such scaling in terms of prunability and transfer learning.

1 Introduction

The training of neural networks typically involves the minimisation of a non-convex objective function.
However, first-order optimisation methods, such as gradient descent (GD) and its variants, often find solutions
with low training error. To gain a better understanding of this phenomenon, one fruitful direction of research
has been to analyse properties of GD training of over-parameterised, large-width neural networks; that is,
neural networks where the number m of hidden nodes in a given layer is very large. In particular, under a
“
√

1/m” scaling of the hidden nodes, Jacot et al. (2018) have shown that, as the number of nodes m tends to
infinity, the solution obtained by GD achieves zero training error, and coincides with that of kernel regression
under a so-called limiting Neural Tangent Kernel (NTK). Under the same node scaling, called NTK scaling,
quantitative theoretical guarantees for the global convergence and generalisation properties have then been
obtained for large (but finite) width neural networks (Du et al., 2019b;a; Oymak & Soltanolkotabi, 2020;
Arora et al., 2019a; Bartlett et al., 2021). However, it has been noted in a number of articles (Chizat et al.,
2019; Yang, 2019; Arora et al., 2019a; Yang & Hu, 2021) that under NTK scaling, feature learning does not
occur and GD training is performed in a lazy-training regime, in contrast with the typical feature-learning
regime exhibited in deep neural networks.

Main contributions. We investigate global convergence properties and feature learning in gradient-type
training of large-width feedforward neural networks (FFNNs) under a more general asymmetrical node scaling.
In particular, each hidden node j = 1, . . . ,m has a fixed node-specific scaling

√
λm,j with

λm,j = γ · 1
m

+ (1− γ) · λ̃j∑m
k=1 λ̃k

(1)

where γ ∈ [0, 1] and 1 ≥ λ̃1 ≥ λ̃2 ≥ . . . ≥ 0 are nonnegative fixed scalars with
∑∞
j=1 λ̃j = 1. Note that

γ = 1 corresponds to the
√

1/m NTK scaling. If γ < 1, the node scaling is necessarily asymmetrical for
large-width networks. Two typical examples of the scalars (λ̃j)j≥1 are (a) λ̃j = 6π−2j−2 for all j ≥ 1, and
(b) λ̃1 = . . . = λ̃K = 1/K and λ̃j = 0 for all j > K, for a fixed K.

We consider a shallow FFNN with a smooth activation function and without bias, where the first layer weights
are trained via gradient flow or descent and empirical risk minimisation under the `2 loss. We show that,
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under similar assumptions as in Du et al. (2019b;a) on the data, activation function, and initialisation, when
the number of hidden nodes m is sufficiently large: (i) if γ > 0, the training error goes to 0 at a linear rate
with high probability; and (ii) feature learning (in the sense of the definitions given in Section 7.1) occurs if
and only if γ < 1. We provide numerical experiments which illustrate the theoretical results and demonstrate
empirically that such node-scaling is also useful for pruning and for transfer learning.

Organisation of the paper. Section 2 discusses related work. Section 3 introduces the FFNN model
with asymmetrical node scaling, gradient flow or gradient descent updates, and the main assumptions on the
data, activation function, and initialisation. Section 4 discusses the properties of the NTK of such a model
at initialisation, and its infinite-width limit. Sections 5 and 6 derive our main results on the convergence
to a global minimum of gradient flow and gradient descent and sketch their proofs. Section 7 gives the
main results regarding feature learning. Section 8 describes our experiments on simulated and real datasets,
whose results illustrate our theoretical results and their potential applications. The Supplementary Material
contains detailed proofs, as well as results on additional convergence of gradient flow and feature learning
when using the ReLU activation function.

Notations. For an integer n ≥ 1, let [n] = {1, . . . , n}. For a multivariate real-valued function f : Rn → R,
the gradient∇vf(v) is the n-dimensional column vector of partial derivatives∇vf(v) = ( ∂f∂v1

(v), . . . , ∂f∂vn
(v))>

where v = (v1, . . . , vn)>. For a square matrix B, we denote its minimum and maximum eigenvalues by
eigmin(B) and eigmax(B), respectively. For a vector v ∈ Rn, we write B = diag(v) for the n-by-n diagonal
matrix with Bii = vi for i ∈ [n].

2 Related work

Large-width FFNNs. The analysis of large-width FFNNs goes back to Neal (1996) who showed the
connection between Gaussian processes and FFNNs in the large-width limit. Recent work has explored this
connection under varying assumptions (Matthews et al., 2018; Lee et al., 2018; Yang, 2019; Favaro et al.,
2020; Bracale et al., 2021; Lee et al., 2023; Jung et al., 2023).

Large-width FFNNs under NTK scaling. Following the seminal work of Jacot et al. (2018), a number
of articles have investigated the benefits of over-parameterisation for gradient descent training, with the
“1/
√
m” NTK scaling (Arora et al., 2019b; Du et al., 2019b;a; Lee et al., 2019; Zou & Gu, 2019; Oymak &

Soltanolkotabi, 2020; Zou et al., 2020). Crucially, when the width of the network is large enough with respect
to the size of the training set, the training loss converges to a global minimum at a linear rate under gradient
flow or gradient descent. However, under this symmetrical NTK scaling, the hidden-layer features do not
move significantly when the width is large, and the scaling has been coined lazy-training regime for this
reason (Chizat et al., 2019; Woodworth et al., 2020).

Large-width FFNNs under mean-field scaling. An alternative scaling is the “1/m” mean-field scaling
(Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2018; 2019; Chizat et al., 2019; Sirignano & Spiliopoulos, 2020;
Ghorbani et al., 2020; Chen et al., 2021; Tao et al., 2021). This scaling is also equivalent, up to the so-called
abc-scaling symmetry (Yang & Hu, 2021), to the µP parameterisation of Yang & Hu (2021) in the case of
shallow networks. Feature learning is known to occur under this mean-field scaling. Also, Chizat & Bach
(2018) showed that under the same scaling, if the training of the model converges, it converges to a global
minimum.

Asymmetrical scaling in FFNNs. The idea of using asymmetrical scaling parameters in the context
of GD optimisation of deep FFNNs has been previously introduced by Wolinski et al. (2020). The focus of
Wolinski et al. (2020) was on the (empirical) usefulness in terms of pruning. Indeed, our experiments in
Section 8 are also in line with their findings. The work of Wolinski et al. (2020), however, only considered
asymmetrical scaling with γ = 0 (no fixed part), and did not investigate global convergence properties under
such scaling. The properties of random FFNNs under random asymmetrical node scaling in the large-width
limit has also been considered by Lee et al. (2023); but this paper did not investigate the training properties
under gradient flow or gradient descent.
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3 Problem setup

3.1 Statistical model

We consider a shallow FFNN with one hidden layer of m ≥ 1 hidden nodes and a scalar output. To simplify
the analysis, we assume that there is no bias term. Let x ∈ Rd be some input vector, where d ≥ 1 is the
input dimension. The model is defined as

fm(x; W) =
m∑
j=1

√
λm,jajσ(Zj(x; W)) with Zj(x; W) = 1√

d
w>j x for j ∈ [m] (2)

where fm(x; W) is the scalar output of the FFNN, Zj(x; W) is the pre-activation of the j-th hidden node,
σ : R→ R is the activation function, wj ∈ Rd is the column vector of weights between node j of the hidden
layer and the input nodes, and aj ∈ R is the weight between the hidden node j and the output node. The
λm,j ’s for j ∈ [m] are nonnegative scaling parameters for the hidden nodes. The parameters to be optimised
are contained in W which is an md-dimensional column vector (w>1 , . . . ,w>m)>. We assume that σ admits a
derivative σ′.

For n ≥ 1, let σ : Rn → Rn (resp. σ′ : Rn → Rn) be the vector-valued multivariate function that applies the
real-valued function σ (resp. σ′) element-wise on each of the n input variables. To simplify the analysis, we
assume throughout this article that the output weights (aj)j∈[m] are randomly initialised and fixed afterwards:

aj
iid∼Uniform({−1, 1}), j ≥ 1. (3)

This simplifying assumption is often made when analysing large shallow networks (see e.g. (Du et al., 2019b;
Bartlett et al., 2021)), and the analysis can also be extended to the case where both layers are trained. The
scaling parameters (λm,j)j∈[m] are fixed and parameterised as in Equation (1). By construction, we have
λm,1 > 0 and

∑m
j=1 λm,j = 1 for all m ≥ 1. Recall that the case γ = 1 corresponds to NTK scaling. Also,

note that our model covers finite FFNNs: when

γ = 0 and λ̃j =
{

1/K if j ∈ [K]
0 otherwise

for some K ≤ m, the model becomes a finite network of width K. In the experiments, we will consider the
special case where (λ̃j)j≥1 are the probability masses of a Zipf law:

λ̃j = 1
ζ(1/α)

1
j1/α , j ≥ 1 (4)

for some α ∈ (0, 1), where ζ is the Riemann zeta function. The parameter α tunes how quickly λ̃j decreases
with j, smaller values corresponding to more rapid decrease and more asymmetry.

3.2 Training

Let Dn = {(xi, yi)}i∈[n] be the training dataset, where n ≥ 1 is the number of observations. Let X denote
the n-by-d matrix whose ith row is x>i . We want to minimise the empirical risk under `2 loss. Consider the
objective function

Lm(W) = 1
2

n∑
i=1

(yi − fm(xi; W))2 (5)

which is non-convex in general. For a given dataset Dn, width m ≥ 1, output weights (aj)j∈[m], and scaling
parameters (λm,j)j∈[m], we aim to estimate the trainable parameters W by minimising Lm(W) using gradient
flow or gradient descent. Let W0 be some initialisation. In gradient flow, (Wt)t>0 is the solution to the
following ordinary differential equation (ODE):

dWt

dt
= −∇WLm(Wt)
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with limt→0 Wt = W0. Let wtj be the value of the parameter wj at time t, and define Ztj(x) = Zj(x; Wt).
Note that ∇wjfm(x; W) =

√
λm,jajσ

′(Zj(x; W)) · 1√
d
x. Under gradient flow, for j ∈ [m],

dwtj

dt
=
(

n∑
i=1

(yi − fm(xi; Wt))∇wj
fm(xi; Wt)

)
=
(√

λm,jaj√
d

n∑
i=1

(yi − fm(xi; Wt))σ′(Ztj(xi))xi

)
.

Thus, the derivatives associated with each hidden node j are scaled by
√
λm,j . For an input x ∈ Rd, the

output of the FFNN therefore satisfies the ODE

dfm(x; Wt)
dt

=
(
∇Wfm(x; Wt)>

dWt

dt

)
=
(

n∑
i=1

(yi − fm(xi; Wt))Θm(x,xi; Wt)
)
,

where Θm : Rd × Rd → R is the neural tangent kernel for the network fm(x; W):

Θm(x,x′; W) = x>x′

d

m∑
j=1

λm,jσ
′(Zj(x; W))σ′(Zj(x′; W)). (6)

The associated neural tangent Gram (NTG) matrix Θ̂m(X; W) is the n-by-n positive semi-definite matrix
whose (i, j)-th entry is Θm(xi,xj ; W). It takes the form

Θ̂m(X; W) = 1
d

m∑
j=1

λm,j diag
(

σ′
(

Xwj√
d

))
XX> diag

(
σ′
(

Xwj√
d

))
. (7)

Gradient descent is a discretisation of gradient flow. Under gradient descent, the parameters are updated by

Ws = Ws−1 − η∇WLm(Ws−1) for all s ∈ N, (8)

where η > 0 is a learning rate. These updates give rise to the family (Ws)s∈N∪{0} indexed by discrete time
steps s = 0, 1, 2, . . ., rather than continuous times t ≥ 0.

3.3 Main assumptions

Throughout the paper, we assume that the activation function σ satisfies the following standard condition:
for all random variables Z ∼ N (0, s2) for some s > 0,

|EZ [σ(Z)]| <∞ and 0 < EZ [σ(Z)2] <∞ (9)

This assumption is made all the time, and so we do not mention its use explicitly in the paper.

The results of this article on global convergence and feature learning use several further assumptions. The
first set of these assumptions, which are mild and similar to other assumptions used in the literature, is on
the training dataset Dn = {(xi, yi)}i∈[n].
Assumption 3.1 (Dataset). (a) All inputs are non-zero and have norms at most 1: 0 < ‖xi‖ ≤ 1 for all
i ≥ 1. (b) For all i 6= i′ and c ∈ R, xi 6= cxi′ . (c) There is C > 0 such that |yi| ≤ C for all i ≥ 1.

The next assumption concerns the activation function σ. Standard activation functions (softplus, tanh,
sigmoid, swish) satisfy this assumption, but not the ReLU. However, some of our results, such as global
convergence of gradient flow and feature-learning results, also hold in the ReLU case, as shown in Appendix A
in the Supplementary Material.
Assumption 3.2 (Activation function). The activation function is analytic, with |σ′(x)| ≤ 1 and |σ′′(x)| ≤M
for some M > 0, but it is not a polynomial.

The last assumption, which is standard, is on the initialisation of the weights.

Assumption 3.3 (Initialisation). For j ∈ N, w0j
iid∼N (0, Id), where Id is the d-by-d identity matrix.
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4 Neural Tangent Kernel at initialisation and its limit

Mean NTG at initialisation and its minimum eigenvalue. Let W0 be a random initialisation from
Assumption 3.3. Consider the mean NTK at initialisation

Θ∗(x,x′) = E [Θm(x,x′; W0)] = x>x′

d
E
[
σ′
(

1√
d

w>01x
)
σ′
(

1√
d

w>01x′
)]

. (10)

The mean NTK, which is also, by the law of large numbers, the limiting NTK under 1/
√
m scaling (Jacot

et al., 2018), does not depend on (λm,j)j≥1 nor m. Let Θ̂∗(X) = E[Θ̂m(X; W0)] be the associated n-by-n
mean NTG matrix at initialisation, whose (i, j)-th entry is Θ∗(xi,xj). Let κn = eigmin(Θ̂∗(X)) be the
minimum eigenvalue of the mean NTG matrix at initialisation. This minimum eigenvalue plays an important
role in the analysis of global convergence properties in the lazy-training regime. Many authors (see e.g.
(El Karoui, 2010; Nguyen et al., 2021)) have shown that, under some assumptions on the data, activation
function, and initialisation, κn is strictly positive or bounded away from zero. such a result, under the
Assumptions of Section 3.3.
Proposition 4.1 ((Du et al., 2019b, Theorem 3.1) and (Du et al., 2019a, Proposition F.1)). When Assump-
tions 3.1 to 3.3 hold, we have κn > 0.
Remark 4.2. Du et al. (2019b;a) make the assumption that each xi has unit norm. But their proof holds
under the less strict Assumption 3.1(a). The above proposition also holds if Assumption 3.2 is replaced by
the assumption that σ is the ReLU function.

Limiting NTG. To give some intuition, we now describe the limiting behaviour of the NTG, for a fixed
sample size n, as the width m goes to infinity. The proof, given in Appendix C in the Supplementary Material,
follows from the triangle inequality and the law of large numbers, together with |σ′(z)| ≤ 1 and

∑
j≥1 λ̃j = 1.

Proposition 4.3. Consider a sequence (w0j)j≥1 of iid random vectors distributed as in Assumption 3.3.
Suppose Assumption 3.2 holds. Then,

Θ̂m(X; W0)→ Θ̂∞(X; W0) (11)

almost surely as m→∞, where Θ̂∞(X; W0) = γΘ̂∗(X) + (1− γ)Θ̂(2)
∞ (X; W0), with Θ̂(2)

∞ (X; W0) being the
following random positive semi-definite matrix:

Θ̂(2)
∞ (X; W0) = 1

d

∞∑
j=1

λ̃j diag
(

σ′
(

Xw0j√
d

))
XX> diag

(
σ′
(

Xw0j√
d

))
. (12)

Also, E[Θ̂∞(X; W0)] = E[Θ̂(2)
∞ (X; W0)] = Θ̂∗(X), and

E
[
‖Θ̂∞(X; W0)− Θ̂∗(X)‖2

F

]
= C0(X)(1− γ)2

∑
j≥1

λ̃2
j (13)

where ‖ · ‖F denotes the Frobenius norm, and C0(X) > 0 is a positive constant equal to

∑
1≤i,i′≤n

(
x>i xi′
d

)2

Var
(
σ′
(

1√
d

w>01xi
)
σ′
(

1√
d

w>01xi′
))

.

When γ = 1 (NTK scaling), the NTG converges to a constant matrix, and solutions obtained by gradient
flow coincide with that of kernel regression. Whenever γ < 1, Proposition 4.3 shows that the NTG is random
at initialisation, even in the infinite-width limit, contrary to that of NTK scaling. As shown in Equation (13),
the departure from the symmetric regime, as measured by the total variance of the limiting random NTG,
can be quantified by the nonnegative constant (1− γ)2∑

j≥1 λ̃
2
j ∈ [0, 1]. When this constant is close to 0, we

approach the kernel regime, and increasing this value leads to a departure from the regime. The quantity∑
j≥1 λ̃

2
j ∈ (0, 1] is always strictly positive. More rapid decrease of the λ̃j as j increases will lead to higher
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values of
∑
j≥1 λ̃

2
j . For example, when using the Zipf weights in Equation (4), we have

∑
j≥1 λ̃

2
j = ζ(2/α)

ζ(1/α)2 ,
which decreases with α, as shown in Figure 1 in the Supplementary Material.

This section has described the behaviour of the NTG at initialisation in the infinite-width limit, and
has provided intuition on the node-scaling parameters. The next three sections contain results on global
convergence and feature learning properties of large, but finite, FFNNs under such asymmetrical scaling.

5 Global convergence analysis for gradient flow

Our global convergence theorem, which is given below, explains what happens during training via gradient
flow. Recall that κn is the minimum eigenvalue of the mean NTG matrix Θ̂∗(X) at initialisation. Our
theorem says that with high probability, (i) the loss decays exponentially fast with respect to κn and training
time t, and (ii) the NTG and weights wtj change, respectively, by

‖Θ̂m(X; Wt)−Θ̂m(X; W0)‖2 = O

n3∑m
j=1 λ

2
m,j

κ2
nd

3γ2 +
n2
√∑m

j=1 λ
2
m,j

κnd2γ

 and ‖wtj−w0j‖ = O

(
nλ

1/2
m,j

κnd1/2γ

)
.

Define

C1 = sup
c∈(0,1]

Ez∼N (0,1)

[
σ

(
cz√
d

)2
]
. (14)

Theorem 5.1. (Global convergence, gradient flow) Let δ ∈ (0, 1). Suppose Assumptions 3.1 to 3.3 hold, and
that

γ > 0, and m ≥ max
(23n log 2n

δ

κnd
,

210n3M2(C2 + C1)
κ3
nd

3γ2δ
,

215n4M2(C2 + C1)
κ4
nd

4γ2δ

)
,

where C is the bound on the yi’s in Assumption 3.1. Then, with probability at least 1 − δ, the following
properties hold for all t ≥ 0:

(a) eigmin(Θ̂m(X; Wt)) ≥ γκn

4 ;
(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);
(c) ‖wtj −w0j‖ ≤

n
√
λm,j

κnd1/2

√
27(C2+C1)

γ2δ for all j ∈ [m];

(d) ‖Θ̂m(X; Wt)− Θ̂m(X; W0)‖2 ≤
(

27n3M2(C2+C1)
κ2

nd
3γ2δ ·

∑m
j=1 λ

2
m,j

)
+
(

25n2M(C2+C1)1/2

κnd2γδ1/2 ·
√∑m

j=1 λ
2
m,j

)
.

The above theorem implies that, whenever γ > 0, the training error converges to 0 exponentially fast.
Additionally, the weight change is bounded by a factor

√
λm,j and the NTG change is bounded by a factor√∑m

j=1 λ
2
m,j . We have (see Appendix B.2 in the Supplementary Material) that as m→∞,

λm,j → (1− γ)λ̃j for all j ≥ 1 and
m∑
j=1

λ2
m,j → (1− γ)2

∞∑
j=1

λ̃2
j .

If λ̃j > 0 (note that we necessarily have λ̃1 > 0), the upper bound in (c) is therefore vanishing in the
infinite-width limit if and only if γ = 1 (lazy-training regime). Similarly, the upper bound in (d) is vanishing
if and only if γ = 1. Although we were not able to obtain matching lower bounds, we show in Section 7 that
feature learning arises whenever γ < 1.
Remark 5.2. We make two comments on Theorem 5.1. First, although d represents the input dimension,
all the occurrences of d in the theorem, such as those in the lower bound of the width m, do not come
from the complexity of the input dimension. Instead, it comes from the fact that our model uses the 1/

√
d

scaling when computing the pre-activation values of the first layer. If this scalining were removed in our
model, the statement of the theorem would not include d (i.e., we would have the theorem with d set to 1).
Second, a result similar to Theorem 5.1 also holds for the ReLU activation function. See Theorem A.1 in the
Supplementary Material.
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Sketch of the proof. We give here a sketch of the proof of Theorem 5.1 (and of Theorem A.1, its ReLU
counterpart, in the Supplementary Material). The detailed proofs are given in Appendices F and G in the
Supplementary Material, with secondary lemmas given in Appendices D and E there. The structures of
the proofs of Theorems 5.1 and A.1 are similar to that of (Du et al., 2019b, Theorem 3.2), which showed
analogous results on the global convergence under NTK scaling. However, there are some key differences
which we highlight below.

Gradient flow converges to a global minimum of the objective function if the minimum eigenvalue of the
NTG matrix Θ̂m(X; Wt) is bounded away from zero, for m sufficiently large, by some positive constant for
all t ≥ 0. In the NTK scaling case (γ = 1), Du et al. (2019b) showed that the following is satisfied, for m
sufficiently large, with high probability: (i) the NTG matrix at initialisation is close to its mean, and the
minimum eigenvalue is close to that of the mean NTG, (ii) the weights wtj are nearly constant in time, which
implies that (iii) the NTG matrix is nearly constant in time, hence (iv) the minimum eigenvalue of the NTG
matrix at time t is close to its value at initialisation, which is bounded away from zero.

However, in the case of asymmetrical node scaling (γ < 1), none of the points (i-iv) holds. At initialisation,
the random NTG matrix may be significantly different from its mean. Additionally, both the weights and the
NTG matrix substantially change over time. This therefore requires a somewhat different approach that we
now describe.

Let λ(1)
m,j = γ/m and λ(2)

m,j = ((1 − γ)λ̃j)/
∑m
k=1 λ̃k, and note that λ(1)

m,j + λ
(2)
m,j = λm,j . For k ∈ {1, 2}, let

Θ̂(k)
m be the n-by-n symmetric positive semi-definite matrices defined by Equation (7), with λm,j replaced by

either λ(k)
m,j . Note that

Θ̂m(X; Wt) = Θ̂(1)
m (X; Wt) + Θ̂(2)

m (X; Wt) (15)

with E[Θ̂(1)
m (X; W0)] = γΘ̂∗(X).

The key idea of the proof is to use the above decomposition of the NTG matrix as a sum of two terms, and
to show that, while the second term may change over time, the first term is close to its mean at initialisation,
and does not change much over time. The important points of the proof are as follows. For large m, with
high probability: (i) Θ̂(1)

m (X; W0) is close to its mean γΘ̂∗(X) and its minimum eigenvalue is therefore lower
bounded by (γκn)/2;

The important points of the proof are as follows. For large m, with high probability: (i) Θ̂(1)
m (X; W0) is

close to its mean γΘ̂∗(X) and its minimum eigenvalue is therefore lower bounded by (γκn)/2; (ii) while the
weights Wt may change significantly over time, Θ̂(1)

m (X; Wt) remains nearly constant over time; (iii) as a
result, the minimum eigenvalue of Θ̂(1)

m (X; Wt) can be lower bounded by (γκn)/4; (iv) this implies that the
minimum eigenvalue of the overall NTG matrix Θ̂m(X; Wt) is lower bounded by (γκn)/4.

Since showing that the first part of the NTK/NTG in Equation (15) does not change in the limit of m→∞
is a key component of the proof, we give here an outline of it in the simplified case of d = 1 and σ being
smooth. Let

Θ(1)
m (x,x′; Wt) = xx′ γ

m

m∑
j=1

σ′(wtjx)σ′(wtjx′)

be the first part of the NTK. We have, over gradient flow,

∣∣∣∣∣dΘ(1)
m (x,x′; Wt)

dt

∣∣∣∣∣ =

∣∣∣∣∣∣xx′ γ
m

m∑
j=1

(
xσ′′(wtjx)σ′(wtjx′) + x′σ′(wtjx)σ′′(wtjx′)

)dwtj

dt

∣∣∣∣∣∣
≤ 2M γ

m

m∑
j=1

∣∣∣∣dwtj

dt

∣∣∣∣ ,
7
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where the last inequality follows from the triangle inequality and Assumptions 3.1 and 3.2. Furthermore,∣∣∣∣dwtj

dt

∣∣∣∣ =
√
λm,j

∣∣∣∣∣
n∑
i=1

(yi − fm(xi; Wt))σ′(Ztj(xi))xi

∣∣∣∣∣
≤
√
λm,j

n∑
i=1
|yi − fm(xi; Wt)|

≤
√
λm,j2nLm(Wt),

where the first inequality follows from the triangle inequality and Assumptions 3.1 and 3.2, and the second
inequality follows from Cauchy-Schwarz. The change in the first part of the NTK is thus bounded by a
quantity involving γ

m

∑m
j=1

√
λm,j . Under the scaling in Equation (1), γ

m

∑m
j=1

√
λm,j → 0 as m → ∞

(see Appendix B.2 in the Supplementary Material). Hence, the change in the first part of the NTK/NTG
becomes asymptotically small as the width m increases. It is worth noting that for the full NTK, i.e.
the sum of both parts in Equation (15), a similar derivation leads to an upper bound of the order of

( γm
∑m
j=1

√
λm,j) + (1− γ)

∑m

j=1
λ̃j

√
λm,j∑m

k=1
λ̃k

. Due to the second term, this quantity does not converges to 0 as

m→∞, unless γ = 1 (symmetric case).

6 Global convergence analysis for gradient descent

Let y ∈ Rn be the vector of outputs (y1, . . . , yn)> in the training dataset Dn = {(xi, yi)}i∈[n]. For
each gradient-descent step s, let us ∈ Rn be the outputs at step s based on the inputs in Dn, that is,
us = (fm(x1; Ws), . . . , fm(xn; Ws))>. The following convergence theorem intuitively says that if the learning
rate η, of gradient descent, is sufficiently small and the width of the network is large enough, then with high
probability, the training error of the network decays exponentially fast to 0. We remark that our node scaling
is independent of the learning rate η. Thus, the only conditions on η in this work are in this section where
we extend our results from gradient flow to gradient descent.
Theorem 6.1. Consider δ ∈ (0, 1). Suppose Assumptions 3.1 to 3.3 hold, and that γ > 0, and

0 < η < min
(

2
γκn

,
γκnd

2

8n2 ,
γκnd

2δ1/2

29/2n2M(C2 + C1)1/2

)
,

where C and C1 are from Assumption 3.1 and Equation (14). Let β = (1− ηγκn/2)1/2. If

m ≥ max
(23n log 2n

δ

κnd
,

25η2n3M2(C2 + C1)
κnd3(1− β)2δ

,
211η2n4M2(C2 + C1)

κ2
nd

4(1− β)2δ

)
,

then with probability at least 1− δ,

‖y− us‖2 ≤ (1− α)s‖y− u0‖2 for all s ∈ N ∪ {0}. (16)

Note that the condition on the learning rate requires η = O(γκn/n2). Thus, the best possible convergence
rate from the theorem is (1− (ηγκn/2)) = (1− (C0γ

2κ2
n/n

2)) for some constant C0.

The proof is by induction on the gradient-descent step s, and is described in detail in Appendix H in the
Supplementary Material. It is similar to the proof of (Du et al., 2019a, Theorem 5.1), but the two proofs
differ significantly because, as in the case of gradient flow, the weights wsj and the Gram matrix Θ̂m(X; Ws)
change during gradient descent in our case, while they remain nearly constant in the case of (Du et al., 2019a).

7 Feature learning analysis

In this section, we present some results about feature learning. We focus on node scalings (λm,j)j∈[m] of the
form in Equation (1), both asymmetrical (γ < 1) and symmetrical (γ = 1; that is, λm,j = 1/m), but we also

8
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discuss alternative parameterisations such as mean-field and µP . For shallow neural networks trained by
gradient descent, mean-field and µP parameterisations are equivalent (Yang & Hu, 2021), and correspond to
node scalings λm,j = 1/m2 and learning rate η = η0m for some η0 > 0. We start with some definitions of
feature learning in the context of potentially asymmetric scalings, generalising existing definitions. We then
present feature learning results first under a linear activation function, and next under a general nonlinear
activation function.

7.1 Definitions

Definition 7.1 (Feature learning). Let (w0j)j≥1 be a sequence of random initialisations for nodes j ≥ 1.
We will say that feature learning occurs during training if1

lim inf
m→∞

∑m
j=1 λm,j

(
σ(Zj(x; Wt))− σ(Zj(x; W0))

)2

∑m
k=1 λm,k

(
σ(Zk(x; W0))

)2 > 0 (17)

almost surely, or in probability, for some t ∈ (0,∞] and x. Here t =∞ refers to the case that the ratio in the
above inequality is the limit as t tends to ∞.

The left-hand-side quantity in Equation (17) corresponds to the relative change in the scaled m-dimensional
feature maps between time 0 and time t. Definition 7.1 matches the definitions of (Yang & Hu, 2021,
Definitions 3.5, H.2, H.9) or (Frei et al., 2023, Proposition 3.2) in the case of symmetrical NTK or mean-field
node scalings.
Remark 7.2. As already noted by (Yang & Hu, 2021, Remark H.10), Definition 7.1 is a relatively weak notion
of feature learning. It only requires a change in the feature map for some t ∈ (0,∞] and some x, and does
not relate to the relevance of the learn features for prediction. However, we show empirically in Section 8
that the feature learning property leads to better performances in terms of prunability and transfer learning.

The previous definition ensures that a change occurs in the feature map. However, it may still be the case
that the contributions from all the individual nodes remain asymptotically infinitesimally small, in such a
way that there are no nodes representing important features in the network. This is problematic if one is
interested in pruning the nodes of the network, as we show theoretically for a linear activation in Section 7.2,
and empirically in Section 8. We introduce below the stronger definition of non-uniform feature learning.
Definition 7.3 (Non-uniform feature learning). Let (w0j)j≥1 be a sequence of random initialisations for
nodes j ≥ 1. We will say that non-uniform feature learning occurs during training if

lim inf
m→∞

maxj∈[m] λm,j

(
σ(Zj(x; Wt))− σ(Zj(x; W0))

)2

∑m
k=1 λm,k

(
σ(Zk(x; W0))

)2 > 0 (18)

almost surely or in probability, for some t ∈ (0,∞] and x.

Note that non-uniform feature learning implies feature learning, but the converse does not hold. For instance,
feature learning holds under the mean-field parameterisation, but not non-uniform feature learning (see the
next subsection for an illustration with a linear activation).

7.2 Linear activation function

We now describe, with the following theorem, analytic results in the case of a linear activation function.
Although for fixed second-layer weights, the NTK does not change in this linear-activation case, the evolution
of the weights provides useful insights into the differences between the symmetrical and asymmetrical scalings
in terms of weight change.

1In (Yang & Hu, 2021), feature learning was defined in the large-width limits for stable and nontrivial parameterisations.
Nontrivial means that the neural network function fm is not constant in time. Stable means that both the preactivations and
activations have Θ(1) coordinates at initialisation and O(1) coordinates throughout training. Both of these properties are
satisfied by our model.

9
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Theorem 7.4. Assume that the activation function is σ(x) = x, i.e., the identity map. Let (λm,j) be some
node scalings, not necessarily of the form (1)2. Let X = UDV> be a reduced singular value decomposition of
X, where U is an n× k matrix with orthonormal columns, D is a diagonal k× k matrix, V is a d× k matrix
with orthonormal columns, and k ≤ min(n, d) is the rank of X. For all j ∈ [m], the difference between the
solution of gradient descent3 /flow w∞j and the initialisation w0j is given by

w∞j −w0j =
√
λm,j∑m

k=1 λm,k
aj(β∞ −VV>β0) (19)

where β0 =
∑m
j=1

√
λm,jajw0j, and β∞ =

√
dVD−1U>y is the minimum-norm solution of

argmax
β

1
2‖y−

1√
d

Xβ‖2.

The learnt function is

fm(x; W∞) = 1√
d

x>
 m∑
j=1

√
λm,jajw∞j

 = 1√
d

x>
(
β∞ + (Id −VV>)β0

)
. (20)

The proof of this theorem is given in Appendix I.1.1 in the Supplementary Material.

Theorem 7.4 says that along the dimensions spanned by the data, the weight vector of a node j moves by a
quantity proportional to

√
λm,j towards the minimum-norm solution. The form of the learnt function in

Equation (20) implies that the contribution of each hidden node j to the function’s output is proportional to√
λm,jajw∞j . The next theorem analyses the asymptotic behaviour of this contribution in the infinite-width

limit and the associated feature learning properties. It shows that, under the scaling of Equation (1), both
feature learning and non-uniform feature learning occur if and only if γ < 1.
Theorem 7.5 (Feature learning - linear activation). Assume the setting of Theorem 7.4, and that Assump-
tion 3.3 holds.

• Under the node scalings (1), both feature learning (Definition 7.1) and non-uniform feature learning
(Definition 7.3) hold if and only if γ < 1.

• Under the mean-field scaling, feature learning (Definition 7.1) holds, but non-uniform feature learning
(Definition 7.3) does not.

The contribution from the jth node is marginally normally distributed with√
λm,jajw∞j ∼ N

(
λm,j∑
k λm,k

β∞, λm,j

(
Id −

λm,j∑
k λm,k

VV>
))

for all m ≥ 1 and 1 ≤ j ≤ m.

This implies that, under the mean-field scaling, contributions are asymptotically vanishing. Under the scaling
(1), we have√

λm,jajw∞j
d→ N

(
(1− γ)λ̃jβ∞, (1− γ)λ̃j

(
Id − (1− γ)λ̃jVV>

))
as m→∞. (21)

As a result, if γ < 1 and λ̃j > 0, the contribution from the jth node to the output is non-vanishing in the
infinite-width limit.

Before moving on to the case of the nonlinear activation function, we analyse the consequence of pruning
nodes of a linear network based on the scaling parameters λm,j . The result of this analysis is given in the
following proposition, which shows the benefit of our asymmetric scaling in pruning.

2Note that we assume none of Assumptions 3.1 to 3.3 here.
3with a step-size less than d(D2

max
∑

k
λm,k)−1, where Dmax is the largest entry of D.

10
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Proposition 7.6. Assume the setting of Theorem 7.4, and that Assumption 3.3 holds. Assume also the node
scaling (1). Let ρ ∈ (0, 1). Consider the following pruned network that is obtained by keeping the bρmc hidden
nodes with largest scalings λm,j and pruning the other nodes:

f̃m,ρ(x; W∞) =

bρmc∑
j=1

√
λm,jaj

w>∞j x
√
d

 = 1√
d

x>
bρmc∑

j=1

√
λm,jajw∞j

 .

Then, for all ε > 0, we have the following bound on the pruning error:

Pr
(∣∣∣f̃m,ρ(x; W∞)− fm(x; W∞)

∣∣∣ > ε
)
≤ ‖x‖

ε
√
d

(‖β∞‖+
√
d
) ∑

j>bρmc

λm,j

+
√
d
∑

j>bρmc

λm,j

 .

Since
∑
j>bρmc λm,j → γ(1− ρ) as m→∞, the above bound implies the following. If γ = 0 (no symmetric

part), then Pr(|f̃m,ρ(x; W∞) − fm(x; W∞)| > ε) → 0 and so the network can be compressed to a smaller
network via pruning. Otherwise, the pruning error is controlled by the proportion of the symmetric part γ in
the infinite-width limit:

lim
m→∞

Pr
(∣∣∣f̃m,ρ(x; W∞)− fm(x; W∞)

∣∣∣ > ε
)
≤ ‖x‖

ε
√
d

((
‖β∞‖+

√
d
)
γ(1− ρ) +

√
dγ(1− ρ)

)
.

7.3 Nonlinear activation function

We now analyse feature learning in our model when the activation function is nonlinear. Our analysis assumes
the following two changes in our setup:
Assumption 7.7 (Zeroed initialisation). We assume the model has the following form:

fm(x; W) =

 m∑
j=1

√
λm,jajσ(Zj(x; W))

−
 m∑
j=1

√
λm,jajσ(Zj(x; W0))

 .

That is, we subtract from the original model, a duplicate version whose parameters are set to W0 and are
unchanging throughout training. This is a commonly used simplification in theoretical analyses of neural
networks. It ensures that at initialisation, the model satisfies

fm(x; W0) = 0 for all x ∈ Rd.

Assumption 7.8 (Random outputs). We regard the outputs y1, . . . , yn as random variables, so that the
probabilities in Equations (17) and (18) refer to the randomness of the outputs as well. We further assume
that y1, . . . , yn are independent and continuous (i.e., the distribution of yi has a density with respect to
Lebesgue measure), and that they are also independent from W0 and the aj ’s. Note that we still treat
the inputs x1, . . . , xn as deterministic variables. This assumption is met if, for example, there exists a true
generating function f∗ such that yi = f∗(xi) + εi(xi) where the εi(xi) are independent continuous noise
variables.

Our analysis on feature learning considers gradient descent with a learning rate η that does not depend on m
just as we did in Section 6. This is in contrast to parameterisations such as mean-field parameterisation where
the learning rate has a scaling dependent on m. However, let us note that key reasoning steps in our proofs
also apply to such m-dependent learning rates after minor modifications, allowing us to recover existing
feature-learning results as we will explain shortly after Theorem 7.9. The full proofs of all the theorems in
this subsection are given in Appendix I in the Supplementary Material. Also, the theorems in this subsection
have counterparts that hold for the ReLU activation function. Appendix A.2 in the Supplementary Material
contains those feature-learning results for the ReLU case.

We show that if the activation function is continuously differentiable and its derivative is always positive, as
in the case of sigmoid, then after the first gradient-descent step, (i) both feature learning and non-uniform
feature learning in Definitions 7.1 and 7.3 occur (Theorem 7.9) and (ii) the squared norm of each weight
vector wj changes almost surely by the amount Ω(λ̃1) in the infinite-width limit (Theorem 7.10).

11
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Theorem 7.9. Suppose that Assumptions 3.1, 3.3, 7.7 and 7.8 hold. Suppose also that γ < 1 and that the
activation function σ is continuously differentiable with σ′(x) > 0 for all x ∈ R. Let i ∈ [n]. Then, both
feature learning and non-uniform feature learning occur after the first gradient-descent step with respect to
the input xi in the almost-sure sense, i.e., the following inequalities hold almost surely:

lim inf
m→∞

∑m
j=1 λm,j

(
σ(Zj(xi; W1))− σ(Zj(xi; W0))

)2

∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 > 0

and lim inf
m→∞

maxj∈[m] λm,j

(
σ(Zj(xi; W1))− σ(Zj(xi; W0))

)2

∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 > 0.

Sketch of the proof. Since non-uniform feature learning implies feature learning, we prove the former only.
The denominator

∑m
j=1 λm,j(σ(Zj(xi; W0)))2 in the condition for non-uniform feature learning converges to

a positive finite value almost surely as m tends to ∞. Thus, it is enough to prove that

lim inf
m→∞

(
max
j∈[m]

λm,j (σ(Zj(xi; W1))− σ(Zj(xi; W0)))2
)
> 0 almost surely,

which is implied by
lim inf
m→∞

(σ(Z1(xi; W1))− σ(Z1(xi; W0)))2
> 0 almost surely. (22)

Note that the limits from above are not redundant since W1 depends on m. The sufficient condition in
Equation (22) can be simplified further. The assumptions of the theorem allow us to use the inverse function
theorem to deduce that the condition in Equation (22) holds whenever

lim inf
m→∞

(Z1(xi; W1)− Z1(xi; W0))2
> 0 almost surely. (23)

The majority of the detailed proof concerns proving the condition in Equation (23). To that end, we compute
the following m-independent lower bound: for all m,(

Z1(xi; W1)− Z1(xi; W0)
)2

= η2λm,1
d2

(
n∑

i′=1
yi′

(
σ′
(

w>01xi′√
d

)
x>i′ xi

))2

(24)

≥ η2(1− γ)λ̃1

d2

(
n∑

i′=1
yi′

(
σ′
(

w>01xi′√
d

)
x>i′ xi

))2

. (25)

Then, we show that the right-hand side is almost surely positive, which implies the conclusion of the theorem.
The justification of this almost-sure positivity relies on Assumptions 3.1 and 7.8, the positivity of σ′, and
the assumption that γ < 1. Concretely, the assumption on γ implies that η2(1 − γ)λ̃1/d

2 > 0, while
Assumptions 3.1 and 7.8 and the positivity of σ′ imply that the squared sum on the right-hand side is almost
surely a positive random variable.

We point out that the proof also reveals that if we were to allow the learning rate η to depend on m in a
particular way, then feature learning could occur even for γ = 1 (although the condition for non-uniform
feature learning might fail). For instance, when η =

√
m and γ = 1, Equation (24) still holds, and its

right-hand side is almost surely positive because η2λm,1/d
2 = 1/d2 > 0. This almost-sure positivity and the

assumptions on σ then imply that
E[(σ(Z1(xi; W1))− σ(Z1(xi; W0)))2] > 0, (26)

which in turn ensures that the condition for feature learning holds, i.e., almost surely,

lim inf
m→∞

∑m
j=1 λm,j

(
σ(Zj(xi; W1))− σ(Zj(xi; W0))

)2∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 =
limm→∞

1
m

∑m
j=1

(
σ(Zj(xi; W1))− σ(Zj(xi; W0))

)2

limm→∞
1
m

∑m
j=1 σ(Zj(xi; W0))2

=
E
[(
σ(Z1(xi; W1))− σ(Z1(xi; W0))

)2]
E[σ(Z1(xi; W0))2] > 0.

12
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However, note that in this case, by (Yang & Hu, 2021, Theorem 3.3), the model becomes unstable and
could blow up (cf. the footnote regarding Equation (17)). Also, if η = m and we were to use 1/m2 for
λm,j (i.e., mean-field parameterisation), the essentially same argument would apply and lead to feature
learning, although such λm,j ’s are not covered by our setup. Just as before, Equation (24) would hold and its
right-hand side would be almost surely positive in this case, because η2λm,1/d

2 = 1/d2 > 0. This almost-sure
positivity implies the inequality in Equation (26), which then gives the condition for feature learning because
the lim inf formula in the definition of feature learning can be simplified to the same ratio of expectations as
the one before.

Theorem 7.10. Suppose Assumptions 3.1, 3.3, 7.7 and 7.8 hold. Suppose also that the activation function σ
is continuously differentiable and satisfies σ′(x) > 0 for all x ∈ R. Then, for all j, the following holds almost
surely:

lim inf
m→∞

∥∥∇wtj
L(Wt)

∣∣
t=0

∥∥2 ≥ (1− γ)λ̃j
d

∣∣∣∣∣
n∑
i=1

n∑
i′=1

yiyi′

(
x>i xi′σ′

(
w>0jxi√

d

)
σ′

(
w>0jxi′√

d

))∣∣∣∣∣ . (27)

In particular, if γ < 1 and λ̃j > 0, then the lower bound is positive almost surely so that we have

lim inf
m→∞

∥∥∇wtj
L(Wt)

∣∣
t=0

∥∥2
> 0

with probability 1.

Sketch of the proof. The lower bound in Equation (27) is obtained by a relatively straightforward
calculation since the calculation of the gradient is simplified due to Assumption 7.7. The second part of the
theorem follows from the fact that when conditioned on w0j , the absolute value on the right-hand side of
Equation (27) is a continuous random variable that depends only on the yi’s, and so it is strictly positive
with probability one.

8 Experiments

We use here a (smooth) swish activation function σ(z) = z/(1 + e−z). We obtained quantitatively similar
results with the ReLU activation function; see Appendix L in the Supplementary Material.

8.1 Simulated data.

8.1.1 Illustration of the main results

We first illustrate our theory on simulated data.4 We generate n = 100 observations where for i ∈ [n], xi
is d = 50 dimensional and sampled uniformly on the unit sphere, and yi = 5

d

∑d
j=1 sin(πxi,j) + εi where

εi
iid∼N (0, 1). We use the FFNN of Section 3.1, with the swish activation function, m = 2000 hidden nodes,

and λm,j as in Equations (1) and (4). We consider the four values (γ, α) ∈ {(1,−), (0.5, 0.7), (0.2, 0.5), (0, 0.4)}.
For each setting, we run GD with a learning rate of 1.0 for 50 000 steps, which is repeated five times to get
average results. We summarise the results in Figure 1, which shows the training error and the evolution of
the weights, NTG, and minimum eigenvalue of the NTG as a function of the GD iterations. We see a clear
correspondence between the theory and the empirical results. For γ > 0, GD achieves near-zero training
error. The minimum eigenvalue and training rates increase with γ. For γ = 1, we have the highest minimum
eigenvalue and the fastest training rate, but there is no/very little feature learning: the weights and the NTG
do not change significantly over the GD iterations. When γ < 1, there is clear evidence of feature learning:
both the weights and the NTG change significantly over time; the smaller the γ and α, the more feature
learning arises.

4The code can found at https://github.com/AnomDoubleBlind/asymmetrical_scaling/
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Figure 1: Results on simulated data. From left to right, 1) training risks, 2) differences in weight norms
‖wtj −w0j‖ with the j’s being those neurons which have maximal differences at the end of the training, 3)
differences in NTG matrices, and 4) minimum eigenvalues of NTG matrices.

Figure 2: Results on simulated data from a single ReLU unit. Evolution of the training error (left) and test
error (right) as a function of the training iteration.

8.1.2 Improved generalization: Single ReLU experiment.

To illustrate the benefits of asymmetrical scaling, we consider here the scenario where the function to learn
is a single-unit ReLU, a setting known to be challenging for the lazy-training regime (Malach et al., 2021).
Consider the following data-generating process:

X ∼ N (0, Id)
Y = σ(wT0 X)

where w0 = (1, .., 1) ∈ Rd and σ is the ReLU activation function. In this experiment, we sample a training
dataset of n = 100 samples in dimension d = 10. As previously, we train fully connected neural networks
composed of a single hidden layer, with different node-scaling strategies. The width in all models is set to
P = 2000. The generalization error is computed on 5000 samples from the same single ReLU data-generating
process. All experiments are repeated 5 times, the training and testing datasets are resampled for each run.
The results are reported in Figure 2. We notice that at the end of the training, the error is near zero for all
scalings. Examining the error on the test set, one can see that, as expected, the symmetrical γ = 1 NTK
scaling generalizes poorly in this setting. The asymmetrical scalings, on the other hand, perform significantly
better, illustrating the benefits of this strategy in terms of generalization error. For completeness, we also
report the results using the standard pytorch initialization. We can see that in this setting of a sparse
generating process, the standard initialization also generalizes poorly compared to the asymmetrical model.
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Figure 3: A subset of results for the regression experiments. From left to right, 1) training risks for dataset
concrete , 2) differences in weight norms ‖wtj −w0j‖ with the j’s being the neurons having the maximal
difference at the end of the training for dataset energy, 3) differences in NTG matrices for dataset airfoil,
and 4) test risks of transferred models for dataset plant.

8.2 Real data

8.2.1 Regression

We also validate our model on four regression datasets from the UCI repository5: concrete ((n, d) = (1030, 9)),
energy ((n, d) = (768, 8)), airfoil ((n, d) = (1503, 6)), and plant ((n, d) = (9568, 4)). We split each dataset
into training (40%) , test (20%), and validation sets (40%), and use the validation set to test transfer learning.
We use the same parameters as for the simulated data, but train our FFNNs for 100 000 steps in each run.
To further highlight the presence of feature learning in our model, we test the transferability of features
learnt from our networks as follows. We first split the validation set into a held-out training set (50%) and a
test set (50%), and extract features of the held-out training set using the FFNNs trained on the original
training set. Features are taken to be the outputs of the hidden layers, so each data point in the validation
set is represented with a m = 2000 dimensional vector. Then, we sort feature dimensions with respect to
feature importance measured as (λm,j‖wtj‖2)j∈[m] and use the top-k of these to train an external model.
The chosen external model is a FFNN with a single hidden layer having 64 neurons and ReLU activation,
which is trained for 5000 GD steps with a learning rate of 1.0. Our theory suggests that smaller γ and α likely
lead to better transfer learning. A subset of our results appears in Figure 3; see Appendix K for additional
results. In line with the simulated data experiments, we observe a stronger presence of feature learning,
in terms of weight-norm changes and NTG changes, for smaller values of γ and α. Also, we observe that
models with smaller values of γ have lower risks when a small number of features are used for the transfer.
The interpretation is that those models are able to learn a sufficient number of representative features using
relatively fewer neurons.

8.2.2 Classification

We apply our model on two image classification tasks. The first is small-scale using the setting assumed in
our theory, while the second is larger-scale using a more realistic setting. In addition to the transferability
experiment described before, we test the prunability of the FFNNs. We gradually prune hidden nodes with
small feature importance and measure risks after pruning. Feature importance is measured as above. Our
theory suggests that models with smaller γ and/or α values are likely to be more robust with respect to
pruning, as long as γ < 1. Wolinski et al. (2020) had similar empirical findings on the benefits of asymmetrical
scaling for network pruning when γ = 0.
MNIST. We take a subset of size 5000 from the MNIST dataset and train the same models used in the
previous experiments. We also test pruning and transfer learning, where we use an additional subset of size
5000 to train an external FFNN having a single hidden layer with 128 nodes. To match our theory, instead of
using cross-entropy loss, we use the MSE loss by treating one-hot class labels as continuous-valued targets.
The outputs of the models are 10 dimensional, so we compute the NTG matrices using only the first dimension
of the outputs. In general, we get similar results in line with our previous experiments. The pruning and
transfer learning results are displayed in Figure 4. For other results, see Figure 6 in the Supplementary
Material.

5https://archive.ics.uci.edu/ml/datasets.php
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Figure 4: A subset of results for MNIST dataset. From left to right, 1) training risks, 2) differences in weight
norms, 3) test accuracies of pruned models, and 4) test accuracies of transferred models.

Figure 5: Results for CIFAR–100. From left to right, 1) test risk through training, 2) differences in weight
norms ‖wtj −w0j‖ with the j’s being the neurons having the maximal difference at the end of training, 3)
test risks of pruned models, and 4) test accuracies of pruned models.

CIFAR. We consider a more challenging image classification task of CIFAR–10 and CIFAR–100. The
datasets have 60 000 images with 50 000 for used training and the rest used for testing. There are, respectively,
10 and 100 different classes. We show the benefits of asymmetrical node scaling hold for this more challenging
problem. In many applications, one uses a large model pre-trained on a general task and then performs
fine-tuning or transfer learning to adapt it to the task at hand. We implement this approach on a ResNet-18
model, pre-trained on ImageNet data. With this model, we transform each original image to a vector of
dimension 512. We then train shallow FFNNs as described in Section 3.1, with m = 2000 and output
dimension 10 (resp. 100). This experiment differs from previous cases as 1) we use stochastic GD with a
mini-batch size of 64 instead of full batch GD; 2) we use cross-entropy loss instead of MSE; and 3) both layers
are trained. All experiments are run five times, with the learning rate 5.0. Figure 5 shows the pruning results
for the same four values of pairs (γ, α) as above, for CIFAR–100. Similar results are obtained for CIFAR–10;
see Appendix K. Similar conclusions as before hold here, even though the theory does not apply directly.

9 Discussion, limitations and further work

We have shown that under an asymmetrical scaling of the nodes of a neural network, it is possible to achieve
both zero training error and feature learning, when the width of the neural network is sufficiently large. We
considered two definitions of feature learning. The first definition is a minor generalisation of the notion of
feature learning from (Yang & Hu, 2021), and it is defined as a change in the feature map. We proposed a
second definition, called non-uniform feature learning, which additionally requires that the contributions of
some individual nodes remain non-negligible in the asymptotic limit. We showed that under our asymmetric
scaling and additional conditions, both definitions hold, whereas for the standard NTK, neither does, and for
the mean field, only the standard definition holds. We demonstrate empirically that having non-uniform
feature learning is particularly important when we consider transfer learning and pruning. Our definitions of
feature learning relate to the change in the feature map. As already noted by (Yang & Hu, 2021), it is a
relatively weak definition of feature learning, as it does not connect the weight change with the generalisation
properties. Experimentally, we found that in some case (e.g. single ReLU), the asymmetrical, unpruned
network provides the best test error, while in others (MNIST and CIFAR), the unpruned symmetrical scaling
gave the best test accuracy. An interesting avenue of research is to investigate theoretically the generalisation
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properties of such asymmetrical scaling. We note that the approaches used for the symmetric NTK (Arora
et al., 2019a), which rely on the limiting kernel, cannot be applied to our setting, due to the evolving kernel.

In this article, we have assumed an iid Gaussian initialisation for the weights (Assumption 3.3), which
is a standard assumption in the analysis of large-width neural networks (Du et al., 2019b;a; Oymak &
Soltanolkotabi, 2020; Nguyen et al., 2021). Our results rely on the fact that the minimum eigenvalue κn of the
mean NTK at initialisation is strictly positive; this result was demonstrated by (Du et al., 2019a, Proposition
F.1) under the iid Gaussian initialisation. An interesting direction of research would be to investigate whether
the results derived in this paper hold under other, possibly non-iid, initialisation schemes. In particular, the
case of orthogonal initialisations would be of particular interest (Hu et al., 2020; Huang et al., 2021).

The asymmetrical parameterisation in Equation (1) is rather general, and only requires the λ̃j to be summable.
A natural default choice, taken in this article, is to take a power function ∝ j−1/α where 0 < α < 1. Other
parameterisations are also possible, such as λ̃j = 1/K for j = 1, . . . ,K and 0 otherwise. One could also
choose other scalings such as (e− 1) exp(−j) or C/(j log2(j + 1)).
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