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Abstract

Meta-learning algorithms are able to learn a new
task using previously learned knowledge, but they
often require a large number of meta-training
tasks which may not be readily available. To
address this issue, we propose a method for few-
shot learning with fewer tasks, which we call
MetaModulation. The key idea is to use a neu-
ral network to increase the density of the meta-
training tasks by modulating batch normalization
parameters during meta-training. Additionally,
we modify parameters at various network levels,
rather than just a single layer, to increase task
diversity. To account for the uncertainty caused
by the limited training tasks, we propose a vari-
ational MetaModulation where the modulation
parameters are treated as latent variables. We also
introduce learning variational feature hierarchies
by the variational MetaModulation, which mod-
ulates features at all layers and can consider task
uncertainty and generate more diverse tasks. The
ablation studies illustrate the advantages of utiliz-
ing a learnable task modulation at different levels
and demonstrate the benefit of incorporating prob-
abilistic variants in few-task meta-learning. Our
MetaModulation and its variational variants con-
sistently outperform state-of-the-art alternatives
on four few-task meta-learning benchmarks.

1. Introduction

Learning to learn or meta-learning (Schmidhuber, 1987;
Thrun & Pratt, 1998), offers a powerful tool for few-shot
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learning (Andrychowicz et al., 2016; Ravi & Larochelle,
2017; Finn et al., 2017). The crux for few-shot meta-
learning is to accrue prior meta-knowledge from a set of
meta-training tasks, which enables fast adaptation to a new
task with limited data. Despite remarkable achievements
of existing meta-learning algorithms for few-shot learn-
ing (Finn et al., 2017; Snell et al., 2017; Liu et al., 2022; Hu
et al., 2022; He et al., 2022) these works depend on a large
number of meta-training tasks during training. However,
an extensive collection of meta-training tasks is unlikely to
be available for many real-world applications. For exam-
ple, in medical image diagnosis, a shortage of data samples
and tasks arises due to the need for specialist labeling by
physicians and patient privacy concerns. Additionally, rare
disease types (Wang et al., 2017) present challenges for
few-shot learning. In this paper, we focus on few-task meta-
learning, where the number of available tasks at training
time is limited.

To tackle the few-task meta-learning problem, a variety
of task augmentation (Ni et al., 2021; Yao et al., 2021a)
and task interpolation (Lee et al., 2022; Yao et al., 2021b)
methods have been proposed. The key idea of task augmen-
tation (Ni et al., 2021; Yao et al., 2021a) is to increase the
number of tasks from the support set and query set during
meta-training. The weakness of these approaches is that
they are only able to capture the global task distribution
within the distribution of the provided tasks. Task inter-
polation (Lee et al., 2022; Yao et al., 2021b) generates a
new task by interpolating the support and query sets of dif-
ferent tasks by Mixup (Verma et al., 2019) or a neural set
function (Lee et al., 2019). Here, a key question is how
to combine tasks and at what feature level. For example,
the state-of-the-art MLTI by (Yao et al., 2021b) randomly
selects the features of a single layer from two known tasks
for a linear mixup but ignores all other feature layers for
new task generation. It leads to a sub-optimal interpolated
task diversity. To address this limitation, we propose a new
task modulation strategy that captures the knowledge from
one known task at different levels.

One key aspect of task modulation is the ability to lever-
age the representation of a single task at different levels of
abstraction. This allows the model to modulate representa-
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tions of other tasks at varying levels of detail, depending
on the specific needs of the new task. Conditional batch
normalization (De Vries et al., 2017; Dumoulin et al., 2016;
Perez et al., 2018) has been successfully applied to visual
question answering and other multi-modal applications. In
conditional batch normalization, the normalization parame-
ters (i.e., the scale and shift parameters) are learned from a
set of additional input conditions, which can be represented
as a set of auxiliary variables or as a separate input branch to
the network. This allows the network to adapt to the specific
task at hand and improve its performance. Inspired by these
general-purpose conditional batch normalization methods,
we make in this paper three contributions.

In this paper, we propose a method for few-shot learning
with fewer tasks called MetaModulation. It contains three
key contributions. First, a meta-training task is randomly
selected as a base task, and additional task information is in-
troduced as a condition. We predict the scale and shift of the
batch normalization for the base task from the conditional
task. This allows the model to modulate the statistics of the
conditional task on the base task for a more effective task
representation. It is also worth noting that our modulation
operates on each layer of the neural network, while previous
methods (Yao et al., 2021b; Lee et al., 2022) only select
a single layer for modulation. Thus, the model can gener-
ate more diverse tasks during meta-training, as it utilizes
the statistical information of each level of the conditional
task. As a second contribution, we introduce variational task
modulation, which treats the conditional scale and shifts as
latent variables inferred from the conditional task. The
optimization is formulated as a variational inference prob-
lem, and new evidence lower bound is derived under the
meta-learning framework. In doing so, the model obtains
probabilistic conditional scale and shift values that are more
informative and better represent the distribution of real tasks.
As a third contribution, we propose hierarchical variational
task modulation, which obtains the probabilistic conditional
scale and shifts at each layer of the network. We cast the
optimization as a hierarchical variational inference prob-
lem in the Bayesian framework; the inference parameters
of the conditional scale and shift are jointly optimized in
conjunction with the modulated task training.

To verify our method, we conduct experiments on four
few-task meta-learning benchmarks: minilmagenet-S, ISIC,
DermNet-S, and Tabular Murris. We perform a series of
ablation studies to investigate the benefits of using a learn-
able task modulation method at various levels of complexity.
Our goal is to illustrate the advantages of increasing task
diversity through such a method, as well as demonstrate the
benefits of incorporating probabilistic variations in the few-
task meta-learning framework. Our experiments show that
MetaModulation consistently outperforms state-of-the-art
few-task meta-learning methods on the four benchmarks.

2. Preliminaries

Problem statement. For the traditional few-shot meta-
learning problem, we deal with tasks 7;, as sampled from
a task distribution p(7). We sample N-way k-shot tasks
from the meta-training tasks, where k is the number of la-
beled examples for each of the IV classes. Each ¢-th task
includes a support set S'={(x;,y;)}..x* and query set
O ={(x;,y:)}7, (S, Q' C X). Given a learning model
fs, where ¢ denotes the model parameters, few-shot learn-
ing algorithms attempt to learn ¢ to minimize the loss on
the query set Q; for each of the sampled tasks using the
data-label pairs from the corresponding support set S;. Af-
ter that, during the testing stage, the trained model f and
the support set S; for new tasks 7; perform inference and
evaluate performance on the corresponding query set Q;. In
this paper, we focus on few-task meta-learning. In this set-
ting, the main challenge is that the number of meta-training
tasks 7; is limited, which causes the model to overfit easily.

Prototype-based meta-learning. We develop our method
based on the prototypical network (ProtoNet) by Snell
et al. (2017). Specifically, ProtoNet leverages a non-
parametric classifier that assigns a query point to the class
having the nearest prototype in the learned embedding
space. The prototype ci of an object class c is obtained
by: ck=— >, fs(Xck), where fy(xc, 1) is the feature em-
bedding of the sample x. ;, which is usually obtained by a
convolutional neural network. For each query sample x4,
the distribution over classes is calculated based on the soft-
max over distances to the prototypes of all classes in the
embedding space:

exp(—=d(fe(x7), ck))
> exp(—d(fs(x9),cir))’

where y? denotes a random one-hot vector, with y? indicat-
ing its n-th element, and d(-, -) is some (Euclidean) distance
function. Due to its non-parametric nature, the ProtoNet en-
joys high flexibility and efficiency, achieving considerable
success in few-shot learning.

p(yn = k|x?) = D

Conditional batch normalization. The aim of Batch Nor-
malization (Ioffe & Szegedy, 2015) is to accelerate the train-
ing of deep networks by reducing internal covariate shifts.
For a layer with d-dimensional input z=(z(")...z(?) and
activation x(k), batch normalization normalizes each scalar
feature as follows:

(k) (k)
V" — Elx
y<k) (k) [ ]

_ (k)
7 Var[z(®)] + € g

where € is a constant added to the variance for numerical sta-
bility. 7(¥) and 5*) are the scale and shift for batch normal-
ization. Conditional batch normalization (CBN) (De Vries
et al., 2017) is a class-conditional variant of conventional
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batch normalization. The key idea of CBN is to predict
the transformation parameters « and S from a conditional
embedding (i.e., a language embedding). CBN enables the
language embedding to manipulate the entire vision feature
map by scaling them up or down, negating them, or shut-
ting them off completely. Specifically, CBN uses two feed-
forward multi-layer perceptrons (MLPs) to predict these
changes instead of predicting the original transformations,
which benefits training stability:

AB =MLP(eq) A7y = MLP(ey), 3)
where ¢, is an additional language embedding. So, given a
feature map with C channels, these MLPs output a vector
of size C'. They then add these changes to the S and ~
parameters:

/Bc = ﬁc"i'ABc

Finally, the updated B and 4 are used as transformation
parameters for the batch normalization (eq. ( 2)) of vision
features. Rather than using a language embedding for the
conditioning, we randomly select one additional task as a
condition to predict the scale and shift of the batch normal-
ization for another task.

’}70 =%+ A’Yc- 4

Meta-learning task interpolation. Several methods (Yao
et al., 2021b; Lee et al., 2022) have been suggested as ways
to increase the diversity of the tasks used for meta-training.
MLTI (Yao et al., 2021b) generates additional tasks by ran-
domly sampling a pair of tasks and interpolating the corre-
sponding features and labels using Manifold Mixup (Verma
et al., 2019). Specifically, given examples from class n in
task 7; and class n’ in task 7; the interpolated features are
defined as:

H;' = \H;, + (1 - M)HL,, 5)

HY' = \HE, + (1- )HY, (6)

where [ indicates the I-th layer (0 <! < L), and X € [0, 1]
is sampled from a Beta distribution Beta(c, 8). The inter-
polated support samples ﬂg,fn and query samples flg;fm
can be regarded as the new classes in the interpolated task.
However, MLTI (Yao et al., 2021b) randomly selects only
the features of a single layer from two known tasks to be
mixed and ignores all the other feature layers. It leads to
the interpolated task’s diversity being limited and therefore
does not increase the generalizability of the model.

3. MetaModulation

In this paper, we propose MetaModulation for few-task
meta-learning. We first introduce meta task modulation in
section 3.1. To obtain more diverse meta-training tasks,
we then propose variational task modulation in section 3.2,
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Figure 1. Meta task modulation. Various combinations of the
transformation parameters v and 3 from task 7; can modulate the
individual activation of task 7; at different layers, which can make
the newly generated task more diverse.

which introduces variational inference into the modulation.
We also introduce hierarchical meta variational modulation
in section 3.3, which adds variational modulation to each
network layer to obtain a richer task distribution.

3.1. Meta task modulation

To address the single layer limitation in MLTI (Yao et al.,
2021b), we introduce meta task modulation for few-task
meta-learning, which modulates the features of two different
tasks at different layers. We modulate all layers of samples
from a meta-training task 7; by predicting the v and 3
of the batch normalization from base task 7;. Following
CBN (De Vries et al., 2017), we only predict the change
AP, and A+, on the original scalars from the task 7;, which
benefits training stability.

Specifically, to infer the conditional scale and shift Ag,
and A~,., we deploy two functions f é() and f!(-) that take

the activations Hﬁn from task 7; as input, and the output
are AfL, .. and Ayl ... The functions f5(-) and f.(-) are

;n;c
parameterized by two feed-forward multi-layer perceptrons:
AB.. =MLE(H,)  Avpy

;Mn;C n;c

= MLP(H,)  (7)

where A% and Ay

fnse im:c are the changes of the support
set. We obtain Afyiq;fb;c and A’Yg}ll;c of the query set by the
same strategy. Note that the functions f4(-) and f!(-) are
shared by different channels in same layer and we learn L

pairs of those functions if we have L convolutional layers.

Using the above functions, we generate the changes for the
batch normalization scale and shift, then following eq. (4),
we add these changes to the original 3}, and 4}.,,.. from
task 7;:

s\l sl s,l ~s,0 sl s,l
Bj;n;c - Bj;n;c+A5i;n;c Visnie = Vj;n;c+A7i;n;c ®)

l

Once we obtain the modulated scale ’yé;mc and shift BM;C,
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we compute the modulated features for the support and
query set from task 7; based on eq. (2):

s ~S, Hs’f’L - E[H&'L] hs
H z_ ”chJ’—lJ’JFBj;’iL;cv 9)
Var[Hj;, ] + ¢
H?! — E[H?!
HgLZ—AgychJ’l—[]’}+/B]nc’ (10)
Var[H%!] + €

where E[H!, | and Var[H.,, ] are the mean and variance
of samples features from 7;. We illustrate the meta task
modulation process in Figure 1.

However, the deterministic conditional scale and shift are
not sufficiently representative of modulated tasks. Moreover,
uncertainty is inevitable due to the scarcity of data and tasks,
which should also be encoded into the conditional scale and
shift. In the next section, we derive a probabilistic latent
variable model by modeling conditional scale and shift as
distributions, which we learn by variational inference.

3.2. Variational task modulation

In this section, we introduce variational task modulation us-
ing a latent variable model i m which we treat the conditional
scale Aﬂz ‘e and shift Afyz ‘n:c as latent variables z inferred
from one known task. We formulate the optimization of
variational task modulation as a variational inference prob-
lem by deriving a new evidence lower bound (ELBO) under
the meta-learning framework.

From a probabilistic perspective, the conditional latent scale
and shift maximize the conditional predictive log-likelihood
from two known tasks 7;, ;.

mgxlogp(ylﬂ, T;)
— maxlog [ p(FIx",%°)p(x, [T Tkt
p

— maxlog [ p(31%7,5°)p(x7, 52, T )p(al ) dadx s
p

(1D
where x° %7 are the support sample and
query sample of the modulated task 7. Since

X°|Ti, Tj)=p(%9,%°|z, T;)p(z|T;) 1is generally in-
tractable, we resort to a variational posterior ¢(z, X%, X°|7;)
for its approximation. We obtain the variational distribution
by minimizing the Kullback-Leibler (KL) divergence:

Dxulg(z, %7, x°(T;)||p(2, %7, %°(Ti, T;).

p(z, %,

12)

By applying the Baye’s rule to the posterior ¢(z,x%,%x°|T;) ,
we derive the ELBO as:

log p(¥7i, T;) >Eq(z,59,55) [log p(¥[x%, %7)]
Ti)llp(z, %, %°| T3, T;)]

13)

— Dku [q(z, %, %°

p’e

Figure 2. Variational task modulation. % and y denote the sam-
ple and label of newly generated task 7 and z represents the latent
modulation parameters.

The second term in the ELBO can also be simplified. Since

DKL [q(z7§(q7§(8)‘7ﬂ|p(zvi‘7§’ 7;)]

7 14
= Eq(z,ﬁq;f{‘s) log q(z’iwy ( )
p(z7x|7;77‘-j)
and
(2,59, %°IT;) = (7, %71, Ta(z), (1)

we then combine eq. (14), eq. (15) and eq. (11), to obtain:

q(Z,Xq)X8|7})
(Z7§(q,§(8|7;77;‘)
p(x1,%%|z, T;)q(z)
:E xX4q,X5 1 < %
q(z,%x9,%°) 108 p(x9,%x%|z, T;)p(2|T;)
z)

E Z.%X9.%5 log
q(z,%%,%°) D

(16)

q(z
= Dk [q(z )|

This provides the final ELBO for the variational task modu-
lation:

| i)
p(2|Ti)] -

q(zakqaisrn) > ]Eq(z,f{q,fcs) [10gp($’|§( )A(S)]

~ Dyt [4(2)|p(a|To) (an

The overall computation graph of variational task modula-
tion is shown in Figure 2.

Directly optimizing the above objective does not take into
account the task information of all model layers, since it only
focuses on the conditional latent scale and shift at a specific
layer. Thus, we introduce hierarchical variational inference
into the variational task modulation by conditioning the
posterior on both the known tasks and the conditional latent
scale and shift from the previous layers.

3.3. Hierarchical variational task modulation

We replace variational distribution in eq. (12) with a new
conditional distribution ¢(z',%9,%%|z!~1, 7;) that makes
latent scale and shift of current [-th layer also dependent on
the latent scale and shift from the upper [—1-th layers.
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¥y (T ) [T )

Figure 3. Hierarchical variational task modulation. z' indicates
the latent modulation parameters at the layer [. The latent transfor-
mation parameter z' is depend on the task 7; and the upper z' .

The hierarchical variational inference gives rise to a new
ELBO, as follows:

q(z7f(q’§(s‘7;) > Eq(zl,f(‘l,fcs\zlfl) [logp(ybiq,f(s)]

- _ (18)

— Dy [q(2 |2 )|lp(2' 12", 7o)
The graphical model of hierarchical variational task modu-
lation is shown in Figure 3.

In practice, the prior p(z'|z!~1, T;) is implemented by an
amortization network (Kingma & Welling, 2013) that takes
the concatenation of the average feature representations of
samples in the support set from 7; and the upper layer la-
tent scale and shift z'~! and returns the mean and variance
of the current layer latent scale and shift z'. To enable
back-propagation with the sampling operation during train-
ing, we adopt the reparametrization trick (Rezende et al.,
2014; Kingma & Welling, 2013) as z=z,, + z, © €, where
€ ~ N(0,1). The hierarchical probabilistic scale and shift
provide a more informative task representation than the
deterministic meta task modulation and have the ability
to capture different representation levels, thus modulating
more diverse tasks for few-task meta-learning.

In the meta-training stage, we use the known meta-training
tasks 7; with our meta task modulation and its variational
variants to generate the new tasks 7T for the meta-training.
To ensure that the original tasks are also trained together,
we train the generated tasks together with the original tasks.
Thus the loss function of our meta task modulation Ly
is as follows:

T
Lyvt™m = %Z ( Z Lcr + A Z CCE)» (19)

@ (8:,Q)~T; (8:,24:)~T;

The loss of variational task modulation Ly iS

T
LvT™ :% Z ( Z —Eq(z,59,59) [log p(¥[%7, %°)]

i (x9,9)€Q

T
1
+ 8Dk [a(@)| (T ) A5 DS D Lon.
i (8:,Qi)~T;
(20)
And the loss of hierarchical variational task modulation can

be written as
1 T
‘CHVTM :T Z ( Z _]Eq(zl,ic‘l,)’cs\zl_l) [10gp($l|5(q7 )A(S)]

W (x9)eQ

— 8D [a(2' 12 ) Ip(' 12 )] )

1 T
+ATZ Z ECE,
i (8:,2i)~T;
21

where L is the cross-entropy loss,

LcE =

[d(f¢>(xq)7 ck) + log Z exp(—d(f¢(mq), Ck))] )

1
NoNo -
(22)
N¢ and Ng are the number of prototypes and query samples
in each task, and A > 0 and 8 > 0 are the regularization

hyper-parameters.

In the meta-test stage, we directly input the support set
S using the meta-trained feature extractor fy(-) to obtain
the prototype c; from the test task. Then we obtain the
prediction of the query set x? for performance evaluation
based on eq. (1).

4. Experiments
4.1. Experimental setup

Datasets. We conduct experiments on four few-task meta-
learning challenges, i.e., minilmagenet, ISIC, DermNet and
Tabular Murris (Cao et al., 2020). minilmagenet (Vinyals
et al., 2016) is constructed from ImageNet (Deng et al.,
2009) and comprises a total of 100 different classes (each
with 600 instances). All images are downsampled to 84 x
84. We follow (Yao et al., 2021b) and reduce the number
of tasks by limiting the number of meta-training classes to
obtain minilmagenet-S, with 12 meta-training classes and
20 meta-test classes. ISIC (Milton, 2019) aims to classify
dermoscopic images among nine different diagnostic cate-
gories. 10,015 images are available for training across 8 dif-
ferent categories. We select 4 categories as the meta-training
classes. DermNet is one of the largest open resources of
images of skin diseases, with more than 23,000 images. Fol-
lowing (Yao et al., 2021b), we construct Dermnet-S, which
selects 30 diseases as the meta-training classes. Tabular
Murris considers cell type classification across organs and
contains nearly 100,000 cells from 20 organs and tissues.
Following (Yao et al., 2021b), we choose 57 base classes
as the meta-training classes. For our ablation studies we
report on minilmagenet-S, ISIC and Dermnet-S, for our
comparison with the state-of-the-art, we also consider Tabu-
lar Murris. Sample images from all datasets are provided in
the appendix.

Implementation details. For minilmagenet-S, ISIC,
DermNet-S and Tabular Murris, we follow (Yao et al.,
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minilmagenet-S ISIC Dermnet-S

1-shot  5-shot  1-shot 5-shot 1-shot 5-shot
Vanilla  36.26 50.72 58.56  66.25 4421 60.33
MTM 42.44  56.25 63.13 7423 4946 66.12

Table 1. Benefit of meta task modulation in (%) on three few-
task meta-learning challenges. Our meta task modulation (MTM)
achieves better performance compared to a vanilla ProtoNet.

Network layer

18t ond 3rd 4™ random All (HVTM)
5-way 1-shot
MTM 4130 4132 4131 3947  39.98 42.44
VTM 4125 4205 41.63 3997 4091 43.21
5-way 5-shot
MTM 5421 5430 54.13 5262 5332 56.25
VTM 5447 5582 5436 5280 5443 57.26

Table 2. Benefit of variational task modulation for varying layers
on minilmageNet-S. Variational task modulation (VITM) improves
over any of the selected individual layers using MTM.

2021b) using a network containing four convolutional
blocks and a classifier layer. Each block comprises a 32-
filter 3 x 3 convolution, a batch normalization layer, a ReLU
nonlinearity, and a 2 X 2 max pooling layer. We train a Pro-
toNet (Snell et al., 2017) using Euclidean distance in the
1-shot and 5-shot scenarios with training episodes. Each
image is re-scaled to the size of 84 x 84 x 3. For all ex-
periments, we use an initial learning rate of 10~3 and an
SGD optimizer with Adam (Kingma & Ba, 2014). The varia-
tional neural network is parameterized by three feed-forward
multiple-layer perception networks and a ReLU activation
layer. The number of Monte Carlo samples is 20. The batch
and query sizes of all datasets are set as 4 and 15. The
total training iterations are 50,000. The average few-task
meta-learning classification accuracy (%, top-1) is reported
across all test images and tasks. Code available at: https:
//github.com/lmsdss/MetaModulation.

4.2. Results

Benefit of meta task modulation. To show the benefit of
meta task modulation, we first compare our method with
a vanilla Prototypical network (Snell et al., 2017) on all
tasks, without using task interpolation, in Table 1. Our
model performs better under various shot configurations
on all few-task meta-learning benchmarks. We then com-
pare our model with the state-of-the-art MLTI (Yao et al.,
2021b) in Table 5, which interpolates the task distribution
by Mixup (Verma et al., 2019). Our meta task modulation
also compares favorably to MLTI under various shot con-
figurations. On ISIC, for example, we surpass MLTI by
2.71% on the 5-way 5-shot setting. This is because our
model can learn how to modulate the base task features to
better capture the task distribution instead of using linear
interpolation as described in the (Yao et al., 2021b).

Benefit of variational task modulation. We investigate
the benefit of variational task modulation by comparing it

minilmagenet-S ISIC DermNet-S

1-shot  5-shot  1-shot 5-shot 1-shot 5-shot
VIM 42.05 55.82 64.04 7259 49.19 64.62
HVTM 43.21 5726 65.16 7640 5045 67.05

Table 3. Hierarchical vs. flat variational modulation. Hierarchi-
cal variational task modulation (HVTM) is more effective than flat
variational task modulation (VTM) for few-task meta-learning.

62

Accuracy (%)

—e— Vanilla
—e— MTM
—— VTM
—o— HVTM

12 25 38 51 64
Number of meta-training classes

Figure 4. Influence of the number of meta-training tasks for
5-way 5-shot on minilmageNet. All MetaModulation implementa-
tions improve over a vanilla prototype network, especially when
fewer tasks are available for meta-learning. Where a vanilla net-
work requires 64 tasks to reach 63.7% accuracy, we need 40.

with deterministic meta task modulation. The results are
reported on minilmageNet-S under various shots in Table 2.
{15t 2nd 3rd 4th} random and, all are the selected deter-
mined layer, the randomly chosen one layer and all the
layers to be modulated, respectively. The variational task
modulation consistently outperforms the deterministic meta
task modulation on any selected layers, demonstrating the
benefit of probabilistic modeling. By using probabilistic
task modulation, the base task can be modulated in a more
informative way, allowing it to encompass a larger range of
task distributions and ultimately improve performance on
the meta-test task.

Hierarchical vs. flat variational task modulation. We
compare hierarchical modulation with flat variational modu-
lation, which only selects one layer to modulate. As shown
in Table 3, the hierarchical variational modulation improves
the overall performance under both the 1-shot and 5-shot
settings on all three benchmarks. The hierarchical structure
is well-suited for increasing the density of the task distri-
bution across different levels of features, which leads to
better performance compared to flat variational modulation.
This makes sense because the hierarchical structure allows
for more informative transformations of the base task, en-
abling it to encompass a broader range of task distributions.
Note that, we use hierarchical variational task modulation
to compare the state-of-the-art methods in the subsequent
experiments.

Influence of the number of meta-training tasks. In Fig-
ure 4, we analyze the effect of the number of available meta-
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mini — Dermnet Dermnet — mini

1-shot 5-shot 1-shot 5-shot
Vanilla 33.12 50.13 28.11 40.35
MLTI 35.46 51.79 30.06 4223
ATA 35.83+£0.58 51.65+0.6 -

This paper 37.15+0.75 53.92 + 1.01 31.56 + 0.68 44.13 + 0.92

Table 4. Cross-domain adaptation ability. MetaModulation
achieves better performance even in a challenging cross-domain
adaptation setting compared to a vanilla prototype network and
MLTI by Yao et al. (2021b).

training tasks on the performance of our model under a 5-
shot setting on minilmageNet-S. Naturally, our model’s per-
formance improves, as the number of meta-training classes
increases. The number of meta-training tasks is important
for making the model more generalizable through meta-
learning. More interesting, our model’s performance is
considerably improved by using a learnable modulation that
incorporates information from different levels of the task.
Compared to the best result of a vanilla prototype network,
63.7% for 64 meta-training classes, we can reduce the num-
ber of classes to 40 for the same accuracy.

Cross-domain adaptation ability. To further evaluate the
effectiveness of our proposed method, we conducted addi-
tional tests to assess the performance of MetaModulation
in cross-domain adaptation scenarios. We trained Meta-
Modulation on one source domain and then evaluated it
on a different target domain. Specifically, we chose the
minilmagenet-S and Dermnet-S domains. The results, as
shown in Table 4, indicate MetaModulation generalizes bet-
ter even in this more challenging scenario.

Analysis of modulated tasks. To understand how our Meta-
Modulation is able to improve performance, we plotted the
similarity between the vanilla, interpolated and modulated
tasks and the meta-test tasks in Figure 5. Red numbers in-
dicate the accuracy per model on each task. Specifically,
we select 4 meta-test tasks and 300 meta-train tasks per
model from the 1-shot minilmagenet-S setting to compute
the task representation of each model. We then used instance
pooling to obtain the representation of each task. Instance
pooling involves combining a task’s support and query sets
and averaging the feature vectors of all instances to obtain a
fixed-size prototype representation. This approach allows
us to represent each task by a single vector that captures the
essence of the task. We calculated the similarity between
meta-train and meta-test tasks using Euclidean distance.
When using the vanilla prototype model (Snell et al., 2017)
directly, the similarity between meta-train and meta-test
tasks is extremely low, indicating a significant difference
in task distribution between meta-train and meta-test. This
results in poor performance as seen in Figure 5 red numbers
due to the distribution shift. However, the tasks modulated
by our MetaModulation have a higher similarity with the
meta-test tasks compared to the vanilla (Snell et al., 2017)
and MLTT (Yao et al., 2021b), resulting in high accuracy.

Ts 297 351 373 382 3941
Ts 342 397 | 422 | 435 439
T, 335 424

T 35.1 | 41.3

Vanilla  MLTI MTM

VTM HVTM

Figure 5. Analysis of modulated tasks. Similarity of meta-
training tasks to meta-test tasks for different methods, and the
corresponding accuracy (red numbers) for the meta-test tasks. The
tasks modulated by MetaModulatation have high similarity with
the meta-test tasks, resulting in high accuracy.

But, the similarity between the modulated tasks by our Meta-
Modulation and 7y is also relatively low and performance
is also poor. This may be because the task distribution of
T4 is an outlier in the entire task distribution, making it
hard to mimic this task during meta-training. Future work
could investigate ways to mimic these outlier tasks in the
meta-training tasks.

Comparison with state-of-the-art. We evaluate MetaMod-
ulation on the four different datasets under 5-way 1-shot
and 5-way 5-shot in Table 5. Our model achieves state-
of-the-art performance on all four few-task meta-learning
benchmarks under each setting. On minilmagenet-S, our
model achieves 43.21% under 1-shot, surpassing the second-
best MLTT (Yao et al., 2021b), by a margin of 1.85%. On
ISIC (Milton, 2019), our method delivers 76.40% for 5-
shot, outperforming MLTI (Yao et al., 2021b) with 4.88%.
Even on the most challenging DermNet-S, which forms the
largest dermatology dataset, our model delivers 50.45% on
the 5-way 1-shot setting. The consistent improvements on
all benchmarks under various configurations confirm that
our approach is effective for few-task meta-learning.

5. Related work

Few-task meta-learning. In few-task meta-learning, the
goal is to develop meta-learning algorithms that learn
quickly and efficiently from a small number of examples
with limited tasks in order to adapt to new tasks with min-
imal additional training. A common strategy for few-task
meta-learning is task augmentation (Yao et al., 2021a; Vu
etal., 2021; Murty et al., 2021; Zhou et al., 2021; Wang &
Deng, 2021; Wu et al., 2022; Wang et al., 2023), which adds
additional tasks to the training data. One such approach is to
generate additional tasks by perturbing the original tasks in
some way (Yao et al., 2021a; Murty et al., 2021; Zhou et al.,
2021; Wu et al., 2022; Wang et al., 2023). For example,
MetaMix (Yao et al., 2021a) mixes support and query sets
with Manifold Mixup (Verma et al., 2019) to construct a
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minilmagenet-S ISIC Dermnet-S Tabular Murris
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet (Snell et al., 2017) 36.26 50.72 58.56 66.25 44.21 60.33 80.03 89.20
MAML (Finn et al., 2017) 38.27 52.14 57.59 65.24 43.47 60.56 79.08 88.55
Meta-Dropout (Lee et al., 2020) 38.32 52.53 58.40 67.32 44.30 60.86 78.18 89.25
TAML (Jamal & Qi, 2019) 38.70 52.75 58.39 66.09 45.73 61.14 79.82 89.11
MetaMix (Yao et al., 2021a) 39.67 53.10 60.58 70.12 47.71 62.68 81.06 89.75
Meta-Maxup (Yao et al., 2021a) 39.80 53.35 59.66 68.97 46.06 62.97 79.56 88.88
Meta Interpolation (Lee et al., 2022) 40.28 53.06 - - - - - -
ATA (Wang et al., 2023) 40.62 54.59 - - - - - -
MLTI (Yao et al., 2021b) 41.36 55.34 62.82 71.52 49.38 65.19 81.89 90.12
ATU (Wu et al., 2022) 42.60 56.78 62.84 74.50 48.33 65.16 82.03 91.42
This paper: MetaModulation 43.21+0.73 57.26+£0.72 65.61+£1.09 76.40+0.89 50.45+0.84 67.05+0.74 83.13+0.89 91.23+0.57

Table 5. Comparison with state-of-the-art. All results, except for the Metalnterpolation (Lee et al., 2022), are sourced from MLTI (Yao
et al., 2021b). MetaModulation is a consistent top performer for all settings and datasets.

new query set. Another approach is to rely on unsupervised
or self-supervised learning to generate additional tasks from
the training data (Vu et al., 2021; Wang & Deng, 2021). An
alternative few-task meta-learning strategy is task interpo-
lation (Yao et al., 2021b; Lee et al., 2022), which trains a
model to learn from a set of interpolated tasks. For example,
MLTI (Yao et al., 2021b) performs Manifold Mixup on sup-
port and query sets from two tasks for task augmentation.
Set-based meta-interpolation (Lee et al., 2022) leverages
expressive neural set functions (Lee et al., 2019) to interpo-
late a given set of tasks and trains the interpolating function
using bilevel optimization so that the meta-learner trained
with the augmented tasks generalizes to meta-validation
tasks. Both task augmentation and interpolation methods
often randomly mix the features of two known tasks in a
linear way without considering the features of other lay-
ers. This limits the diversity of the interpolated task and its
potential benefit for increasing model generalizability. In
contrast, we propose a learnable task modulation method
that enables the model to learn a more diverse set of tasks
by considering the features of each layer and allowing for a
non-linear modulation between tasks.

Conditional batch normalization. Batch normaliza-
tion (Ioffe & Szegedy, 2015) is a crucial milestone in the
development of deep neural networks. Conditional batch
normalization (CBN) (De Vries et al., 2017) allows a neu-
ral network to learn different normalization parameters per
class of input data. Note the contrast to traditional batch nor-
malization, which uses the same normalization parameters
for all inputs to a network layer. By conditioning the normal-
ization on additional information, such as the class labels
of the training examples, CBN allows the network to adapt
its normalization parameters to the specific class character-
istics. Similarly, Perez et al. (Perez et al., 2018) propose
the feature-wise linear modulation layer for deep neural net-
works. In this paper, we take inspiration from conditional
batch normalization and propose meta task modulation for
few-task meta-learning, where the condition stems from the
samples of a meta-training task. We use the conditional

task as the condition, instead of data from another modality
as in (De Vries et al., 2017), to predict the scale and shift
parameters of the batch normalization for the base task.

6. Conclusion

In this paper, we addressed the issue of meta-learning al-
gorithms requiring a large number of meta-training tasks
which may not be readily available in real-world situations.
We propose MetaModulation, which is to use a neural net-
work to increase the density of the meta-training tasks by
modulating batch normalization parameters during meta-
training. Our MetaModulation consists of three different
implementations. First is the meta task modulation, which
modified parameters at various levels of the neural network
to increase task diversity. Furthermore, we proposed a vari-
ational meta task modulation where the modulation param-
eters are treated as latent variables. We also introduced
learning variational feature hierarchies by the variational
meta task modulation. Our ablation studies showed the
advantages of utilizing a learnable task modulation at dif-
ferent levels and the benefit of incorporating probabilistic
variants in few-task meta-learning. Our MetaModulation
and its variational variants consistently outperformed state-
of-the-art few-task meta-learning methods on four few-task
meta-learning benchmarks.
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A. Effect of the [.

We test the impact of 5 in (20) and (21). The value of 5 control how much information in the base task will be modulated
during the meta-training stage. The experimental results on the three datasets under both 1-shot and 5-shot setting are shown
in Figure 6 and 7. We can see that the performance achieves the best when the values of 5 are 0.01. This means that in each
modulate we need to keep the majority of base task.
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Figure 6. Performance comparison by using various ( on the three Figure 7. Performance comparison by using various /3 on the three
few-task meta-learning dataset under 1-shot. few-task meta-learning dataset under 5-shot.

B. Effect of the ).

We would like to emphasize that the hyper-parameters A (Eq. 19,
20, 21) enable us to introduce constraints on new tasks, beyond just

A L L minilmagenet-S ISIC

minimizing prediction loss. By adjusting the value of )\, we can con-

trol the trade-off between the prediction loss of the new tasks and the 1-shot S-shot 1-shot 5-shot
constraints imposed by the meta-training tasks. To clarify the impact 0.0001 41.97 5523 6525 76.23
of \, we performed an ablation on the HVTM (Eq. 21). The results 0.001 4265 56.18 6561 76.40
in Table 6 show that when the original tasks have higher weight, the 0.01 4321 5726 65.13  76.27
performance is worse. Additionally, we have conducted experiments 8(1)5 f’é ég 2 Z(I)Z 22 8; ;Z;i
to investigate the distribution differences between the meta-training 0 4225 5597 6295 7415

and generated tasks. Specifically, in Table 6, we analyze the task 1 4146 55.12 6215 7273
representations of meta-training and generated tasks and show that 10 4026 53.17  60.03  70.95
they are similar, indicating that the generated tasks have a similar 100 38.01 51.25 59.12 68.23
distribution as the meta-training tasks.

Table 6. Ablation on the \.
C. Dataset.

We apply our method to four few-task meta-learning image classifi-
cation benchmarks. Sample images from each dataset are provided in Figure 8.
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Figure 8. Examples from each dataset. Orange and green boxes indicate the meta-training and meta-test tasks for each dataset.
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