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ABSTRACT

In this paper, we present a neural signal codec (NSC) with a resource-efficient
encoder for implantable brain machine interface (iBMI) systems. The proposed
codec has a multiplication-free encoder with only 124-bit lightweight parame-
ters, which is suitable for deployment at the edge of an iBMI system. To reduce
the parameter size, a dynamic weight generation mechanism for parameter shar-
ing within the window is implemented in the encoder design. On the decoder
side of the codec, a conventional multilayer convolutional neural network with
a specially designed loss factor – Energy Aware Loss (EAL) is adopted, which
adds adaptive attention to the total loss function to improve reconstruction per-
formance by emphasizing the signal energy intensive regions of the input data
section. The parameter storage is reduced by 97% on the encoder side, compared
to a conventional FC-based autoencoder with INT8-quantized weights. Large-
scale evaluations show that NSC is capable of restoring high-fidelity neural sig-
nals and preserving the biological features across diverse neural signal datasets,
making it a promising data compression approach for high-throughput iBMI sys-
tems. Furthermore, preliminary generalization experiments on other biomedical
signals such as ECG (MIT-BIH) further demonstrate the potential of NSC as a
general resource-efficient compression framework for streaming biosignals.

1 INTRODUCTION

In recent decades, the implantable brain machine interface (iBMI) system has become a research
hot spot since it shows a promising potential to cure various neural-related diseases and to open a
new gate for neuroscience research Musk & Neuralink (2019); Pollmann et al. (2024). A modern
iBMI system typically consists of an implantable device and an external function module, such as
a PC and robotics, as shown in Fig.1(a). The implantable device acquires the signal, typically a
spike signal, from single neurons in the brain cortex, and transmits the acquired spike signals to
the external function module through wireless communication. A critical design challenge in iBMI
systems is to minimize the resource consumption of the implantable device, mainly dimension and
power consumption, to achieve minimum surgery damage and long-term operation safety.

Implantable device
External

function module

Wireless
data

(a)

Vth

Thresholding

(b) Spike-time

AP signal

Channel 0

Channel N
Latent data

to be transmitted

Autoencoder

Reconstructed
AP signal

(c)

Latent data
to be transmitted

Proposed NSC

(d)

Reconstructed
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Figure 1: Diagram of (a) Typical iBMI system (b) Conventional Threshold Detection (c) Conven-
tional AutoEncoder (d)The Proposed NSC

High Throughput versus Resource Consumption. High Throughput versus Resource Consump-
tion. High throughput up to thousands of channels is required for an iBMI system to perform high-
degree-of-freedom tasks such as virtual finger movement, 3D control of robotic arms, and complex
control of e-Games Irwin et al. (2017); Willsey et al. (2025). However, high throughput would

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

result in high resource consumption. For example, a 1000-channel spike signal acquisition would
generate 300M bits of raw data per second, which brings a heavy burden on power and device di-
mensions for the implantable device to handle and transmit. New emerging technologies such as
Ultra-Wide-Band (UWB)Song et al. (2022); Ando et al. (2016) for high-speed wireless commu-
nication may help address this problem, but these technologies are still immature or unstable to
be adopted in the iBMI system. Another alternative approach people normally use to address this
throughput/resource dilemma is to compress the raw data for each individual channel before any
further processing/transmitting. High loss compressing methods such as simple thresholding, spike
detection Mukhopadhyay & Ray (1998) or on-chip sorting Valencia & Alimohammad (2021), are
popularly used due to their simplicity and effectiveness in extracting critical spike-time information
from the raw neural recordings, as shown in Fig.1(b), which significantly reduce data volume by
only transmitting timestamps or sparse bi-nary indicators of spike events. However, they discard the
morphological details of spike waveform, imposing strict requirements on the performance of down-
stream sorting or clustering algorithms on the external module. Low-loss compressing approaches
such as Autoencoder and PCA Valencia et al. (2024) are also used to perform data compression as
shown in Fig.1(c), which can effectively reduce the data size while keeping most information of the
raw data. However, these algorithms are intensive on both computation and storage on the encoder
side, which is impractical for an implantable device in an iBMI system.

Implantable neural interfaces demand compression codecs that are not only resource-efficient but
also preserve task-critical information. We propose a Neural Signal Codec (NSC) Fig.1(d). With an
encoder requiring only 124 bits of weight params and shift-add operations, two orders of magnitude
fewer bits than models like PCA (∼ 20k bits) or AE FP32 (∼ 16k bits). The key innovation is
its targeted fidelity: while global waveform metrics (FULL-PSNR) are moderate, the NSC excels
in preserving biologically crucial information. Our NSC achieves a 32:1 data compression ratio
with a mean FULL PSNR value of more than 17.92, ROI PSNR value more than 19.67, with ROI
waveform cluster F1 more than 0.96, ARI more than 0.85, and NMI more than 0.78 across all tested
datasets. Saving 97% storage resource compared to the conventional INT8 weights quantized FC-
based autoencoder design and dramatically reduces the required computational resource. The main
contribution of this work is summarized as follows:

(i) We proposed an asymmetric encoder-decoder neural network architecture with a resource-
efficient encoder that is suitable for lightweight edge deployment for high-fidelity data compression
and reconstruction.

(ii) We constructed a resource-efficient encoder with a learnable, energy-aware windowing mech-
anism and shift/addition operation-based computation, optimized for an implantable device in an
iBMI system.

(iii) We introduce a loss factor: Energy Aware Loss (EAL) factor, which adaptively updates the
neural network weights in the training process based on the energy profile of the input spike signal,
enabling an accurate and interpretable spike reconstruction.

The paper is organized as follows: Section 2 reviews related work on lightweight neural networks
and on-chip neural signal compression. Section 3 describes the proposed NSC: encoder design,
decoder architecture, and loss formulation. Section 4 details the experimental setup, datasets, and
evaluation metrics, followed by quantitative results. Section 5 concludes the paper.

2 RELATED WORK

2.1 QUANTIZATION AND LIGHTWEIGHT NEURAL NETWORKS

Model compression techniques such as pruning and quantization are widely used to reduce the
computation and memory footprint of neural networks for deployment in resource-constrained envi-
ronments (e.g., mobile or embedded systems). Early pruning methods removed redundant weights
post-training LeCun et al. (1989), and structured strategies like channel pruning Li et al. (2017).
Quantization reduces bit-widths of weights and activations, with early approaches including fixed-
point training Lin et al. (2016), BinaryConnect Courbariaux et al. (2016a), and XNOR-Net Rastegari
et al. (2016). More recent practices like quantization-aware training (QAT) and post-training quan-
tization (PTQ) better preserve model accuracy under low precision Jacob et al. (2017).
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Within the Transformer and LLM domain, ZeroQuant Yao et al. (2022) enables group-wise quanti-
zation and applies layer-wise knowledge distillation (LKD) to retain accuracy. SmoothQuant Xiao
et al. (2024) improves activation quantization by redistributing outliers into weights. On the extreme
end, BitNet Wang et al. (2023) proposes BitLinear, a ternary-weighted alternative to standard linear
layers. PB-LLM Shang et al. (2023) adopts a mixed-precision strategy, binarizing most weights
while keeping key ones in higher precision. For joint pruning and quantization, Bayesian Bits van
Baalen et al. (2020) learns both sparsity and bit-widths during training.

2.2 ON-CHIP NEURAL SIGNAL COMPRESSION

On-chip neural signal compression is key to reducing transmission bandwidth in iBMI systems.

High-loss methods focus on event detection and on-chip sorting. For example, Kim et al. (2019);
Hwang et al. (2025) transmit only spike timestamps using event-driven compression. On-chip sort-
ing approaches like Chen et al. (2023); Han et al. (2025) employ OSort-inspired pipelines, while
Binarized Neural Network (BNN) based classifiers in Valencia & Alimohammad (2021) provides
an effective low-power spike classification.

Low-loss methods aim to reconstruct spike waveforms. Compressed sensing approaches appear in
Liu et al. (2016), and PCA-based real-time compression is reported in Lemaire et al. (2022). NNs
like undercomplete autoencoders are also used for low-power hardware compression in Thies &
Alimohammad (2019); Valencia et al. (2024), and other methods perform segmentation and pruning
of low-importance waveform regions (Guo et al. (2023)). And the work Liu et al. (2024) uses
ConvSNN utilize spike-oriented convolution data flow.

3 METHODOLOGY

3.1 MOTIVATION AND PROBLEM DEFINITION

Neural spike waveforms are high-bandwidth yet highly structured signals. Transmitting them in
raw form from an iBMI device is prohibitive due to extreme limits on bandwidth, energy, and stor-
age. This naturally motivates a representation learning problem: learn a compact latent code that
preserves task-relevant fidelity while remaining feasible under strict hardware constraints.

Formally, we aim to design an encoder–decoder pair, where only the encoder is deployed on-chip.
The encoder fθ : RT → ZT ′

maps an input spike waveform x into a discrete latent code z, which is
transmitted off-chip. The decoder gϕ : ZT ′ → RT runs externally to reconstruct x̂ = gϕ(z).

Unlike conventional autoencoders that optimize solely for reconstruction, our encoder must also
satisfy strict resource constraints: (i) bit-rate, limited by the maximum transmission rate Rmax; (ii)
parameter storage, constrained by Pmax; and (iii) compute budget, bounded by Cmax. Thus the
learning problem is to minimize reconstruction error while ensuring that the quantized code length,
parameter footprint, and operations of fθ remain within hardware budgets:

min
θ

Ex∼D
[
∥x− gϕ(fθ(x))∥22

]
(1)

s.t. Ex[L(fθ(x))] ·N · fs ≤ Rmax, ∥θ∥0 ≤ Pmax, Ops(fθ) ≤ Cmax.

Here L(·) denotes the code length in bits, N the number of channels, and fs the sampling rate. We
use Ops(·) instead of general MACs to emphasize that only shift-and-add operations are allowed
in our encoder. This formulation highlights a distinctive challenge for representation learning. Un-
like conventional autoencoders that optimize solely for fidelity, our encoder must simultaneously
ensure resource efficiency under hardware-level constraints. It therefore combines machine learning
objectives with physical implementation feasibility.

3.2 NSC ENCODER DESIGN

The Neural Signal Codec (NSC) encoder compresses an aligned input window into a low-bit integer
code, designed to be efficiently implementable on hardware using only shift-and-add operations,
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without relying on general-purpose multipliers or floating-point units. The encoder design leverages
three key ideas: (i) a nonlinear energy operator (NEO) to highlight spike regions, (ii) compact,
shared learnable parameters that generate discrete per-sample shift factors, and (iii) quantization of
all parameters to 4 bits.

Input and NEO. Given an input waveform x ∈ ZT , we can obtain its nonlinear energy operator
(NEO) value from the upstream detection module, which is not included in our compression process:

en = x2
n − xn−1xn+1, 2 ≤ n ≤ T − 1. (2)

Afterwards, we perform logarithmic operations on NEO with :
LNEn = ⌊log2(max(en, 1))⌋ , (3)

This transformation serves several purposes. The original NEO values are 16-bit, which are much
larger in magnitude than the 8-bit input data. By clamping the minimum to 1 before taking the
logarithm, we suppress contributions from very low values, which typically correspond to noise.
Since the NEO reflects the local signal energy, smaller values are often associated with background
noise. After this logarithmic mapping, the result provides a compact integer representation of local
signal energy that is well-suited for subsequent shift-based scaling operations.

Window Partition and Parameters. The input x of length T is partitioned into w windows with
differentiable boundaries 0 = b0 < b1 < · · · < bw = 1. The boundaries are computed by a cascade
of sigmoids applied to learnable parameters p ∈ Rw−1. Let si = σ(pi), where σ(·) denotes the
sigmoid function:

b0 = 0, bi = bi−1 + (1− bi−1) · si−1, i = 1, . . . , w, bw = 1

The actual boundary positions in samples are Bi = bi · T . This formulation ensures bi ∈ (bi−1, 1)
and enables differentiable, trainable windows whose sizes adapt during training. The boundaries are
initialized to equal divisions of the input.

Let the latent dimension be d. The total parameter sizes are α, β ∈ Rw×d and γ ∈ Rw. For each
window i and latent dimension j, the shared learnable parameters αi,j and βi,j produce discrete
per-sample shift factors. Additionally, each window i has a scaling factor γi. All parameters are
quantized to 4 bits for inference.

Quantization and Hardware Mapping. Parameters α, β, γ are quantized to 4 bits, and the
straight-through estimator (STE) is used during training. The quantized parameters are:

αq,i,j ∈
{
0, 1

16 , . . . ,
15
16

}
, βq,i,j ∈ {−8, . . . , 7}, γq,i ∈

{
0, 1

16 , . . . ,
15
16

}
.

This ensures that inference-time computations reduce to integer shifts and additions, fully eliminat-
ing multiplications. All the m/16 process can be achieved by shift-add-shift operation. With w = 3
windows and latent dimension d = 4, the total parameter bit budget is

3 · 4 · (4 + 4) bits + 3 · 4 bits + 2 · 8 bits = 124 bits,
with 8-bit boundaries storage for hardware alignment.

Forward Pipeline. This process can also seen in Figure 2. For each sample n in window i and
j-th latent dim (n ∈ {bi−1, bi−1 + 1, ...bi − 1}, j ∈ {0, 1, ..., d− 1}), let x(i)

n and e
(i)
n represent the

i window segment of full xn and en, the forward computation is

shift
(i)
j,n = ⌊αq,i,j · LNE(i)

n + βq,i,j⌋, (4)

scale
(i)
j,n = 2clamp(shift

(i)
j,n−8,−8,7), (5)

y
(i)
j,n = ⌊x(i)

n · scale
(i)
j,n⌋. (6)

Aggregating over the samples in each window gives a window-wise sum y
(i)
j , which is then scaled

by the window factor γq,i. The final compressed latent code is

zj =

w∑
i=1

z
(i)
j =

w∑
i=1

⌊γq,i · y(i)j ⌋, z ∈ Z1×d. (7)
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NEO Component
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Figure 2: NSC Encoder Forward Pipeline.

3.3 DECODER ARCHITECTURE

The decoder operates entirely off-chip and is thus free from hardware constraints. We adopt a flexi-
ble design consisting of a channel-expansion layer, three symmetric downsampling and upsampling
blocks with residual connections, and a final output projection. The compressed code z ∈ Z is first
expanded into a 1D feature map; the downsampling path increases channel capacity while reducing
temporal resolution, and the upsampling path restores the waveform length. Each block uses Conv1d
or ConvTranspose1d layers followed by residual Conv–BN–GELU modules, and the final projection
employs two Conv–BN–GELU layers and a Conv1d layer to output the reconstructed signal.

3.4 ENERGY-AWARE LOSS (EAL)

Standard reconstruction losses weight all time points equally, even though only a small temporal
region around the spike event is critical for accurate recovery. To better align optimization with
the intrinsic structure of neural waveforms, we introduce the Energy-Aware Loss (EAL), which
adaptively emphasizes high-energy regions identified by the nonlinear energy operator (NEO).

Energy-based weighting. For each input waveform x(b) ∈ RT in the batch (b = 1, . . . , B) with
corresponding NEO e(b), we first smooth e(b) to suppress spurious fluctuations, yielding ẽ(b). A
normalized weight distribution is then derived:

W (b)
n =

F(ẽ(b)n )∑T
m=1 F(ẽ

(b)
m )

,

T∑
n=1

W (b)
n = 1, (8)

where F denotes a smoothing kernel (e.g., Gaussian or Laplace). This distribution serves as a soft
attention mask, concentrating weight near the spike region. Given decoder reconstruction x̂(b), the
loss is defined as

LEAL =
1

B

B∑
b=1

T∑
n=1

W (b)
n ℓ

(
x(b)
n , x̂(b)

n

)
, (9)

where ℓ is a pointwise reconstruction cost (we adopt MSE). Unlike fixed windows or hard spike
alignment strategies, EAL adapts continuously to each waveform’s energy distribution. This al-
lows the model to focus capacity on the informative spike region while naturally down-weighting
background noise, improving reconstruction fidelity where it matters most.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Baselines We compare our designed NSC with several representative baselines. (i) AE FP32, stan-
dard FC based AE. (ii) AE INT8 with 8-bit quantized-weights. (iii) AE INT1.4 uses a Hardtanh ac-
tivation function with output precision aligned to Q2.8 and weight precision to Q1.4, where QM.N

5
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represents a fixed-point representation with M bits for the integer part and N bits for the fractional
part Valencia et al. (2024). (iv) PCA (Principal Components Analysis): A classical linear dimen-
sionality reduction baseline for lossy signal compression Lemaire et al. (2022). (v) CS (Compressed
Sensing): A sparsity-driven method that projects signals through a random sensing matrix and re-
constructs them via sparse recovery Donoho (2006). (vi) VQ-VAE: A neural generative model with
discrete latent variables using vector quantization for compact learning van den Oord et al. (2017).
(vii) BNN: binary neural network with binary weights Courbariaux et al. (2016b).

Datasets We evaluate our method on one synthesis datasets and multiple real recording datasets,
including neuronal, brain region and other recordings. (i) Quiroga (QU) Quiroga (2020), a standard
datasets that has been widely used in the evaluation of spike-sorting. Generated by adding spike
waveform templates to background noise of various levels. (ii) Ganglion Cells (GC) Spampinato
et al. (2018), with extracellular recordings ground truth from simultaneous juxtacellular signals with
256 channels. (iii) Hippocampal (hc1) Henze et al. (2000), include the CA1 extracellular recordings
with spike ground truth. (iv) Neuropixels (NP) Steinmetz et al. (2024), recorded from visual cortex,
hippocampus, and some parts of thalamus with 384 channels. (v) MIT-BIH Arrhythmia (MIT-BIH)
Goldberger et al. (2000), which is a standard collection of two-channel ECG recordings used for
arrhythmia research.

Data processing All datasets were preprocessed by extracting signal segments containing spike
events, with T = 128 samples (4ms data in 32kS/s), with spikes aligned to the midpoint of the
window. The input data was quantized to 8-bit signed integers, and the corresponding NEO values
were computed in advance. Both were stored in standardized npy files for convenient access. We
focus on evaluating the region of interest (ROI)—the central 64-point segment, 2ms data window in
32kS/s, which contains the spike event. Details can be found in Appendix.

Settings and Evaluations All ablation studies and experiments are conducted with five fixed seeds
1, 2, 3, 4, 5 and setting latent dim of 4 and input size of 128 (×32 data compression). Results are
reported as the mean±std (standard deviation) across all seeds. For reconstruction quality, we evalu-
ate using PSNR, SNDR, and NRMSE, where higher PSNR and SNDR indicate better performance,
and lower NRMSE is better. Where PSNR penalizes pixel-wise errors, SNDR captures noise and
distortion, and NRMSE provides normalized error scaling. And for the downstream evaluation, we
choose the simple K-means algorithm evaluated with three metrics, including F1, ARI, and NMI. F1
is the harmonic mean of precision and recall, ARI measures chance-corrected clustering agreement,
and NMI quantifies normalized mutual information between label assignments. All models were
trained for 100 epochs with 7:1:2 random division for train/valid/test. Validated by the best PSNR
on the ROI. AdamW optimizer was used with a learning rate of 1×10−3, additional weight decay of
1× 10−4 is applied to all non-quantized parameters. We also applied gradient norm clipping with a
maximum of 10 to ensure training stability. In the comparison part, all baseline models were trained
with MSE loss. All done in a single RTX 5090 GPU, Xeon 8470Q CPU, with Python 3.12.3 and
torch version of 2.8.0+cu128. Details can be found in Appendix.

4.2 ABLATION STUDIES

We conduct a series of ablation studies to evaluate the influence of design choices on our NSC and
EAL loss. The base setting adopts our proposed encoder with all parameters in full precision, a fixed
three-window segmentation, and mean squared error (MSE) as the training loss. Here, we choose
QU Difficult1Noise02 (QU D1N2) and NP channel 1 (NP channel 1) for the ablation study. Results
are shown in Tables 1.

Quantization strategies. We compare full precision (FP), quantization-aware training (QAT), and
post-training quantization (PTQ). QAT introduces a noticeable performance drop relative to FP,
while PTQ completely fails (negative PSNR and SNDR). The failure of PTQ is mainly due to our
encoder’s dynamic scaling, which depends on the exponentiation of weight terms. Direct uniform
quantization breaks the continuity of these exponentials and leads to large reconstruction instability.
This suggests that QAT is necessary to maintain encoder functionality under quantization.

Window mechanisms. We study the effect of learnable window boundaries and of varying the
number of windows w. Making the window boundaries learnable (wlr) produces very similar results
to the fixed case, indicating that the mean division initialization is already near-optimal. As for the
number of windows, the general trend across datasets is that performance improves with larger w (up
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to 4 or 5), consistent with finer local adaptation. However, we adopt w = 3 as our default based on
two considerations: (i) it matches a physical prior of compressed signal waveform (LFP–spike–LFP
(local field potential)). (ii) The encoder parameter count grows approximately linearly with w, larger
window counts increase storage cost without consistent gains across datasets.

Table 1: Design Ablation study on synthetic dataset (QU D1N2) and real dataset (NP ch1).

Setting Syn (QU D1N2)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 18.50± 0.36 / 18.37± 0.54 3.32± 0.35 / 4.85± 0.51 0.13± 0.01 / 0.13± 0.01

QAT 15.48± 1.01 / 16.83± 1.06 0.30± 1.02 / 3.31± 1.06 0.17± 0.02 / 0.15± 0.02
PTQ N/A / N/A N/A / N/A N/A / N/A

wlr 18.43± 0.28 / 18.46± 0.66 3.26± 0.28 / 4.94± 0.67 0.13± 0.01 / 0.13± 0.02

w = 1 17.61± 0.21 / 17.71± 0.48 2.44± 0.21 / 4.19± 0.46 0.14± 0.00 / 0.14± 0.01
w = 2 18.24± 0.38 / 18.54± 0.48 3.07± 0.38 / 5.02± 0.51 0.13± 0.00 / 0.13± 0.01
w = 4 18.85± 0.27 / 18.83± 0.13 3.67± 0.28 / 5.31± 0.14 0.12± 0.01 / 0.12± 0.00
w = 5 18.39± 0.65 / 19.17± 0.70 3.21± 0.66 / 5.65± 0.66 0.13± 0.01 / 0.12± 0.01

Setting Real (NP ch1)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 17.45± 0.39 / 16.94± 0.35 2.27± 0.38 / 3.67± 0.33 0.14± 0.01 / 0.15± 0.01

QAT 15.63± 0.80 / 15.22± 1.40 0.45± 0.80 / 1.95± 1.38 0.18± 0.02 / 0.19± 0.03
PTQ N/A / N/A N/A / N/A N/A / N/A

wlr 17.36± 0.30 / 16.87± 0.37 2.17± 0.30 / 3.60± 0.35 0.14± 0.00 / 0.15± 0.01

w = 1 17.04± 0.29 / 16.31± 0.23 1.86± 0.27 / 3.04± 0.22 0.15± 0.01 / 0.17± 0.01
w = 2 17.54± 0.33 / 16.76± 0.36 2.36± 0.28 / 3.49± 0.35 0.14± 0.01 / 0.16± 0.01
w = 4 17.90± 0.30 / 17.49± 0.28 2.72± 0.26 / 4.22± 0.30 0.13± 0.00 / 0.14± 0.00
w = 5 17.54± 0.51 / 17.40± 0.55 2.36± 0.47 / 4.13± 0.56 0.14± 0.01 / 0.15± 0.01

·Mean ± std over five seeds.

Loss Functions We further investigate the effect of different loss formulations on NSC training.
We also evaluate our proposed Energy-Aware Loss (EAL) in several variants: vanilla (direct neo
guided), Laplace, Gaussian, and Cauchy smoothing schemes. The purpose of EAL is to emphasize
signal regions with high energy, so as to improve fidelity in the regions of biological importance
even at the cost of slightly reduced global metrics. Results are summarized in Table 2.

On the synthetic datasets, the vanilla EAL-vanilla actually reduces both FULL and ROI PSNR rel-
ative to plain MSE. By contrast, distributional EAL variants consistently increase ROI PSNR while
sacrificing some FULL-PSNR. This demonstrates that coupling energy-aware reweighting with an
explicit distributional form effectively concentrates model capacity on spike regions.

On the real datasets, all EAL variants yield small but consistent ROI gains over plain MSE. We
additionally evaluate a combined setting (wlr + EAL-Gaussian) for NP with learnable windows
together with EAL-Gaussian, the best variant. Showing that adaptive windowing helps when spike
widths vary in real recordings.

Table 2: Loss Ablation study on synthetic datasets (QU D1N2) and real datasets (NP ch1).

Setting Syn (QU D1N2)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 18.50± 0.36 / 18.37± 0.54 3.32± 0.35 / 4.85± 0.51 0.13± 0.01 / 0.13± 0.01
EAL-vanilla 17.43± 0.82 / 17.63± 0.23 2.25± 0.81 / 4.10± 0.24 0.14± 0.01 / 0.14± 0.01
EAL-Laplace 17.90± 0.51 / 19.38± 0.11 2.72± 0.51 / 5.86± 0.09 0.18± 0.05 / 0.11± 0.00
EAL-Gaussian 17.96± 1.37 / 19.48± 0.14 2.78± 1.36 / 5.95± 0.12 0.14± 0.03 / 0.11± 0.00
EAL-Cauchy 17.44± 1.63 / 19.43± 0.09 2.26± 1.63 / 5.91± 0.09 0.15± 0.03 / 0.11± 0.00

Setting Real (NP ch1)
PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

Base 17.45± 0.39 / 16.94± 0.35 2.27± 0.38 / 3.67± 0.33 0.14± 0.01 / 0.15± 0.01
EAL-vanilla 17.44± 0.32 / 17.03± 0.28 2.26± 0.28 / 3.76± 0.26 0.14± 0.00 / 0.15± 0.01
EAL-Laplace 17.45± 0.36 / 17.77± 0.17 2.27± 0.37 / 4.50± 0.16 0.15± 0.01 / 0.14± 0.00
EAL-Gaussian 17.51± 0.60 / 17.79± 0.17 2.33± 0.63 / 4.52± 0.15 0.14± 0.01 / 0.14± 0.00
EAL-Cauchy 17.47± 0.31 / 17.77± 0.14 2.29± 0.33 / 4.50± 0.13 0.14± 0.01 / 0.14± 0.00

wlr + EAL-G 17.65± 0.20 / 17.76± 0.17 2.47± 0.16 / 4.49± 0.16 0.15± 0.00 / 0.14± 0.00

·Mean ± std over five seeds.

On the QU D1N2 dataset, the loss curves reveal several consistent trends (Fig. 3). Compared to
plain MSE, the vanilla EAL exhibits faster convergence and reaches a stable plateau within fewer
epochs. Both MSE and EAL show nearly overlapping training and validation curves, suggesting
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Figure 3: Training (red) and validation (blue) loss curves on QU D1N2.

that the introduction of EAL does not increase the risk of overfitting. Among the EAL variants,
the Gaussian weighting achieves the lowest final validation loss, outperforming the vanilla version,
which is consistent with the quantitative metrics, which provide stronger ROI reconstruction fidelity.

The performance gain primarily comes from smoothing the NEO signal to form a stable energy dis-
tribution, which consistently emphasizes the spike region during optimization. Different distribution
variants (Laplace, Gaussian, Cauchy) provide alternative weighting shapes, but the decisive factor is
the smoothed energy itself rather than the exact functional form. As a result, all EAL variants yield
comparable improvements in ROI metrics, with minor differences attributable to the smoothness of
the weighting curve. The final setting for our model is three window segmentation with boundaries
learnable (wlr), trained by QAT with loss of EAL-G.

4.3 COMPARISON

For a fair comparison, we applied all the NN-based models’ decoders to our designed architecture.
From Table 3 and the downstream clustering results (Table 4), we can get three consistent findings.

First, large unconstrained methods (e.g., PCA, AE FP32) attain the best absolute reconstruction
metrics (highest PSNR / SNDR and lowest NRMSE) but require one to two orders of magnitude
more encoder storage. Such solutions are infeasible for on-chip deployment. Conversely, extremely
low-bit or binary nets (AE INT1.4, BNN AE) reduce parameter count but suffer large drops in
reconstruction fidelity and downstream clustering ability, showing the essential spike information
lost under aggressive quantization.

Second, our NSC produces a practical trade-off. With only 124 bits of encoder state, NSC preserves
spike-region information better than other compact alternatives (e.g., AE INT1.4, BNN AE). Fur-
thermore, NSC achieves ROI PSNR and ROI clustering scores close to much larger models while
using ∼ 99% fewer encoder bits than AE FP32 and ∼ 97% fewer than AE QINT8. This demon-
strates that the NSC design and the EAL training objective concentrate representational capacity on
task-relevant (spike) regions rather than on global waveform fidelity — an intentional trade-off for
implantable front-ends where spike recovery and downstream sorting matter most.

Third, the effect of EAL is interpretable and dataset-dependent. EAL-Gaussian (NSC EAL-G) con-
sistently increases ROI metrics and downstream ROI clustering to high scores at the cost of some-
what lower FULL-PSNR and larger variance in some full-window metrics. This pattern indicates
EAL shifts model capacity to spike peaks, reconstructed spikes (the biologically important region)
become more accurate, while low-energy background is deprioritized.

In summary, the tables show a clear trade-off: if the requirement is strict on-chip budget with pre-
served spike fidelity and downstream sorting utility, NSC (with EAL when ROI fidelity is critical)
offers the best practical balance. If absolute end-to-end waveform fidelity is the single objective and
on-chip resources are abundant, PCA/AE FP32 remains superior but impractical for implantable
hardware. We emphasize that the NSC design intentionally sacrifices some global metrics to maxi-
mize biologically relevant reconstruction under extreme resource constraints.

4.4 GENERALIZATION

We’ve also made a small test on the MIT-BIH ECG datasets. For a fair comparison, we apply our
designed decoder architecture to both the AE and our NSC model. The results (Table 5) reveal a
consistent trade-off. The AE model achieves higher scores on full-segment metrics, demonstrating
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Table 3: Comparison of Different Compression Models

Model(Datasets) PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓ Encoder Params

AE FP32 (GC) 23.66 ± 1.21 / 25.97 ± 2.85 8.38 ± 1.21 / 13.50 ± 2.83 0.08 ± 0.01 / 0.06 ± 0.02 16512 bits
AE INT8 (GC) 22.23 ± 1.32 / 22.29 ± 1.93 6.94 ± 1.32 / 9.82 ± 1.92 0.09 ± 0.01 / 0.09 ± 0.02 4128 bits
AE INT1.4 (GC) 18.96 ± 2.00 / 17.95 ± 3.35 3.67 ± 1.98 / 5.48 ± 3.34 0.13 ± 0.02 / 0.16 ± 0.05 2580 bits
PCA (GC) 29.80 ± 0.07 / 30.22 ± 0.06 14.51 ± 0.06 / 17.75 ± 0.06 0.04 ± 0.00 / 0.03 ± 0.00 20480 bits
CS (GC) 15.47 ± 0.13 / 12.73 ± 0.20 0.18 ± 0.14 / 0.26 ± 0.21 0.17 ± 0.00 / 0.23 ± 0.01 16384 bits
VQ VAE (GC) 18.63 ± 1.59 / 21.76 ± 4.06 3.34 ± 1.60 / 9.29 ± 4.07 0.13 ± 0.02 / 0.10 ± 0.05 18560 bits
BNN AE (GC) 17.60 ± 1.22 / 17.19 ± 1.43 2.31 ± 1.23 / 4.72 ± 1.41 0.14 ± 0.02 / 0.15 ± 0.02 516 bits
NSC MSE (GC)∗ 22.87 ± 2.43 / 23.01 ± 1.93 7.58 ± 2.42 / 10.54 ± 1.94 0.09 ± 0.02 / 0.10 ± 0.03 124 bits
NSC EAL-G (GC)∗ 21.12 ± 6.38 / 25.70 ± 0.21 5.83 ± 6.36 / 13.23 ± 0.21 0.19 ± 0.16 / 0.06 ± 0.00 124 bits

AE FP32 (hc1) 19.44 ± 0.66 / 19.89 ± 0.84 3.38 ± 0.67 / 5.96 ± 0.85 0.11 ± 0.01 / 0.11 ± 0.01 16512 bits
AE INT8 (hc1) 18.47 ± 0.57 / 17.81 ± 0.86 2.41 ± 0.57 / 3.88 ± 0.87 0.13 ± 0.01 / 0.14 ± 0.01 4128 bits
AE INT1.4 (hc1) 16.96 ± 0.61 / 17.61 ± 1.00 0.90 ± 0.62 / 3.68 ± 1.01 0.15 ± 0.01 / 0.15 ± 0.02 2580 bits
PCA (hc1) 21.03 ± 0.01 / 21.39 ± 0.06 4.98 ± 0.01 / 7.45 ± 0.04 0.09 ± 0.00 / 0.09 ± 0.00 20480 bits
CS (hc1) 16.22 ± 0.07 / 14.18 ± 0.13 0.17 ± 0.07 / 0.25 ± 0.14 0.16 ± 0.00 / 0.20 ± 0.00 16384 bits
VQ VAE (hc1) 17.29 ± 0.79 / 18.81 ± 0.81 1.23 ± 0.80 / 4.88 ± 0.81 0.15 ± 0.01 / 0.12 ± 0.01 18560 bits
BNN AE (hc1) 16.83 ± 1.08 / 16.55 ± 1.40 0.77 ± 1.09 / 2.61 ± 1.41 0.16 ± 0.02 / 0.16 ± 0.02 516 bits
NSC MSE (hc1)∗ 17.63 ± 0.52 / 18.27 ± 1.49 1.57 ± 0.53 / 4.34 ± 1.49 0.14 ± 0.01 / 0.13 ± 0.02 124 bits
NSC EAL-G (hc1)∗ 17.92 ± 1.47 / 19.67 ± 0.06 1.86 ± 1.48 / 5.74 ± 0.05 0.15 ± 0.06 / 0.11 ± 0.00 124 bits
·Mean ± std over five seeds.

Table 4: Clustering Results

Latent Value
Datasets Metrics AE FP32 AE INT8 AE INT1.4 PCA CS VQ VAE BNN AE NSC MSE NSC EAL-G

GC
F1 ↑ 0.98 ± 0.01 0.72 ± 0.09 0.59 ± 0.12 0.88 ± 0.15 0.87 ± 0.11 0.38 ± 0.03 0.33 ± 0.01 0.63 ± 0.03 0.72 ± 0.12
ARI ↑ 0.94 ± 0.04 0.42 ± 0.15 0.28 ± 0.20 0.83 ± 0.21 0.74 ± 0.18 -0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.07 0.46 ± 0.20
NMI ↑ 0.91 ± 0.05 0.46 ± 0.13 0.25 ± 0.15 0.87 ± 0.15 0.74 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.35 ± 0.07 0.52 ± 0.20

hc1
F1 ↑ 0.93 ± 0.02 0.74 ± 0.07 0.71 ± 0.12 0.97 ± 0.00 0.85 ± 0.06 0.53 ± 0.01 0.86 ± 0.02 0.68 ± 0.11 0.86 ± 0.12
ARI ↑ 0.73 ± 0.06 0.24 ± 0.13 0.23 ± 0.22 0.87 ± 0.02 0.49 ± 0.17 0.00 ± 0.00 0.54 ± 0.04 0.16 ± 0.10 0.58 ± 0.31
NMI ↑ 0.69 ± 0.06 0.22 ± 0.16 0.18 ± 0.18 0.81 ± 0.02 0.47 ± 0.14 0.00 ± 0.00 0.49 ± 0.03 0.30 ± 0.08 0.59 ± 0.22

·Mean ± std over five seeds.

Reconstructed Waveform Full
Datasets Metrics AE FP32 AE INT8 AE INT1.4 PCA CS VQ VAE BNN AE NSC MSE NSC EAL-G

GC
F1 ↑ 0.88 ± 0.14 0.69 ± 0.06 0.60 ± 0.11 0.88 ± 0.15 0.87 ± 0.11 0.79 ± 0.24 0.34 ± 0.01 0.80 ± 0.10 0.68 ± 0.19
ARI ↑ 0.82 ± 0.19 0.47 ± 0.07 0.28 ± 0.19 0.83 ± 0.21 0.74 ± 0.18 0.64 ± 0.35 -0.00 ± 0.00 0.66 ± 0.16 0.49 ± 0.26
NMI ↑ 0.85 ± 0.13 0.49 ± 0.08 0.27 ± 0.16 0.87 ± 0.15 0.74 ± 0.15 0.60 ± 0.33 0.00 ± 0.00 0.71 ± 0.13 0.56 ± 0.26

hc1
F1 ↑ 0.89 ± 0.06 0.68 ± 0.16 0.75 ± 0.05 0.97 ± 0.00 0.85 ± 0.06 0.96 ± 0.01 0.94 ± 0.00 0.95 ± 0.01 0.64 ± 0.21
ARI ↑ 0.61 ± 0.18 0.23 ± 0.21 0.26 ± 0.09 0.87 ± 0.02 0.49 ± 0.17 0.85 ± 0.05 0.77 ± 0.01 0.81 ± 0.02 0.24 ± 0.35
NMI ↑ 0.61 ± 0.13 0.22 ± 0.20 0.21 ± 0.10 0.81 ± 0.02 0.47 ± 0.14 0.78 ± 0.06 0.66 ± 0.01 0.74 ± 0.02 0.32 ± 0.27

·Mean ± std over five seeds.

Reconstructed Waveform ROI
Datasets Metrics AE FP32 AE INT8 AE INT1.4 PCA CS VQ VAE BNN AE NSC MSE NSC EAL-G

GC
F1 ↑ 0.94 ± 0.12 0.75 ± 0.11 0.62 ± 0.13 0.88 ± 0.15 0.89 ± 0.07 0.79 ± 0.24 0.34 ± 0.01 0.80 ± 0.10 1.00 ± 0.00
ARI ↑ 0.90 ± 0.16 0.54 ± 0.13 0.31 ± 0.21 0.83 ± 0.21 0.72 ± 0.18 0.64 ± 0.35 -0.00 ± 0.00 0.66 ± 0.16 0.99 ± 0.01
NMI ↑ 0.91 ± 0.12 0.55 ± 0.12 0.29 ± 0.17 0.87 ± 0.15 0.73 ± 0.15 0.60 ± 0.33 0.00 ± 0.00 0.71 ± 0.13 0.98 ± 0.01

hc1
F1 ↑ 0.94 ± 0.03 0.83 ± 0.06 0.79 ± 0.07 0.97 ± 0.00 0.82 ± 0.08 0.96 ± 0.01 0.94 ± 0.00 0.95 ± 0.01 0.96 ± 0.01
ARI ↑ 0.76 ± 0.11 0.44 ± 0.15 0.35 ± 0.16 0.87 ± 0.01 0.44 ± 0.20 0.86 ± 0.05 0.77 ± 0.01 0.81 ± 0.02 0.85 ± 0.02
NMI ↑ 0.72 ± 0.09 0.38 ± 0.13 0.28 ± 0.14 0.81 ± 0.02 0.43 ± 0.18 0.78 ± 0.05 0.66 ± 0.01 0.74 ± 0.02 0.78 ± 0.02

·Mean ± std over five seeds.

its capacity for global signal reconstruction. In contrast, our NSC model sacrifices some global
fidelity but consistently and significantly outperforms the AE in reconstructing the Regions of In-
terest (ROI). These results confirm that the NSC framework generalizes effectively beyond neural
signals and maintains excellent, focused reconstruction quality for critical waveform segments in
other biosignals like ECG.

Table 5: Generalization on MIT-BIH datasets

Datasets Model PSNRFULL/ROI ↑ SNDRFULL/ROI ↑ NRMSEFULL/ROI ↓

100 AE FP32 20.70 ± 1.49 / 18.90 ± 2.89 8.83 ± 1.48 / 8.10 ± 2.87 0.09 ± 0.02 / 0.12 ± 0.03
NSC EAL-G 17.73 ± 5.28 / 28.96 ± 0.38 5.86 ± 5.30 / 18.16 ± 0.37 0.16 ± 0.09 / 0.04 ± 0.00

101 AE FP32 21.65 ± 2.36 / 19.15 ± 2.35 9.01 ± 2.37 / 7.78 ± 2.36 0.09 ± 0.02 / 0.12 ± 0.02
NSC EAL-G 17.51 ± 2.91 / 29.06 ± 0.80 4.87 ± 2.89 / 17.69 ± 0.79 0.16 ± 0.04 / 0.05 ± 0.01

102 AE FP32 19.47 ± 2.29 / 18.81 ± 5.08 7.42 ± 2.29 / 6.43 ± 5.09 0.13 ± 0.02 / 0.14 ± 0.05
NSC EAL-G 21.78 ± 6.86 / 27.59 ± 0.33 9.72 ± 6.86 / 15.21 ± 0.31 0.16 ± 0.13 / 0.05 ± 0.00

·Mean ± std over five seeds.

5 CONCLUSION

This paper presented a Neural Signal Codec (NSC) featuring a highly resource-efficient encoder for
implantable brain-machine interface systems. The proposed NSC employs a hardware-optimized
encoder with only 124 bits of parameters and is trained with an Energy-Aware Loss (EAL), 97%
parameter reduction compared with conventional AE QINT8, achieving an average PSNR of more
than 17.92 dB at a 32:1 compression ratio across all datasets. High-fidelity reconstructions within
the region of interest and downstream clustering experiments show that the proposed NSC excels at
preserving spike-related information compared to conventional parameter-intensive models.
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A NSC ENCODER ANALYSIS

A.1 BACKWARD DERIVATIONS

Although designed encoder applies parameter quantization during the forward pass to emulate low-
bit hardware behavior, the backward pass computes gradients using the full-precision parameters.
Gradients are computed with respect to the input signal x, the energy-aware parameters α,β,γ,
and the window boundary parameters r, all treated as continuous variables during learning. And let
∇zL be the gradient acquired form decoder.

Gradient w.r.t. Input x. For each window i, the local gradient with respect to each time point
x
(i)
n is:

∂L
∂x

(i)
n

= ∇zL · γi ·
d∑

j=1

Scale(i)j,n. (10)

These window-local gradients are then aggregated into the corresponding region of the full-length
gradient ∇x.

Gradient w.r.t. αi,j and βi,j . With the chain rule, we obtain:

∂L
∂αi,j

= ∇zL · γi · ln(2) ·
Li∑
n=1

x(i)
n · LNE(i)

n · Scale(i)j,n. (11)

∂L
∂βi,j

= ∇zL · γi · ln(2) ·
Li∑
n=1

x(i)
n · Scale(i)j,n. (12)
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Gradient w.r.t. γi. Since γi acts as a linear scaling factor on the window output, the gradient
is computed using the unscaled window output (fake y) for numerical stability and mathematical
correctness:

∂L
∂γi

= ∇zL · y(i)fake (13)

where y
(i)
fake is the window output with γi = 1.0.

Gradient w.r.t Quantized Parameters. During training we apply the straight-through estimator
(STE) Bengio et al. (2013) for parameters and floor operations to enable gradient propagation to
achieve the fake quant with:

(θquant − θ).detach() + θ (14)
Specifically, for the quantized parameter θq , we approximate:

∂θq
∂θ
≈ 1. (15)

allowing gradients with respect to θq to be directly propagated and used to update θ. The gradi-
ents of the quantized parameters αq,i,j , βq,i,j , γq,i,j are back-propagated to their full-precision parts
αi,j , βi,j , γi,j without modification.

Gradient w.r.t. Window Boundary Parameters p. Let the scalar boundary parameters be pi for
i = 0, . . . , w− 1, where w is the number of windows. Define si = σ(pi) = sigmoid(pi), optionally
clamped in implementation for stability.

The normalized boundary positions bi ∈ [0, 1] are defined recursively as:

b0 = 0, bi = 1−
i−1∏
t=0

(1− st), i = 1, . . . , w (16)

which is equivalent to the code’s recurrence: bi = bi−1 + (1 − bi−1)si−1. The physical boundary
positions for input length T are:

Bi = T · bi, i = 0, . . . , w (17)

Each window i produces an unscaled output y(i)fake(data on window [Bi−1, Bi)). The gradient
contribution for window i is:

Gi =
∑

b∈batch

(
∇zLb · y(i)fake

)
(18)

The gradient with respect to boundary parameter pi is derived as follows:

1) BOUNDARY PERTURBATION EFFECT: A small perturbation δ in boundary Bi+1 redistributes
samples between windows i and i+ 1:

∂L
∂Bi+1

= Gi+1 −Gi (19)

2) WITH CHAIN RULE:
∂L
∂pi

=
∂L

∂Bi+1
· ∂Bi+1

∂pi
(20)

3) BOUNDARY POSITION DERIVATIVE: Differentiating bk = 1 −
∏k−1

t=0 (1 − st) with respect to
si (for i < k):

∂bk
∂si

=

k−1∏
t=0
t̸=i

(1− st) (21)

For k = i+ 1:
∂bi+1

∂si
=

i−1∏
t=0

(1− st) (22)

14
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4) SIGMOID DERIVATIVE:
∂si
∂pi

= si(1− si) (23)

5) COMBINED DERIVATIVE:

∂Bi+1

∂pi
= T · ∂bi+1

∂si
· ∂si
∂pi

= T ·

(
i−1∏
t=0

(1− st)

)
· si(1− si) (24)

6) FINAL GRADIENT EXPRESSION: Combining equations (19) and (24):

∂L
∂pi

= (Gi+1 −Gi) · T ·

(
i−1∏
t=0

(1− st)

)
· si(1− si) (25)

NOTED:

• The code implements this exactly: window aggr stores Gk values, ds = si(1− si), and
d boundaries = T ·

∏i−1
t=0(1− st) · ds[i].

• Intuition: (Gi+1 −Gi) measures whether moving the boundary helps loss reduction.

A.2 BOUNDS AND GRADIENTS

In this section, we mainly study the bounds for encoder parameters, variables, and outputs.

A.2.1 DISTRIBUTION OF NEO (T = X2 − Y Z)

Discrete Input Analysis : Let X,Y, Z be independent and uniformly distributed over the 8-bits
signed integer set {−128, . . . , 127} ∪ {128} for convenience, each with

P (X = x) = P (Y = y) = P (Z = z) =
1

257
, x, y, z ∈ {−128,−127, . . . , 128}.

Define T(NEO) with :
T = X2 − Y Z.

then :
X2 ∈ {02, 12, . . . , 1282}, Y Z ∈ {−128 · 128,−127 · 128, . . . , 128 · 128},

and consequently :
T ∈ {−1282, . . . , 2 · 1282}.

Then the probability mass function of T is given by :

P (T = t) =
N(t)

2573
, where N(t) =

∣∣{(x, y, z) ∈ {−128, . . . , 128}3 : x2 − yz = t
}∣∣ .

Mean:
E[T ] = E[X2]− E[Y ]E[Z] = E[X2],

since E[Y ] = E[Z] = 0. Moreover :

E[T ] = E[X2] =
1

257

128∑
k=−128

k2 =
1

257
· 2 · 128 · (128 + 1) · (2 · 128 + 1)

6
= 5504.

Variance:
Var(T ) = Var(X2) + Var(Y Z),

where X,Y, Z are mutually independent. Since Y,Z are independent and symmetric :

Var(Y Z) = E[Y 2]E[Z2], and E[Y 2] = E[Z2] =
1

257

128∑
k=−128

k2 = 5504.
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Next, for Var(X2):
Var(X2) = E[X4]−

(
E[X2]

)2
.

We have

E[X4] =
1

257

128∑
k=−128

k4 =
1

257
·2·

128∑
k=1

k4 =
2

257
·128(128 + 1)(2 · 128 + 1)(3 · 1282 + 3 · 128− 1)

30
.

This simplifies to:

E[X4] =
2

257
· 128 · 129 · 257 · 49535

30
=

2 · 128 · 129 · 49535
30

.

So finally, the total variance is

Var(T ) =
(
E[X4]− E[X2]2

)
+Var(Y Z) =

(
2 · 128 · 129 · 49535

30
− 55042

)
+55042 ≈ 5.453×107.

Continuous Input Analysis : X,Y, Z ∈ R ∼ U(−a, a) for a = 128. Then, the PDF of T =
X2 − Y Z becomes:

fT (t) =

∫ a2

0

fX2(s) · fY Z(s− t) ds

Where:

fX2(s) =


1

2a
√
s
, 0 < s ≤ a2

0, otherwise

fY Z(b) =



1

2a2
, b = 0

− 1

2a2
log

(
|b|
a2

)
, 0 < |b| < a2

0, otherwise
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Figure 4: Discrete Empirical Distribution of T = X2− Y Z (histogram) and corresponding Contin-
uous Analytical Expression (red curve)

Code experiment results are shown in Fig.4.
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A.2.2 DISTRIBUTION OF LNE (⌊log2(max(T, 1.0))⌋)

We define the discrete LNE as:

LNE = ⌊log2 (max(T, 1.0))⌋ .

Discrete Input Analysis For values T < 1, LNE is set to 0. The probability mass function is
computed as:

P (LNE = k) =


1

2573

1∑
t=−1282

N(t), k = 0,

1

2573

2k+1−1∑
t=2k

N(t), k ≥ 1.

Continuous Input Analysis For the continuous analytical expression, floor was ignored and let
y = log2(max(T, 1)), then T = 2y . The probability density transforms as:

fY (y) = fT (2
y) ·

∣∣∣∣dTdy
∣∣∣∣ = fT (2

y) · 2y log(2) y > 0, else fY (y) =

∫ 1

−∞
fT (t)dt y = 0

The distribution of LNE is obtained by integrating over bins:

P (LNE = k) ≈


∫ 1

−∞
fY (y)dy, k = 0,∫ k+1

k

fY (y)dy, k ≥ 1.
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Figure 5: Discrete Empirical Distribution of LNE (histogram) and corresponding Continuous Ana-
lytical Expression (red curve)

Code experiment results are shown in Fig.5.

A.2.3 DISTRIBUTION OF SCALE VALUE

In forward processing part, for window i we have:

Shift
(i)
j,n = ⌊αq,i,j · LNEn + βq,i,j⌋ ,

Scale
(i)
j,n = 2clamp(Shift

(i)
j,n−8, −8, 7).

Where αq,i,j ∈ {0, 1/16, ...15/16} and βq,i,j ∈ {−8,−7, ...7}, here, we consider the continuous
α̃ ∈ R ∼ U(0, 1) and β̃ ∈ Z ∼ U(−8, 8), and let X ∼ P (LNE). The distribution for LNE is

17
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presented in A.2.2, results show that LNE has bimodal characteristics, one located in 0 and another
is around value of ∼ 13. Considering the uniform distribution of α̃ and β̃, the range of Shift ∈
(−8, 24), here we choose bias of −8 as default to change the Shift range to the symmetrical interval
in (−16, 16).
Let’s consider :

Z = Y + β̃, Y = α̃ ·X
and mainly discuss of the scale value of :

scale value = clamp(Z − 8,−8, 7)
and α̃, β̃ are independent of each other and of X . First considering Y , we can get the cumulative
distribution function (CDF) :

FY (y) = P (Y ≤ y) = P (α̃ ·X ≤ y)

=

∫ ∞

0

P (α̃ ≤ y

x
| x = X) · fX(x)dx

=

∫ y

0

1 · fX(x)dx+

∫ 16

y

y

x
fX(x)dx (α̃ ∼ U(0, 1))

= FX(y) + y

∫ 16

y

fX(x)

x
dx

and the probability density function (PDF) with:

fY (y) =
d

dy
FY (y) = fX(y) +

∫ 16

y

fX(x)

x
dx+ y · (−fX(y)

y
) =

∫ 16

y

fX(x)

x
dx

Then the PDF of Z is given by the convolution:

fZ(z) =

∫ ∞

−∞
fY (z − b)fβ̃(b) db

Since β̃ ∼ U(−8, 8), we have fβ̃(b) =
1
16 for b ∈ [−8, 8], so:

fZ(z) =
1

16

∫ 8

−8

fY (z − b) db =
1

16

∫ 8

−8

(∫ 16

z−b

fX(x)

x
dx

)
db

And for the statistical values, we can get:

Expected Value:

E[Z] = E[Y ] + E[β̃] = E[α̃] · E[X] + 0 =
1

2
E[X]

Variance:
Var(Z) = Var(Y ) + Var(β̃)

Var(β̃) =
(8− (−8))2

12
=

256

12
=

64

3

Var(Y ) = E[Var(Y | X)] + Var(E[Y | X)] =
1

12
E[X2] +

1

4
Var(X)

In A.2.2 we can get E[X(LNE)] ≈ 12,Var[X] ≈ 2.6 (ignoring 0 value, for it makes no contribu-
tions for α, β gradient, and as mentioned the low NEO represents the region more like noise), hence
the final :

E[Z] =
1

2
E[X] ≈ 5

Var(Z) =
1

12
E[X2] +

1

4
Var(X) +

64

3
≈ 37 ≈ 62

18
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Figure 6: Discrete Empirical Distribution of Scale Value (histogram), Left: Original Scale Distribu-
tion. Right: With −8 Bias Scale Distribution

By adding the bias−8, we can make the distribution centered to E[Z−8] ≈ −3, with the distribution
figure shows below :

Fig.6 shows E[scale value] ≈ −2.46 Var[scale value] ≈ 22.78 ≈ 4.772, which is consistent
with the theoretical results. The majority of scale values are concentrated on the negative axis,
which a property for numerical stability. Since computation involves scaling by x · 2scale. If scale
were predominantly positive, the output could grow explosively (as illustrated in the left figure).

A.2.4 GRADIENT BOUND ANALYSIS

For ∇zL is given through the decoder, usually considered to be stable:

|∇zL| ≤ C

For the upper bound of extreme value, we choose all the possible max value of X = 128,LNE =
16, Scale = 27 treating all to be independent, with all windows collapsed into one of T = 128 and
γ = 1, we get:

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣ ≤ C · 1 · ln(2) · 128 · (128 · 16 · 128)

≈ C · 2.3× 107∣∣∣∣ ∂L
∂βi,j

∣∣∣∣ ≤ C · 1 · ln(2) · 128 · (128 · 128)

≈ C · 1.5× 106

However, this bound considers the joint distribution of input signal, NEO, and scale. Here we adopt
a Monte Carlo approach:

Parameter Distributions:

• N times testing, with window length L of 128.
• Setting X ∈ ZN×130 ∼ U{−128, 127, ..., 127}, with padding 2 to get 128 length NEO

value.
• α, γ ∈ RN ∼ U(0, 15/16), β ∈ ZN ∼ U(−8, 7), considering the STE in training process.
• For the window boundaries, we choose s0, s1 ∈ RN ∼ U(0.05, 0.95) for stability, with

boundaries b0 = 0, b1 = s0, b2 = b1 + (1− b1) · s1, b3 = 1. The actual boundary position
is Bk = bk · L.

Figure 7 shows the detailed distribution of gradient ∥α∥ and ∥β∥.
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Figure 7: Gradient distribution w.r.t. ∥α∥ and ∥β∥

And we get the tight upper bound of experience with:

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣ ≈ C · 2.06× 106,

∣∣∣∣ ∂L
∂βi,j

∣∣∣∣ ≈ C · 1.04× 105

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣
P95

≈ C · 1.64× 105,

∣∣∣∣ ∂L
∂βi,j

∣∣∣∣
P95

≈ C · 7.92× 103

P (

∣∣∣∣ ∂L
∂αi,j

∣∣∣∣ == 0) ≈ 0.39%, P (

∣∣∣∣ ∂L
∂βi,j

∣∣∣∣ == 0) ≈ 0.15%

While the gradient bounds are derived per-sample, the averaging nature of mini-batches further
reduces the effective variance and magnitude, ensuring training stability.

A.3 LIPSCHITZ CONTINUITY PROOF

Considering :

Scalen = 2α·log2(max(NEOn,1))+β−8 = 2β−8·(max(NEOn, 1))
α ≤ (Mn)

α, Mn = max(NEOn, 1)

Define :

g(α) = C ·
L∑

n=1

xn · LNEn ·Mn
α, C = ∇zL · γ · ln(2)

Let :

ϕn(α) = xn · LNEn ·Mn
α

Then :

|g(α1)− g(α2)| = C ·

∣∣∣∣∣
L∑

n=1

(ϕn(α1)− ϕn(α2))

∣∣∣∣∣ ≤ C ·
L∑

n=1

|ϕn(α1)− ϕn(α2)|

Note ϕn(α) is differentiable in α:

dϕn

dα
= xn · LNEn ·Mα · ln(Mn) = xn · LNEn ·Mα · LNEn · ln(2) = ϕn(α) · LNEn · ln(2)
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Thus :

|ϕn(α1)− ϕn(α2)|

≤ sup
α∈[α1,α2]

∣∣∣∣dϕn

dα

∣∣∣∣ · |α1 − α2|

⇒ |g(α1)− g(α2)| ≤ C ·
L∑

n=1

∣∣∣∣dϕn

dα

∣∣∣∣
max
· |α1 − α2|

⇒ |g(α1)− g(α2)| ≤ Kα · |α1 − α2|,

where Kα = C · ln(2) ·
L∑

n=1

|xn · LNE2
n ·Mn

max(α1,α2)|

Lipschitz continuity of gradient w.r.t. β is similar as α, with :

Kβ = C · ln(2) ·
L∑

n=1

|xn · LNEn ·Mn
max(α1,α2)|

The gradients with respect to the encoder parameters α and β are both bounded and Lipschitz con-
tinuous. Ensuring the gradient magnitude remains within a finite range and guaranteeing that small
perturbations in parameters induce only small changes in the gradients. Together, these properties
imply that the encoder exhibits relatively stable gradient behavior.

B HARDWARE IMPLEMENTATION DETAILS

B.1 MULTIPLIER-FREE DESIGN

In this section, we mainly introduce the design for multiplications.

B.1.1 ⌊log2(max(neo, 1))⌋ OPERATION

For the ⌊log2(x)⌋ operation, for a binary number x, ⌊log2(x)⌋ is equivalent to finding the highest
’1’ bit. One traditional solution is the priority encoder (PE). The main idea is to find the highest bit
’1’ from top to bottom. This can also be achieved by nesting multiple layers of if to determine the
highest bit.

We implement the log operation using a hierarchical priority encoder (PE) structure. The 16-bit input
is divided into four 4-bit groups, each processed by a small 4-bit LOD module, and the outputs are
combined to generate the 4-bit log value. The detailed implementation can be found in Algorithm 1.

B.1.2 WEIGHT GENERATION PROCESS

In our design, two quantized decimal parameters α and γ, each stored as 4-bit values, are utilized.
Both parameters represent fractional values in the set {0, 1

16 ,
2
16 , . . . ,

15
16}. This section focuses on

the computation of α · LNE, where LNE is the 4-bit logarithm approximation obtained from
Algorithm 1.

Algorithm Overview The multiplication α ·LNE is implemented using a shift-and-add approach
that leverages the binary representation of α. Given that α is a 4-bit fractional number, it can be
expressed as:

α =
α3 · 2−1 + α2 · 2−2 + α1 · 2−3 + α0 · 2−4

1

where α[3 : 0] are the individual bits of α.

Shift Operation Phase The 4-bit LNE value is first expanded to 8-bit precision and shifted ac-
cording to the weight of each bit in α:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1: Hierarchical Priority Encoder for Base-2 Floor Logarithm
Input: datai[15 : 0], 16-bits neo input
Output: LNE[3 : 0], 4-bits log representation

Step 1: Group-wise Detection;
// Check which 4-bit groups contain at least one ’1’ bit
zdet[3]← data i[15] ∨ data i[14] ∨ data i[13] ∨ data i[12]
zdet[2]← data i[11] ∨ data i[10] ∨ data i[9] ∨ data i[8]
zdet[1]← data i[7] ∨ data i[6] ∨ data i[5] ∨ data i[4]
zdet[0]← data i[3] ∨ data i[2] ∨ data i[1] ∨ data i[0]
// Check if entire input is zero
zero o← ¬(zdet[3] ∨ zdet[2] ∨ zdet[1] ∨ zdet[0])

Step 2: Leading One Detection (LOD);
// For each zdet, find the position of the leading ’1’. LOD

module acquires 4-bits input with output 4-bits. In LOD
module, we have :

[3 : 0]lod i, [3 : 0]lod o;
mux2 = (lod i[3] == 1) ? 0 : 1;
mux1 = (lod i[2] == 1) ? 0 : mux2;
mux0 = (lod i[1] == 1) ? 0 : mux1;
lod o[3] = lod i[3];
lod o[2] = mux2 & lod i[2];
lod o[1] = mux1 & lod i[1];
lod o[0] = mux0 & lod i[0];

Step 3: Inter-group Priority Selection;
// Determine which 4-bit group contains the globally highest

’1’ bit
select[3 : 0] = LOD(zdet[3 : 0]) // For example, if select[3] = 1, which

means highest ’1’ in bits 15-12 (group 3)

Step 4: Hierarchical Result Multiplexing;
// Propagate only the leading one detection results from the

selected group
for group← 3 downto 0 do

data o[15 : 12]← (group == 3) ? LOD(data i[15 : 12]) : 4′b0000;
data o[11 : 8]← (group == 2) ? LOD(data i[11 : 8]) : 4′b0000;
data o[7 : 4]← (group == 1) ? LOD(data i[7 : 4]) : 4′b0000;
data o[3 : 0]← (group == 0) ? LOD(data i[3 : 0]) : 4′b0000;
// Only the selected group’s LOD results are preserved

end
Step 5: Position Encoding;
if zero o = 1 ; // Special case: input bits are all 0
then

LNE[3 : 0]← 4′b0000
else

: // Encode position using combinatorial OR logic, maps
max(data i, 1)

LNE[3]←
data o[14] ∨ data o[13] ∨ data o[12] ∨ data o[11] ∨ data o[10] ∨ data o[9] ∨ data o[8]
LNE[2]←
data o[14] ∨ data o[13] ∨ data o[12] ∨ data o[7] ∨ data o[6] ∨ data o[5] ∨ data o[4]
LNE[1]←
data o[14] ∨ data o[11] ∨ data o[10] ∨ data o[7] ∨ data o[6] ∨ data o[3] ∨ data o[2]
LNE[0]←
data o[13] ∨ data o[11] ∨ data o[9] ∨ data o[7] ∨ data o[5] ∨ data o[3] ∨ data o[1]

end
return LNE[3 : 0]
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tw0 = LNE (No shift, weight = 20) (26)

tw1 = LNE ≪ 1 (1-bit left shift, weight = 21) (27)

tw2 = LNE ≪ 2 (2-bit left shift, weight = 22) (28)

tw3 = LNE ≪ 3 (3-bit left shift, weight = 23) (29)

Each twi represents LNE multiplied by 2i, corresponding to the weight of bit i in the binary repre-
sentation.

Conditional Summation Phase The final product is computed by conditionally summing the
shifted values based on the bits of α:

tprod =

3∑
i=0

(α[i] ? twi : 8′b0000 0000) (30)

prod = $signed${1′b0, tprod[7 : 4]} (31)

Mathematical Interpretation This implementation effectively computes:

α · LNE ≈ 1

16
× (α[3] · 8LNE + α[2] · 4LNE + α[1] · 2LNE + α[0] · LNE)

where the final right-shift by 4 bits (selecting tprod[7 : 4]) and scaling by 1
16 achieve the fractional

multiplication.

B.2 RESOURCE ANALYSIS

To align with realistic hardware constraints, we further refine our encoder design for resource analy-
sis. In particular, our system must co-exist with the analog front-end (AFE), whose silicon footprint
is approximately 300µm× 200µm. To keep the digital compressor within a comparable or smaller
area budget, we reduce the input window length to T = 32 samples at a sampling rate of 16 kSps,
corresponding the algorithm process clock is 16kHz. This configuration corresponds to a 2 ms seg-
ment, which is sufficient to cover typical spike events.

The region of interest (ROI) is defined as the ±1ms interval centered on the spike peak (i.e., 16
samples before and after). This choice both preserves the essential spike waveform information and
allows implementation with a compact 32-sample shift register, requiring only lightweight control
logic for peak-centered alignment.

Unless otherwise specified, all subsequent hardware-oriented measurements—including parame-
ter count, bit width, buffer size, and operation count—are reported under this configuration. By
grounding the encoder design in the AFE area constraint, the presented results reflect a feasible
iBMI deployment scenario where extreme limits on memory, compute, and silicon area must be
jointly satisfied.

FPGA Implementation. We first synthesized the proposed NSC module on a Xilinx
xc7z020clg400-2 FPGA using Vivado. The results show that the NSC requires 161 Slice LUTs,
91 Slice Registers, and 54 occupied slices, with all LUTs used as logic. The measured dynamic
power consumption is below 1 mW (reported as < 0.001W by the tool), confirming the ultra-low
power nature of the design.

ASIC Synthesis. To further evaluate silicon feasibility, we synthesized the entire digital process-
ing chain (data storage, spike detection, and the NSC module) using Synopsys Design Compiler
with the scc018ug uhd rvt ss v1p62 125c basic standard-cell library. The total area is
34,678µm2, of which the NSC encoder itself occupies 11,465µm2. Timing analysis shows a slack
of 62,488µs (MET), indicating that the design easily meets the target clock frequency(16kHz). The
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power report indicates extremely low consumption: 2.60 × 10−4 mW internal, 9.66 × 10−6 mW
switching, and 0.756µW leakage, summing to a total of 1.03× 10−3 mW.

These results demonstrate that the NSC encoder not only meets strict FPGA resource limits but also
achieves negligible area and power cost when mapped to a 0.18µm CMOS technology.

In future work, we will evaluate fully streaming in vivo scenarios.

C REPRODUCIBILITY STATEMENT

C.1 CODE STATEMENT

The Python code will be released upon acceptance. In the double-blind review process, the code is
available in the supplementary material. All written in Jupyter Notebook with a README file.

C.2 DATASETS PROCESS

For all datasets, we adopted a unified preprocessing pipeline to obtain spike-centered signal seg-
ments. First, for those datasets that have raw signals without preprocessing, we applied a 300 Hz
high-pass filter to remove low-frequency components. This step is standard in extracellular record-
ings and can be equivalently implemented in the analog front-end (AFE) hardware, thus not intro-
ducing additional digital computation overhead.

Second, candidate spike events were detected using an amplitude threshold. Following Donoho’s
principle Quian Quiroga (2009), the threshold was set within [5, 50] times the median absolute de-
viation (MAD) of the filtered signal, using the same process as Chaure et al. (2018), ensuring robust
spike detection while suppressing noise fluctuations. To avoid detecting overlapping spikes within
the refractory period, we eliminated consecutive events that were closer than 3 ms, corresponding to
typical neuronal firing constraints.

Third, around each detected spike, we extracted a fixed-length window of 128 samples, where the
spike location was centered. The extracted segments were then quantized into signed 8-bit integers
within the range [−128, 127]. This quantization step ensures hardware compatibility, as the input to
our encoder consists entirely of integer-valued samples suitable for efficient on-chip implementation.

Through this process, we obtained consistent spike-aligned segments across multiple datasets, all
represented in the same integer domain. These preprocessed datasets serve as the input for training
and evaluating our proposed neural signal codec.

Now we will describe the data processing procedures for each dataset in sequence.

QU Dataset The QU dataset provides raw data in .mat files, which include ground truth spike
indices and their corresponding classes. Therefore, we only quantized and scaled the data to 8-bit
resolution, after which we extracted the signal segments and their nonlinear energy operator (NEO)
components based on the provided indices.

GC Dataset This dataset provides raw recordings across 256 channels along with corresponding
trigger files (containing spike indices) in ’.npy’ format. Data loading instructions are available on
the official website. In our processing, we used only the single channel specified in the trigger files
to construct the dataset. No filtering was applied. Similar to the procedure for the QU dataset, the
data from the selected channel were quantized and scaled to 8 bits, after which signal segments and
NEO components were extracted using the provided indices.

hc1 For this dataset, we first applied a 300 Hz highpass filter. The recordings comprise six chan-
nels, with the 6−th channel containing the juxtacellular recording, which served as the ground truth
for spike indexing. Spikes detected on the juxtacellular reference channel were concurrently applied
to the data channels (Channels 2, 3, 4, and 5). Since these extracellular channels recorded activity
from the same cell, the spike classes across them are identical; the primary distinction lies in their
respective response amplitudes. Following this procedure, the data was similarly quantized to 8 bits.
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NP This dataset includes recordings from 384 channels. The official website provides spike-
sorting results, so we directly used these outputs. The data were only quantized to 8-bit integer
format for subsequent analysis.

MIT-BIH Similarly, for the MIT-BIH dataset, no filtering was applied. The datasets provide raw
signals along with annotated indices. We directly extracted the corresponding signal segments using
these indices and then quantized the data to 8-bit resolution.

In the ablation study, we utilized the QU Difficult1Noise02 dataset and the NP channel 1 data. For
the comparative experiments, we constructed mixed datasets to evaluate model performance under
more realistic and varied conditions:

For the GC dataset, recordings from sessions 20170622, 20170623, and 20170629 were combined
to form a mixed dataset containing three spike classes. For the HC1 dataset, recordings d533101
and d561106 were merged to create a two-class mixed dataset.

Noticed that since both GC and HC1 are extracellular recordings from individual neurons, each
original recording contains only one type of spike. The mixed datasets were therefore constructed
by combining multiple channel recordings to simulate multi-spike-class scenarios.

C.3 TRAINING SETTINGS

All experiments were conducted on a workstation equipped with one NVIDIA GeForce RTX 5090
(32 GB) GPU, an Intel Xeon Platinum 8470Q CPU (25 vCPUs), and 90 GB of system memory. The
code was implemented in Python 3.12 (on Ubuntu 22.04) using PyTorch 2.8.0 and CUDA 12.8.

For reproducibility, all models were trained with random seeds fixed from 1 to 5, managed via the
seed everything function from PyTorch Lightning. We used the AdamW optimizer with its default
parameters and a global learning rate of 1e − 3 for all models, without employing a learning rate
scheduler. A weight decay of 1e − 4 was applied to all non-quantized parameters, and gradient
clipping with a maximum norm of 10 was used during training.

The model architecture was consistent across experiments: input and reconstruction dimensions
were set to 128, with a latent space size of 4. Each model was trained for 100 epochs using mean
squared error (MSE) as the default loss function, unless otherwise specified in the main text. A
validation set was used for monitoring performance, but no early stopping was applied. Parameter
initialization followed the default methods of the framework, without specific modifications.

Regarding data preparation, no additional normalization or data augmentation was applied. The
input signals were directly used after 8-bit integer quantization.

Specified Initialization For our proposed Neural Spike Coder (NSC), the scaling factor α was
initialized uniformly in [0.25, 0.35] using α ∼ U(0, 1) · 0.1 + 0.25. The shift parameter β was
initialized to zero, and the quantization threshold γ was set to 0.5 initially. The window boundaries
were determined by averaging the input range into equal intervals.

For the baseline models, including AE QINT8, AE Q1P4, and VQ VAE, all quantized parameters
were uniformly initialized between the minimum and maximum values of the corresponding input
data range.

C.4 RESULT PROCESS

For the clustering evaluation, we employed the K-means algorithm with the random seed fixed to 42
to ensure reproducibility. To accurately assess the clustering performance against the ground truth
labels, we resolved the label assignment ambiguity using the Hungarian matching algorithm. This
method finds the optimal one-to-one mapping between predicted clusters and true classes by maxi-
mizing the overall alignment between the two sets of labels. The remapped labels were subsequently
used to compute all clustering metrics reported in the study.
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D ETHICS STATEMENT

All datasets used in this study are publicly available for research purposes under open-access li-
censes. Our experiments involved only secondary analysis of existing data and did not involve any
new data collection from human subjects. Therefore, no ethical approval was required for this work.

To access the original datasets :

QU (CC BY 4.0): https://figshare.le.ac.uk/articles/dataset/Simulated_
dataset/11897595?file=21819066

GC (CC BY 4.0): https://zenodo.org/records/1205233#.XMH886xKjCI

hc1 (CC BY 4.0): https://crcns.org/data-sets/hc/hc-1

NP (CC BY-NC 4.0): https://rdr.ucl.ac.uk/articles/dataset/Recording_
with_a_Neuropixels_probe/25232962/2?file=44571832

MIT-BIH (ODC-By): https://physionet.org/content/mitdb/1.0.0/

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the authors utilized the large language models (ChatGPT and
Deepseek) as an auxiliary tool to enhance the writing and editing process. The model was employed
specifically for text polishing, grammar correction, and improving the fluency and clarity of certain
passages in the manuscript.

It is important to note that all scientific content, including the core ideas, theoretical framework,
experimental design, results, and conclusions, originated solely from the authors. The LLM did
not contribute to the intellectual substance of the work, nor was it used to generate any scientific
insights, data, or interpretations.

The authors have reviewed and edited all AI-assisted content and take full responsibility for the
entire work, including its accuracy and integrity.

The use of the LLM was guided by and under the continuous supervision of the authors, adhering to
the principles of transparency and responsible AI use in academic research.
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Figure 8: Reconstructed (GT) Testset Index 0 Waveform (seed 1)
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Figure 9: Reconstructed (GT) Testset Index 1 Waveform (seed 1)
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Figure 10: Reconstructed (GT) Testset Index 2 Waveform (seed 1)

To provide qualitative evidence of reconstruction fidelity, we visualize several example waveforms
from the test sets. Figures 8–10 show the first three test samples from the GT dataset (seed 1), while
Figures 11–13 show the corresponding first three samples from the HC1 dataset (seed 1). Each
figure compares the reconstructed waveform with the ground-truth spike. These examples illustrate
that our proposed NSC encoder preserves key spike morphology and achieves high reconstruction
quality across different datasets.

G Q&A

APPENDIX B: SPIKE ALIGNMENT Q&A

B.1 SPIKE TIMING ALIGNMENT IMPLEMENTATION

Q.1: Why are all spikes aligned to the center of the time window during testing? Does this
approach introduce additional computational overhead?

A.1: This alignment does not introduce any computational overhead. It can be achieved through
a simple shift register architecture.
Let’s take a 128 waveform as an example. The key insight is that we use a 64-element shift
register ([0: 63]) as a delay line. Each clock cycle, we:

1. Shift in one new data sample at the input (position 63, tail)
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Figure 11: Reconstructed (hc1) Testset Index 0 Waveform (seed 1)
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Figure 12: Reconstructed (hc1) Testset Index 1 Waveform (seed 1)

2. Shift out the oldest sample at the output (position 0, head)
3. Perform spike detection on the newest sample at position 63

When a spike is detected at position 63, the current shift register contains the first 64 sam-
ples of the 128-sample window. The sample at position 0 was actually read 64 clock cycles
ago, representing the historical data. We then simply continue collecting data for another
64 clock cycles to complete the 128-sample window.
Timing Analysis:

• At detection time (t=0): Position 0 contains data from 64 cycles ago
• After 64 more cycles (t=64): Position 0 will contain the spike detected sample; now

we have read half the waveform.
• Result: The spike is naturally centered in the 128-sample window

This approach requires only basic shift register operations—no complex addressing, no
additional buffers, and no computational correction. The center alignment emerges natu-
rally from the timing relationship between data entry, detection point, and continued data
collection.

Q.2: Why is the design primarily focused on the ROI region, and is this scientifically justified?
A.2: Yes, the focus on a specific Region of Interest is strongly grounded in established bi-

ological research practices. In neural signal analysis, the critical features of an action
potential, or spike, are typically contained within a standardized time window around its

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 16 32 48 64 80 96 112 128
Time (samples)

80

60

40

20

0

20

40
A

m
pl

itu
de

Waveform Reconstruction Comparison (hc1)

Target
AE_FP
AE_QINT8
AE_Q1P4
PCA
CS
VQVAE
BNNAE
NSC*

Figure 13: Reconstructed (hc1) Testset Index 2 Waveform (seed 1)

peak. Conventionally, researchers analyze a segment spanning approximately 0.5 millisec-
onds before the peak to 1.0 milliseconds after it. This window captures the essential rising
and falling phases of the spike waveform, which are crucial for neuron identification, sort-
ing, and analysis Toosi et al. (2021). Our design captures a 64-sample window centered
on the detected spike. At a sampling rate of 32 kilohertz, which is considered high resolu-
tion for electrophysiological data, this window duration is exactly 2.0 milliseconds. This
provides 1.0 milliseconds of data on either side of the central detection point. Therefore,
our chosen ROI not only meets but exceeds the conventional research requirement of 1.5
milliseconds, ensuring that the complete, scientifically relevant waveform morphology is
captured without unnecessary data overhead.

Q.3: Why is it necessary to minimize parameters? Couldn’t conventional lightweight neural
networks be used?

A.3: The imperative for an extremely low parameter count stems directly from hardware constraints,
not just for algorithmic simplicity. The choice is dictated by the need for area efficiency
and to maintain a balanced design between the analog and digital domains.
In the 180nm semiconductor technology node, the physical area of a single 1-bit register is
approximately 45 µm2. In contrast, a typical analog front-end circuit, which includes com-
ponents like amplifiers and an Analog-to-Digital Converter, occupies an area of roughly
300 µm by 200 µm.
Consequently, the digital logic’s area must be designed to be commensurate with that of
the analog section to achieve a balanced overall system. A parameter-dense model, even
those labeled as ”lightweight” in software terms, would necessitate thousands of registers
and computational elements. Crucially, the area figures mentioned pertain to a single pixel
or channel. When integrated into a large-scale array containing hundreds or thousands of
such units, the total silicon area would become immense. If the digital block for each unit
were significantly larger than its analog counterpart, the aggregate area disparity would be
magnified across the array, resulting in a severely unbalanced chip. Therefore, conventional
lightweight networks are unsuitable.
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