
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A NEURAL SIGNAL CODEC WITH RESOURCE EFFI-
CIENT ENCODER FOR IMPLANTABLE BRAIN MACHINE
INTERFACE SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present a neural signal codec (NSC) with a resource-efficient
encoder for implantable brain machine interface (iBMI) systems. The proposed
codec has a multiplication-free encoder with only 124-bit lightweight parame-
ters, which is suitable for deployment at the edge of an iBMI system. To reduce
the parameter size, a dynamic weight generation mechanism for parameter shar-
ing within the window is implemented in the encoder design. On the decoder
side of the codec, a conventional multilayer convolutional neural network with
a specially designed loss factor – Energy Aware Loss (EAL) is adopted, which
adds adaptive attention to the total loss function to improve reconstruction per-
formance by emphasizing the signal energy intensive regions of the input data
section. The parameter storage is reduced by 97% on the encoder side, compared
to a conventional FC-based autoencoder with INT8-quantized weights. Large-
scale evaluations show that NSC is capable of restoring high-fidelity neural sig-
nals and preserving the biological features across diverse neural signal datasets,
making it a promising data compression approach for high-throughput iBMI sys-
tems. Furthermore, preliminary generalization experiments on other biomedical
signals such as ECG (MIT-BIH) further demonstrate the potential of NSC as a
general resource-efficient compression framework for streaming biosignals.

1 INTRODUCTION

In recent decades, the implantable brain machine interface (iBMI) system has become a research
hot spot since it shows a promising potential to cure various neural-related diseases and to open a
new gate for neuroscience research Musk & Neuralink (2019); Pollmann et al. (2024). A modern
iBMI system typically consists of an implantable device and an external function module, such as
a PC and robotics, as shown in Fig.1(a). The implantable device acquires the signal, typically a
spike signal, from single neurons in the brain cortex, and transmits the acquired spike signals to
the external function module through wireless communication. A critical design challenge in iBMI
systems is to minimize the resource consumption of the implantable device, mainly dimension and
power consumption, to achieve minimum surgery damage and long-term operation safety.

Implantable device
External

function module

Wireless
data

(a)

Vth

Thresholding

(b) Spike-time

AP signal

Channel 0

Channel N
Latent data

to be transmitted

Autoencoder

Reconstructed
AP signal

(c)

Latent data
to be transmitted

Proposed NSC

(d)

Reconstructed
AP signal

Figure 1: Diagram of (a) Typical iBMI system (b) Conventional Threshold Detection (c) Conven-
tional AutoEncoder (d)The Proposed NSC

High Throughput versus Resource Consumption. High Throughput versus Resource Consump-
tion. High throughput up to thousands of channels is required for an iBMI system to perform high-
degree-of-freedom tasks such as virtual finger movement, 3D control of robotic arms, and complex
control of e-Games Irwin et al. (2017); Willsey et al. (2025). However, high throughput would

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

result in high resource consumption. For example, a 1000-channel spike signal acquisition would
generate 300M bits of raw data per second, which brings a heavy burden on power and device di-
mensions for the implantable device to handle and transmit. New emerging technologies such as
Ultra-Wide-Band (UWB)Song et al. (2022); Ando et al. (2016) for high-speed wireless commu-
nication may help address this problem, but these technologies are still immature or unstable to
be adopted in the iBMI system. Another alternative approach people normally use to address this
throughput/resource dilemma is to compress the raw data for each individual channel before any
further processing/transmitting. High loss compressing methods such as simple thresholding, spike
detection Mukhopadhyay & Ray (1998) or on-chip sorting Valencia & Alimohammad (2021), are
popularly used due to their simplicity and effectiveness in extracting critical spike-time information
from the raw neural recordings, as shown in Fig.1(b), which significantly reduce data volume by
only transmitting timestamps or sparse bi-nary indicators of spike events. However, they discard the
morphological details of spike waveform, imposing strict requirements on the performance of down-
stream sorting or clustering algorithms on the external module. Low-loss compressing approaches
such as Autoencoder and PCA Valencia et al. (2024) are also used to perform data compression as
shown in Fig.1(c), which can effectively reduce the data size while keeping most information of the
raw data. However, these algorithms are intensive on both computation and storage on the encoder
side, which is impractical for an implantable device in an iBMI system.

Implantable neural interfaces demand compression codecs that are not only resource-efficient but
also preserve task-critical information. We propose a Neural Signal Codec (NSC) Fig.1(d). With an
encoder requiring only 124 bits of weight params and shift-add operations, two orders of magnitude
fewer bits than models like PCA (∼ 20k bits) or AE FP32 (∼ 16k bits). The key innovation is
its targeted fidelity: while global waveform metrics (FULL-PSNR) are moderate, the NSC excels
in preserving biologically crucial information. Our NSC achieves a 32:1 data compression ratio
with a mean FULL PSNR value of more than 17.92, ROI PSNR value more than 19.67, with ROI
waveform cluster F1 more than 0.96, ARI more than 0.85, and NMI more than 0.78 across all tested
datasets. Saving 97% storage resource compared to the conventional INT8 weights quantized FC-
based autoencoder design and dramatically reduces the required computational resource. The main
contribution of this work is summarized as follows:

(i) We proposed an asymmetric encoder-decoder neural network architecture with a resource-
efficient encoder that is suitable for lightweight edge deployment for high-fidelity data compression
and reconstruction.

(ii) We constructed a resource-efficient encoder with a learnable, energy-aware windowing mech-
anism and shift/addition operation-based computation, optimized for an implantable device in an
iBMI system.

(iii) We introduce a loss factor: Energy Aware Loss (EAL) factor, which adaptively updates the
neural network weights in the training process based on the energy profile of the input spike signal,
enabling an accurate and interpretable spike reconstruction.

The paper is organized as follows: Section 2 reviews related work on lightweight neural networks
and on-chip neural signal compression. Section 3 describes the proposed NSC: encoder design,
decoder architecture, and loss formulation. Section 4 details the experimental setup, datasets, and
evaluation metrics, followed by quantitative results. Section 5 concludes the paper.

2 RELATED WORK

2.1 QUANTIZATION AND LIGHTWEIGHT NEURAL NETWORKS

Model compression techniques such as pruning and quantization are widely used to reduce the
computation and memory footprint of neural networks for deployment in resource-constrained envi-
ronments (e.g., mobile or embedded systems). Early pruning methods removed redundant weights
post-training LeCun et al. (1989), and structured strategies like channel pruning Li et al. (2017).
Quantization reduces bit-widths of weights and activations, with early approaches including fixed-
point training Lin et al. (2016), BinaryConnect Courbariaux et al. (2016a), and XNOR-Net Rastegari
et al. (2016). More recent practices like quantization-aware training (QAT) and post-training quan-
tization (PTQ) better preserve model accuracy under low precision Jacob et al. (2017).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Within the Transformer and LLM domain, ZeroQuant Yao et al. (2022) enables group-wise quanti-
zation and applies layer-wise knowledge distillation (LKD) to retain accuracy. SmoothQuant Xiao
et al. (2024) improves activation quantization by redistributing outliers into weights. On the extreme
end, BitNet Wang et al. (2023) proposes BitLinear, a ternary-weighted alternative to standard linear
layers. PB-LLM Shang et al. (2023) adopts a mixed-precision strategy, binarizing most weights
while keeping key ones in higher precision. For joint pruning and quantization, Bayesian Bits van
Baalen et al. (2020) learns both sparsity and bit-widths during training.

2.2 ON-CHIP NEURAL SIGNAL COMPRESSION

On-chip neural signal compression is key to reducing transmission bandwidth in iBMI systems.

High-loss methods focus on event detection and on-chip sorting. For example, Kim et al. (2019);
Hwang et al. (2025) transmit only spike timestamps using event-driven compression. On-chip sort-
ing approaches like Chen et al. (2023); Han et al. (2025) employ OSort-inspired pipelines, while
Binarized Neural Network (BNN) based classifiers in Valencia & Alimohammad (2021) provides
an effective low-power spike classification.

Low-loss methods aim to reconstruct spike waveforms. Compressed sensing approaches appear in
Liu et al. (2016), and PCA-based real-time compression is reported in Lemaire et al. (2022). NNs
like undercomplete autoencoders are also used for low-power hardware compression in Thies &
Alimohammad (2019); Valencia et al. (2024), and other methods perform segmentation and pruning
of low-importance waveform regions (Guo et al. (2023)). And the work Liu et al. (2024) uses
ConvSNN utilize spike-oriented convolution data flow.

3 METHODOLOGY

3.1 MOTIVATION AND PROBLEM DEFINITION

Neural spike waveforms are high-bandwidth yet highly structured signals. Transmitting them in
raw form from an iBMI device is prohibitive due to extreme limits on bandwidth, energy, and stor-
age. This naturally motivates a representation learning problem: learn a compact latent code that
preserves task-relevant fidelity while remaining feasible under strict hardware constraints.

Formally, we aim to design an encoder–decoder pair, where only the encoder is deployed on-chip.
The encoder fθ : RT → ZT ′

maps an input spike waveform x into a discrete latent code z, which is
transmitted off-chip. The decoder gϕ : ZT ′ → RT runs externally to reconstruct x̂ = gϕ(z).

Unlike conventional autoencoders that optimize solely for reconstruction, our encoder must also
satisfy strict resource constraints: (i) bit-rate, limited by the maximum transmission rate Rmax; (ii)
parameter storage, constrained by Pmax; and (iii) compute budget, bounded by Cmax. Thus the
learning problem is to minimize reconstruction error while ensuring that the quantized code length,
parameter footprint, and operations of fθ remain within hardware budgets:

min
θ

Ex∼D
[
∥x− gϕ(fθ(x))∥22

]
(1)

s.t. Ex[L(fθ(x))] ·N · fs ≤ Rmax, ∥θ∥0 ≤ Pmax, Ops(fθ) ≤ Cmax.

Here L(·) denotes the code length in bits, N the number of channels, and fs the sampling rate. We
use Ops(·) instead of general MACs to emphasize that only shift-and-add operations are allowed
in our encoder. This formulation highlights a distinctive challenge for representation learning. Un-
like conventional autoencoders that optimize solely for fidelity, our encoder must simultaneously
ensure resource efficiency under hardware-level constraints. It therefore combines machine learning
objectives with physical implementation feasibility.

3.2 NSC ENCODER DESIGN

The Neural Signal Codec (NSC) encoder compresses an aligned input window into a low-bit integer
code, designed to be efficiently implementable on hardware using only shift-and-add operations,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

without relying on general-purpose multipliers or floating-point units. The encoder design leverages
three key ideas: (i) a nonlinear energy operator (NEO) to highlight spike regions, (ii) compact,
shared learnable parameters that generate discrete per-sample shift factors, and (iii) quantization of
all parameters to 4 bits.

Input and NEO. Given an input waveform x ∈ ZT , we can obtain its nonlinear energy operator
(NEO) value from the upstream detection module, which is not included in our compression process:

en = x2
n − xn−1xn+1, 2 ≤ n ≤ T − 1. (2)

Afterwards, we perform logarithmic operations on NEO with :
LNEn = ⌊log2(max(en, 1))⌋ , (3)

This transformation serves several purposes. The original NEO values are 16-bit, which are much
larger in magnitude than the 8-bit input data. By clamping the minimum to 1 before taking the
logarithm, we suppress contributions from very low values, which typically correspond to noise.
Since the NEO reflects the local signal energy, smaller values are often associated with background
noise. After this logarithmic mapping, the result provides a compact integer representation of local
signal energy that is well-suited for subsequent shift-based scaling operations.

Window Partition and Parameters. The input x of length T is partitioned into w windows with
differentiable boundaries 0 = b0 < b1 < · · · < bw = 1. The boundaries are computed by a cascade
of sigmoids applied to learnable parameters p ∈ Rw−1. Let si = σ(pi), where σ(·) denotes the
sigmoid function:

b0 = 0, bi = bi−1 + (1− bi−1) · si−1, i = 1, . . . , w, bw = 1

The actual boundary positions in samples are Bi = bi · T . This formulation ensures bi ∈ (bi−1, 1)
and enables differentiable, trainable windows whose sizes adapt during training. The boundaries are
initialized to equal divisions of the input.

Let the latent dimension be d. The total parameter sizes are α, β ∈ Rw×d and γ ∈ Rw. For each
window i and latent dimension j, the shared learnable parameters αi,j and βi,j produce discrete
per-sample shift factors. Additionally, each window i has a scaling factor γi. All parameters are
quantized to 4 bits for inference.

Quantization and Hardware Mapping. Parameters α, β, γ are quantized to 4 bits, and the
straight-through estimator (STE) is used during training. The quantized parameters are:

αq,i,j ∈
{
0, 1

16 , . . . ,
15
16

}
, βq,i,j ∈ {−8, . . . , 7}, γq,i ∈

{
0, 1

16 , . . . ,
15
16

}
.

This ensures that inference-time computations reduce to integer shifts and additions, fully eliminat-
ing multiplications. All the m/16 process can be achieved by shift-add-shift operation. With w = 3
windows and latent dimension d = 4, the total parameter bit budget is

3 · 4 · (4 + 4) bits + 3 · 4 bits + 2 · 8 bits = 124 bits,
with 8-bit boundaries storage for hardware alignment.

Forward Pipeline. This process can also seen in Figure 2. For each sample n in window i and
j-th latent dim (n ∈ {bi−1, bi−1 + 1, ...bi − 1}, j ∈ {0, 1, ..., d− 1}), let x(i)

n and e
(i)
n represent the

i window segment of full xn and en, the forward computation is

shift
(i)
j,n = ⌊αq,i,j · LNE(i)

n + βq,i,j⌋, (4)

scale
(i)
j,n = 2clamp(shift

(i)
j,n−8,−8,7), (5)

y
(i)
j,n = ⌊x(i)

n · scale
(i)
j,n⌋. (6)

Aggregating over the samples in each window gives a window-wise sum y
(i)
j , which is then scaled

by the window factor γq,i. The final compressed latent code is

zj =

w∑
i=1

z
(i)
j =

w∑
i=1

⌊γq,i · y(i)j ⌋, z ∈ Z1×d. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

NEO Component

Original Signal

Dual Inputs

i-th window

i-th window

Figure 2: NSC Encoder Forward Pipeline.

3.3 DECODER ARCHITECTURE

The decoder operates entirely off-chip and is thus free from hardware constraints. We adopt a flexi-
ble design consisting of a channel-expansion layer, three symmetric downsampling and upsampling
blocks with residual connections, and a final output projection. The compressed code z ∈ Z is first
expanded into a 1D feature map; the downsampling path increases channel capacity while reducing
temporal resolution, and the upsampling path restores the waveform length. Each block uses Conv1d
or ConvTranspose1d layers followed by residual Conv–BN–GELU modules, and the final projection
employs two Conv–BN–GELU layers and a Conv1d layer to output the reconstructed signal.

3.4 ENERGY-AWARE LOSS (EAL)

Standard reconstruction losses weight all time points equally, even though only a small temporal
region around the spike event is critical for accurate recovery. To better align optimization with
the intrinsic structure of neural waveforms, we introduce the Energy-Aware Loss (EAL), which
adaptively emphasizes high-energy regions identified by the nonlinear energy operator (NEO).

Energy-based weighting. For each input waveform x(b) ∈ RT in the batch (b = 1, . . . , B) with
corresponding NEO e(b), we first smooth e(b) to suppress spurious fluctuations, yielding ẽ(b). A
normalized weight distribution is then derived:

W (b)
n =

F(ẽ(b)n)∑T
m=1 F(ẽ

(b)
m)

,

T∑
n=1

W (b)
n = 1, (8)

where F denotes a smoothing kernel (e.g., Gaussian or Laplace). This distribution serves as a soft
attention mask, concentrating weight near the spike region. Given decoder reconstruction x̂(b), the
loss is defined as

LEAL =
1

B

B∑
b=1

T∑
n=1

W (b)
n ℓ

(
x(b)
n , x̂(b)

n

)
, (9)

where ℓ is a pointwise reconstruction cost (we adopt MSE). Unlike fixed windows or hard spike
alignment strategies, EAL adapts continuously to each waveform’s energy distribution. This al-
lows the model to focus capacity on the informative spike region while naturally down-weighting
background noise, improving reconstruction fidelity where it matters most.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Baselines We compare our designed NSC with several representative baselines. (i) AE FP32, stan-
dard FC based AE. (ii) AE INT8 with 8-bit quantized-weights. (iii) AE INT1.4 uses a Hardtanh ac-
tivation function with output precision aligned to Q2.8 and weight precision to Q1.4, where QM.N

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

represents a fixed-point representation with M bits for the integer part and N bits for the fractional
part Valencia et al. (2024). (iv) PCA (Principal Components Analysis): A classical linear dimen-
sionality reduction baseline for lossy signal compression Lemaire et al. (2022). (v) CS (Compressed
Sensing): A sparsity-driven method that projects signals through a random sensing matrix and re-
constructs them via sparse recovery Donoho (2006). (vi) VQ-VAE: A neural generative model with
discrete latent variables using vector quantization for compact learning van den Oord et al. (2017).
(vii) BNN: binary neural network with binary weights Courbariaux et al. (2016b).

Datasets We evaluate our method on one synthesis datasets and multiple real recording datasets,
including neuronal, brain region and other recordings. (i) Quiroga (QU) Quiroga (2020), a standard
datasets that has been widely used in the evaluation of spike-sorting. Generated by adding spike
waveform templates to background noise of various levels. (ii) Ganglion Cells (GC) Spampinato
et al. (2018), with extracellular recordings ground truth from simultaneous juxtacellular signals with
256 channels. (iii) Hippocampal (hc1) Henze et al. (2000), include the CA1 extracellular recordings
with spike ground truth. (iv) Neuropixels (NP) Steinmetz et al. (2024), recorded from visual cortex,
hippocampus, and some parts of thalamus with 384 channels. (v) MIT-BIH Arrhythmia (MIT-BIH)
Goldberger et al. (2000), which is a standard collection of two-channel ECG recordings used for
arrhythmia research.

Data processing All datasets were preprocessed by extracting signal segments containing spike
events, with T = 128 samples (4ms data in 32kS/s), with spikes aligned to the midpoint of the
window. The input data was quantized to 8-bit signed integers, and the corresponding NEO values
were computed in advance. Both were stored in standardized npy files for convenient access. We
focus on evaluating the region of interest (ROI)—the central 64-point segment, 2ms data window in
32kS/s, which contains the spike event. Details can be found in Appendix.

Settings and Evaluations All ablation studies and experiments are conducted with five fixed seeds
1, 2, 3, 4, 5 and setting latent dim of 4 and input size of 128 (×32 data compression). Results are
reported as the mean±std (standard deviation) across all seeds. For reconstruction quality, we evalu-
ate using PSNR, SNDR, and NRMSE, where higher PSNR and SNDR indicate better performance,
and lower NRMSE is better. Where PSNR penalizes pixel-wise errors, SNDR captures noise and
distortion, and NRMSE provides normalized error scaling. And for the downstream evaluation, we
choose the simple K-means algorithm evaluated with three metrics, including F1, ARI, and NMI. F1
is the harmonic mean of precision and recall, ARI measures chance-corrected clustering agreement,
and NMI quantifies normalized mutual information between label assignments. All models were
trained for 100 epochs with 7:1:2 random division for train/valid/test. Validated by the best PSNR
on the ROI. AdamW optimizer was used with a learning rate of 1×10−3, additional weight decay of
1× 10−4 is applied to all non-quantized parameters. We also applied gradient norm clipping with a
maximum of 10 to ensure training stability. In the comparison part, all baseline models were trained
with MSE loss. All done in a single RTX 5090 GPU, Xeon 8470Q CPU, with Python 3.12.3 and
torch version of 2.8.0+cu128. Details can be found in Appendix.

4.2 ABLATION STUDIES

We conduct a series of ablation studies to evaluate the influence of design choices on our NSC and
EAL loss. The base setting adopts our proposed encoder with all parameters in full precision, a fixed
three-window segmentation, and mean squared error (MSE) as the training loss. Here, we choose
QU Difficult1Noise02 (QU D1N2) and NP channel 1 (NP channel 1) for the ablation study. Results
are shown in Tables 1.

Quantization strategies. We compare full precision (FP), quantization-aware training (QAT), and
post-training quantization (PTQ). QAT introduces a noticeable performance drop relative to FP,
while PTQ completely fails (negative PSNR and SNDR). The failure of PTQ is mainly due to our
encoder’s dynamic scaling, which depends on the exponentiation of weight terms. Direct uniform
quantization breaks the continuity of these exponentials and leads to large reconstruction instability.
This suggests that QAT is necessary to maintain encoder functionality under quantization.

Window mechanisms. We study the effect of learnable window boundaries and of varying the
number of windows w. Making the window boundaries learnable (wlr) produces very similar results
to the fixed case, indicating that the mean division initialization is already near-optimal. As for the
number of windows, the general trend across datasets is that performance improves with larger w (up

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to 4 or 5), consistent with finer local adaptation. However, we adopt w = 3 as our default based on
two considerations: (i) it matches a physical prior of compressed signal waveform (LFP–spike–LFP
(local field potential)). (ii) The encoder parameter count grows approximately linearly with w, larger
window counts increase storage cost without consistent gains across datasets.

Table 1: Design Ablation study on synthetic dataset (QU D1N2) and real dataset (NP ch1).

Setting Syn (QU D1N2)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 18.50± 0.36 / 18.37± 0.54 3.32± 0.35 / 4.85± 0.51 0.13± 0.01 / 0.13± 0.01

QAT 15.48± 1.01 / 16.83± 1.06 0.30± 1.02 / 3.31± 1.06 0.17± 0.02 / 0.15± 0.02
PTQ N/A / N/A N/A / N/A N/A / N/A

wlr 18.43± 0.28 / 18.46± 0.66 3.26± 0.28 / 4.94± 0.67 0.13± 0.01 / 0.13± 0.02

w = 1 17.61± 0.21 / 17.71± 0.48 2.44± 0.21 / 4.19± 0.46 0.14± 0.00 / 0.14± 0.01
w = 2 18.24± 0.38 / 18.54± 0.48 3.07± 0.38 / 5.02± 0.51 0.13± 0.00 / 0.13± 0.01
w = 4 18.85± 0.27 / 18.83± 0.13 3.67± 0.28 / 5.31± 0.14 0.12± 0.01 / 0.12± 0.00
w = 5 18.39± 0.65 / 19.17± 0.70 3.21± 0.66 / 5.65± 0.66 0.13± 0.01 / 0.12± 0.01

Setting Real (NP ch1)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 17.45± 0.39 / 16.94± 0.35 2.27± 0.38 / 3.67± 0.33 0.14± 0.01 / 0.15± 0.01

QAT 15.63± 0.80 / 15.22± 1.40 0.45± 0.80 / 1.95± 1.38 0.18± 0.02 / 0.19± 0.03
PTQ N/A / N/A N/A / N/A N/A / N/A

wlr 17.36± 0.30 / 16.87± 0.37 2.17± 0.30 / 3.60± 0.35 0.14± 0.00 / 0.15± 0.01

w = 1 17.04± 0.29 / 16.31± 0.23 1.86± 0.27 / 3.04± 0.22 0.15± 0.01 / 0.17± 0.01
w = 2 17.54± 0.33 / 16.76± 0.36 2.36± 0.28 / 3.49± 0.35 0.14± 0.01 / 0.16± 0.01
w = 4 17.90± 0.30 / 17.49± 0.28 2.72± 0.26 / 4.22± 0.30 0.13± 0.00 / 0.14± 0.00
w = 5 17.54± 0.51 / 17.40± 0.55 2.36± 0.47 / 4.13± 0.56 0.14± 0.01 / 0.15± 0.01

·Mean ± std over five seeds.

Loss Functions We further investigate the effect of different loss formulations on NSC training.
We also evaluate our proposed Energy-Aware Loss (EAL) in several variants: vanilla (direct neo
guided), Laplace, Gaussian, and Cauchy smoothing schemes. The purpose of EAL is to emphasize
signal regions with high energy, so as to improve fidelity in the regions of biological importance
even at the cost of slightly reduced global metrics. Results are summarized in Table 2.

On the synthetic datasets, the vanilla EAL-vanilla actually reduces both FULL and ROI PSNR rel-
ative to plain MSE. By contrast, distributional EAL variants consistently increase ROI PSNR while
sacrificing some FULL-PSNR. This demonstrates that coupling energy-aware reweighting with an
explicit distributional form effectively concentrates model capacity on spike regions.

On the real datasets, all EAL variants yield small but consistent ROI gains over plain MSE. We
additionally evaluate a combined setting (wlr + EAL-Gaussian) for NP with learnable windows
together with EAL-Gaussian, the best variant. Showing that adaptive windowing helps when spike
widths vary in real recordings.

Table 2: Loss Ablation study on synthetic datasets (QU D1N2) and real datasets (NP ch1).

Setting Syn (QU D1N2)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 18.50± 0.36 / 18.37± 0.54 3.32± 0.35 / 4.85± 0.51 0.13± 0.01 / 0.13± 0.01
EAL-vanilla 17.43± 0.82 / 17.63± 0.23 2.25± 0.81 / 4.10± 0.24 0.14± 0.01 / 0.14± 0.01
EAL-Laplace 17.90± 0.51 / 19.38± 0.11 2.72± 0.51 / 5.86± 0.09 0.18± 0.05 / 0.11± 0.00
EAL-Gaussian 17.96± 1.37 / 19.48± 0.14 2.78± 1.36 / 5.95± 0.12 0.14± 0.03 / 0.11± 0.00
EAL-Cauchy 17.44± 1.63 / 19.43± 0.09 2.26± 1.63 / 5.91± 0.09 0.15± 0.03 / 0.11± 0.00

Setting Real (NP ch1)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 17.45± 0.39 / 16.94± 0.35 2.27± 0.38 / 3.67± 0.33 0.14± 0.01 / 0.15± 0.01
EAL-vanilla 17.44± 0.32 / 17.03± 0.28 2.26± 0.28 / 3.76± 0.26 0.14± 0.00 / 0.15± 0.01
EAL-Laplace 17.45± 0.36 / 17.77± 0.17 2.27± 0.37 / 4.50± 0.16 0.15± 0.01 / 0.14± 0.00
EAL-Gaussian 17.51± 0.60 / 17.79± 0.17 2.33± 0.63 / 4.52± 0.15 0.14± 0.01 / 0.14± 0.00
EAL-Cauchy 17.47± 0.31 / 17.77± 0.14 2.29± 0.33 / 4.50± 0.13 0.14± 0.01 / 0.14± 0.00

wlr + EAL-G 17.65± 0.20 / 17.76± 0.17 2.47± 0.16 / 4.49± 0.16 0.15± 0.00 / 0.14± 0.00

·Mean ± std over five seeds.

On the QU D1N2 dataset, the loss curves reveal several consistent trends (Fig. 3). Compared to
plain MSE, the vanilla EAL exhibits faster convergence and reaches a stable plateau within fewer
epochs. Both MSE and EAL show nearly overlapping training and validation curves, suggesting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Epoch

0

2000

4000

6000

8000

10000

Lo
ss

MSE
Train Mean Loss
Valid Mean Loss
Valid 1 Std Dev

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Lo
ss

EAL-vanilla
Train Mean Loss
Valid Mean Loss
Valid 1 Std Dev

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

30

Lo
ss

EAL-Gaussian
Train Mean Loss
Valid Mean Loss
Valid 1 Std Dev

Figure 3: Training (red) and validation (blue) loss curves on QU D1N2.

that the introduction of EAL does not increase the risk of overfitting. Among the EAL variants,
the Gaussian weighting achieves the lowest final validation loss, outperforming the vanilla version,
which is consistent with the quantitative metrics, which provide stronger ROI reconstruction fidelity.

The performance gain primarily comes from smoothing the NEO signal to form a stable energy dis-
tribution, which consistently emphasizes the spike region during optimization. Different distribution
variants (Laplace, Gaussian, Cauchy) provide alternative weighting shapes, but the decisive factor is
the smoothed energy itself rather than the exact functional form. As a result, all EAL variants yield
comparable improvements in ROI metrics, with minor differences attributable to the smoothness of
the weighting curve. The final setting for our model is three window segmentation with boundaries
learnable (wlr), trained by QAT with loss of EAL-G.

4.3 COMPARISON

For a fair comparison, we applied all the NN-based models’ decoders to our designed architecture.
From Table 3 and the downstream clustering results (Table 4), we can get three consistent findings.

First, large unconstrained methods (e.g., PCA, AE FP32) attain the best absolute reconstruction
metrics (highest PSNR / SNDR and lowest NRMSE) but require one to two orders of magnitude
more encoder storage. Such solutions are infeasible for on-chip deployment. Conversely, extremely
low-bit or binary nets (AE INT1.4, BNN AE) reduce parameter count but suffer large drops in
reconstruction fidelity and downstream clustering ability, showing the essential spike information
lost under aggressive quantization.

Second, our NSC produces a practical trade-off. With only 124 bits of encoder state, NSC preserves
spike-region information better than other compact alternatives (e.g., AE INT1.4, BNN AE). Fur-
thermore, NSC achieves ROI PSNR and ROI clustering scores close to much larger models while
using ∼ 99% fewer encoder bits than AE FP32 and ∼ 97% fewer than AE QINT8. This demon-
strates that the NSC design and the EAL training objective concentrate representational capacity on
task-relevant (spike) regions rather than on global waveform fidelity — an intentional trade-off for
implantable front-ends where spike recovery and downstream sorting matter most.

Third, the effect of EAL is interpretable and dataset-dependent. EAL-Gaussian (NSC EAL-G) con-
sistently increases ROI metrics and downstream ROI clustering to high scores at the cost of some-
what lower FULL-PSNR and larger variance in some full-window metrics. This pattern indicates
EAL shifts model capacity to spike peaks, reconstructed spikes (the biologically important region)
become more accurate, while low-energy background is deprioritized.

In summary, the tables show a clear trade-off: if the requirement is strict on-chip budget with pre-
served spike fidelity and downstream sorting utility, NSC (with EAL when ROI fidelity is critical)
offers the best practical balance. If absolute end-to-end waveform fidelity is the single objective and
on-chip resources are abundant, PCA/AE FP32 remains superior but impractical for implantable
hardware. We emphasize that the NSC design intentionally sacrifices some global metrics to maxi-
mize biologically relevant reconstruction under extreme resource constraints.

4.4 GENERALIZATION

We’ve also made a small test on the MIT-BIH ECG datasets. For a fair comparison, we apply our
designed decoder architecture to both the AE and our NSC model. The results (Table 5) reveal a
consistent trade-off. The AE model achieves higher scores on full-segment metrics, demonstrating

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of Different Compression Models

Model(Datasets) PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓ Encoder Params

AE FP32 (GC) 23.66 ± 1.21 / 25.97 ± 2.85 8.38 ± 1.21 / 13.50 ± 2.83 0.08 ± 0.01 / 0.06 ± 0.02 16512 bits
AE INT8 (GC) 22.23 ± 1.32 / 22.29 ± 1.93 6.94 ± 1.32 / 9.82 ± 1.92 0.09 ± 0.01 / 0.09 ± 0.02 4128 bits
AE INT1.4 (GC) 18.96 ± 2.00 / 17.95 ± 3.35 3.67 ± 1.98 / 5.48 ± 3.34 0.13 ± 0.02 / 0.16 ± 0.05 2580 bits
PCA (GC) 29.80 ± 0.07 / 30.22 ± 0.06 14.51 ± 0.06 / 17.75 ± 0.06 0.04 ± 0.00 / 0.03 ± 0.00 20480 bits
CS (GC) 15.47 ± 0.13 / 12.73 ± 0.20 0.18 ± 0.14 / 0.26 ± 0.21 0.17 ± 0.00 / 0.23 ± 0.01 16384 bits
VQ VAE (GC) 18.63 ± 1.59 / 21.76 ± 4.06 3.34 ± 1.60 / 9.29 ± 4.07 0.13 ± 0.02 / 0.10 ± 0.05 18560 bits
BNN AE (GC) 17.60 ± 1.22 / 17.19 ± 1.43 2.31 ± 1.23 / 4.72 ± 1.41 0.14 ± 0.02 / 0.15 ± 0.02 516 bits
NSC MSE (GC)∗ 22.87 ± 2.43 / 23.01 ± 1.93 7.58 ± 2.42 / 10.54 ± 1.94 0.09 ± 0.02 / 0.10 ± 0.03 124 bits
NSC EAL-G (GC)∗ 21.12 ± 6.38 / 25.70 ± 0.21 5.83 ± 6.36 / 13.23 ± 0.21 0.19 ± 0.16 / 0.06 ± 0.00 124 bits

AE FP32 (hc1) 19.44 ± 0.66 / 19.89 ± 0.84 3.38 ± 0.67 / 5.96 ± 0.85 0.11 ± 0.01 / 0.11 ± 0.01 16512 bits
AE INT8 (hc1) 18.47 ± 0.57 / 17.81 ± 0.86 2.41 ± 0.57 / 3.88 ± 0.87 0.13 ± 0.01 / 0.14 ± 0.01 4128 bits
AE INT1.4 (hc1) 16.96 ± 0.61 / 17.61 ± 1.00 0.90 ± 0.62 / 3.68 ± 1.01 0.15 ± 0.01 / 0.15 ± 0.02 2580 bits
PCA (hc1) 21.03 ± 0.01 / 21.39 ± 0.06 4.98 ± 0.01 / 7.45 ± 0.04 0.09 ± 0.00 / 0.09 ± 0.00 20480 bits
CS (hc1) 16.22 ± 0.07 / 14.18 ± 0.13 0.17 ± 0.07 / 0.25 ± 0.14 0.16 ± 0.00 / 0.20 ± 0.00 16384 bits
VQ VAE (hc1) 17.29 ± 0.79 / 18.81 ± 0.81 1.23 ± 0.80 / 4.88 ± 0.81 0.15 ± 0.01 / 0.12 ± 0.01 18560 bits
BNN AE (hc1) 16.83 ± 1.08 / 16.55 ± 1.40 0.77 ± 1.09 / 2.61 ± 1.41 0.16 ± 0.02 / 0.16 ± 0.02 516 bits
NSC MSE (hc1)∗ 17.63 ± 0.52 / 18.27 ± 1.49 1.57 ± 0.53 / 4.34 ± 1.49 0.14 ± 0.01 / 0.13 ± 0.02 124 bits
NSC EAL-G (hc1)∗ 17.92 ± 1.47 / 19.67 ± 0.06 1.86 ± 1.48 / 5.74 ± 0.05 0.15 ± 0.06 / 0.11 ± 0.00 124 bits
·Mean ± std over five seeds.

Table 4: Clustering Results

Latent Value
Datasets Metrics AE FP32 AE INT8 AE INT1.4 PCA CS VQ VAE BNN AE NSC MSE NSC EAL-G

GC
F1 ↑ 0.98 ± 0.01 0.72 ± 0.09 0.59 ± 0.12 0.88 ± 0.15 0.87 ± 0.11 0.38 ± 0.03 0.33 ± 0.01 0.63 ± 0.03 0.72 ± 0.12
ARI ↑ 0.94 ± 0.04 0.42 ± 0.15 0.28 ± 0.20 0.83 ± 0.21 0.74 ± 0.18 -0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.07 0.46 ± 0.20
NMI ↑ 0.91 ± 0.05 0.46 ± 0.13 0.25 ± 0.15 0.87 ± 0.15 0.74 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.35 ± 0.07 0.52 ± 0.20

hc1
F1 ↑ 0.93 ± 0.02 0.74 ± 0.07 0.71 ± 0.12 0.97 ± 0.00 0.85 ± 0.06 0.53 ± 0.01 0.86 ± 0.02 0.68 ± 0.11 0.86 ± 0.12
ARI ↑ 0.73 ± 0.06 0.24 ± 0.13 0.23 ± 0.22 0.87 ± 0.02 0.49 ± 0.17 0.00 ± 0.00 0.54 ± 0.04 0.16 ± 0.10 0.58 ± 0.31
NMI ↑ 0.69 ± 0.06 0.22 ± 0.16 0.18 ± 0.18 0.81 ± 0.02 0.47 ± 0.14 0.00 ± 0.00 0.49 ± 0.03 0.30 ± 0.08 0.59 ± 0.22

·Mean ± std over five seeds.

Reconstructed Waveform Full
Datasets Metrics AE FP32 AE INT8 AE INT1.4 PCA CS VQ VAE BNN AE NSC MSE NSC EAL-G

GC
F1 ↑ 0.88 ± 0.14 0.69 ± 0.06 0.60 ± 0.11 0.88 ± 0.15 0.87 ± 0.11 0.79 ± 0.24 0.34 ± 0.01 0.80 ± 0.10 0.68 ± 0.19
ARI ↑ 0.82 ± 0.19 0.47 ± 0.07 0.28 ± 0.19 0.83 ± 0.21 0.74 ± 0.18 0.64 ± 0.35 -0.00 ± 0.00 0.66 ± 0.16 0.49 ± 0.26
NMI ↑ 0.85 ± 0.13 0.49 ± 0.08 0.27 ± 0.16 0.87 ± 0.15 0.74 ± 0.15 0.60 ± 0.33 0.00 ± 0.00 0.71 ± 0.13 0.56 ± 0.26

hc1
F1 ↑ 0.89 ± 0.06 0.68 ± 0.16 0.75 ± 0.05 0.97 ± 0.00 0.85 ± 0.06 0.96 ± 0.01 0.94 ± 0.00 0.95 ± 0.01 0.64 ± 0.21
ARI ↑ 0.61 ± 0.18 0.23 ± 0.21 0.26 ± 0.09 0.87 ± 0.02 0.49 ± 0.17 0.85 ± 0.05 0.77 ± 0.01 0.81 ± 0.02 0.24 ± 0.35
NMI ↑ 0.61 ± 0.13 0.22 ± 0.20 0.21 ± 0.10 0.81 ± 0.02 0.47 ± 0.14 0.78 ± 0.06 0.66 ± 0.01 0.74 ± 0.02 0.32 ± 0.27

·Mean ± std over five seeds.

Reconstructed Waveform ROI
Datasets Metrics AE FP32 AE INT8 AE INT1.4 PCA CS VQ VAE BNN AE NSC MSE NSC EAL-G

GC
F1 ↑ 0.94 ± 0.12 0.75 ± 0.11 0.62 ± 0.13 0.88 ± 0.15 0.89 ± 0.07 0.79 ± 0.24 0.34 ± 0.01 0.80 ± 0.10 1.00 ± 0.00
ARI ↑ 0.90 ± 0.16 0.54 ± 0.13 0.31 ± 0.21 0.83 ± 0.21 0.72 ± 0.18 0.64 ± 0.35 -0.00 ± 0.00 0.66 ± 0.16 0.99 ± 0.01
NMI ↑ 0.91 ± 0.12 0.55 ± 0.12 0.29 ± 0.17 0.87 ± 0.15 0.73 ± 0.15 0.60 ± 0.33 0.00 ± 0.00 0.71 ± 0.13 0.98 ± 0.01

hc1
F1 ↑ 0.94 ± 0.03 0.83 ± 0.06 0.79 ± 0.07 0.97 ± 0.00 0.82 ± 0.08 0.96 ± 0.01 0.94 ± 0.00 0.95 ± 0.01 0.96 ± 0.01
ARI ↑ 0.76 ± 0.11 0.44 ± 0.15 0.35 ± 0.16 0.87 ± 0.01 0.44 ± 0.20 0.86 ± 0.05 0.77 ± 0.01 0.81 ± 0.02 0.85 ± 0.02
NMI ↑ 0.72 ± 0.09 0.38 ± 0.13 0.28 ± 0.14 0.81 ± 0.02 0.43 ± 0.18 0.78 ± 0.05 0.66 ± 0.01 0.74 ± 0.02 0.78 ± 0.02

·Mean ± std over five seeds.

its capacity for global signal reconstruction. In contrast, our NSC model sacrifices some global
fidelity but consistently and significantly outperforms the AE in reconstructing the Regions of In-
terest (ROI). These results confirm that the NSC framework generalizes effectively beyond neural
signals and maintains excellent, focused reconstruction quality for critical waveform segments in
other biosignals like ECG.

Table 5: Generalization on MIT-BIH datasets

Datasets Model PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

100 AE FP32 20.70 ± 1.49 / 18.90 ± 2.89 8.83 ± 1.48 / 8.10 ± 2.87 0.09 ± 0.02 / 0.12 ± 0.03
NSC EAL-G 17.73 ± 5.28 / 28.96 ± 0.38 5.86 ± 5.30 / 18.16 ± 0.37 0.16 ± 0.09 / 0.04 ± 0.00

101 AE FP32 21.65 ± 2.36 / 19.15 ± 2.35 9.01 ± 2.37 / 7.78 ± 2.36 0.09 ± 0.02 / 0.12 ± 0.02
NSC EAL-G 17.51 ± 2.91 / 29.06 ± 0.80 4.87 ± 2.89 / 17.69 ± 0.79 0.16 ± 0.04 / 0.05 ± 0.01

102 AE FP32 19.47 ± 2.29 / 18.81 ± 5.08 7.42 ± 2.29 / 6.43 ± 5.09 0.13 ± 0.02 / 0.14 ± 0.05
NSC EAL-G 21.78 ± 6.86 / 27.59 ± 0.33 9.72 ± 6.86 / 15.21 ± 0.31 0.16 ± 0.13 / 0.05 ± 0.00

·Mean ± std over five seeds.

5 CONCLUSION

This paper presented a Neural Signal Codec (NSC) featuring a highly resource-efficient encoder for
implantable brain-machine interface systems. The proposed NSC employs a hardware-optimized
encoder with only 124 bits of parameters and is trained with an Energy-Aware Loss (EAL), 97%
parameter reduction compared with conventional AE QINT8, achieving an average PSNR of more
than 17.92 dB at a 32:1 compression ratio across all datasets. High-fidelity reconstructions within
the region of interest and downstream clustering experiments show that the proposed NSC excels at
preserving spike-related information compared to conventional parameter-intensive models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

H. Ando, K. Takizawa, T. Yoshida, K. Matsushita, M. Hirata, and T. Suzuki. Wireless multichannel
neural recording with a 128-mbps uwb transmitter for an implantable brain-machine interfaces.
IEEE Transactions on Biomedical Circuits and Systems, 10(6):1068–1078, 2016. doi: 10.1109/
TBCAS.2016.2514522.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013. URL https://arxiv.org/
abs/1308.3432.

F. J. Chaure, H. G. Rey, and R. Quian Quiroga. A novel and fully automatic spike sorting implemen-
tation with variable number of features. Journal of Neurophysiology, 120(4):1859–1871, 2018.
doi: 10.1152/jn.00339.2018.

Yingping Chen, Bernardo Tacca, Yunzhu Chen, Dwaipayan Biswas, Georges Gielen, Francky
Catthoor, Marian Verhelst, and Carolina Mora Lopez. An online-spike-sorting ic using unsu-
pervised geometry-aware osort clustering for efficient embedded neural-signal processing. IEEE
Journal of Solid-State Circuits, 58(11):2990–3002, 2023. doi: 10.1109/JSSC.2023.3303675.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations, 2016a. URL https://arxiv.org/abs/
1511.00363.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1, 2016b. URL https://arxiv.org/abs/1602.02830.

D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,
2006. doi: 10.1109/TIT.2006.871582.

A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark, and H. E. Stanley. Phys-
ioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex
physiologic signals. Circulation [Online], 2000. RRID:SCR 007345.

Liyuan Guo, Seyed Mohammad Ali Zeinolabedin, Franz Marcus Schüffny, Annika Weiße, Stefan
Scholze, Richard George, Johannes Partzsch, and Christian Mayr. A 16-channel real-time adap-
tive neural signal compression engine in 22nm fdsoi. In 2023 21st IEEE Interregional NEWCAS
Conference (NEWCAS), pp. 1–5, 2023. doi: 10.1109/NEWCAS57931.2023.10198167.

Yuntao Han, Yihan Pan, Xiongfei Jiang, Cristian Sestito, Shady Agwa, Themis Prodromakis, and
Shiwei Wang. L-sort: On-chip spike sorting with efficient median-of-median detection and
localization-based clustering, 2025. URL https://arxiv.org/abs/2501.17885.

Darrell A. Henze, Zsolt Borhegyi, Jozsef Csicsvari, Akira Mamiya, Kenneth D. Harris, and György
Buzsáki. Intracellular features predicted by extracellular recordings in the hippocampus in
vivo. Journal of Neurophysiology, 84(1):390–400, 2000. doi: 10.1152/jn.2000.84.1.390. URL
https://doi.org/10.1152/jn.2000.84.1.390. PMID: 10899213.

Chanwook Hwang, Biyan Zhou, Ye Ke, Vivek Mohan, Jong Hwan Ko, and Arindam Basu. Event-
based neural spike detection using spiking neural networks for neuromorphic ibmi systems, 2025.
URL https://arxiv.org/abs/2505.06544.

Z T Irwin, K E Schroeder, P P Vu, A J Bullard, D M Tat, C S Nu, A Vaskov, S R Nason, D E
Thompson, J N Bentley, P G Patil, and C A Chestek. Neural control of finger movement via
intracortical brain-machine interface. J. Neural Eng., 14(6):066004, December 2017.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference, 2017. URL https://arxiv.org/abs/1712.
05877.

10

https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1511.00363
https://arxiv.org/abs/1511.00363
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/2501.17885
https://doi.org/10.1152/jn.2000.84.1.390
https://arxiv.org/abs/2505.06544
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Seong-Jin Kim, Su-Hyun Han, Ji-Hyoung Cha, Lei Liu, Lei Yao, Yuan Gao, and Minkyu Je. A
sub-µw/ch analog front-end for δ-neural recording with spike-driven data compression. IEEE
Transactions on Biomedical Circuits and Systems, 13(1):1–14, 2019. doi: 10.1109/TBCAS.2018.
2880257.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

William Lemaire, Esmaeil Ranjbar Koleibi, Takwa Omrani, Maher Benhouria, Konin Koua, Charles
Quesnel, Louis-Philippe Gauthier, Jérémy Ménard, Keven Gagnon, Sébastien Roy, and Réjean
Fontaine. Preliminary results from a 49-channel neural recording asic with embedded spike com-
pression in 28 nm cmos. In 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), pp.
285–289, 2022. doi: 10.1109/NEWCAS52662.2022.9842184.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets, 2017. URL https://arxiv.org/abs/1608.08710.

Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point quantization of deep
convolutional networks, 2016. URL https://arxiv.org/abs/1511.06393.

Hanqing Liu, Xiaole Cui, Sunrui Zhang, Mingqi Yin, Yuanyuan Jiang, and Xiaoxin Cui. A con-
volutional spiking neural network accelerator with the sparsity-aware memory and compressed
weights. In 2024 IEEE 35th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), pp. 163–171, 2024. doi: 10.1109/ASAP61560.2024.00041.

Xilin Liu, Milin Zhang, Tao Xiong, Andrew G. Richardson, Timothy H. Lucas, Peter S. Chin,
Ralph Etienne-Cummings, Trac D. Tran, and Jan Van der Spiegel. A fully integrated wireless
compressed sensing neural signal acquisition system for chronic recording and brain machine
interface. IEEE Transactions on Biomedical Circuits and Systems, 10(4):874–883, 2016. doi:
10.1109/TBCAS.2016.2574362.

S. Mukhopadhyay and G.C. Ray. A new interpretation of nonlinear energy operator and its efficacy
in spike detection. IEEE Transactions on Biomedical Engineering, 45(2):180–187, 1998. doi:
10.1109/10.661266.

Elon Musk and Neuralink. An integrated brain-machine interface platform with thousands of chan-
nels. J. Med. Internet Res., 21(10):e16194, October 2019.

Eric H Pollmann, Heyu Yin, Ilke Uguz, Agrita Dubey, Katie E Wingel, John S Choi, Sajjad Moazeni,
Yatin Gilhotra, Victoria Andino-Pavlovsky, Adam Banees, Abhinav Parihar, Vivek Boominathan,
Jacob T Robinson, Ashok Veeraraghavan, Vincent A Pieribone, Bijan Pesaran, and Kenneth L
Shepard. A subdural CMOS optical device for bidirectional neural interfacing. Nat. Electron.,
August 2024.

R. Quian Quiroga. What is the real shape of extracellular spikes? Journal of Neuroscience Methods,
177(1):194–198, February 2009. ISSN 0165-0270. doi: 10.1016/j.jneumeth.2008.09.033. URL
http://dx.doi.org/10.1016/j.jneumeth.2008.09.033.

Rodrigo Quian Quiroga. Simulated dataset. 2 2020. doi: 10.25392/leicester.data.11897595.v1. URL
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/
11897595.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks, 2016. URL https://arxiv.org/
abs/1603.05279.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large lan-
guage models, 2023. URL https://arxiv.org/abs/2310.00034.

Minyoung Song, Yu Huang, Hubregt J. Visser, Jac Romme, and Yao-Hong Liu. An energy-efficient
and high-data-rate ir-uwb transmitter for intracortical neural sensing interfaces. IEEE Journal of
Solid-State Circuits, 57(12):3656–3668, 2022. doi: 10.1109/JSSC.2022.3212672.

11

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1511.06393
http://dx.doi.org/10.1016/j.jneumeth.2008.09.033
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/2310.00034

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Giulia LB Spampinato, Elric Esposito, Pierre Yger, Jens Duebel, Serge Picaud, and Olivier Marre.
Ground truth recordings for validation of spike sorting algorithms, March 2018. URL https:
//doi.org/10.5281/zenodo.1205233.

Nicholas A. Steinmetz, Matteo Carandini, and Kenneth Harris. Recording with a Neuropixels probe.
2 2024. doi: 10.5522/04/25232962.v2. URL https://rdr.ucl.ac.uk/articles/
dataset/Recording_with_a_Neuropixels_probe/25232962.

Jameson Thies and Amirhossein Alimohammad. Compact and low-power neural spike compression
using undercomplete autoencoders. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 27(8):1529–1538, 2019. doi: 10.1109/TNSRE.2019.2929081.

Ramin Toosi, Mohammad Ali Akhaee, and Mohammad-Reza A. Dehaqani. An automatic spike
sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions. Sci-
entific Reports, 11(1), July 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-93088-w. URL
http://dx.doi.org/10.1038/s41598-021-93088-w.

Daniel Valencia and Amir Alimohammad. Neural spike sorting using binarized neural networks.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:206–214, 2021. doi:
10.1109/TNSRE.2020.3043403.

Daniel Valencia, Patrick P. Mercier, and Amir Alimohammad. Efficient in vivo neural signal com-
pression using an autoencoder-based neural network. IEEE Transactions on Biomedical Circuits
and Systems, 18(3):691–701, 2024. doi: 10.1109/TBCAS.2024.3359994.

Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen
Blankevoort, and Max Welling. Bayesian bits: Unifying quantization and pruning, 2020. URL
https://arxiv.org/abs/2005.07093.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 6309–6318, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models, 2023. URL https://arxiv.org/abs/2310.11453.

Matthew S Willsey, Nishal P Shah, Donald T Avansino, Nick V Hahn, Ryan M Jamiolkowski,
Foram B Kamdar, Leigh R Hochberg, Francis R Willett, and Jaimie M Henderson. A high-
performance brain-computer interface for finger decoding and quadcopter game control in an
individual with paralysis. Nat. Med., 31(1):96–104, January 2025.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27168–27183. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf.

12

https://doi.org/10.5281/zenodo.1205233
https://doi.org/10.5281/zenodo.1205233
https://rdr.ucl.ac.uk/articles/dataset/Recording_with_a_Neuropixels_probe/25232962
https://rdr.ucl.ac.uk/articles/dataset/Recording_with_a_Neuropixels_probe/25232962
http://dx.doi.org/10.1038/s41598-021-93088-w
https://arxiv.org/abs/2005.07093
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
A NSC Encoder Analysis . Page 13

• A.1 Backward Derivations . Page 13

• A.2 Bounds and Gradients . Page 15

• A.3 Lipschitz Continuity Proof . Page 20

B Hardware Implementation Details . Page 21

• B.1 Multiplier-free Design . Page 21

• B.2 Resource Analysis . Page 23

C Reproducibility Statement . Page 24

• C.1 Code Statement . Page 24

• C.2 Datasets Process . Page 24

• C.3 Training Settings . Page 25

• C.4 Results Process . Page 25

D Ethics Statement 26

E The Use of Large Language Models (LLMs) 26

F Supplement Data 26

G : Q&A 27

A NSC ENCODER ANALYSIS

A.1 BACKWARD DERIVATIONS

Although designed encoder applies parameter quantization during the forward pass to emulate low-
bit hardware behavior, the backward pass computes gradients using the full-precision parameters.
Gradients are computed with respect to the input signal x, the energy-aware parameters α,β,γ,
and the window boundary parameters r, all treated as continuous variables during learning. And let
∇zL be the gradient acquired form decoder.

Gradient w.r.t. Input x. For each window i, the local gradient with respect to each time point
x
(i)
n is:

∂L
∂x

(i)
n

= ∇zL · γi ·
d∑

j=1

Scale(i)j,n. (10)

These window-local gradients are then aggregated into the corresponding region of the full-length
gradient ∇x.

Gradient w.r.t. αi,j and βi,j . With the chain rule, we obtain:

∂L
∂αi,j

= ∇zL · γi · ln(2) ·
Li∑
n=1

x(i)
n · LNE(i)

n · Scale(i)j,n. (11)

∂L
∂βi,j

= ∇zL · γi · ln(2) ·
Li∑
n=1

x(i)
n · Scale(i)j,n. (12)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gradient w.r.t. γi. Since γi acts as a linear scaling factor on the window output, the gradient
is computed using the unscaled window output (fake y) for numerical stability and mathematical
correctness:

∂L
∂γi

= ∇zL · y(i)fake (13)

where y
(i)
fake is the window output with γi = 1.0.

Gradient w.r.t Quantized Parameters. During training we apply the straight-through estimator
(STE) Bengio et al. (2013) for parameters and floor operations to enable gradient propagation to
achieve the fake quant with:

(θquant − θ).detach() + θ (14)
Specifically, for the quantized parameter θq , we approximate:

∂θq
∂θ
≈ 1. (15)

allowing gradients with respect to θq to be directly propagated and used to update θ. The gradi-
ents of the quantized parameters αq,i,j , βq,i,j , γq,i,j are back-propagated to their full-precision parts
αi,j , βi,j , γi,j without modification.

Gradient w.r.t. Window Boundary Parameters p. Let the scalar boundary parameters be pi for
i = 0, . . . , w− 1, where w is the number of windows. Define si = σ(pi) = sigmoid(pi), optionally
clamped in implementation for stability.

The normalized boundary positions bi ∈ [0, 1] are defined recursively as:

b0 = 0, bi = 1−
i−1∏
t=0

(1− st), i = 1, . . . , w (16)

which is equivalent to the code’s recurrence: bi = bi−1 + (1 − bi−1)si−1. The physical boundary
positions for input length T are:

Bi = T · bi, i = 0, . . . , w (17)

Each window i produces an unscaled output y(i)fake(data on window [Bi−1, Bi)). The gradient
contribution for window i is:

Gi =
∑

b∈batch

(
∇zLb · y(i)fake

)
(18)

The gradient with respect to boundary parameter pi is derived as follows:

1) BOUNDARY PERTURBATION EFFECT: A small perturbation δ in boundary Bi+1 redistributes
samples between windows i and i+ 1:

∂L
∂Bi+1

= Gi+1 −Gi (19)

2) WITH CHAIN RULE:
∂L
∂pi

=
∂L

∂Bi+1
· ∂Bi+1

∂pi
(20)

3) BOUNDARY POSITION DERIVATIVE: Differentiating bk = 1 −
∏k−1

t=0 (1 − st) with respect to
si (for i < k):

∂bk
∂si

=

k−1∏
t=0
t̸=i

(1− st) (21)

For k = i+ 1:
∂bi+1

∂si
=

i−1∏
t=0

(1− st) (22)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

4) SIGMOID DERIVATIVE:
∂si
∂pi

= si(1− si) (23)

5) COMBINED DERIVATIVE:

∂Bi+1

∂pi
= T · ∂bi+1

∂si
· ∂si
∂pi

= T ·

(
i−1∏
t=0

(1− st)

)
· si(1− si) (24)

6) FINAL GRADIENT EXPRESSION: Combining equations (19) and (24):

∂L
∂pi

= (Gi+1 −Gi) · T ·

(
i−1∏
t=0

(1− st)

)
· si(1− si) (25)

NOTED:

• The code implements this exactly: window aggr stores Gk values, ds = si(1− si), and
d boundaries = T ·

∏i−1
t=0(1− st) · ds[i].

• Intuition: (Gi+1 −Gi) measures whether moving the boundary helps loss reduction.

A.2 BOUNDS AND GRADIENTS

In this section, we mainly study the bounds for encoder parameters, variables, and outputs.

A.2.1 DISTRIBUTION OF NEO (T = X2 − Y Z)

Discrete Input Analysis : Let X,Y, Z be independent and uniformly distributed over the 8-bits
signed integer set {−128, . . . , 127} ∪ {128} for convenience, each with

P (X = x) = P (Y = y) = P (Z = z) =
1

257
, x, y, z ∈ {−128,−127, . . . , 128}.

Define T(NEO) with :
T = X2 − Y Z.

then :
X2 ∈ {02, 12, . . . , 1282}, Y Z ∈ {−128 · 128,−127 · 128, . . . , 128 · 128},

and consequently :
T ∈ {−1282, . . . , 2 · 1282}.

Then the probability mass function of T is given by :

P (T = t) =
N(t)

2573
, where N(t) =

∣∣{(x, y, z) ∈ {−128, . . . , 128}3 : x2 − yz = t
}∣∣ .

Mean:
E[T] = E[X2]− E[Y]E[Z] = E[X2],

since E[Y] = E[Z] = 0. Moreover :

E[T] = E[X2] =
1

257

128∑
k=−128

k2 =
1

257
· 2 · 128 · (128 + 1) · (2 · 128 + 1)

6
= 5504.

Variance:
Var(T) = Var(X2) + Var(Y Z),

where X,Y, Z are mutually independent. Since Y,Z are independent and symmetric :

Var(Y Z) = E[Y 2]E[Z2], and E[Y 2] = E[Z2] =
1

257

128∑
k=−128

k2 = 5504.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Next, for Var(X2):
Var(X2) = E[X4]−

(
E[X2]

)2
.

We have

E[X4] =
1

257

128∑
k=−128

k4 =
1

257
·2·

128∑
k=1

k4 =
2

257
·128(128 + 1)(2 · 128 + 1)(3 · 1282 + 3 · 128− 1)

30
.

This simplifies to:

E[X4] =
2

257
· 128 · 129 · 257 · 49535

30
=

2 · 128 · 129 · 49535
30

.

So finally, the total variance is

Var(T) =
(
E[X4]− E[X2]2

)
+Var(Y Z) =

(
2 · 128 · 129 · 49535

30
− 55042

)
+55042 ≈ 5.453×107.

Continuous Input Analysis : X,Y, Z ∈ R ∼ U(−a, a) for a = 128. Then, the PDF of T =
X2 − Y Z becomes:

fT (t) =

∫ a2

0

fX2(s) · fY Z(s− t) ds

Where:

fX2(s) =


1

2a
√
s
, 0 < s ≤ a2

0, otherwise

fY Z(b) =



1

2a2
, b = 0

− 1

2a2
log

(
|b|
a2

)
, 0 < |b| < a2

0, otherwise

10000 0 10000 20000 30000
T = X² - Y·Z

0

1

2

3

4

5

6

7

Pr
ob

ab
ili

ty
 D

en
si

ty

1e 5

Analytical Expression
n: 10,000,000

: 5458.62
: 7327.23

Figure 4: Discrete Empirical Distribution of T = X2− Y Z (histogram) and corresponding Contin-
uous Analytical Expression (red curve)

Code experiment results are shown in Fig.4.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2.2 DISTRIBUTION OF LNE (⌊log2(max(T, 1.0))⌋)

We define the discrete LNE as:

LNE = ⌊log2 (max(T, 1.0))⌋ .

Discrete Input Analysis For values T < 1, LNE is set to 0. The probability mass function is
computed as:

P (LNE = k) =


1

2573

1∑
t=−1282

N(t), k = 0,

1

2573

2k+1−1∑
t=2k

N(t), k ≥ 1.

Continuous Input Analysis For the continuous analytical expression, floor was ignored and let
y = log2(max(T, 1)), then T = 2y . The probability density transforms as:

fY (y) = fT (2
y) ·

∣∣∣∣dTdy
∣∣∣∣ = fT (2

y) · 2y log(2) y > 0, else fY (y) =

∫ 1

−∞
fT (t)dt y = 0

The distribution of LNE is obtained by integrating over bins:

P (LNE = k) ≈


∫ 1

−∞
fY (y)dy, k = 0,∫ k+1

k

fY (y)dy, k ≥ 1.

0 2 4 6 8 10 12 14
LNE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili

ty
 D

en
si

ty

Analytical Expression
n: 10,000,000

Figure 5: Discrete Empirical Distribution of LNE (histogram) and corresponding Continuous Ana-
lytical Expression (red curve)

Code experiment results are shown in Fig.5.

A.2.3 DISTRIBUTION OF SCALE VALUE

In forward processing part, for window i we have:

Shift
(i)
j,n = ⌊αq,i,j · LNEn + βq,i,j⌋ ,

Scale
(i)
j,n = 2clamp(Shift

(i)
j,n−8, −8, 7).

Where αq,i,j ∈ {0, 1/16, ...15/16} and βq,i,j ∈ {−8,−7, ...7}, here, we consider the continuous
α̃ ∈ R ∼ U(0, 1) and β̃ ∈ Z ∼ U(−8, 8), and let X ∼ P (LNE). The distribution for LNE is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

presented in A.2.2, results show that LNE has bimodal characteristics, one located in 0 and another
is around value of ∼ 13. Considering the uniform distribution of α̃ and β̃, the range of Shift ∈
(−8, 24), here we choose bias of −8 as default to change the Shift range to the symmetrical interval
in (−16, 16).
Let’s consider :

Z = Y + β̃, Y = α̃ ·X
and mainly discuss of the scale value of :

scale value = clamp(Z − 8,−8, 7)
and α̃, β̃ are independent of each other and of X . First considering Y , we can get the cumulative
distribution function (CDF) :

FY (y) = P (Y ≤ y) = P (α̃ ·X ≤ y)

=

∫ ∞

0

P (α̃ ≤ y

x
| x = X) · fX(x)dx

=

∫ y

0

1 · fX(x)dx+

∫ 16

y

y

x
fX(x)dx (α̃ ∼ U(0, 1))

= FX(y) + y

∫ 16

y

fX(x)

x
dx

and the probability density function (PDF) with:

fY (y) =
d

dy
FY (y) = fX(y) +

∫ 16

y

fX(x)

x
dx+ y · (−fX(y)

y
) =

∫ 16

y

fX(x)

x
dx

Then the PDF of Z is given by the convolution:

fZ(z) =

∫ ∞

−∞
fY (z − b)fβ̃(b) db

Since β̃ ∼ U(−8, 8), we have fβ̃(b) =
1
16 for b ∈ [−8, 8], so:

fZ(z) =
1

16

∫ 8

−8

fY (z − b) db =
1

16

∫ 8

−8

(∫ 16

z−b

fX(x)

x
dx

)
db

And for the statistical values, we can get:

Expected Value:

E[Z] = E[Y] + E[β̃] = E[α̃] · E[X] + 0 =
1

2
E[X]

Variance:
Var(Z) = Var(Y) + Var(β̃)

Var(β̃) =
(8− (−8))2

12
=

256

12
=

64

3

Var(Y) = E[Var(Y | X)] + Var(E[Y | X)] =
1

12
E[X2] +

1

4
Var(X)

In A.2.2 we can get E[X(LNE)] ≈ 12,Var[X] ≈ 2.6 (ignoring 0 value, for it makes no contribu-
tions for α, β gradient, and as mentioned the low NEO represents the region more like noise), hence
the final :

E[Z] =
1

2
E[X] ≈ 5

Var(Z) =
1

12
E[X2] +

1

4
Var(X) +

64

3
≈ 37 ≈ 62

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7
Scale Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty
 D

en
si

ty

Raw

n: 10,000,000

8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7
Scale Value

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
 D

en
si

ty

With -8 bias

n: 10,000,000

Figure 6: Discrete Empirical Distribution of Scale Value (histogram), Left: Original Scale Distribu-
tion. Right: With −8 Bias Scale Distribution

By adding the bias−8, we can make the distribution centered to E[Z−8] ≈ −3, with the distribution
figure shows below :

Fig.6 shows E[scale value] ≈ −2.46 Var[scale value] ≈ 22.78 ≈ 4.772, which is consistent
with the theoretical results. The majority of scale values are concentrated on the negative axis,
which a property for numerical stability. Since computation involves scaling by x · 2scale. If scale
were predominantly positive, the output could grow explosively (as illustrated in the left figure).

A.2.4 GRADIENT BOUND ANALYSIS

For ∇zL is given through the decoder, usually considered to be stable:

|∇zL| ≤ C

For the upper bound of extreme value, we choose all the possible max value of X = 128,LNE =
16, Scale = 27 treating all to be independent, with all windows collapsed into one of T = 128 and
γ = 1, we get:

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣ ≤ C · 1 · ln(2) · 128 · (128 · 16 · 128)

≈ C · 2.3× 107∣∣∣∣ ∂L
∂βi,j

∣∣∣∣ ≤ C · 1 · ln(2) · 128 · (128 · 128)

≈ C · 1.5× 106

However, this bound considers the joint distribution of input signal, NEO, and scale. Here we adopt
a Monte Carlo approach:

Parameter Distributions:

• N times testing, with window length L of 128.
• Setting X ∈ ZN×130 ∼ U{−128, 127, ..., 127}, with padding 2 to get 128 length NEO

value.
• α, γ ∈ RN ∼ U(0, 15/16), β ∈ ZN ∼ U(−8, 7), considering the STE in training process.
• For the window boundaries, we choose s0, s1 ∈ RN ∼ U(0.05, 0.95) for stability, with

boundaries b0 = 0, b1 = s0, b2 = b1 + (1− b1) · s1, b3 = 1. The actual boundary position
is Bk = bk · L.

Figure 7 shows the detailed distribution of gradient ∥α∥ and ∥β∥.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 50000 100000 150000 200000 250000 300000
gradient w.r.t. alpha part

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Pr
ob

ab
ili

ty
 D

en
si

ty

n: 1,000,000
P 95

0 2000 4000 6000 8000 10000
gradient w.r.t. beta part

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pr
ob

ab
ili

ty
 D

en
si

ty

n: 1,000,000
P 95

Figure 7: Gradient distribution w.r.t. ∥α∥ and ∥β∥

And we get the tight upper bound of experience with:

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣ ≈ C · 2.06× 106,

∣∣∣∣ ∂L
∂βi,j

∣∣∣∣ ≈ C · 1.04× 105

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣
P95

≈ C · 1.64× 105,

∣∣∣∣ ∂L
∂βi,j

∣∣∣∣
P95

≈ C · 7.92× 103

P (

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣ == 0) ≈ 0.39%, P (

∣∣∣∣ ∂L
∂βi,j

∣∣∣∣ == 0) ≈ 0.15%

While the gradient bounds are derived per-sample, the averaging nature of mini-batches further
reduces the effective variance and magnitude, ensuring training stability.

A.3 LIPSCHITZ CONTINUITY PROOF

Considering :

Scalen = 2α·log2(max(NEOn,1))+β−8 = 2β−8·(max(NEOn, 1))
α ≤ (Mn)

α, Mn = max(NEOn, 1)

Define :

g(α) = C ·
L∑

n=1

xn · LNEn ·Mn
α, C = ∇zL · γ · ln(2)

Let :

ϕn(α) = xn · LNEn ·Mn
α

Then :

|g(α1)− g(α2)| = C ·

∣∣∣∣∣
L∑

n=1

(ϕn(α1)− ϕn(α2))

∣∣∣∣∣ ≤ C ·
L∑

n=1

|ϕn(α1)− ϕn(α2)|

Note ϕn(α) is differentiable in α:

dϕn

dα
= xn · LNEn ·Mα · ln(Mn) = xn · LNEn ·Mα · LNEn · ln(2) = ϕn(α) · LNEn · ln(2)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Thus :

|ϕn(α1)− ϕn(α2)|

≤ sup
α∈[α1,α2]

∣∣∣∣dϕn

dα

∣∣∣∣ · |α1 − α2|

⇒ |g(α1)− g(α2)| ≤ C ·
L∑

n=1

∣∣∣∣dϕn

dα

∣∣∣∣
max
· |α1 − α2|

⇒ |g(α1)− g(α2)| ≤ Kα · |α1 − α2|,

where Kα = C · ln(2) ·
L∑

n=1

|xn · LNE2
n ·Mn

max(α1,α2)|

Lipschitz continuity of gradient w.r.t. β is similar as α, with :

Kβ = C · ln(2) ·
L∑

n=1

|xn · LNEn ·Mn
max(α1,α2)|

The gradients with respect to the encoder parameters α and β are both bounded and Lipschitz con-
tinuous. Ensuring the gradient magnitude remains within a finite range and guaranteeing that small
perturbations in parameters induce only small changes in the gradients. Together, these properties
imply that the encoder exhibits relatively stable gradient behavior.

B HARDWARE IMPLEMENTATION DETAILS

B.1 MULTIPLIER-FREE DESIGN

In this section, we mainly introduce the design for multiplications.

B.1.1 ⌊log2(max(neo, 1))⌋ OPERATION

For the ⌊log2(x)⌋ operation, for a binary number x, ⌊log2(x)⌋ is equivalent to finding the highest
’1’ bit. One traditional solution is the priority encoder (PE). The main idea is to find the highest bit
’1’ from top to bottom. This can also be achieved by nesting multiple layers of if to determine the
highest bit.

We implement the log operation using a hierarchical priority encoder (PE) structure. The 16-bit input
is divided into four 4-bit groups, each processed by a small 4-bit LOD module, and the outputs are
combined to generate the 4-bit log value. The detailed implementation can be found in Algorithm 1.

B.1.2 WEIGHT GENERATION PROCESS

In our design, two quantized decimal parameters α and γ, each stored as 4-bit values, are utilized.
Both parameters represent fractional values in the set {0, 1

16 ,
2
16 , . . . ,

15
16}. This section focuses on

the computation of α · LNE, where LNE is the 4-bit logarithm approximation obtained from
Algorithm 1.

Algorithm Overview The multiplication α ·LNE is implemented using a shift-and-add approach
that leverages the binary representation of α. Given that α is a 4-bit fractional number, it can be
expressed as:

α =
α3 · 2−1 + α2 · 2−2 + α1 · 2−3 + α0 · 2−4

1

where α[3 : 0] are the individual bits of α.

Shift Operation Phase The 4-bit LNE value is first expanded to 8-bit precision and shifted ac-
cording to the weight of each bit in α:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1: Hierarchical Priority Encoder for Base-2 Floor Logarithm
Input: datai[15 : 0], 16-bits neo input
Output: LNE[3 : 0], 4-bits log representation

Step 1: Group-wise Detection;
// Check which 4-bit groups contain at least one ’1’ bit
zdet[3]← data i[15] ∨ data i[14] ∨ data i[13] ∨ data i[12]
zdet[2]← data i[11] ∨ data i[10] ∨ data i[9] ∨ data i[8]
zdet[1]← data i[7] ∨ data i[6] ∨ data i[5] ∨ data i[4]
zdet[0]← data i[3] ∨ data i[2] ∨ data i[1] ∨ data i[0]
// Check if entire input is zero
zero o← ¬(zdet[3] ∨ zdet[2] ∨ zdet[1] ∨ zdet[0])

Step 2: Leading One Detection (LOD);
// For each zdet, find the position of the leading ’1’. LOD

module acquires 4-bits input with output 4-bits. In LOD
module, we have :

[3 : 0]lod i, [3 : 0]lod o;
mux2 = (lod i[3] == 1) ? 0 : 1;
mux1 = (lod i[2] == 1) ? 0 : mux2;
mux0 = (lod i[1] == 1) ? 0 : mux1;
lod o[3] = lod i[3];
lod o[2] = mux2 & lod i[2];
lod o[1] = mux1 & lod i[1];
lod o[0] = mux0 & lod i[0];

Step 3: Inter-group Priority Selection;
// Determine which 4-bit group contains the globally highest

’1’ bit
select[3 : 0] = LOD(zdet[3 : 0]) // For example, if select[3] = 1, which

means highest ’1’ in bits 15-12 (group 3)

Step 4: Hierarchical Result Multiplexing;
// Propagate only the leading one detection results from the

selected group
for group← 3 downto 0 do

data o[15 : 12]← (group == 3) ? LOD(data i[15 : 12]) : 4′b0000;
data o[11 : 8]← (group == 2) ? LOD(data i[11 : 8]) : 4′b0000;
data o[7 : 4]← (group == 1) ? LOD(data i[7 : 4]) : 4′b0000;
data o[3 : 0]← (group == 0) ? LOD(data i[3 : 0]) : 4′b0000;
// Only the selected group’s LOD results are preserved

end
Step 5: Position Encoding;
if zero o = 1 ; // Special case: input bits are all 0
then

LNE[3 : 0]← 4′b0000
else

: // Encode position using combinatorial OR logic, maps
max(data i, 1)

LNE[3]←
data o[14] ∨ data o[13] ∨ data o[12] ∨ data o[11] ∨ data o[10] ∨ data o[9] ∨ data o[8]
LNE[2]←
data o[14] ∨ data o[13] ∨ data o[12] ∨ data o[7] ∨ data o[6] ∨ data o[5] ∨ data o[4]
LNE[1]←
data o[14] ∨ data o[11] ∨ data o[10] ∨ data o[7] ∨ data o[6] ∨ data o[3] ∨ data o[2]
LNE[0]←
data o[13] ∨ data o[11] ∨ data o[9] ∨ data o[7] ∨ data o[5] ∨ data o[3] ∨ data o[1]

end
return LNE[3 : 0]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

tw0 = LNE (No shift, weight = 20) (26)

tw1 = LNE ≪ 1 (1-bit left shift, weight = 21) (27)

tw2 = LNE ≪ 2 (2-bit left shift, weight = 22) (28)

tw3 = LNE ≪ 3 (3-bit left shift, weight = 23) (29)

Each twi represents LNE multiplied by 2i, corresponding to the weight of bit i in the binary repre-
sentation.

Conditional Summation Phase The final product is computed by conditionally summing the
shifted values based on the bits of α:

tprod =

3∑
i=0

(α[i] ? twi : 8′b0000 0000) (30)

prod = $signed${1′b0, tprod[7 : 4]} (31)

Mathematical Interpretation This implementation effectively computes:

α · LNE ≈ 1

16
× (α[3] · 8LNE + α[2] · 4LNE + α[1] · 2LNE + α[0] · LNE)

where the final right-shift by 4 bits (selecting tprod[7 : 4]) and scaling by 1
16 achieve the fractional

multiplication.

B.2 RESOURCE ANALYSIS

To align with realistic hardware constraints, we further refine our encoder design for resource analy-
sis. In particular, our system must co-exist with the analog front-end (AFE), whose silicon footprint
is approximately 300µm× 200µm. To keep the digital compressor within a comparable or smaller
area budget, we reduce the input window length to T = 32 samples at a sampling rate of 16 kSps,
corresponding the algorithm process clock is 16kHz. This configuration corresponds to a 2 ms seg-
ment, which is sufficient to cover typical spike events.

The region of interest (ROI) is defined as the ±1ms interval centered on the spike peak (i.e., 16
samples before and after). This choice both preserves the essential spike waveform information and
allows implementation with a compact 32-sample shift register, requiring only lightweight control
logic for peak-centered alignment.

Unless otherwise specified, all subsequent hardware-oriented measurements—including parame-
ter count, bit width, buffer size, and operation count—are reported under this configuration. By
grounding the encoder design in the AFE area constraint, the presented results reflect a feasible
iBMI deployment scenario where extreme limits on memory, compute, and silicon area must be
jointly satisfied.

FPGA Implementation. We first synthesized the proposed NSC module on a Xilinx
xc7z020clg400-2 FPGA using Vivado. The results show that the NSC requires 161 Slice LUTs,
91 Slice Registers, and 54 occupied slices, with all LUTs used as logic. The measured dynamic
power consumption is below 1 mW (reported as < 0.001W by the tool), confirming the ultra-low
power nature of the design.

ASIC Synthesis. To further evaluate silicon feasibility, we synthesized the entire digital process-
ing chain (data storage, spike detection, and the NSC module) using Synopsys Design Compiler
with the scc018ug uhd rvt ss v1p62 125c basic standard-cell library. The total area is
34,678µm2, of which the NSC encoder itself occupies 11,465µm2. Timing analysis shows a slack
of 62,488µs (MET), indicating that the design easily meets the target clock frequency(16kHz). The

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

power report indicates extremely low consumption: 2.60 × 10−4 mW internal, 9.66 × 10−6 mW
switching, and 0.756µW leakage, summing to a total of 1.03× 10−3 mW.

These results demonstrate that the NSC encoder not only meets strict FPGA resource limits but also
achieves negligible area and power cost when mapped to a 0.18µm CMOS technology.

In future work, we will evaluate fully streaming in vivo scenarios.

C REPRODUCIBILITY STATEMENT

C.1 CODE STATEMENT

The Python code will be released upon acceptance. In the double-blind review process, the code is
available in the supplementary material. All written in Jupyter Notebook with a README file.

C.2 DATASETS PROCESS

For all datasets, we adopted a unified preprocessing pipeline to obtain spike-centered signal seg-
ments. First, for those datasets that have raw signals without preprocessing, we applied a 300 Hz
high-pass filter to remove low-frequency components. This step is standard in extracellular record-
ings and can be equivalently implemented in the analog front-end (AFE) hardware, thus not intro-
ducing additional digital computation overhead.

Second, candidate spike events were detected using an amplitude threshold. Following Donoho’s
principle Quian Quiroga (2009), the threshold was set within [5, 50] times the median absolute de-
viation (MAD) of the filtered signal, using the same process as Chaure et al. (2018), ensuring robust
spike detection while suppressing noise fluctuations. To avoid detecting overlapping spikes within
the refractory period, we eliminated consecutive events that were closer than 3 ms, corresponding to
typical neuronal firing constraints.

Third, around each detected spike, we extracted a fixed-length window of 128 samples, where the
spike location was centered. The extracted segments were then quantized into signed 8-bit integers
within the range [−128, 127]. This quantization step ensures hardware compatibility, as the input to
our encoder consists entirely of integer-valued samples suitable for efficient on-chip implementation.

Through this process, we obtained consistent spike-aligned segments across multiple datasets, all
represented in the same integer domain. These preprocessed datasets serve as the input for training
and evaluating our proposed neural signal codec.

Now we will describe the data processing procedures for each dataset in sequence.

QU Dataset The QU dataset provides raw data in .mat files, which include ground truth spike
indices and their corresponding classes. Therefore, we only quantized and scaled the data to 8-bit
resolution, after which we extracted the signal segments and their nonlinear energy operator (NEO)
components based on the provided indices.

GC Dataset This dataset provides raw recordings across 256 channels along with corresponding
trigger files (containing spike indices) in ’.npy’ format. Data loading instructions are available on
the official website. In our processing, we used only the single channel specified in the trigger files
to construct the dataset. No filtering was applied. Similar to the procedure for the QU dataset, the
data from the selected channel were quantized and scaled to 8 bits, after which signal segments and
NEO components were extracted using the provided indices.

hc1 For this dataset, we first applied a 300 Hz highpass filter. The recordings comprise six chan-
nels, with the 6−th channel containing the juxtacellular recording, which served as the ground truth
for spike indexing. Spikes detected on the juxtacellular reference channel were concurrently applied
to the data channels (Channels 2, 3, 4, and 5). Since these extracellular channels recorded activity
from the same cell, the spike classes across them are identical; the primary distinction lies in their
respective response amplitudes. Following this procedure, the data was similarly quantized to 8 bits.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

NP This dataset includes recordings from 384 channels. The official website provides spike-
sorting results, so we directly used these outputs. The data were only quantized to 8-bit integer
format for subsequent analysis.

MIT-BIH Similarly, for the MIT-BIH dataset, no filtering was applied. The datasets provide raw
signals along with annotated indices. We directly extracted the corresponding signal segments using
these indices and then quantized the data to 8-bit resolution.

In the ablation study, we utilized the QU Difficult1Noise02 dataset and the NP channel 1 data. For
the comparative experiments, we constructed mixed datasets to evaluate model performance under
more realistic and varied conditions:

For the GC dataset, recordings from sessions 20170622, 20170623, and 20170629 were combined
to form a mixed dataset containing three spike classes. For the HC1 dataset, recordings d533101
and d561106 were merged to create a two-class mixed dataset.

Noticed that since both GC and HC1 are extracellular recordings from individual neurons, each
original recording contains only one type of spike. The mixed datasets were therefore constructed
by combining multiple channel recordings to simulate multi-spike-class scenarios.

C.3 TRAINING SETTINGS

All experiments were conducted on a workstation equipped with one NVIDIA GeForce RTX 5090
(32 GB) GPU, an Intel Xeon Platinum 8470Q CPU (25 vCPUs), and 90 GB of system memory. The
code was implemented in Python 3.12 (on Ubuntu 22.04) using PyTorch 2.8.0 and CUDA 12.8.

For reproducibility, all models were trained with random seeds fixed from 1 to 5, managed via the
seed everything function from PyTorch Lightning. We used the AdamW optimizer with its default
parameters and a global learning rate of 1e − 3 for all models, without employing a learning rate
scheduler. A weight decay of 1e − 4 was applied to all non-quantized parameters, and gradient
clipping with a maximum norm of 10 was used during training.

The model architecture was consistent across experiments: input and reconstruction dimensions
were set to 128, with a latent space size of 4. Each model was trained for 100 epochs using mean
squared error (MSE) as the default loss function, unless otherwise specified in the main text. A
validation set was used for monitoring performance, but no early stopping was applied. Parameter
initialization followed the default methods of the framework, without specific modifications.

Regarding data preparation, no additional normalization or data augmentation was applied. The
input signals were directly used after 8-bit integer quantization.

Specified Initialization For our proposed Neural Spike Coder (NSC), the scaling factor α was
initialized uniformly in [0.25, 0.35] using α ∼ U(0, 1) · 0.1 + 0.25. The shift parameter β was
initialized to zero, and the quantization threshold γ was set to 0.5 initially. The window boundaries
were determined by averaging the input range into equal intervals.

For the baseline models, including AE QINT8, AE Q1P4, and VQ VAE, all quantized parameters
were uniformly initialized between the minimum and maximum values of the corresponding input
data range.

C.4 RESULT PROCESS

For the clustering evaluation, we employed the K-means algorithm with the random seed fixed to 42
to ensure reproducibility. To accurately assess the clustering performance against the ground truth
labels, we resolved the label assignment ambiguity using the Hungarian matching algorithm. This
method finds the optimal one-to-one mapping between predicted clusters and true classes by maxi-
mizing the overall alignment between the two sets of labels. The remapped labels were subsequently
used to compute all clustering metrics reported in the study.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D ETHICS STATEMENT

All datasets used in this study are publicly available for research purposes under open-access li-
censes. Our experiments involved only secondary analysis of existing data and did not involve any
new data collection from human subjects. Therefore, no ethical approval was required for this work.

To access the original datasets :

QU (CC BY 4.0): https://figshare.le.ac.uk/articles/dataset/Simulated_
dataset/11897595?file=21819066

GC (CC BY 4.0): https://zenodo.org/records/1205233#.XMH886xKjCI

hc1 (CC BY 4.0): https://crcns.org/data-sets/hc/hc-1

NP (CC BY-NC 4.0): https://rdr.ucl.ac.uk/articles/dataset/Recording_
with_a_Neuropixels_probe/25232962/2?file=44571832

MIT-BIH (ODC-By): https://physionet.org/content/mitdb/1.0.0/

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the authors utilized the large language models (ChatGPT and
Deepseek) as an auxiliary tool to enhance the writing and editing process. The model was employed
specifically for text polishing, grammar correction, and improving the fluency and clarity of certain
passages in the manuscript.

It is important to note that all scientific content, including the core ideas, theoretical framework,
experimental design, results, and conclusions, originated solely from the authors. The LLM did
not contribute to the intellectual substance of the work, nor was it used to generate any scientific
insights, data, or interpretations.

The authors have reviewed and edited all AI-assisted content and take full responsibility for the
entire work, including its accuracy and integrity.

The use of the LLM was guided by and under the continuous supervision of the authors, adhering to
the principles of transparency and responsible AI use in academic research.

F SUPPLEMENT DATA

0 16 32 48 64 80 96 112 128
Time (samples)

60

40

20

0

20

A
m

pl
itu

de

Waveform Reconstruction Comparison (GC)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 8: Reconstructed (GT) Testset Index 0 Waveform (seed 1)

Reconstructed Wave Visualization

26

https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595?file=21819066
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595?file=21819066
https://zenodo.org/records/1205233#.XMH886xKjCI
https://crcns.org/data-sets/hc/hc-1
https://rdr.ucl.ac.uk/articles/dataset/Recording_with_a_Neuropixels_probe/25232962/2?file=44571832
https://rdr.ucl.ac.uk/articles/dataset/Recording_with_a_Neuropixels_probe/25232962/2?file=44571832
https://physionet.org/content/mitdb/1.0.0/

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 16 32 48 64 80 96 112 128
Time (samples)

100

75

50

25

0

25

50

75

A
m

pl
itu

de

Waveform Reconstruction Comparison (GC)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 9: Reconstructed (GT) Testset Index 1 Waveform (seed 1)

0 16 32 48 64 80 96 112 128
Time (samples)

100

75

50

25

0

25

50

75

A
m

pl
itu

de

Waveform Reconstruction Comparison (GC)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 10: Reconstructed (GT) Testset Index 2 Waveform (seed 1)

To provide qualitative evidence of reconstruction fidelity, we visualize several example waveforms
from the test sets. Figures 8–10 show the first three test samples from the GT dataset (seed 1), while
Figures 11–13 show the corresponding first three samples from the HC1 dataset (seed 1). Each
figure compares the reconstructed waveform with the ground-truth spike. These examples illustrate
that our proposed NSC encoder preserves key spike morphology and achieves high reconstruction
quality across different datasets.

G Q&A

APPENDIX B: SPIKE ALIGNMENT Q&A

B.1 SPIKE TIMING ALIGNMENT IMPLEMENTATION

Q.1: Why are all spikes aligned to the center of the time window during testing? Does this
approach introduce additional computational overhead?

A.1: This alignment does not introduce any computational overhead. It can be achieved through
a simple shift register architecture.
Let’s take a 128 waveform as an example. The key insight is that we use a 64-element shift
register ([0: 63]) as a delay line. Each clock cycle, we:

1. Shift in one new data sample at the input (position 63, tail)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 16 32 48 64 80 96 112 128
Time (samples)

80

60

40

20

0

20

40
A

m
pl

itu
de

Waveform Reconstruction Comparison (hc1)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 11: Reconstructed (hc1) Testset Index 0 Waveform (seed 1)

0 16 32 48 64 80 96 112 128
Time (samples)

200

150

100

50

0

50

100

A
m

pl
itu

de

Waveform Reconstruction Comparison (hc1)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 12: Reconstructed (hc1) Testset Index 1 Waveform (seed 1)

2. Shift out the oldest sample at the output (position 0, head)
3. Perform spike detection on the newest sample at position 63

When a spike is detected at position 63, the current shift register contains the first 64 sam-
ples of the 128-sample window. The sample at position 0 was actually read 64 clock cycles
ago, representing the historical data. We then simply continue collecting data for another
64 clock cycles to complete the 128-sample window.
Timing Analysis:

• At detection time (t=0): Position 0 contains data from 64 cycles ago
• After 64 more cycles (t=64): Position 0 will contain the spike detected sample; now

we have read half the waveform.
• Result: The spike is naturally centered in the 128-sample window

This approach requires only basic shift register operations—no complex addressing, no
additional buffers, and no computational correction. The center alignment emerges natu-
rally from the timing relationship between data entry, detection point, and continued data
collection.

Q.2: Why is the design primarily focused on the ROI region, and is this scientifically justified?
A.2: Yes, the focus on a specific Region of Interest is strongly grounded in established bi-

ological research practices. In neural signal analysis, the critical features of an action
potential, or spike, are typically contained within a standardized time window around its

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 16 32 48 64 80 96 112 128
Time (samples)

80

60

40

20

0

20

40
A

m
pl

itu
de

Waveform Reconstruction Comparison (hc1)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 13: Reconstructed (hc1) Testset Index 2 Waveform (seed 1)

peak. Conventionally, researchers analyze a segment spanning approximately 0.5 millisec-
onds before the peak to 1.0 milliseconds after it. This window captures the essential rising
and falling phases of the spike waveform, which are crucial for neuron identification, sort-
ing, and analysis Toosi et al. (2021). Our design captures a 64-sample window centered
on the detected spike. At a sampling rate of 32 kilohertz, which is considered high resolu-
tion for electrophysiological data, this window duration is exactly 2.0 milliseconds. This
provides 1.0 milliseconds of data on either side of the central detection point. Therefore,
our chosen ROI not only meets but exceeds the conventional research requirement of 1.5
milliseconds, ensuring that the complete, scientifically relevant waveform morphology is
captured without unnecessary data overhead.

Q.3: Why is it necessary to minimize parameters? Couldn’t conventional lightweight neural
networks be used?

A.3: The imperative for an extremely low parameter count stems directly from hardware constraints,
not just for algorithmic simplicity. The choice is dictated by the need for area efficiency
and to maintain a balanced design between the analog and digital domains.
In the 180nm semiconductor technology node, the physical area of a single 1-bit register is
approximately 45 µm2. In contrast, a typical analog front-end circuit, which includes com-
ponents like amplifiers and an Analog-to-Digital Converter, occupies an area of roughly
300 µm by 200 µm.
Consequently, the digital logic’s area must be designed to be commensurate with that of
the analog section to achieve a balanced overall system. A parameter-dense model, even
those labeled as ”lightweight” in software terms, would necessitate thousands of registers
and computational elements. Crucially, the area figures mentioned pertain to a single pixel
or channel. When integrated into a large-scale array containing hundreds or thousands of
such units, the total silicon area would become immense. If the digital block for each unit
were significantly larger than its analog counterpart, the aggregate area disparity would be
magnified across the array, resulting in a severely unbalanced chip. Therefore, conventional
lightweight networks are unsuitable.

29

