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Abstract

Researchers often rely on humans to code (la-001
bel, annotate, etc.) large sets of texts. This is002
a highly variable task and requires a great deal003
of time and resources. Efforts to automate this004
process have achieved human-level accuracies005
in some cases, but often rely on thousands of006
hand-labeled training examples, which makes007
them inapplicable to small-scale research stud-008
ies and still costly for large ones. At the same009
time, it is well known that language models010
can classify text; in this work, we use Ope-011
nAI’s GPT-3 as a synthetic coder, and explore012
what classic methodologies and metrics (such013
as intercoder reliability) look like in this new014
context. We find that GPT-3 is able to match015
the performance of typical human coders and016
frequently outperforms humans in terms of in-017
tercoder agreement across a variety of social018
science tasks, suggesting that language models019
could be a useful tool to the social sciences.020

1 Introduction021

The analysis of textual data–from sources such022

as open responses to surveys, social media posts,023

newspaper articles, legislative transcripts, etc.–024

has become increasingly important for researchers025

across a variety of disciplines. In the social sci-026

ences, for example, analysis of free-form text is027

used to gather information not easily obtained from028

traditional closed-ended survey analysis or observa-029

tion. Traditionally, researchers interested in quanti-030

tative content analysis of text have hired and trained031

(mostly) undergraduate students to code the mate-032

rial by assigning numbers, labels, and/or categories033

to segments of text describing attributes and content034

of interest. However, such human coding is slow,035

expensive, often unreliable, and requires extensive036

time in training and norming. Given variability037

in experience and perception among coders, re-038

searchers hire multiple people to evaluate the same039

texts, and then calculate intercoder agreement as a040

measure of confidence that they have collectively041

identified the things the researchers hope to glean 042

from these texts. 043

While such an approach works somewhat well 044

for small amounts of text, it is infeasible as a means 045

to analyze the scale of text available in an increas- 046

ingly digital, information-rich world. To address 047

this problem, researchers have developed a number 048

of supervised machine learning (SML) models to 049

code text in the place of humans. While many of 050

these models perform well, they (like the use of hu- 051

man coders) require extensive time and expense as 052

researchers label thousands of examples as training 053

data, tune hyperparameters, etc. This means that 054

SML models work well for large datasets, but often 055

do not scale down to smaller uses. 056

Language models (LMs), such as GPT-2 (Rad- 057

ford et al., 2019), GPT-3 (Brown et al., 2020), 058

BERT (Devlin et al., 2019) and others, offer an 059

alternative. It is well-known that language models 060

can analyze text and classify it, and it is not our 061

purpose to simply present social-science themed 062

results to that effect. Rather, in this paper we ask: 063

if we consider language models as serious tools of 064

the social science, can we analyze their output with 065

tools and metrics common to the social sciences, 066

and will the results be similar? 067

In this paper, we show that one such LM, GPT-3 068

(Brown et al., 2020), is able to perform coding tasks 069

at or exceeding the level of lightly-trained human 070

coders with only 0-3 exemplars (examples of text 071

labeled with a code), upholding the broader trend 072

of effective transfer in NLP. GPT-3 maintains this 073

coding proficiency across a variety of tasks (senti- 074

ment, attributes of text, or classification), difficul- 075

ties (number of possible codes, objective versus 076

subjective, etc.), and co-domains (ordinal versus 077

nominal codes). This suggests that this same model 078

and general method could successfully be used for 079

many other such coding tasks. 080

Our main contributions are (1) demonstrating 081

that large, pre-trained language models can be used 082
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as reliably as human coders on arbitrarily-sized083

datasets across diverse domains; (2) introducing084

and exploring social science metrics in the context085

of language models; and (3) proposing new social086

science coding tasks as benchmark problems to087

assess language model quality.088

2 Related Work089

Because human coding is time-consuming, costly,090

and still subject to imprecision and variability091

(Soroka, 2014), many scholars seek automated al-092

ternatives. Dictionary-based methods (Roberts and093

Utych, 2020; Young and Soroka, 2012) work best094

in cases where clearly defined sets of words indi-095

cate the presence of particular content in the text, as096

opposed to more subtle patterns. They also struggle097

with generalization (Barberá et al., 2021; Grimmer098

and Stewart, 2013). This is especially discourag-099

ing, given that developing and validating them is100

expensive (Muddiman and Stroud, 2017).101

Therefore, researchers have increasingly turned102

to supervised machine learning (SML) methods as103

an alternative, such as naive bayes, random forests,104

and SVMs (Grimmer and Stewart, 2013; Barberá105

et al., 2021). Some authors use active learning106

(Hillard et al., 2008; Collingwood and Wilkerson,107

2012; Miller et al., 2020), or dictionary-SML en-108

semble approaches (Dun et al., 2021). Unfortu-109

nately, all of these require a large dataset for train-110

ing. Typically, this training data is hand-generated111

by human coders, meaning that SML methods do112

not completely negate the time and expense of hu-113

man coders. For instance, (Collingwood and Wilk-114

erson, 2012) find that 100 labeled examples results115

in a 10 percentage-point drop in accuracy compared116

to 1000 labeled examples.117

In contrast, we leverage the few- and zero-shot118

capabilities of language models to almost entirely119

eliminate the need for hand-coded labels. Some120

researchers have used pre-trained language models121

such as BERT (Devlin et al., 2019), BART (Lewis122

et al., 2020), RoBERTa (Liu et al., 2019b), XLNet123

(Yang et al., 2019), and ELMo (Peters et al., 2018)124

in automated content analysis. However, to our125

knowledge, this is the first in-depth comparison126

between human coders and a language model coder127

in a few-shot learning regime.128

It is easy to compare our approach to SML in129

terms of cost, since the model we study requires no130

additional training or labeled data; it is less straight-131

forward to compare performance. It is common in132

SML classification studies to set rejection thresh- 133

olds and ignore instances in which a code cannot 134

be confidently assigned (Sebők and Kacsuk, 2021; 135

Karan et al., 2016). In what follows, we report 136

scores for the entire dataset, meaning they cannot 137

be directly compared to this past work. 138

One critique against work claiming to do few- 139

shot learning is that researchers iterate through 140

many prompts over large validation sets to achieve 141

their results (Perez et al., 2021), essentially over- 142

fitting to the dataset and using an entire dataset 143

of exemplars. We avoid this problem by us- 144

ing a very small validation set to test prompts 145

(n=4 per category) and by being transparent about 146

the small amount of experimentation and prompt- 147

engineering done to achieve our results (Section 148

4.3). We find only minimal (∼5% accuracy boost) 149

gains from prompt engineering. 150

3 Methodology 151

Through various data sources metrics, we show that 152

LMs perform coding tasks just as well as humans, 153

and they do so without labeled data. Specifically, 154

we study GPT-3 (Brown et al., 2020), one of the 155

largest available language models (175 billion pa- 156

rameters). This model–along with others compa- 157

rable in size and training–often generates text that, 158

at least locally, is indistinguishable from that writ- 159

ten by a human, seeming to capture a great deal 160

of the ideas, concepts, and relationships present 161

in human-generated text and language, including 162

linguistic and factual knowledge (Liu et al., 2019a; 163

Amrami and Goldberg, 2018; Jiang et al., 2020; 164

Rogers et al., 2020; Petroni et al., 2020; Bosselut 165

et al.; Bouraoui et al.). We leverage these abilities 166

and prompt a language model to simulate a human 167

performing coding tasks. We carefully templatize 168

prompts, parameterizing them by testing candidates 169

on a validation set of labeled social science data, 170

and analyze the predictive distributions for tokens 171

representing codes. 172

We construct our prompts using a straightfor- 173

ward formula: we provide instructions, categories 174

(if necessary), exemplars (labeled examples of the 175

task), and then the text to classify. We then com- 176

pute GPT-3’s probabilities for the next token over 177

its vocabulary and select the token with the highest 178

probability as the language model’s coding choice. 179

For color-coded examples of our prompts, see Fig- 180

ure 1. 181

These coding tasks are subjective, noisy, and 182
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Using only the following categories
"""
Macroeconomics
Civil Rights, Minority Issues, and Civil Liberties
Health
...
Death Notices
Churches and Religion
Other, Miscellaneous, and Human Interest
"""
Assign the following headlines to one of the categories:
IRAN TURNS DOWN AMERICAN OFFER OF RELIEF MISSION ->
International Affairs and Foreign Aid
In Final Twist, Ill Pavarotti Falls Silent for Met Finale -> Arts and Enter-
tainment
Baseball; Incredibly, Yankees Rally in 9th Again and Win in 12 -> Sports
and Recreation
House Panel Votes Tax Cuts, But Fight Has Barely Begun ->

(a) CAP Example Prompt - New York Times, 3-exemplars

Are the following descriptions of Republicans extreme or moderate?
-angry, racist, close-minded, homophobic: Extreme
-people, hopeful, educated, agreeable: Moderate
-conservative, white, male, religious:

(b) Pig. Partisans Example Prompt - Positivity, 2-
exemplars

Do the following descriptions of Democrats mention personality or charac-
ter traits?
-accepting, tolerant, intellectual, charitable: Yes, the descriptions mention
personality or character traits.
-black, young, female, poor: No, the descriptions do not mention personal-
ity or character traits.
-conservative, white, male, religious:

(c) Pig. Partisans Example Prompt - Traits, 2-exemplars

Figure 1: Example Prompts

varying in difficulty, and so, as with many datasets183

researchers want to code, there is no “ground truth”184

by which to measure an automated coder’s perfor-185

mance. Therefore, we evaluate GPT-3’s coding186

performance using metrics that differ substantially187

from those used in traditional NLP work, but which188

are common analytic tools in the social sciences:189

we calculate various intercoder agreement mea-190

sures between GPT-3’s codes and the codes gener-191

ated by humans we hired to code the same texts.192

3.1 Metrics193

We now discuss the three central metrics in our194

analysis, and outline when each is appropriate.195

3.1.1 Intraclass correlation (ICC)196

Intraclass correlation is perhaps the most com-197

monly used metric among social scientists to mea-198

sure the degree of inter-coder agreement among199

human coders using numerically ordered, (quasi-)200

continuous values in their coding (e.g., rating a text201

by some characteristic on a 1-5 scale). In the “PP”202

coding task that follows, we estimate ICC1k for203

our human coders and GPT-3 using the methods204

proposed by (Shrout and Fleiss, 1979). ICC scores205

are between -1 and 1 and are typically interpreted206

as follows: < 0.5 = poor inter-coder agreement,207

0.5− .75 = moderate agreement, 0.75−0.9 = good,208

and > 0.9 = excellent (Cicchetti, 1994; Koo and209

Li, 2016).210

3.1.2 Joint probability of agreement211

For coding tasks in which coders use unordered,212

categorical data to classify texts (as in the Congres-213

sional and New York Times tasks presented below),214

ICC is not the appropriate metric. Instead, we use215

two different measures. The first, joint-probability216

of agreement, measures the probability of any two217

coders agreeing. In the 2-coder case, where one of218

the coders is ground truth, this reduces to raw accu- 219

racy. Joint probability agreement ranges from 0 to 220

1. Between two coders, it is calculated as follows: 221
1
N

∑N
i=1 1(y1,i = y2,i), where N is the number of 222

instances being coded, and y1,i, y2,i are the first 223

coder’s and the second coder’s respective codings 224

of instance i. In the case of K coders, the joint 225

probability agreement is the mean of the pairwise 226

agreements. 227

3.1.3 Fleiss’ kappa 228

Fleiss’ kappa measures the degree to which the pro- 229

portion of agreement among coders exceeds what 230

would be expected if all coders made their ratings 231

completely at random (Fleiss, 1971; Fleiss et al., 232

2003). Used specifically to quantify intercoder 233

agreement for categorical data, this measure ranges 234

from −1 to 1. When κ = 0, it means that the two 235

raters agree at a rate not better than chance. κ < 0 236

means increasing agreement worse than chance, 237

and κ > 0 means increasing agreement greater 238

than chance. 239

4 Experiments 240

In general, we show that GPT-3 can effectively 241

perform coding tasks of varying difficulty across 242

several domains, and with at most a few labeled 243

examples. This speaks to the flexibility of GPT-3 244

as a coder and its ease of use. We show this using 245

data from three datasets: Pigeonholing Partisans 246

(PP), New York Times Headlines (NYT), and Con- 247

gressional Hearings (Congress). 248

We chose these datasets to maximize differences 249

in coding tasks as a means of exploring GPT-3’s 250

limits. The dimensions they span include: 251

• Difficulty: We expect that some tasks will be 252

easy for the language model to master, e.g., 253

rating positivity (Section 4.1) through senti- 254

ment analysis (Radford et al., 2017), and that 255

3



some will be harder, like subjective tasks (Sec-256

tion 4.1) or tasks with a large number of codes257

to choose from (Section 4.2.2).258

• Domains: Section 4.1 explores partisan po-259

larization through descriptions of members260

of both political parties in the U.S., whereas261

Section 4.2.2 defines a schema for categoriz-262

ing newspaper headlines and 4.2.1 does so for263

summaries of congressional hearings.264

• Category Type: Ordinal and binary codes are265

used throughout Section 4.1, while nominal266

and categorical codes are used in Sections267

4.2.1 and 4.2.2.268

GPT-3’s flexibility in adapting to the range along269

all of these dimensions is reason to believe that it270

can readily excel on many coding tasks.271

4.1 Pigeonholing Partisans (PP)272

We first consider the ability of GPT-3 to act as a273

coder with data on Americans’ stereotypes of Re-274

publicans and Democrats (Rothschild et al., 2019).275

These data, collected in 2016, asked individuals to276

list four words or phrases that came to their minds277

when thinking of typical supporters of the Demo-278

cratic and Republican Parties. This procedure is279

common in psychological studies of stereotypes280

(Devine, 1989; Eagly and Mladinic, 1989), and al-281

lows survey takers to describe partisans in their282

own words without being primed by researchers283

and closed-ended answer choices (Presser, 1989;284

Iyengar, 1996). This dataset is too small for other285

kinds of automated coding and an ideal way to con-286

sider how well GPT-3 can classify texts without287

extensive training sets.288

To evaluate how well GPT-3 can serve as a coder289

on these kinds of short, open-ended texts, we re-290

cruited 2873 human coders through the survey plat-291

form Lucid (Coppock and McClellan, 2019) to292

code a total of 7675 texts, each text being coded293

at least three times by a random set of coders, and294

gave them minimal instructions for coding the texts295

on a number of domains.296

Coders rated the texts along five dimensions:297

(1) positivity (general positive/negative valence),298

(2) extremity (extreme or moderate quality of the299

words), and whether the text mentioned (3) charac-300

ter or personality traits, (4) government or policy301

issues, or (5) social groups. Each of these domains302

is important to the theoretical ideas of the origi-303

nal orientation of the data collection on partisan304

Human

Human+GPT-3

Human (averaged)+GPT-3

Human+0 coder

Human+1 coder

Human+random coder

Human+random coder

(distrib
ution)

Positivity

Extremity

Groups

Traits

Issues

0.6 0.74 0.74 0.14 0.1 0.45 0.38

0.34 0.35 0.16 0.13 -0.08 0.23 0.22

0.16 0.23 0.24 -0.18 -0.14 0.11 0.11

0.17 0.06 -0.51 -0.51 0.02 0.02 -0.17

0.2 0.21 -0.01 -0.02 -0.26 0.12 0.09

ICC1k for Pigeonholing Partisans
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0.4
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Figure 2: PP ICC1k: Note that including GPT-3 in the
class of considered coders increases ICC1k in coding
for all attributes except “Traits”. The opposite happens
when including other, simulated coders.

stereotypes (Rothschild et al., 2019; Busby et al., 305

Forthcoming). While we do not broach this subject 306

in this work, each represents a distinct way of think- 307

ing about party attachments and membership that 308

have different political and social consequences. 309

Then we asked GPT-3 to complete a series of 310

coding tasks on all 7675 texts that are directly anal- 311

ogous those completed by humans. Next, we exam- 312

ined how closely GPT-3 follows individual human 313

coders and human coding in the aggregate, along 314

with how closely humans followed each other. To 315

calculate a correlation statistic, we rely on the prob- 316

abilities produced by GPT-3 for the attribute in 317

question (probability of extreme, traits, or positive, 318

for example) and the untransformed code from the 319

human respondents. We present these correlations 320

in Figure 3. They suggest that GPT-3 performs 321

above human level in every case but one. That is, 322

for positivity, extremity, groups, and issues, GPT-3 323

correlates more strongly with each of the human 324

coders than the human coders do with each other. 325

For traits, GPT-3 correlates with the human coders 326

about as well, or slightly lower, than the humans 327

correlate with each other. This is initial evidence 328

that GPT-3 is typically either more reliable or just 329

as reliable a coder as human coders, a remarkable 330

finding given that GPT-3 was provided no more 331

than 2 exemplars in its “training set”. 332

We also consider ICC scores (Fig. 2). As we em- 333

ploy different coders - that is, coders are randomly 334

assigned to texts and not all texts are scored by the 335

same three coders - we use ICC1k, which accounts 336

for this structure. 337

Our focus here is on the increase or decrease in 338

4



Hu
m

an
 1

Hu
m

an
 2

Hu
m

an
 3

GPT-3

Human 1

Human 2

0.54 0.53 0.5

0.35 0.33

0.32

Positivity

Hu
m

an
 1

Hu
m

an
 2

Hu
m

an
 3

0.15 0.15 0.15

0.04 0.09

0.05

Groups

Hu
m

an
 1

Hu
m

an
 2

Hu
m

an
 3

0.18 0.17 0.16

0.14 0.15

0.16

Extremity

Hu
m

an
 1

Hu
m

an
 2

Hu
m

an
 3

0.06 0.07 0.05

0.08 0.05

0.06

Traits

Hu
m

an
 1

Hu
m

an
 2

Hu
m

an
 3

0.14 0.13 0.13

0.07 0.08

0.08

Issues

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3: Correlations for PP, calculated with Pearson’s R. Other measures of correlation yield similar results.
Notice how correlation is higher for GPT-3 and every human than between any two humans. There are only two
cells (Humans 1 & 2, 2 & 3 in Traits) strictly greater than any one of GPT-3’s correlations with humans.

ICC when GPT-3’s codes are added to the three339

human codes. If GPT-3 improves the reliability of340

the coding, ICC should improve. If it does not offer341

this benefit, the ICC score should stay the same or342

decrease. We also compare adding GPT-3’s scores343

to adding a variety of simulated scores to ensure344

that the addition of another coder by itself does345

not drive what we observe: (1) a coder who codes346

all texts as 0 (lacking the attribute), (2) a coder347

who codes all texts as 1 (containing the attribute),348

(3) a coder who codes randomly, and (4) a coder349

who codes all texts randomly, but with the same350

overall distribution as GPT-3’s predictions. We also351

consider the ICC values when comparing GPT-3’s352

codes to the average of the human coders (rather353

than individual coders separately).354

The statistics in Figure 2 suggest that adding355

GPT-3 as a coder improves the overall coding for356

2/5 measures (positivity, groups), improves relia-357

bility of the coding for 2/5, (extremity, issues), and358

reduces reliability in 1/5 (traits). Notably, this last359

area is where human coders correlated the least360

with each other (see Figure 3) and may represent a361

fundamentally challenging task.362

Another point to note is the stark difference be-363

tween adding GPT-3 and adding each of the simu-364

lated coders (2nd and 3rd columns vs. 4th+). We365

conclude that GPT-3’s outputs do contain real sig-366

nal and that the boost in ICC is not due to simply367

adding another coder. Furthermore, since adding368

GPT-3’s outputs to the human outputs generally369

either increases or maintains ICC across each at-370

tribute, we conclude that GPT-3 achieves human or371

super-human level performance at this task. Impor-372

tantly, achieving this level of performance required373

neither coding a large-scale dataset (on the order374

of tens of thousands or more) nor a large, labeled375

set of training data for the language model.376

4.2 Comparative Agendas Project (CAP) 377

CAP aims to provide a coherent framework for doc- 378

umenting media and government attention to vari- 379

ous policy issues in a comprehensive set of policy 380

domains, without reference to the support or op- 381

position stance or ideological framing of the issue 382

in the source material (Baumgartner et al., 2019). 383

CAP datasets aim to be comprehensive, transparent, 384

and replicable (Bevan, 2019), with many housed at 385

the CAP website (www.comparativeagendas.net). 386

More than 200 scholars have used CAP to test a 387

vast range of empirical political science theories 388

(Walgrave and Boydstun, 2019). 389

The CAP master codebook includes at least 21 390

major categories (with others added for some spe- 391

cific applications), and over 200 sub-categories. In 392

order to succeed at this task, GPT-3 must produce 393

a high probability for one of a large, unordered, 394

pre-specified set of tokens that corresponds to the 395

specific content of the input data. 396

Prior efforts to use dictionary-based and SML 397

approaches to classification in the CAP frame- 398

work have met limited success (Karan et al., 2016; 399

Hillard et al., 2008; Purpura and Hillard, 2006; Sev- 400

enans et al., 2014; Sebők and Kacsuk, 2021). Sebok 401

and Kacsuk (Sebők and Kacsuk, 2021) are able to 402

achieve an 80%+ F1 score on average across cate- 403

gories, but this is reported after culling over 40% 404

of their dataset due to difficulty of classification. 405

We, on the other hand, provide scores given full 406

coverage of the dataset. Reported performance in 407

various approaches is substantially lower than this 408

(accuracies near or below 50%) for dictionary meth- 409

ods, less efficient SMLs, corpora with less training 410

data, or in specific hard-to code categories, which 411

upper limit our average accuracy exceeds. Again, 412

the highest performing outcomes are achieved by 413

setting rejection thresholds (for ambiguous texts or 414

cases where humans or models disagree) and either 415
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Figure 4: Two measures of GPT-3’s agreement with
human coders compared with humans’ agreement with
human coders, across two datasets.

sacrificing coverage or targeting human coders to416

uncertain cases (Karan et al., 2016; Sebők and Kac-417

suk, 2021). We achieve our results with complete418

coverage, a single model, no human disambigua-419

tion of difficult cases, and minimal need for labeled420

training data.421

To account for class imbalances and differences422

in baseline probabilities of different tokens, we423

normalize the probability distributions in a manner424

similar to (Zhao et al., 2021). We estimate GPT-3’s425

bias towards a category as the total weight given to426

each category over a balanced validation set, divide427

each category probability by GPT-3’s bias towards428

it, and normalize to sum to 1. We found that this429

produced modest accuracy boosts of 4-5%. If a430

small validation set is available, we recommend431

this calibration technique; however, results were432

qualitatively the same without this calibration.433

4.2.1 CAP: Congressional Hearing434

Summaries (Congress)435

The Congressional Hearing corpus contains the436

Congressional Information Service summary of437

each U.S. Congressional hearing from 1946 to438

2010. These summaries were read by human439

coders and assigned to CAP classifications. GPT-3440

is given the full summary text, meaning the coding441

task is highly comparable between the humans and442

GPT-3. All results are reported for n = 326 texts,443

which constitutes 16 texts for each category minus444

10 for incompleteness in the human codes.445

Our comparison of GPT-3’s codes to the humans’446

is in Figure 4. Both our intercoder agreement met-447

rics tell the same story, and imply a finding that448

holds across metrics: GPT-3 correlates with each449

human just as well as or better than the humans cor-450

relate with each other. Note that the highest joint 451

agreement (.63) and highest Fleiss’ kappa (.61) 452

both occur between GPT-3 and Human 2. 453

Despite there being no real ground truth for this 454

task, we visualize “accuracy” statistics based on 455

the original dataset’s single coder (Figure 5). The 456

lack of ground truth is validated by a great deal of 457

human disagreement, as the figure makes clear. We 458

see the accuracy for each coder, with categories 459

sorted in order of GPT-3’s accuracy. Interestingly 460

enough, GPT-3 seems to do better at categories that 461

humans do better at, and worse at the categories 462

that humans fail at. Overall, the accuracies were 463

60% for GPT-3, compared to 63%, 66%, and 55% 464

for the three human coders respectively. 465

Between the high joint agreement and Fleiss’ 466

kappa between GPT-3 and the human coders and 467

the similar accuracies across categories, we believe 468

that GPT-3 has demonstrated performance on-par 469

with humans and SML methods on this dataset. 470

4.2.2 CAP: New York Times Front Page 471

Dataset (NYT) 472

The second CAP dataset we use is the New York 473

Times Front Page Dataset, generated and con- 474

tributed by Amber Boydstun (Boydstun, 2013). 475

The dataset includes 31034 front page New York 476

Times headlines from 1996 - 2006, along with the 477

policy category label assigned by trained human 478

coders. The categories are adapted for media use, 479

and so include 28 primary classification categories. 480

All results are reported for n = 560 texts, with 20 481

sampled from each of the 28 categories. 482

The original human coders were instructed to 483

read the headline and the first three paragraphs of 484

the article. In our work, GPT-3 is only provided 485

the headline, because the full article text is not 486

available in the public data. To control for this 487

difference in available information, we also had 488

three minimally trained human coders complete an 489

identical classification task to GPT-3. 490

Since the NYT data is in the same structure as 491

the Congress data, we apply the same analyses. For 492

both joint agreement and Fleiss’ kappa (Figure 4), 493

GPT-3 correlates with the humans in the range of 494

how they correlate with each other. We also notice 495

a strong trend between GPT-3’s accuracy and the 496

humans accuracy per category (Figure 6). Unlike 497

Congress, however, there are 3 categories that the 498

humans all perform much better than GPT-3: “In- 499

ternational Affairs and Foreign Aid,” “Government 500

Operations,” and “Death Notices.” On the other 501
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Figure 5: Congress Accuracy by Coder: Treating the original dataset’s code as “ground truth”, and sorting categories
in descending order based on GPT-3’s score, note how noisy the performance of the human coders is. There is only
1 category that all humans score strictly better on (International Affairs).

hand, GPT-3 performs significantly better than hu-502

mans at some of the categories: “Environment,”503

“Health,” and “Labor.” Despite this discrepancy,504

GPT-3’s total accuracy was 55%, compared to 57%,505

59%, 51%, and 45% for the four humans respec-506

tively. Overall, we have demonstrated that GPT-507

3 on average achieves on-par performance with508

humans for the New York Times dataset (remem-509

bering that performance is systematically worse or510

better depending on category).511

4.3 Prompt Engineering512

Some elements of prompt engineering seem to mat-513

ter a great deal, and some seem to matter not at all,514

or at least not in any reliable way.515

As an example of the former, one has to be mind-516

ful of where the prompt ends and what next token517

is being modeled. Since generative language mod-518

els sample one token at a time, we need to be able519

to sample a unique first token (usually, a unique520

first word) for each category we attempt to model.521

For example, “very positive” and “very negative”522

both start with the token “very,” so it would be523

impossible for us to compare the two categories524

with a single token sample. Fortunately, all of our525

categories started with unique first tokens, but this526

may not be true for other tasks.527

Another choice that impacted our results was the528

presentation of categories in the question format of529

the PP data. Specifically, GPT-3 performed signifi-530

cantly worse when asked to respond to a question531

with the tokens “yes” or “no” than when the choice532

was between substantive alternatives, such as “ex-533

treme” vs “moderate” or “positive” vs. “negative”.534

For the other three attributes, we found that restat-535

ing the objective after the “yes” or “no” (e.g., “Yes, 536

mentions personality or character traits”) substan- 537

tially helped. These were the only prompt varia- 538

tions attempted for the PP dataset. 539

Other elements seemed to have minimal impact, 540

like the number and type of exemplars. While 541

we know that more labeled training data signifi- 542

cantly improves SML performance (Collingwood 543

and Wilkerson, 2012), it is unclear whether more 544

labeled exemplars to GPT-3 will achieve the same. 545

As shown in Figure 7, we find that one exemplar 546

performs much better than none, but there is little 547

gain in accuracy achieved by providing more than 548

2 or 3 exemplars. We also conducted extensive 549

experiments testing different classes of exemplars 550

(more or less difficult to classify, in the spirit of 551

active learning), and that also seemed not to matter 552

(See Appendix B for details). 553

We also tried many variations on the prompt for- 554

mat, including: surrounding categories in quotes; 555

using slashes, pipes, and other delimiters to sepa- 556

rate exemplar headlines from their respective cat- 557

egories; providing lists of example headlines for 558

each category in parentheses right next to the cat- 559

egory; new lines in specific places making bound- 560

aries between exemplars clearer; and other general 561

rephrasing. None of these changes resulted in a 562

marginal accuracy less than 50% or greater than 563

57%. This demonstrates a relative stability of the in- 564

formation retrieval process, allaying some concerns 565

(though not all) that minor changes in wording or 566

punctuation will radically alter coding accuracy. 567

For all of our final prompts used, please refer to 568

Appendix A. 569
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Figure 6: New York Times Accuracy by Coder: Treating the original dataset code as “ground truth”, and sorting
categories in descending order according to GPT-3’s score, note how noisy the humans’ coding is. Clearly some
areas are easier for human coders (e.g., Death Notices) and some are easier for GPT-3 (e.g., Environment).
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Figure 7: Increasing number of exemplars up to 30
shows no improvement past 2 or 3. This experiment
was done on the NYT dataset.

5 Future Work570

The results presented in this paper provide encour-571

aging evidence that GPT-3 is able to perform auto-572

mated coding tasks with effectiveness comparable573

to that of lightly-trained human coders. However,574

much work remains in order to bring this possi-575

bility to full fruition. Further explorations should576

be conducted into principled distribution calibra-577

tion and prompt engineering, in order to capitalize578

on the full capabilities of LMs. Fine-tuning ap-579

proaches should also be investigated; perhaps it580

is possible to refine the model weights such that581

categorical text continuations become more proba-582

ble and/or accurate, especially within specialized583

domains. We recommend the application of these584

methods to additional datasets, potentially with the585

assignment of multiple labels for each text, in order586

to validate the robustness of this technique across 587

multiple research domains. Finally, we propose 588

that future explorations into automated coding via 589

GPT-3 utilize the contextual nature of GPT-3’s re- 590

sponses in order to actively simulate the coding 591

behaviors of specific populations. For example, 592

the conditioning prompts used in the current work 593

could be pre-pended with information designed to 594

elicit responses that emulate those of specific de- 595

mographic groups, thus creating additional fidelity 596

to human coding scenarios. 597

6 Conclusion 598

We have demonstrated that LMs can potentially be 599

used to code social science datasets and that they 600

can be analyzed with metrics common in the social 601

sciences. Fine-grained analysis shows that GPT-3 602

can match the performance of human coders on 603

average across small and large datasets; with both 604

ordinal and categorical codes; and on tasks of vary- 605

ing complexity. In some cases, it even outperforms 606

humans in increasing intercoder agreement scores, 607

often with no more than 3 exemplars. 608

We hope that these results initiate a two-way 609

dialogue: the social sciences are a rich source of 610

potential applications and benchmarks for LMs, but 611

as LMs play an increasing role throughout sciences– 612

with LMs and humans potentially working side-by- 613

side–it is possible that the field of NLP will need 614

to move beyond traditional notions of accuracy and 615

analyze LMs with methods such as those presented 616

here to ensure their reliability. Harnessing LMs 617

as synthetic coders will open up a new world of 618

possibilities, which is a worthy endeavor indeed. 619
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A Prompts For Each Task817

A.1 Pigeonholing Partisans818

• Positivity:819

Are the following descriptions of820

PARTY positive or negative?821

822

-agreeable, reasonable, under-823

standing, cooperative: Positive824

-angry, bigoted, racist, homophobic:825

Negative826

• Groups:827

Do the following descriptions of828

PARTY mention social groups?829

830

-Christian, privileged, young,831

white: Yes, mentions social groups.832

-apathetic, agreeable, pro-833

environment, political: No,834

doesn’t mention social groups.835

• Traits:836

Do the following descriptions of837

PARTY mention personality or838

character traits?839

840

-accepting, tolerant, intellec-841

tual, charitable: Yes, mentions842

personality or character traits.843

-black, young, female, poor: No,844

doesn’t mention personality or845

character traits.846

• Extremity:847

Are the following descriptions of848

PARTY extreme or moderate?849

850

-angry, racist, close-minded,851

homophobic: Extreme852

-people, hopeful, educated, agree-853

able: Moderate854

• Issues:855

Do the following descriptions of856

PARTY include government or857

policy issues?858

859

-aging, religious, accepting,860

patriotic: No, doesn’t include861

government or policy issues.862

-abortion, medical marijuana, gun 863

control, anti-sexism: Yes, includes 864

government or policy issues. 865

A.2 CAP 866

• Congressional Hearings: 867

Using only the following categories 868

""" 869

Macroeconomics 870

Civil Rights 871

Health 872

Agriculture 873

Labor 874

Education 875

Environment 876

Energy 877

Immigration 878

Transportation 879

Law and Crime 880

Social Welfare 881

Housing 882

Domestic Commerce 883

Defense 884

Technology 885

Foreign Trade 886

International Affairs 887

Government Operations 888

Public Lands 889

Culture 890

""" 891

Assign the following congressional 892

hearing summaries to one of the cat- 893

egories: 894

Extend defense production act pro- 895

visions through1970. -> Defense 896

FY90-91 authorization of rural 897

housing programs. -> Housing 898

Railroad deregulation. -> Trans- 899

portation 900

To consider Federal Reserve Board 901

regulations and monetary policies 902

after February 2016 report on mon- 903

etary policy. ->’ 904

• New York Times Headlines 905

Using only the following categories 906

""" 907

Macroeconomics 908

Civil Rights, Minority Issues, and 909

Civil Liberties 910

Health 911

11



Agriculture912

Labor913

Education914

Environment915

Energy916

Immigration917

Transportation918

Law, Crime, and Family Issues919

Social Welfare920

Community Development and921

Housing Issues922

Banking, Finance, and Domestic923

Commerce924

Defense925

Space, Science, Technology and926

Communications927

Foreign Trade928

International Affairs and Foreign929

Aid930

Government Operations931

Public Lands and Water Manage-932

ment933

State and Local Government934

Administration935

Weather and Natural Disasters936

Fires937

Arts and Entertainment938

Sports and Recreation939

Death Notices940

Churches and Religion941

Other, Miscellaneous, and Human942

Interest943

"""944

Assign the following headlines to945

one of the categories:946

IRAN TURNS DOWN AMER-947

ICAN OFFER OF RELIEF948

MISSION -> International Affairs949

and Foreign Aid950

In Final Twist, Ill Pavarotti Falls951

Silent for Met Finale -> Arts and952

Entertainment953

In Times Sq., a Dry Run for New954

Yearś 2000 -> Arts and Entertain-955

ment956

House Panel Votes Tax Cuts, But957

Fight Has Barely Begun ->’958

B Exemplar Types Experiments959

We also explored whether some exemplars were960

better or worse at “teaching” the categories to the961

model. We considered that for a given category,962
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Figure 8: Each class of exemplar considered does an
equal amount to help the model’s accuracy. This is sur-
prising, and suggests that the model might learn nothing
from the exemplars besides the format of the task.

an instance could be a better or worse exemplar. 963

We might define this by a quantity we’ll call its 964

margin: the difference between (1) the probabil- 965

ity the model assigns to the correct category and 966

(2) the highest probability of the probabilities for 967

all the wrong categories. Thus, “prototypical" ex- 968

emplars would have high positive margin (model 969

guesses right), “ambiguous" exemplars would have 970

margins with very low absolute values (model torn 971

between multiple categories), and “tricky" exem- 972

plars would have margins with very high negative 973

values (model guesses wrong). In theory, proto- 974

typical exemplars could teach the model about the 975

proper distribution of texts belonging to a category, 976

ambiguous exemplars could teach the model about 977

the boundaries between the distributions of each 978

category, and tricky exemplars could correct the 979

model’s prior on categories by flagging common 980

mistakes made in coding texts from that category’s 981

distribution. 982

To answer this question empirically, we first ran- 983

domly sample 90 candidate exemplars from each 984

category. We then code each with the model given 985

a set of 4 exemplars sampled randomly once and 986

then held constant specifically for this task. Then 987

we sort them by their margin and construct one set 988

of each: prototypical, ambiguous, and tricky exem- 989

plars. Finally, we perform 5 trials where we classify 990

4 instances from each category using an increasing 991

number of these sets of exemplars and measure per- 992

formance. The results, in Figure 8, demonstrate no 993

discernible signal as to which kind of exemplar is 994

best to present to the model in the context window. 995

This is one bit of evidence that this dimension, of 996

12



the prototypicality vs. ambiguity vs. trickiness of997

exemplars, is not at all determinative of a model’s998

performance on a coding task, a dimension which999

is very important for active learning.1000
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